
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Inverse-Free Extreme Learning Machine With

Optimal Information Updating
Shuai Li, Member, IEEE, Zhu-Hong You, Member, IEEE, Hongliang Guo, Xin Luo, Member, IEEE,

and Zhong-Qiu Zhao

Abstract—The extreme learning machine (ELM) has drawn
insensitive research attentions due to its effectiveness in solving
many machine learning problems. However, the matrix inversion
operation involved in the algorithm is computational prohibitive
and limits the wide applications of ELM in many scenarios. To
overcome this problem, in this paper, we propose an inverse-free
ELM to incrementally increase the number of hidden nodes,
and update the connection weights progressively and optimally.
Theoretical analysis proves the monotonic decrease of the training
error with the proposed updating procedure and also proves the
optimality in every updating step. Extensive numerical exper-
iments show the effectiveness and accuracy of the proposed
algorithm.

Index Terms—Extreme learning machine (ELM), inverse-free,
neural networks, optimal updates.

I. INTRODUCTION

I
N PAST decades, neural networks, as powerful computa-

tional tools, have been extensively studied and success-

fully applied to solve various engineering problems [1]–[7]

after the seminal work on the back-propagation (BP) learn-

ing rule [8], [9]. However, the previously overwhelming BP

neural network, despite its advantage in approximating any

nonlinearity under mild conditions [10], [11], demonstrates

insufficiency in learning speed when exposed to datasets with

a huge size which were never encountered tens of years ago.

As an alternative to BP neural network, the extreme learning

machine (ELM) is proposed to overcome the slow learning

speed problem of feed-forward neural networks [12]. Different

from the BP neural network which relies on the error prop-

agation to compute the connection weights in iterations, the

weights of ELM have an explicit and analytically expression,

and can be solved efficiently using matrix pseudo-inversion.

Manuscript received March 11, 2015; revised April 25, 2015; accepted
May 13, 2015. This work was supported in part by the National Natural
Science Foundation of China under Grant 61401385, Grant 61373086,
Grant 61202347, and Grant 61375047, and in part by the Young Scientist
Foundation of Chongqing under Grant cstc2014kjrc-qnrc40005. This paper
was recommended by Associate Editor G.-B. Huang. (Corresponding author:

Zhu-Hong You.)

S. Li and Z.-H. You are with the Department Computing, Hong Kong
Polytechnic University, Hong Kong.

H. Guo is with the School of Computer Engineering, Nanyang
Technological University, Singapore.

X. Luo is with with Chongqing University, Chongqing, China.
Z.-Q. Zhao is with the Hefei University of Technology, Hefei, China (e-

mail: zhuhong.you@polyu.edu.hk).
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCYB.2015.2434841

Since there is no iterative learning process needed, the slow

learning speed problem of conventional feed-forward neural

networks no longer holds for the ELM. The simplicity yet

without loss of accuracy has casted the ELM with potentials

to tackle big data learning problems and has endowed the ELM

with quick development [13].

Some fundamental problems on ELMs, such as the universal

approximation problem, the incremental learning problem, and

the learning capacity problem [14], [15], have been explored

and some theoretical conclusions have been drawn in recent

years. It has been proved that ELMs have the ability to approx-

imate any nonlinear multiple-input-multiple-output mapping

with any desired accuracy [16]. Huang et al. [17] proposed

an incremental algorithm to update the output weights incre-

mentally with the increase of hidden node numbers. It is

proved that the ELM using such an incremental algorithm

is also an universal approximator. Zhang et al. [18] proposed

an adaptive growth ELM (AG-ELM), which features adap-

tive determination of the required hidden nodes, incremental

renewal of network weights, and sequential generation of a

group new networks. It is proved in [18] that AG-ELM is

able to approximate any nonlinearity under mild conditions.

Zhang et al. [19] then improved the fundamental work on

AG-ELM by proposing a dynamic ELM, which also bears

universal approximation capability and is able to achieve a

more compact network architecture than AG-ELM. In [20], the

incremental ELM proposed in [17] is modified to an enhanced

version, and is named as error minimization ELM (EM-ELM).

Numerical experiments show an improved performance of

EM-ELM over the incremental ELM. Feng et al. [21] intro-

duced a new insight for efficient adjustments of ELM to

remove insignificant hidden nodes. Based on this insight, a

dynamic adjustment ELM is proposed by applying recursive

expectation-minimization theorem to tune input parameters of

insignificant hidden nodes for the reduction of residual errors.

Besides the computational power in nonlinear regression, ELM

is also applicable to nonlinear classification problems. The

multiclass classification problem is investigated in [22] using

the ELM. Due to the inherent connection between regres-

sion and classification, universal approximation theorem of the

ELM for regression problems also implies its universal clas-

sification ability even in scenarios with complicated nonlinear

classification boundaries. It has been shown in machine learn-

ing fields that the support vector machine (SVM) provides

a powerful and robust linear classifier and can be efficiently

applied to nonlinear classification problems by exploiting the

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This is the Pre-Published Version.

mailto:zhuhong.you@polyu.edu.hk
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH EXISTING ELM ALGORITHMS

kernel trick [23]. References [24]–[27] merged the SVM with

the ELM by defining a new kernel and receive improved

performances in both accuracy and speed. Most recently, it

is found that stacking several ELMs together to a multilay-

ered structure as an auto-encoder/decoder for deep learning

can further improve the accuracy for nonlinear classification

problems [28]. The seemingly contradiction between the sim-

plicity in the structure of ELM and its powerfulness in solving

regression and classification problems has evoked extensive

researches, and the reason is still not fully unveiled. It is

realized in [29] that the input layer setup of ELMs finds

connections with the random projection algorithm [30], [31],

which projects the original data into random directions as fea-

tures for dimensionality reduction [32]. Motivated by this fact,

some guidance on the selection of input layer weights in ELM,

is adopted in [33] and an improved accuracy is observed in

numerical experiments with such a guidance. Actually, not

only in ELMs, the random weight selection technique is also

adopted in some other models with great success, e.g., liq-

uid state machines [34] and echo state networks [35], [36].

With the random assignments on the input weights, the out-

put weights of ELMs can be directly determined by solving

a linear least square problem, which bears similarities to

designing the output weights of a radial basis function (RBF)

network [37], [38] or neural networks with other activation

functions [39], [40]. Besides, some other typical work on

ELMs include using evolutionary strategy to optimize the

input weights such that a compact ELM can be obtained [41],

ELMs with sparse representation [42], integrating fuzzy logic

with ELMs to improve the approximation performance [43],

employing an ensemble of classifiers with the ELM as the

base for performance improvement [44], applications of ELM

for effective recognition of landmarks [45], [46], and insight-

ful interpretation of ELMs from the perspective of random

neurons, random features, and kernels [47].

Despite the great success of ELMs in superior learning

accuracy and fast convergence, the involvement of an inverse

operation in the calculation of the output weight may result in

heavy computational overhead. Accordingly, the exploration of

using inverse-free operators to determine the output weights

of ELMs becomes promising. Early attempt along this line

shows that universal approximation capability also can be

reached by incrementally increasing the number of hidden

nodes and updating weights in an inverse-free manner [17].

However, the obtained weights using the updating rule pro-

posed in [17] is not the optimal one in the least square sense.

In other words, the weights obtained using the method pre-

sented in [17] are not identical to the ones obtained using

the conventional ELM algorithm, even under the same input

weights, the same training set, and the same number of hid-

den nodes. From this perspective, the incremental strategy

proposed in [17] computes output weights free of inverse oper-

ations at the cost of optimality. This evokes the following

question: is there any way to obtain exact the same weights

without using matrix inversion?

This paper makes progress along this direction and gives

positive answer to this question (see Table I for a compari-

son of the proposed algorithm with existing ELM algorithms).

