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Abstract. An //-semigroup is a semigroup such that both its right and left con-

gruences are two-sided. A semigroup is /-semisimple provided the intersection of all

its maximal modular congruences is the identity relation. We prove that a semi-

group is an inverse //-semigroup if and only if it is a semilattice of disjoint Hamilton-

ian groups. Using the set E of idempotents of S as the semilattice, we show that an

inverse //-semigroup S is f-semisimple if and only if for each pair of groups Gs, Gf

in the semilattice, with/äc in E, the homomorphism <p,,e on G, into Ge, defined by

C9r,e = ae, is a monomorphism; and for each e in E, for each a^e in Ge, there exists

a subsemigroup Tp of S such that a $ Tp and, for each / in E, Tp n Gf = H,, where

Hf — G, or Hf is a maximal subgroup of prime index p in G}.

Introduction. In this paper we adopt the definition of a Hamiltonian semigroup

presented by R. H. Oehmke [6]. Let a be an equivalence relation on a semigroup S.

If a is equivalent to b we shall write a ab. The a-class containing a will be denoted

by aa. An equivalence relation a on a semigroup S is a right (left) congruence

provided a, b, c e S and a a b imply (ac) a (be) ((cd) a (cb)). If an equivalence

relation is both a right and a left congruence, we shall call it a two-sided congruence

or, more briefly, a congruence. We use the natural partial ordering on relations and

say that af^p if and only if a, be S and a ab imply a p b. Clearly, the identity

relation i and the universal relation v are congruences and iSa^ for each con-

gruence a on S. A congruence o^v is called maximal if for each congruence a' on

S such that a^a'^v, either a = a' or a =v. An //-semigroup S is defined to be a

semigroup such that every right congruence and every left congruence is a two-

sided congruence on S. Since a subgroup of a group is normal if and only if its

corresponding right (left) congruence is two-sided, then the class of //-semigroups

contains the Hamiltonian groups in addition to the commutative semigroups,

where we include all commutative groups in the set of all Hamiltonian groups.

An inverse //-semigroup is a semigroup that is an inverse semigroup as well as an

//-semigroup.
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Using the above definitions we prove in §2 that a semigroup is an inverse H-

semigroup if and only if it is a semilattice of disjoint Hamiltonian groups.

We define r to be the intersection of all the maximal modular congruences on a

semigroup S, where a congruence a is called modular if there is an element e of S

such that (ea) a a and (ae) a a for all a in S. The element e is called an identity for

a. We refer to r as the /-radical of S. S is said to be /-semisimple if r = t [7]. In §3,

we give necessary and sufficient conditions for an inverse //-semigroup 5* to be

/-semisimple. This result has several nontrivial corollaries.

The author expresses her gratitude to Professor Robert H. Oehmke for his

guidance in the preparation of this paper.

1. Preliminary definitions and results. An element b of a semigroup S is an

inverse of an element a of S provided aba = a and bab = b. S is an inverse semigroup

provided every element of S has a unique inverse. The inverse of an element a of

an inverse semigroup Swill be denoted by a"1 so that aa~1a = a and a~1aa~1 = a~1.

The preceding definitions are taken from [1].

We also make use of the following results which have been proved in [1, pp. 23-

30]. Let S be an inverse semigroup. The set E of idempotents of S is a semilattice,

i.e., a commutative idempotent semigroup with the induced ordering e^/if and

only if ef=e. If a, b e S then (a~1)~1=a and (ab)~1 = b~1a~1. Every principal

right ideal and every principal left ideal of S has a unique idempotent generator.

The idempotent e = aa'1 (f=a~1a) is the unique idempotent generator of aS (Sa).

A left (right) zero of a semigroup S is an element a of S such that as = a (sa = a),

for each seS[1]. Let c be a left (right) zero of an inverse semigroup S. Then for

each s e S, csc = c implies scs = sc (scs — cs) is an inverse of c. But c has a unique

inverse, namely c, so that, for each s e S, sc = c (cs = c). Hence c is a right (left)

zero of S and S has at most one (left, right) zero.

In [6] Oehmke proved the following result which we state as a lemma.

Lemma 1.1. If S is an H-semigroup and I is a right (left) ideal of S then, for any b

in S, bl^I (Ib^I) or bl={c) where c is a left zero (Ib = {c) where c is a right zero).

We use this result to show that every one-sided ideal of an inverse //-semigroup

S is two-sided and thus we obtain that S is a semilattice of disjoint groups.

Lemma 1.2. A right (left) ideal of an inverse H-semigroup S is two-sided.

Proof. Let / be a right ideal of S and b e S. By Lemma 1.1, either Ws / or

bl={c} where c is a left zero. If the latter is true, then, since c is also a right zero

and / is a right ideal, we have {c} = Ic^I so that bl={c}^I and / is a left ideal in

either case. By a similar proof, any left ideal of S is a right ideal of S.

Let S be an inverse //-semigroup and e an idempotent of S. Since Se is an ideal

and e e Se, it follows that Se = eS. Then for any ae S we have ae = a if and only

if ea = a. But for a e S there exists a unique element a"1 e S such that aa'1 and
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a 1a are idempotents. Thus we have (aa v)a = a so that a(aa 1) = a, and also

a = a(a~1a) so that (a~1a)a = a. Hence

a~1a = a~1(aaa~1) = (a~1aa)a~1 = aa'1.

It is well known that if every element of an inverse semigroup S commutes with its

inverse then S is a union of disjoint groups. Thus we have the following lemma:

Lemma 1.3. If S is an inverse H-semigroup then S is a union of disjoint groups.

If Y is a semilattice such that 5*= U {Sa : a e Y} is a decomposition of S such

that, for every pair of elements a, ß of Y, there is an element y of Y such that

SaSß^Sy, we say that 5" is the union of the semilattice Y of semigroups Sa, a e Y.

