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PREFACE AND SUMMARY

This Memorandum is a part of RAND's continuing study on electro-

magnetic propagation as affected by atmospheric scattering. Atmos-

pheric properties have been inferred from scattering coefficients,

whose calculations involve finding certain inverse operators. Special

cases of the inverse function of the product of two spherical Bessel

functions have been found recently by other writers as IF2 hyper-

geometric functions. This Memorandum gives the general expression as

the derivative of a product of spherical Bessel functions. These

resilts may have application in various scattering configurations,

and also to the classical physics problem of determining the potential

from the phase shift.
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INVERSE FUNCTIONS OF THE PRODUCTS OF TWO BESSEL FUNCTIONS

A recent article (1 ) considers the problem of finding the inverse

function of the product of two spherical Bessel functions. The results

are given in terms of IF2 hypergeometric functions. The inverse func-

tion may be defined by the equation

00

S I(kr)j A+n(kr)g ,m(kr')dk = 6(r-r') (1)

0

Then Ref. 1 gives formulas in terms of 1F2 functions for m = 0,1,2,

and explicit results for g 0 , gl0 , g2,0' g0 ,, and g0 ,2 The authors

conjecture that the higher order inverse functions can be found by

the methods presented in Ref. 1.

This problem has been treated in the classical literature. The

inverse function gtO was found, in a form differing by an integration

byparts, by Bateman, (2) and the higher order forms by Fox. (3) All

these results are available in a standard text. (4) The general and

quite simple formula is:

8x2  d 2
g (x)= Tr dx nW(x) jm(x) (2)

where nI(x) denotes the spherical Neumann function. Equation (2) re-

duces to all the special cases treated in Ref. 1 except for g0,2'

for which it differs by a constant. Since it may be easily verified

that J and J +2 are themselves orthogonal over the range, the in-

verse function is not unique to an arbitrary additive constant.

Furthermore, if the spherical Bessel functions are replaced by the

corresponding expression in cylindrical Bessel functions, Eq. (2)

is valid when I is not an integer.
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To demonstrate the result of Eq. (2), the method of Ref. 4 will

be followed. If two functions f(x) and g(x) satisfy the relation

of Eq. (1), then g(x) is given in terms of the Mellin transform of

f(x) by:

c+ iw

g(x) - 2ri Jc-i x ds/F(l-s) (3)

F(s) = " x - 1 f(x)dx (4)
L0

The path of integration in Eq. (3) must lie in the strip where both

F(s) and F(l-s) are analytic. In terms of cylindrical Bessel func-

tions, using f(x) from Eq. (1), there results:

1'-

F(l-s) - dx J+/2 (x)JLI (x)x (5)
0

This Integral is .1 standard form, (5 ) and yields:

F(l-s) = .'( 2- 2). 2 ~ (6)s+2 ..1 1 +1 1 + 'C
2 s +-im )~ ++I M +( S m + 1)

Thus, g£,m is given by:

2s(, 1 1 3\o 1+2 s+-m + S " + L +-m + - 2, +
9 8-1 s-- 22 2,&S-m-' r7 2n i . d  2s..( 11 s

d (2s + ()r( + -m +.-

(7)

where s of Eq. (6) has been replaced by 2s, and the abscissa of integra-

I
tion lies between - - and 0. Regardless of the parity of m, the poles

Reference 4, p. 214.
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of the first two ganmma functions in the numerator are canceled by the

poles of P'(2s + 1) in the denominator. The path of integration may

be closed by a large semicircle in the left half-plane, and the integral

over the semicircle tends to zero. The third factor in the numerator

has poles at s n - I + m, where n takes on all positive integer

values and zero. Those poles for which 0 1. n s - m - 1 lie to the right

of the integration path and do not contribute to the integral. Those
1

poles for which - m t n s m - 1 have vanishing residues. The residues
2

of the remaining poles may be evaluated, and the reflection formula

"'(z)'(l-z) = n/sin n z may be used to simplify the expression. Thus:

2n-m

2 I+M+l (_)n(2n+2-m) 2~x
S ?(ntl-m),(n + - - m n + t +

2 ~ ~ . 9 1 n P(2n4-ns2) ( x 2n)
n! (n+m+l1)7 n + .1 -=~ ~ 2x ~ ~-L n + Z + m +2

Now we have the general formula

W(_1) (2n+(+v+l)1 x)2+
j J (x) (10)
31 (x)JV _ n: r(n+o+v+l)r'(n+i.+l)p(n+v+l) (10)

0

1 1
Setting = - j - = £ + m + 1, this series becomes:

2~ 2ni
no (_1)n '(2n--ns-l) (Ix)2(1

0 n (n+m+l),"n + + I

Reference 5, p. 147.
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All the gamma functions in Eqs. (9) and (11) match except the one in

the numerator. Multiply Eq. (11) by x and differentiate, and the

two series become identical. Thus:

,m(x) - 4x2 (-l) 1  d x (12)

X JAl1/ 2 x)JL+l/ 2 (x)

The identity N1+1/2(x) - (-l)' +lJ.-1 l 2 (x) and the return from

cylindrical to spherical Bessel functions now yield Eq. (2). The

analysis may be carried through in the same manner if I is not an

integer. Only one of the three sets of numerator poles will cancel,

and two series of the type of Eq. (9) result. Both may be identified

as Bessel function products, and combined to yield the form of Eq. (2)

in cylindrical Bessel functions.

For large x, Eq. (2) has the asymptotic form:

,(x)- 8x 2 (_'1)+1 cou2x - (13)

which includes all the cases of Ref. 1. For small x, there results:

(nl)t' + 2) x m+ 2

gA'm(x) - - 2 (L 2) (14)g ,.(x) 2p 2 1 ( + m + 3 I"

Since this vanishes for x - 0, the calculation of the potential from

the phase shift, as discussed in Ref. 1, becomes much more practical.

The structure of Eq. (2) makes it clear that the inverse function

9L,m(x) can always be written in terms of algebraic and trigonometric

functions when A and m are both integers. If m is an even positive

integer, an arbitrary constant may be added to g A
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