With the assistance of the Sherman–Morrison formula and the

Schur complement, we propose a strategy to incrementally

update the output weights with the increase of the hidden node

numbers. In every step, the obtained output weights are identi-

cal to the solution of the standard ELM algorithm using inverse

operations. An immediate question following the incremental

strategy to update the output weights in ELMs is: whether or

not an improvement in the regression accuracy can be reached

progressively in every step of increasing the hidden node num-

bers? It is noteworthy that this question cannot be answered

by the universal approximation conclusion of ELMs as the

universal approximation conclusion gives the ultimate learning

capacity of ELMs while this question concerns on the learning

progress in every step to increase the hidden node numbers.

This question is answered theoretically in this paper by prov-

ing the monotonicity of the regression accuracy relative to the

number of hidden nodes with the proposed method. The above

mentioned twofold constructs the major contributions of this

paper.

The reminder of this paper is organized as follows. In

Section II, some preliminaries are given to support the theoret-

ical derivation in this paper. The basic architecture of ELMs is

briefed in Section III. In Section IV, the paradigm to increase

the hidden node numbers, the inverse-free algorithm to update

the output weights, and its extension to Tikhonov regularized

version are given, respectively. Section V presents numerical

validations on the proposed theoretical results by conducting

extensive simulations. Section VI concludes this paper.

II. PRELIMINARIES

In this section, we present some useful preliminaries for

the theoretical derivation in this paper. For A ∈ Rm×n and

B ∈ R
p×q, the Kronecker product A ⊗ B ∈ R

(mp)×(nq) is

defined as the following block matrix:

A ⊗ B =

⎡

⎢

⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤

⎥

⎦
. (1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 3

For an invertible square matrix A, and two vectors u and v

of a proper size, the Sherman–Morrison formula states the fol-

lowing conclusion under the condition that 1 + vTA−1u �= 0:

(

A + uvT
)−1 = A−1 −

A−1uvTA−1

1 + vTA−1u
. (2)

The Schur complement provides a way to find matrix inverse

via block decomposition. It gives the following equation when

the referred matrix inverses all exist and the matrices are of

proper sizes:

[

A B

C D

]−1

=
[

E F

G H

]

(3)

with E = (A − BD−1C)−1, F = −(A − BD−1C)−1BD−1,

G = −D−1C(A − BD−1C)−1, and H = D−1C(A −
BD−1C)−1BD−1 + D−1.

III. ARCHITECTURE OF THE ELM

With n input nodes, l hidden nodes and m output nodes, the

ELM can be expressed in equation as follows:

hi = f

(

n
∑

k=1

aikxk + bi

)

i = 1, 2, . . . , l

zj =
m

∑

i=1

wjihi j = 1, 2, . . . , m (4)

where zj is the value of the jth output node, hi is the value of

the ith hidden node, xk is the kth input, f (·) is an activation

function, which can be chosen as linear, sigmoid, Gaussian

models, etc., aik is the input weights from the input node k to

the hidden node i, bi is the bias of the hidden node i, and wji is

the output weight from the hidden node i to the output node j.

Overall, the ELM model can be expressed in a compact form

as follows:

h = f (Ax + b)

z = Wh (5)

where z = [z1, z2, . . . , zm]T ∈ Rm, h = [h1, h2, . . . , hl]
T ∈ Rl,

x = [x1, x2, . . . , xn]T ∈ R
n, A = [aik] ∈ R

l×n, b =
[b1, b2, . . . , bl]

T ∈ Rl, W = [wji] ∈ Rm×l, and f (·) is defined

in entry-wise, i.e., f (x) = [f (xij)] ∈ Rm×n for a matrix input

x = [xij] ∈ Rm×n. Specially, f (x) = [f (x1), f (x2), . . . , f (xn)]

for a vector input x = [x1, x2, . . . , xn] ∈ Rn.

The ELM expression (4) can be regarded as a two-layered

feed-forward neural network with the input layer choosing the

activation function f (·) and the output layer using linear activa-

tion function without a bias. The way to solve network weights

differs ELM from conventional neural networks the most. For

conventional neural networks, the BP rule is commonly used

to train the weights such that the desired output is achieved

with given inputs. In contrast, ELM uses a completely dif-

ferent way to determine the weights, i.e., the value of A, b,

and W in (5): A and b are chosen in random, and then W is

accordingly obtained by minimizing the estimation error (the

solution is a linear least-square solution to the problem). One

may argue that the randomness of the input weights may result

in nonoptimality in the obtained model. Actually, optimizing

the input weights helps increase the approximation accuracy

but is at the cost of robustness. Additionally, the universal

approximation theorem of ELM guarantees to approximate any

nonlinear piece continuous function using ELM with random

input weights.

IV. INVERSE-FREE ELM

In practice, a small number of hidden nodes is prefer-

able for computational considerations. However, the universal

approximation theorem for ELM holds when the hidden node

number approaches to infinity. This contrast motivates us to

consider the tradeoff between the two factors: 1) computa-

tional effectiveness and 2) the approximation accuracy. One

commonly used strategy in machine learning is to gradually

increase the hidden node number until the desired accuracy

is achieved. Although this strategy works well, it is at the

cost of computing the weights for all neural networks with

fewer hidden nodes. It is reasonable to guess that the weights

may only change a little if only an extra hidden node is intro-

duced, and there may exist a weight update law, which outputs

new weights in the case of n + 1 hidden nodes based on

the weight obtained in the case of n ones. In this part, we

formalize this intuition and give rigorous equations for the

update.

A. Proposed Model

We first define the hidden node increase policy of hidden

nodes in the ELM to solve a given regression problem.

Definition 1 (Hidden Nodes Increase Policy): For a regres-

sion problem from R
n to Rm, an ELM (5) with l + 1

(l > 0) hidden nodes is obtained by choosing the output

weight W l+1 by the following standard linear least square

algorithm used for ELM, and the input weights Al+1 and the

bias bl+1 as:

Al+1 =
[

Al

αT

]

, bl+1 =
[

bl

bl+1

]

(6)

where Al and bl is the input weights and biases for the same

problem with l hidden nodes, α ∈ Rn with entries chosen in

the same probabilistic distribution as other elements in Al, and

bl+1 ∈ R chosen in the same probabilistic distribution as other

elements in bl.

Remark 1: The hidden nodes increase policy in Definition 1

differs from the incremental policy proposed in [17] in that

they consider two different weight updating schemes. For the

proposed one in this paper, the output weight is identical to the

result obtained from standard ELM after weight updating by

increasing a hidden node. In contrast, the new output weight

following incremental policy in [17] after increasing a hidden

node is not identical to the solution of standard ELM. Due to

the optimality of standard ELM in the sense of least square

training error, the node increase policy in Definition 1 implies

its optimality.

Now we state the following theorem, which reveals the

benefit of increasing the number of hidden nodes for approx-

imation error.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Theorem 1: Using the hidden nodes increase policy in

Definition 1, the training error of the resulting ELM decreases

monotonically with the increase of the number of hidden

nodes.

Proof: The approximation error of an ELM with given input

weights A and biases b depends on its output weights. As to

the ELM with l + 1 hidden nodes, with given Al+1 and bl+1,

the approximation error depends on the output weight W l+1.

Denote xi and yi, the ith training input and the correspond-

ing ith training output, respectively. Then, y1, y2, . . . , yk ∈
R

m is the desired output sequence in the training set, and

x1, x2, . . . , xk ∈ Rn is the input sequence in the training set.

In a compact form, the training input matrix is expressed as

X = [x1, x2, . . . , xk] ∈ Rn×k, and the training output matrix is

expressed as Y = [y1, y2, . . . , yk] ∈ Rm×k. According to the

least square algorithm, W l+1 = YBl+1 with Bl+1 = f T(Al+1X+
1T ⊗ bl+1)(f (Al+1X + 1T ⊗ bl+1)f T(Al+1X + 1T ⊗ bl+1))−1

(where k is the number of training examples, 1 ∈ Rn is a vec-

tor with all entry 1.) is the optimal solution to the following

problem:

min
W l+1

∥

∥

∥
Y − W l+1f

(

Al+1X + 1T ⊗ bl+1
)
∥

∥

∥

2

F
(7)

where || · ||F defines the Frobenius norm and ||Y −
W l+1f (Al+1X + 1T ⊗ bl+1)||2F = trace((Y − W l+1f (Al+1X +
1T ⊗ bl+1))T(Y − W l+1f (Al+1X + 1T ⊗ bl+1))). Clearly, (7) is

a quadratic programming problem and therefore the obtained

optimal solution is indeed the global optimal one, meaning

that the least square solution of W l+1 is the one with the low-

est approximation error among all possible peers of W l+1,

including a particular one W l+1 = [W l 0m×1] with W l being

the least square output weight of the ELM with l hidden

nodes. If we can further prove that this particular one has

exactly the same approximation error as the ELM with l hid-

den nodes, we will be able to the draw the conclusion stated

in this theorem. Actually, according to (6) and (7), for the

ELM with such a particular choice on W l+1, the approxima-

tion error equals ||Y − [W l 0m×1] f (Al+1X + 1T ⊗ bl+1)||F =
||Y − W lf (AlX + 1T ⊗ bl)||F which is identical to the approx-

imation error for W l in the case of the ELM with l hidden

nodes. This completes the proof.

Remark 2: The universal approximation theorem for ELM

states that any nonlinear piece continuous function can be

approximated with any desired approximation error using an

ELM. Without Theorem 1, one may suspect: is there any

local optima in the number of hidden nodes such that locally

increasing the hidden node number results in the increase of

approximation errors? Theorem 1 gives a negative answer to

this question and implies that one can keep increasing the

hidden node number until the desired approximation error is

reached.

Following the convention, we can compute W l+1, which is

associated with an ELM with (l + 1) hidden nodes, using the

standard pseudo-inverse algorithm. However, this algorithm

refers to the inverse of square matrices, which is usually com-

putational heavy. The following theorem gives a solution to

avoid using the inverse operator and to take advantage of the

obtained weights of an ELM with l hidden nodes for the same

approximation problem.

B. Algorithm

Theorem 2: For an ELM defined in Definition 1 with l + 1

hidden nodes, its output weight W l+1 = YBl+1 with Bl+1 =
f T(Al+1X + 1T ⊗ bl+1)(f (Al+1X + 1T ⊗ bl+1)f T(Al+1X + 1T ⊗
bl+1))−1 can be expressed using the output weights of the

ELM with l hidden nodes in the following rule:

W l+1 = YBl+1

Bl+1 =
[

Bl+1
1 Bl+1

2

]

(8)

with

Bl+1
1 =

cTcI − ccT

cTc

(

BlHccTBl

cTc − cTBlHc
+ Bl

)

Bl+1
2 = −

Bl+1
1 Hc

cTc
+

c

cTc

where W l = YBl with Bl = f T(AlX + 1T ⊗ bl)(f (AlX + 1T ⊗
bl)f T(AlX + 1T ⊗ bl))−1.

Proof: Substituting (6) into (8) yields

Bl+1 = f T

([

AlX + 1T ⊗ bl

αTX + bl+11T

])(

f

([

AlX + 1T ⊗ bl

αT X + bl+11T

])

× f T

([

AlX + 1T ⊗ bl

αT X + bl+11T

]))−1

.

(9)

Define H = f (AlX+1T ⊗bl), c = f (XTα+bl+11). Then, noting

that f (·) is a mapping operated in entry-wise, (9) equivalently

writes

Bl+1 =
[

H

cT

]T
(

[

H

cT

][

H

cT

]T
)−1

=
[

HT c
]

[

HHT Hc

cTHT cTc

]−1

. (10)

Using Schur complement, we obtain

[

HHT Hc

cTHT cTc

]−1

=
[

E0 F0

FT
0 G0

]

(11)

with

E0 =
(

HHT −
HccTHT

cTc

)−1

(12)

F0 = −
E0Hc

cTc
(13)

G0 =
cTHTE0Hc

(

cTc
)2

+
1

cTc
. (14)

Therefore, we have

Bl+1 =
[

HTE0 + cFT
0 HTF0 + cG0

]

. (15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 5

As to E0 expressed in (12), supposing that cTc −
cTHT(HHT)−1Hc �= 0, it can be transformed as follows using

the Sherman–Morrison formula:

E0 =
(

HHT −
HccTHT

cTc

)−1

=
(

HHT
)−1

HccTHT
(

HHT
)−1

cTc − cTHT
(

HHT
)−1

Hc
+

(

HHT
)−1

. (16)

On the other hand, the output weight W l of the ELM with l

hidden nodes for the same approximation problem writes as

follows:

W l = YBl

Bl = f T
(

AlX + 1T ⊗ bl
)(

f
(

AlX + 1T ⊗ bl
)

× f T
(

AlX + 1T ⊗ bl
))−1

= HT
(

HHT
)−1

. (17)

The expression of Bl+1 can be obtained by

substituting (12)–(14) into (15). With the assistance of (17),

Bl+1 can be simplified to the following:

HTE0 + cFT
0 = HTE0 − c

(

E0Hc

cTc

)T

=
(

I −
ccT

cTc

)

HTE0

=
cTcI − ccT

cTc

(

BlHccTBl

cTc − cTBlHc
+ Bl

)

(18)

HTF0 + cG0 = −
HTE0Hc

cTc
+

c
(

cTHTE0

)

Hc
(

cTc
)2

+
c

cTc

= −
HTE0Hc

cTc
−

cFT
0 Hc

cTc
+

c

cTc

= −
(

HTE0 + cFT
0

)

Hc

cTc
+

c

cTc
. (19)

Notice that −(cTHTE0)/(c
Tc) = FT

0 since E0 = ET
0 .

Equations (18) and (19) together construct the two components

of Bl+1 and complete the proof.

Remark 3: For the case without Tikhonov regularization,

the proof of Theorem 2 relies on the assumption that HHT

is nonsingular and cTc is nonzero. The restriction cTc −
cTHT(HHT)−1Hc �= 0 referred in the proof is implied by

the assumptions on the nonsingularity of HHT and the nonze-

roness of cTc, plus that the standard ELM output weight W l+1

exists. For the case with Tikhonov regularization, the items

HHT and cTc are replaced by HHT + k0I, which is always

positive definite and nonsingular for k0 > 0, and cTc+k0 > 0.

In this situation, the restrictions are directly satisfied.

Remark 4: For regression problems with strong nonlinear-

ity or with a high dimension, it is often necessary to use many

hidden nodes (say the number of hidden nodes is l) to reach

a satisfactory approximation accuracy. A resulting problem

is the heavy computation burden to calculate the inverse of

a l × l matrix using conventional algorithms for ELM. With

Theorem 2, there is no need to compute any matrix inverses

and the computational expenses are thoroughly reduced.

Algorithm 1 Least Square ELM by Incrementally Increasing

the Number of Hidden Nodes

Require:

Desired approximation error η, input dimension n, out-

put dimension m, training set size k, the training input

X = [x1, x2, . . . , xk] ∈ R
n×k, the training output Y =

[y1, y2, . . . , yk] ∈ R
m×k, the initial ELM model with

l0 hidden nodes (input weight Al0 ∈ R
l0×n, input bias

bl0 ∈ R
l0 , pseudo-inverse Bl0 ∈ R

k×l0 , output weight

W l0 ∈ Rm×n).

Ensure:

An ELM with l hidden nodes (A, b and W) such that the

approximation error η∗ is reached.

1: l = l0, A = Al0 , b = bl0 , W = W l0

2: H = f (AX + 1T ⊗ b)

3: E = Y − WH //initial training error

4: η = MSE(E) //initial mean square error

5: while (η > η∗) do

6: α ⇐ a random vector in Rn

7: A ⇐
[

A

αT

]

//update A

8: b0 ⇐ a random scalar

9: b ⇐
[

b

b0

]

//update b

10: H = f (AX + 1T ⊗ b), c = f (XTα + b01)

11: B1 ⇐ cT cI−ccT

cT c
(BHccT B

cT c−cT BHc
+ B)

12: B2 ⇐ −B1Hc

cT c
+ c

cT c

13: B =
[

B1 B2

]

14: W = YB //update W

15: E = Y − WH //training error

16: η = MSE(E) //mean square error

17: end while

Based on Theorem 2, regression problems using an ELM

with the desired approximation error η∗ (η∗ > 0) can be

solved by incrementally increasing the number of hidden

nodes according to Algorithm 1.

C. Extension to ELM With Tikhonov Regularization

Tikhonov regularization is commonly used in machine

learning to avoid over-fitting [48], [49]. As to the cases with

l and l + 1 hidden nodes, respectively, the output weights for

ELMs with Tikhonov regularization write as follows:

W l = YBl

Bl = f T
(

AlX + 1T ⊗ bl
)(

k2
0I + f

(

AlX + 1T ⊗ bl
)

× f T
(

AlX + 1T ⊗ bl
))−1

(20)

W l+1 = YBl+1

Bl+1 = f T
(

Al+1X + 1T ⊗ bl+1
)

×
(

k2
0I + f

(

Al+1X + 1T ⊗ bl
)

× f T
(

Al+1X + 1T ⊗ bl+1
))−1

. (21)

For regularized ELMs, the weight updating law is stated in

the following theorem.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Theorem 3: For ELMs defined in Definition 1 with the

Tikhonov regularization, the output weight for the ELM with

l + 1 hidden nodes, as expressed in (21), can be expressed

using the output weights of the ELM with l hidden nodes as

expressed in (20), using the updating equation (8), with Bl+1
1

and Bl+1
2 in (8) defined as

Bl+1
1 =

((

cTc + k2
0

)

I − ccT
)

BlHccTBl

(

cTc + k2
0

)(

cTc + k2
0 − cTBlHc

)

+
((

cTc + k2
0

)

I − ccT
)

Bl

cTc + k2
0

Bl+1
2 = −

Bl+1
1 Hc

cTc + k2
0

+
c

cTc + k2
0

. (22)

Proof: For statement convenience, we define H = f (AlX +
1T ⊗bl), c = f (XTα+bl+11). Introduce the following auxiliary

matrix:

f̄l =
[

f
(

AlX + 1T ⊗ bl
)

k0I
]

=
[

H k0I
]

. (23)

Then, its pseudo-inverse B̄l is

B̄l = f̄l
T
(

f̄l f̄l
T
)−1

=

[

HT
(

k2
0I + HHT

)−1

k0

(

k2
0I + HHT

)−1

]

(24)

where B̄l is a (l + k) × l-dimensional matrix (recall that Al is

l×n-dimensional and X is n×k-dimensional, therefore f̄ is l×
(l+k)-dimensional), HT(k2

0I+HHT)−1 is k×l-dimensional and

k0(k
2
0I + HHT)−1 is l× l-dimensional. Clearly, the first k rows

of B̄l is the solution of Bl with the Tikhonov regularization

coefficient k0 or in

Bl =
[

Ik×k 0k×l

]

B̄l. (25)

Similarly, for ELM with l + 1 hidden nodes

Bl+1 =
[

Ik×k 0k×(l+1)

]

B̄l+1. (26)

For f̄ in the case of l + 1 hidden nodes, we have

f̄l+1 =
[

H k0I
]

=
[

H k0I 0

cT 0 k0

]

. (27)

Following the same procedure as in the proof of Theorem 2,

the recursive updating rule for B̄l+1 writes:

B̄l+1 =
[

B̄l+1
1 B̄l+1

2

]

(28)

with

B̄l+1
1 =

cT
1 c1I − c1cT

1

cT
1 c1

(

B̄′H1c1cT
1 B̄′

cT
1 c1 − cT

1 B̄′H1c1

+ B̄′

)

B̄l+1
2 = −

B̄l+1
1 H1c1

cT
1 c1

+
c1

cT
1 c1

(29)

where

H1 =
[

H k0I 0l×1

]

, c1 =

⎡

⎣

c

0l×1

k0

⎤

⎦, B̄′ =
[

B̄l

01×l

]

. (30)

With (24) and (30), we obtain, H1c1 = Hc,

[Ik×k 0k×(l+1)](c1cT
1 − c1cT

1) = [(cTc + k2
0)I − ccT 0 − k0c],

[Ik×k 0k×(l+1)] (c1cT
1 − c1cT

1)B̄′ = (cTc + k2
0)I − ccT)HT

(k2
0I + HHT)−1 = (cTc + k2

0)I − ccT)Bl, cT
1 B̄′ = cTHT

(k2
0I + HHT)−1 = cTBl, also we have

B̄′H1c1 =

⎡

⎢

⎣

HT
(

k2
0I + HHT

)−1
Hc

k0

(

k2
0I + HHT

)−1
Hc

0

⎤

⎥

⎦

and cT
1 B̄′H1c1 = cTHT(k2

0I + HHT)−1Hc = cTBlHc,

[Ik×k 0k×(l+1)](c1cT
1 − c1cT

1)B̄′H1c1 = ((cTc + k2
0)I −

ccT)HT(k2
0I + HHT)−1Hc = ((cTc + k2

0)I − ccT)BlHc,

[Ik×k 0k×(l+1)](c1cT
1 − c1cT

1)B̄′H1c1cT
1 B̄′ = ((cTc + k2

0)I −
ccT)HT(k2

0I+HHT)−1HccTHT(k2
0I+HHT)−1 = ((cTc+k2

0)I−
ccT)BlHccTBl

[

Ik×k 0k×(l+1)

]

B̄l+1
1 =

((

cTc + k2
0

)

I − ccT
)

BlHccTBl

(

cTc + k2
0

)(

cTc + k2
0 − cTBlHc

)

+
((

cTc + k2
0

)

I − ccT
)

Bl

cTc + k2
0

(31)

[

Ik×k 0k×(l+1)

]

B̄l+1
2 = −

[

Ik×k 0k×(l+1)

]

B̄l+1
1 Hc

cTc + k2
0

+
c

cTc + k2
0

(32)

which constructs the components for Bl+1 according

to (26) and (28).

Based on Theorem III, a Tikhonov regularized ELM for

regression problems with the desired approximation error

η∗ (η∗ > 0) can be solved by incrementally increasing the

number of hidden nodes according to Algorithm 2.

D. Complexity Analysis

In this part, we give analysis on the complexity of the pro-

posed algorithms. Since the result presented in (Section IV-B)

can be regarded as a special case of the Tikhonov regularized

least square ELM when choosing the regularization coefficient

k0 = 0. Without losing generality, we only analyze the time

complexity of Algorithm 2.

For each iteration (lines 5–18) in Algorithm 2, lines 12,

13, and 15 dominate the computational burdens. Recall that

the multiplication of two matrices, one of size l1 × l2 and

the other one of size l2 × l3 requires l1l3(2l2 − 1) flops of

operation and the summation of two matrices in size l1 × l2
requires l1l2 flops of operations [50]. When there are l hid-

den nodes, the dimension of the matrices B, H, Y , and c are

k × l, l × k, m × k, and k × 1, respectively. For line 12, we

first reorganize ((cTc + k2
0)I − ccT)BHccT B as ((cTc + k2

0)I −
ccT)BHccTB = (cTc + k2

0)(BHc)(cTB) − c(cT(BHc))(cTB)

(note that cTBHc is a scalar). For this quantity, cTc + k2
0,

cTB, and Hc need 2k + 1, l(2k − 1), and l(2k − 1) flops

of operations, respectively. The computation of BHc based

on the result of Hc needs k(2l − 1) flops. Further cT(BHc)

and (BHc)(cTB) need 2k − 1 and kl flops, respectively. Then,

the computation of c(cT(BHc))(cTB) costs kl + k additional

flops for computation. In addition, (cTc+k2
0)(BHc)(cTB) needs

kl+k computational flops. Overall, ((cTc+k2
0)I−ccT)BHccT B

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 7

Algorithm 2 Tikhonov Regularized Least Square ELM by

Incrementally Increasing the Number of Hidden Nodes

Require:

Desired approximation error η, regularization factor k0,

input dimension n, output dimension m, training set size

k, the training input X = [x1, x2, . . . , xk] ∈ R
n×k, the

training output Y = [y1, y2, . . . , yk] ∈ Rm×k, the initial

ELM model with l0 hidden nodes (input weight Al0 ∈
R

l0×n, input bias bl0 ∈ Rl0 , regularized pseudo-inverse

Bl0 ∈ Rk×l0 , output weight W l0 ∈ Rm×n).

Ensure:

An ELM with l hidden nodes (A, b and W) such that the

approximation error η∗ is reached.

1: l = l0, A = Al0 , b = bl0 , B = Bl0 , W = W l0

2: H = f (AX + 1T ⊗ b)

3: E = Y − WH //initial training error

4: η = MSE(E) //initial mean square error

5: while (η > η∗) do

6: l ⇐ l + 1

7: α ⇐ a random vector in Rn

8: A ⇐
[

A

αT

]

//update A

9: b0 ⇐ a random scalar

10: b ⇐
[

b

b0

]

//update b

11: H = f (AX + 1T ⊗ b), c = f (XTα + b01)

12: B1 ⇐ ((cT c+k2
0)I−ccT)BHccT B

(cT c+k2
0)(cT c+k2

0−cT BHc)
+ ((cT c+k2

0)I−ccT)B

cT c+k2
0

13: B2 ⇐ − B1Hc

cT c+k2
0

+ c

cT c+k2
0

14: B =
[

B1 B2

]

15: W = YB //update W

16: E = Y − WH //training error

17: η = MSE(E) //mean square error

18: end while

needs 9kl + 5k − 2l flops. Since the values of cTc + k2
0 and

cTBHc have been obtained until now, it only needs 2 addi-

tional flops to compute (cTc + k2
0)(c

Tc + k2
0 − cTBHc). As

to ((cTc + k2
0)I − ccT)B = (cTc + k2

0)B − ccTB, a total of

2kl + 1 flops are needed to conduct the computation. In total,

line 12 needs 14kl + 5k − 2l + 3 flops to assign B1 with the

updated value. For line 13, we need an additional 2kl + 2k

flops to update the value of B2. Line 15 costs m(l+1)(2k−1)

flops for computation. All together, lines 12, 13, and 15 need

m(l + 1)(2k − 1) + 16kl + 7k − 2l + 3 flops of computation,

which is approximately (2m + 16)kl for large k (the number

of training examples) and l (the number of hidden nodes), or

O(kl) in the sense of time complexity.

The conventional Tikhonov regularized ELM replaces lines

12 and 13 in Algorithm 2 with (21). Notice that f (Al+1X+1T ⊗
bl+1) is (l+1)×k-dimensional. It takes 2(l+1)+(2k−1)(l+1)2

flops to calculate k2
0I+f (Al+1X+1T ⊗bl)f T(Al+1X+1T ⊗bl+1).

The operation of matrix inversion has a time complexity of

O(n3) for a n × n matrix using Gaussian–Jordan elimina-

tion. Therefore, the time complexity of is O(l3) to calculate

(k2
0I + f (Al+1X + 1T ⊗ bl)f T(Al+1X + 1T ⊗ bl+1))−1. Together

TABLE II
PROPERTIES OF BENCHMARK REGRESSION DATASETS

with the additional expenses of k(l + 1)(2l + 1) to compute

f T(Al+1X + 1T ⊗ bl+1)(k2
0I + f (Al+1X + 1T ⊗ bl)f T(Al+1X +

1T ⊗ bl+1))−1, the overall time complexity is O(l3 + kl2)

for the conventional Tikhonov regularized ELM. Comparing

the complexity of O(l3 + kl2) for the conventional algorithm

while O(kl) for the proposed one, it can be concluded that

the proposed algorithm significantly reduces computational

expenses.

E. Discussion

In the previous sections, we have developed the inverse-

free ELM weight updating rules to solve regression problems.

Due to the inherent connections between regression and

classification problems, the same framework also applies to

classification problems. For a m-class classification problem,

the desired output for a training sample belonging to class i

can be constructed as y = ei, where ei ∈ Rm is a vector hav-

ing all elements zero except that the ith one equal to 1. The

training set then can be used to train the ELM by following

the same procedure as for the regression problem. In the pre-

diction phase, class labels of the testing data are obtained by

identifying the largest element in the m-dimensional output

vector generated by the ELM fed with test inputs. For exam-

ple, in the case that the output has the largest value in the ith

element among all m output elements, the sample is classi-

fied into class i. With this formulation, the proposed algorithm

applies to both the regression and the classification problems.

V. NUMERICAL EXPERIMENTS

This section conducts numerical experiments to validate

the effectiveness of the proposed inverse-free ELM algo-

rithm by applying it to real-world benchmark regression and

classification problems.

A. Benchmark Datasets

In order to extensively evaluate the performance of the

proposed algorithm, we consider several representative sce-

narios which are often encountered in machine learning fields,

namely large sizes, small sizes, high dimensions, and/or low

dimensions. The experimental datasets consist of five classifi-

cation cases and five regression cases, with the datasets coming

from the University of California, Irvine machine learn-

ing repository [51] and library for support vector machines

dataset [52].

In specific, for the regression problem, we consider datasets

as summarized in Table II: energy efficiency dataset, which

is of small size and low dimensions [53]; housing dataset,

which is of small size and medium dimensions [54]; Parkinson

disease dataset, which is of medium size and medium

dimensions [55]; airfoil self-noise dataset, which is of medium

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE III
PROPERTIES OF BENCHMARK REGRESSION AND

CLASSIFICATION DATASETS

size and low dimensions [56]; physicochemical properties of

protein dataset, which is of large size and low dimensions [51].

In Table II, column “randomness” represents whether the

training and testing data of the corresponding datasets are

reshuffled at each trial of simulation. If the training and testing

data of the datasets remain fixed for all trials of simulations, it

is marked “no.” Otherwise, it is marked “yes.” Preprocessing

is carried out for training data, making all attributes linearly

scaled into [−1, 1]. Attributes of testing data are also scaled

accordingly based on factors used in the scaling of training

data.

For the classification problem, we consider datasets as sum-

marized in Table III: diabetes dataset, which is of small size

and low dimensions [51]; musk dataset, which is of medium

size and medium dimensions [57]; MAGIC Gamma telescope

dataset, which is of large size and low dimensions [58];

leukemia dataset, which is of small size and high dimen-

sions [59]; adult dataset, which is of large size and medium

dimensions [60].

B. Simulation Environment Settings

In the study, the simulations of different algorithms on

all the datasets are evaluated with MATLAB R2011a envi-

ronment running on an Intel i5-2400 3.10 GHz CPU with

6.00 GB RAM. To guarantee the experimental results are

valid and can be generalized for making predictions regarding

new data, each benchmark dataset is randomly partitioned into

training and independent testing sets via a fivefold cross vali-

dation. Each of the five subsets acts as an independent holdout

testing dataset for the model trained with the rest of four sub-

sets. Thus, five models were generated for the five sets of data.

Their mean accuracy and variance are computed for compari-

son. The advantages of cross validation are that the impact of

data dependency is minimized and the reliability of the results

can be improved.

C. Evaluation Metrics

For the classification problem, we employ four com-

monly used indices as the measure for performance:

the overall prediction accuracy (ACC), defined as

ACC = (TP + TN/TP + FP + TN + FN) with TP, FN,

FP and TN denoting true positive, false negative, false

positive, and true negative; the sensitivity (SN), defined

as SN = (TP/TP + FN); the precision (PE) defined as

PE = (TP/TP + FP) and the Matthews correlation coef-

ficient (MCC) defined as MCC = (TP × TN − FP × FN/√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)). For

the regression problem, the mean squared error (MSE),

the error variance are employed to evaluate the prediction

performance of the proposed model.

D. Experimental Results

Table IV shows the regression performance of the proposed

inverse-free ELM with different activation functions, including

the sigmoidal function, the sine function, the hardlim func-

tion, the triangular function, and the RBF. In the simulations,

we use the proposed algorithm with Tikhonov regularization

using k0 = 0.1 to avoid over-fitting. Compared with conven-

tional ELM using the same regularization factor, as observed

from Table IV, inverse-free ELM results in the same solu-

tions on both the connection weight matrix and the output

for the same sample inputs by observing that the weight error

(the weight error is defined as ‖W1 − W2‖F with W1 and W2

being the weights obtained by the proposed algorithm and the

standard ELM algorithm, respectively), which is smaller than

10−10 for all tested datasets, and the output error [the output

error is defined as the difference between the nominal output

and the predicted output. For the output error of the train-

ing set and that of the testing set, we refer them as output

error (training) and output error (testing) in Table IV, respec-

tively.], which is less than 10−13 (the output error is defined as

‖Y1 − Y2‖F with Y1 and Y2 being the outputs obtained by the

proposed algorithm and the standard ELM algorithm). Take the

airfoil self-noise and the physicochemical properties of protein

datasets in Table IV as examples. For the airfoil self-noise

dataset, the training and testing MSE values of inverse-free

ELM with Gaussian kernel are 0.0304 and 0.0303, respec-

tively. The training and the testing output difference between

the standard ELM and the proposed algorithm are 3.22×10−14

and 1.75 × 10−16, respectively, which is ignorably small tak-

ing into account the computation error. For physicochemical

properties of protein dataset, the training and testing MSE val-

ues of inverse-free ELM with Gaussian kernel are 0.0734 and

0.0735, respectively. The training and testing output difference

between the standard ELM and the proposed inverse-free ELM

are 2.89 × 10−15 and 2.43 × 10−15, respectively. In conclu-

sion, although the ELM reaches different accuracy for different

datasets with different kernel selections, the proposed algo-

rithm always reaches the same accuracy as the standard ELM

algorithm, as observable from Fig. 1. Overall, the extensive

experimental results validate the fact that the proposed inverse-

free ELM reaches the same result as the standard ELM in

solving regression problems.

In this part, we report the experimental results of the pro-

posed inverse-free scheme in solving various classification

problems. Table V demonstrates the classification performance

comparison of ELM and the proposed inverse-free ELM with

different activation functions. We can see from Table V that

the inverse-free ELM of kernel form can always achieves

comparable performance as ELM for most datasets. Take

adult dataset (large number of training samples) as an exam-

ple. It can be observed from Table V that the proposed

inverse-free ELM with Gaussian kernel can achieve a relatively

high prediction accuracy of 84.28%. To better investigate the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 9

TABLE IV
EXPERIMENTAL RESULTS OF THE PROPOSED ALGORITHM TO SOLVE REGRESSION PROBLEMS

Fig. 1. MSEs for the proposed inverse-free ELM and the standard matrix inversion-based accurate ELM. (a) Airfoil self-noise dataset. (b) Energy efficiency
dataset. (c) Housing dataset. (d) Parkinson dataset. (e) Physicochemical properties of protein dataset.

prediction ability of our model, we also calculated the values

of SN, PE, and MCC. From Table V, we can see that our model

gives good prediction performance with an average SN value

of 54.24%, PE value of 73.46%, and MCC value of 60.07%.

Further, it can also be seen in Table V that the variance of SN,

PE, ACC, MCC, and area under curve are as low as 0.0126,

0.0064, and 0.0078, respectively. The receiver operator charac-

teristic (ROC) curve, which plots the achievable sensitivity (the

size of true positives that can be detected by our method) at a

given specificity (one-false positive rate) is commonly used

to evaluate the performance of a classification algorithm. As

shown in Fig. 2, a stronger bend toward the upper-left corner

of the ROC graph (i.e., high sensitivity is achieved with a low-

false positive rate) can be found with the proposed algorithm,

indicating that the proposed inverse-free ELM can successfully

classify positive and negative samples with all five activation

functions that we investigated. To sum up, it is clear that

the ELM algorithm reaches satisfactory results over the test

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE V
EXPERIMENTAL RESULTS OF THE PROPOSED ALGORITHM TO SOLVE CLASSIFICATION PROBLEMS

Fig. 2. ROC performance of the proposed algorithm with different activation functions. (a) Diabetes dataset. (b) Leukemia dataset. (c) Adult dataset.
(d) MAGIC Gamma telescope dataset. (e) Musk dataset.

datasets and the proposed inverse-free ELM method is as effi-

cient as the standard ELM in solving classification problems.

About the time efficiency of the proposed algorithm in

running real problems, we have the following remark.

Remark 5: The proposed algorithm speeds up the compu-

tation by complementing standard ELM in determining the

optimal hidden nodes. For example, for the situation that the

original trial of standard ELM with N1 hidden nodes but is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 11

TABLE VI
EXPERIMENTAL RESULTS OF THE PROPOSED ALGORITHM ON BIG DATASETS

not good enough to fit the training data with desired accu-

racy. The second trial uses an ELM with more hidden nodes,

which is N2 > N1, to fit the same data. Using standard ELM,

we have to compute the output weight with a computational

burden dependent on N2. Instead, the proposed algorithm is

able to complement standard ELM to reach such a job with a

computational burden depending on N2 −N1, which is smaller

that N2, especially for the situation that (N2 − N1) ≪ N2.

E. Further Experiments on Big Data

In this part, we run the proposed algorithm on datasets with

a large number of instances to show the its performance on

big data. We consider the following datasets: MNIST [61],

Connect-4 [62], Caltech101/256 [63], and Scene15 [64], and

report the training time, parameter sensitivity, and testing

error (mean value and deviation) with various kernel func-

tions, including Gaussian, sigmoid, hardlim, triangular, and

sine. As to the datasets, the MNIST dataset is a large set on

handwritten digits that is commonly used for training various

image processing systems. The dataset is also widely used for

training and testing in the field of machine learning. It con-

tains 60 000 training images and 10 000 testing images. Half

of the training set and half of the test set were taken from

the National Institute of Standards and Technologies (NISTs)

training dataset, while the other half of the training set and

the other half of the test set were taken from NISTs test-

ing dataset. The Connect-4 dataset contains all legal 8-ply

positions in the game of Connect-4 in which either player

has won yet, and in which the next move is not forced. It

includes a total number of 67 557 instances with 42 attributes.

The dataset Caltech101/256 is a set of 256 object categories

containing a total of 30 607 images. The dataset Scene15 is

composed of 15 scene categories including office, kitchen, liv-

ing room, bedroom, store, industrial, tall building, inside cite,

street, highway, coast, open country, mountain, forest, and sub-

urb. Images in the dataset are about 250 × 300 resolution,

with 210 to 410 images per class. This dataset contains a

wide range of outdoor and indoor scene environments. The

experimental results are summarized in Table VI, from which

we can observe that the proposed algorithm bears a similar

testing accuracy to state-of-the-art algorithms with a very fast

training speed.

We also run extensive simulations to test the sensitivity

of the testing accuracy with respect to the Tikhonov regu-

lation parameter on the datasets including Scene15, MNIST,

and Connect-4. The results are drawn in the following figure.

Fig. 3. Sensitivity of the testing accuracy with respect to the Tikhonov
regulation parameter on different datasets. (a) Scene15 dataset. (b) MNIST
dataset. (c) Connect-4 dataset. (d) Caltech256 dataset.

For the dataset Scene15, the average accuracy increases with

the increase of the Tikhonov regulation parameter from 0 to 7,

due to the increased generalization effect introduced by a

larger regulation parameter. However, further increase of the

Tikhonov regulation parameter does not receive additional per-

formance improvement. Although Tikhonov regulation help

increase the generalization ability of the model, but it is at

the cost of optimality. Consequently as observed in Fig. 3, the

average testing accuracy start to drop when further increase

of the regulation parameter is applied from 20 to 40. For the

Mixed National Institute of Standards and Technology dataset,

we test the results using regulation parameters ranging from 0

to 40. The results show that the performance of the proposed

algorithm is not sensitive to this parameter. For the Connect-4

dataset, with the increase of the regulation factor the testing

accuracy first experiences an increase in a small range between

0 and 30 and then keeps dropping for regulation factors from

30 to 450. The results for the Caltech256 dataset also witness

continuous decreases in testing accuracy after a short increase

when the regulation parameter is tune from 0 through 450.

VI. CONCLUSION

In this paper, a novel algorithm removing the matrix inver-

sion operation in the standard ELM but reaching exactly the

same solution was proposed to solve regression and classifi-

cation problems. The proposed algorithm gradually increases

the number of nodes in the hidden layer of the ELM, pro-

gressively updates the connection weights in an optimal

manner, and reaches the exactly the same solution in every

step as the conventional ELM but without the computation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

of matrix inversion. Time complexity of the proposed algo-

rithm is analyzed theoretically. Both the monotonicity of the

updating rule and the optimality of the obtained connection

weights are proved theoretically. Numerical experiments show

the effectiveness and accuracy of the proposed algorithm in

solving real-world regression and classification problems.

REFERENCES

[1] S. Li, Y. Li, and Z. Wang, “A class of finite-time dual neural networks
for solving quadratic programming problems and its winners-take-all
application,” Neural Netw., vol. 39, pp. 27–39, Mar. 2013.

[2] Y. Li, S. Li, and Y. Ge, “A biologically inspired solution to simulta-
neous localization and consistent mapping in dynamic environments,”
Neurocomputing, vol. 104, pp. 170–179, Mar. 2013.

[3] S. Li, B. Liu, and Y. Li, “Selective positive feedback produces the
winner-take-all competition in recurrent neural networks,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 301–309, Feb. 2013.

[4] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-
factorization-based approach to collaborative-filtering for recommender
systems,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1273–1284,
May 2014.

[5] S. Li and Y. Li, “Nonlinearly activated neural network for solving time-
varying complex Sylvester equation,” IEEE Trans. Cybern., vol. 44,
no. 8, pp. 1397–1407, Aug. 2014.

[6] X. Luo, Y. Xia, and Q. Zhu, “Incremental collaborative filtering recom-
mender based on regularized matrix factorization,” Knowl. Based Syst.,
vol. 27, pp. 271–280, Mar. 2012.

[7] J. Cao and Z. Lin, “Extreme learning machines on high
dimensional and large data applications: A survey,” Math.

Prob. Eng., Mar. 2015, Art. ID 103796. [Online]. Available:
http://www.hindawi.com/journals/mpe/aa/103796/abs/

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning

Representations by Back-Propagating Errors. Cambridge, MA, USA:
MIT Press, 1988.

[9] P. J. Werbos, “The Roots of Backpropagation: From Ordered Derivatives

to Neural Networks and Political Forecasting,” vol. 1. New York, NY,
USA: Wiley, 1994.

[10] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[12] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in Proc.

IEEE Int. Joint Conf. Neural Netw., vol. 2. Budapest, Hungary, 2004,
pp. 985–990.

[13] L. L. C. Kasun, H. Zhou, G. B. Huang, and C. M. Vong,
“Representational learning with extreme learning machine for big data,”
IEEE Intell. Syst., vol. 28, no. 6, pp. 31–34, Dec. 2013.

[14] G. B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Trans. Neural Netw., vol. 14, no. 2,
pp. 274–281, Mar. 2003.

[15] B. Widrow, A. Greenblatt, Y. Kim, and D. Park, “The No-Prop algo-
rithm: A new learning algorithm for multilayer neural networks,” Neural

Netw., vol. 37, pp. 182–188, Jan. 2013.

[16] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[17] G. B. Huang, L. Chen, and C. K. Siew, “Universal approximation
using incremental constructive feedforward networks with random hid-
den nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006.

[18] R. Zhang, Y. Lan, G. Huang, and Z. Xu, “Universal approximation of
extreme learning machine with adaptive growth of hidden nodes,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 365–371, Feb. 2012.

[19] R. Zhang, Y. Lan, G. Huang, Z. Xu, and Y. C. Soh, “Dynamic
extreme learning machine and its approximation capability,” IEEE Trans.

Cybern., vol. 43, no. 6, pp. 2054–2065, Dec. 2013.

[20] G. Feng, G. Huang, Q. Lin, and R. Gay, “Error minimized extreme learn-
ing machine with growth of hidden nodes and incremental learning,”
IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352–1357, Aug. 2009.

[21] G. Feng, Y. Lan, X. Zhang, and Z. Qian, “Dynamic adjustment of hidden
node parameters for extreme learning machine,” IEEE Trans. Cybern.,
vol. 45, no. 2, pp. 279–288, Feb. 2015.

[22] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.
[23] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,

vol. 20, no. 3, pp. 273–297, 1995.
[24] B. Frénay and M. Verleysen, “Using SVMs with randomised feature

spaces: An extreme learning approach,” in Proc. Eur. Symp. Artif. Neural

Netw., Bruges, Belgium, 2010, pp. 315–320.
[25] Q. Liu, Q. He, and Z. Shi, “Extreme support vector machine classifier,”

in Advances in Knowledge Discovery and Data Mining (LNCS 5012),
T. Washio, E. Suzuki, K. Ting, and A. Inokuchi, Eds. Berlin, Germany:
Springer, 2008, pp. 222–233.

[26] B. Frenay and M. Verleysen, “Parameter-insensitive kernel in extreme
learning for non-linear support vector regression,” Neurocomputing,
vol. 74, no. 16, pp. 2526–2531, 2011.

[27] E. Parviainen, J. Riihimäki, Y. Miche, and A. Lendasse, “Interpreting
extreme learning machine as an approximation to an infinite neural net-
work,” in Proc. Int. Conf. Knowl. Disc. Inf. Retriev. (KDIR), Valencia,
Spain, Oct. 2010, pp. 65–73.

[28] E. Cambria, G. B. Huang, L. L. C. Kasun, and H. Zhou, “Extreme
learning machines: Trends controversies,” IEEE Intell. Syst., vol. 28,
no. 6, pp. 30–59, Nov. 2013.

[29] Y. Miche, B. Schrauwen, and A. Lendasse, “Machine learning tech-
niques based on random projections,” in Eur. Symp. Artif. Neural Netw.,
Bruges, Belgium, 2010, pp. 295–302.

[30] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: Applications to image and text data,” in Proc. 7th ACM

SIGKDD Int. Conf. Knowl. Disc. Data Min., San Francisco, CA, USA,
2001, pp. 245–250.

[31] S. Dasgupta, “Experiments with random projection,” in Proc. 16th Conf.

Uncertain. Artif. Intell., San Francisco, CA, USA, 2000, pp. 143–151.
[32] S. S. Vempala, The Random Projection Method, vol. 65. Providence, RI,

USA: Amer. Math. Soc., 2004.
[33] P. Gastalo, R. Zunino, E. Cambria, and S. Decherchi, “Combining ELM

with random projections,” IEEE Intell. Syst., vol. 28, no. 6, pp. 18–20,
Apr. 2013.

[34] E. Goodman and D. Ventura, “Spatiotemporal pattern recognition via
liquid state machines,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Vancouver, BC, Canada, 2006, pp. 3848–3853.

[35] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE

Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.
[36] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic sys-

tems and saving energy in wireless communication,” Science, vol. 304,
no. 5667, pp. 78–80, 2004.

[37] F. Schwenker, H. A. Kestler, and G. Palm, “Three learning phases
for radial-basis-function networks,” Neural Netw., vol. 14, no. 4,
pp. 439–458, 2001.

[38] F. L. Lewis, A. Yesildirak, and S. Jagannathan, Neural Network Control

of Robot Manipulators and Nonlinear Systems. Bristol, PA, USA: Taylor
& Francis, 1998.

[39] Y. Zhang, W. Li, C. Yi, and K. Chen, “A weights-directly-determined
simple neural network for nonlinear system identification,” in Proc.

IEEE World Congr. Comput. Intell., Hong Kong, 2008, pp. 455–460.
[40] Y. Zhang and G. Ruan, “Bernoulli neural network with weights directly

determined and with the number of hidden-layer neurons automatically
determined,” in Proc. 6th Int. Symp. Neural Netw. Adv. Neural Netw.,
Wuhan, China, 2009, pp. 36–45.

[41] Q. Y. Zhu, A. K. Qin, P. N. Suganthan, and G. B. Huang,
“Evolutionary extreme learning machine,” Pattern Recognit., vol. 38,
no. 10, pp. 1759–1763, 2005.

[42] Z. Bai, G. B. Huang, D. Wang, H. Wang, and M. B. Westover, “Sparse
extreme learning machine for classification,” IEEE Trans. Cybern.,
vol. 44, no. 10, pp. 1858–1870, Oct. 2014.

[43] H. J. Rong, G. B. Huang, N. Sundararajan, and P. Saratchandran, “Online
sequential fuzzy extreme learning machine for function approxima-
tion and classification problems,” IEEE Trans. Syst., Man, Cybern. B,

Cybern., vol. 39, no. 4, pp. 1067–1072, Aug. 2009.
[44] A. Riccardi, F. Fernandez-Navarro, and S. Carloni, “Cost-sensitive

AdaBoost algorithm for ordinal regression based on extreme learn-
ing machine,” IEEE Trans. Cybern., vol. 44, no. 10, pp. 1898–1909,
Oct. 2014.

[45] J. Cao, T. Chen, and J. Fan, “Landmark recognition with compact BoW
histogram and ensemble ELM,” Multimedia Tools Appl., vol. 9, no. 3,
pp. 1–15, Jan. 2015.

[46] J. Cao, T. Chen, and J. Fan, “Fast Online learning algorithm for land-
mark recognition based on BoW framework,” in Proc. IEEE 9th Conf.

Ind. Electron. Appl., Hangzhou, China, 2014, pp. 1163–1168.

http://www.hindawi.com/journals/mpe/aa/103796/abs/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: INVERSE-FREE ELM WITH OPTIMAL INFORMATION UPDATING 13

[47] G. Huang, “An insight into extreme learning machines: Random neurons,
random features and kernels,” Cogn. Comput., vol. 6, no. 3, pp. 376–390,
2014.

[48] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse,
“TROP-ELM: A double-regularized ELM using LARS and Tikhonov
regularization,” Neurocomputing, vol. 74, no. 16, pp. 2413–2421, 2011.

[49] Y. Miche et al., “OP-ELM: Optimally pruned extreme learning
machine,” IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 158–162,
Jan. 2010.

[50] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[51] M. Lichman, UCI Machine Learning Repository, School Inf. Comput.
Sci., Univ. California, Irvine, CA, USA, 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[52] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
May 2011.

[53] A. Tsanas and A. Xifara, “Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning
tools,” Energy Build., vol. 49, pp. 560–567, Jun. 2012.

[54] R. Setiono and H. Liu, “A connectionist approach to generating oblique
decision trees,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29,
no. 3, pp. 440–444, Jun. 1999.

[55] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. E. Costello, and I. M.
Moroz, “Exploiting nonlinear recurrence and fractal scaling properties
for voice disorder detection,” Biomed. Eng. Online, vol. 6, no. 23, 2007.

[56] R. López-González, “Neural networks for variational problems in engi-
neering,” Ph.D. dissertation, Dept. Comput. Lang. Syst., Tech. Univ.
Catalonia, Barcelona, Spain, Sep. 2008.

[57] T. G. Dietterich, R. H. Lathrop, and T. L. Perez, “Solving the multiple
instance problem with axis-parallel rectangles,” Artif. Intell., vol. 89,
nos. 1–2, pp. 31–71, 1997.

[58] R. K. Bock et al., “Methods for multidimensional event classification:
A case study using images from a Cherenkov gamma-ray telescope,”
Nucl. Instrum. Methods Phys. Res. A, vol. 516, pp. 511–528, Jan. 2004.

[59] T. R. Golub et al., “Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring,” Science, vol. 286,
no. 5439, pp. 531–537, 1999.

[60] R. Kohavi, “Scaling up the accuracy of Naive-Bayes classifiers:
A decision-tree hybrid,” in Proc. 2nd Int. Conf. Knowl. Disc. Data Min.,
Portland, OR, USA, 1996, pp. 202–207.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[62] A. N. Burton and P. H. J. Kelly, “Performance prediction of paging work-
loads using lightweight tracing,” Future Gener. Comput. Syst., vol. 22,
no. 7, pp. 784–793, 2006.

[63] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental Bayesian approach tested
on 101 object categories,” Comput. Vis. Image Understand., vol. 106,
no. 1, pp. 59–70, 2007.

[64] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2.
New York, NY, USA, 2006, pp. 2169–2178.

Shuai Li (M’14) received the B.E. degree in
precision mechanical engineering from the Hefei
University of Technology, Hefei, China, in 2005, the
M.E. degree in automatic control engineering from
the University of Science and Technology of China,
Hefei, in 2008, and the Ph.D. degree in electrical
and computer engineering from the Stevens Institute
of Technology, Hoboken, NJ, USA, in 2014.

He joined Hong Kong Polytechnic University,
Hong Kong, as a Research Assistant Professor. His
current research interests include distributed estima-

tion, optimization and control of networked systems, kinematic and dynamic
analysis of robotic systems, and neural networks.

Dr. Li is currently on the Editorial Board of Neural Computing and

Applications, and the International Journal of Distributed Sensor Networks.

Zhu-Hong You (M’14) received the B.E. degree in
electronic information science and engineering from
Hunan Normal University, Changsha, China, in 2005
and the Ph.D. degree in control science and engineer-
ing from the University of Science and Technology
of China, Hefei, China, in 2010.

From 2008 to 2009, he was a Visiting Research
Fellow with the Center of Biotechnology and
Information, Cornell University, Ithaca, NY, USA.
He is currently a Post-Doctoral Fellow with the
Department of Computing, Hong Kong Polytechnic

University, Hong Kong. His current research interests include neural networks,
intelligent information processing, sparse representation, and its applications
in bioinformatics.

Hongliang Guo received the Bachelor of
Engineering degree in dynamic engineering and the
Master of Engineering degree in dynamic control
from the Beijing Institute of Technology, Beijing,
China, and the Ph.D. degree in electrical and
computer engineering from the Stevens Institute of
Technology, Hoboken, NJ, USA.

In 2011, he joined Almende, Rotterdam, The
Netherlands, as a Post-Doctoral Researcher. In
2013, he joined Nanyang Technological University,
as a Research Fellow. His current research interests

include self-organizing systems and agent-based technologies.

Xin Luo (M’14) received the B.S. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2005, and the Ph.D.
degree from Beihang University, Beijing, China, in
2011, both in computer science.

He joined the College of Computer Science,
Chongqing University, Chongqing, China, in 2011,
where he is currently an Associate Professor of
Computer Science and Engineering. His current
research interests include recommender systems,
social-network analysis, services computing, and
bioinformatics.

Zhong-Qiu Zhao received the master’s degree
from the Institute of Intelligent Machines, Chinese
Academy of Sciences, Hefei, China, in 2004, and
the Ph.D. degree from the University of Science and
Technology of China, Hefei, in 2007, both in pattern
recognition and intelligent system.

From 2008 to 2009, he held a post-doctoral posi-
tion in image processing with CNRS UMR6168 Lab
Sciences de l’Information et des Systèmes, Paris,
France. From 2013 to 2014, he was a Research
Fellow in image processing with the Department

of Computer Science, Hong Kong Baptist University, Hong Kong. He is
currently an Associate Professor with the Laboratory of Data Mining and
Intelligent Computing, Hefei University of Technology, Hefei. His current
research interests include pattern recognition, image processing, and computer
vision.

http://archive.ics.uci.edu/ml