We also abbreviate the expression and say that S is a semilattice of semigroups of

type ^ to mean that S is the union of the semilattice of semigroups Sa, a e Y,

where each Sa is of type (€.

Let She an inverse //-semigroup and let Ge = {b e S : bb~1 = e}.\t readily follows

that Ge is a maximal subgroup of S and S=(J {Ge : e e E}, where Ge n Gf = 0

for e+f. Using Lemma 1.3, we obtain the result that E is contained in the center of

S [1, pp. 127-128] so that Theorem 1 follows.

Theorem 1. If S is an inverse H-semigroup then S is a semilattice of disjoint

groups, and if fi^e in E, the mapping <pfte, defined by a<pfi(1 = ae where a e Gf, is a

homomorphism of Gf into Ge. Also, ySJ is the identity mapping of Gf and iff^eTzg,

then <Pf,e9e,g = 'Pf,g- Moreover, every product in S is known, since for asGf and

b e Ge, ab = (a(p{Je){bcpeje).

2. In this section we shall obtain a characterization of inverse //-semigroups,

namely:

Theorem 2. A semigroup S is an inverse H-semigroup if and only if S is a semi-

lattice of disjoint Hamiltonian groups.

Proof. Let S be a right congruence on an inverse //-semigroup S. Let Ge be a

maximal subgroup of S and let S' be the restriction of S to Ge. By a straightforward

argument, it can be shown that there is a subgroup He of Ge such that S' is the

right congruence on Ge induced by He. On the other hand, for any e in E, let He

be any subgroup of Ge. Let a be the right congruence induced by He on Ge. If

f<e, let Hf = Gf. If e and/are not comparable, written elf let Hf = Gf. Iff=\e,

let Hf = (He)<pf e where <pf,e is the homomorphism on Gf into Ge. Let a,beS.

Write

a a' b o a,b e Gf and ab'1 e Hf  for some f e E.

It readily follows that a' is an equivalence relation on S. Assume a a' b and let

c e Gk. If (\)k<e,f<e or (2) k <e,f ? e then either/Ac < e or fk ? e so that Hfk = Gfk.

In these cases H, = GS and Hk = Gh. Hence Hr Hk^Hfk. A similar argument

obtains the same result in each of the remaining cases so that (ac) a' (be) and a'
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is a (right) congruence on S. Therefore, if a,bsGe and a ab, then ab'1 e He

implies a is the restriction of a' to Ge so that a is a congruence on Ge. Then He is a

normal subgroup of Ge and Ge is Hamiltonian. Hence, if S is an inverse //-semi-

group, then S is a semilattice of disjoint Hamiltonian groups.

Let Y be any semilattice and to each element a of Y assign a group Ga such that

Ga and Gß are disjoint if a -£ß in Y. To each pair of elements a, ß of y such that

a>p°, assign a homomorphism <pa fi of Ga into G^ such that if a>ß>y, then

fa.ßVß.y — Va.y Let <ptti£[ be the identity automorphism of Ga. Let 5* be the union of

all the groups Ga, a e Y, and define the product of any two elements aa, be of A"

(aa in Ga, bß in Ge) by aabB = {aa<pctiaß){bB<pßiClß). Then S is an inverse semigroup

which is a union of groups [1, p. 128].

Assume the groups Ga, a e Y, are Hamiltonian. It remains to show that £ is an

//-semigroup. Let a be a right congruence on S. For each Ga, a restricted to Ga

induces a right congruence aa on Ga. Since Ga is Hamiltonian then aa is two-sided

so that a determines a normal subgroup Ha of Ga. Let ea be the identity of Ga.

Recall that E is in the center of S where E is the semilattice of idempotents of S.

Then we have

aaabB => (aaeaeB) a (bBeaeB) => (aaeß) a (b„ea)

=> (aaeB) aaB (bBea) => ̂ (V*)-1 = aJ>i1 e Hae-

Further,

aaabB => (aA-1) ct e„ => (aA_1) ct <?a/j

so that ea/3 ct    and, by symmetry, eaß a ea so that eB a eaB a ea.

Conversely,

aabB 1 e HaB and eB a eaB a ea => (aabB *) a eaB a eB and aa a (aaeB)

=> (aaeB) a bB and aa a bB.

Let cy g S and assume aa a bß.

aaabe => a«^1 e h«b => («A_1) CT^     => (a A-1) a eaB

=> (ajy^ey) a (eaßev) => (ajy^e,) aaBy eaBy =*■ aJ}Bxey e HaBy.

Since /7a/,y is a normal subgroup of Ga/Jy then

(Cyeaeß)aabj1ey{cyeaeB)-1 = c.ajj^c;1 = (cyaa)(cyZ>Ä)"1 e HaBy

and

(Cr«Jl"HcA)eÄ«#r

Further, aaabB => eB a eaB a ea => eya ct eya/J ct eyjS. Thus we have (cyaa) a (crbB) and

ct is also a left congruence. By an analogous proof, if ct is a left congruence on S,

then ct is a right congruence on S. Hence S is an inverse //-semigroup.

3. In this section we first identify the maximal modular congruences of an

inverse //-semigroup S, and then obtain necessary and sufficient conditions for S

to be f-semisimple.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] INVERSE //-SEMIGROUPS 79

A homomorphic image of an inverse semigroup is an inverse semigroup. More-

over, in any homomorphism, the inverse of an element is mapped onto the inverse

of the image of that element [2, p. 57].

As one might also expect, the homomorphic image of an //-semigroup S is an

//-semigroup. For if iä is a homomorphism from 5 onto 5", S' is obviously a

semigroup. And if p is any right (left) congruence on 5", we can define p on S by

apb o (cup) p (bif>).

Then p is a congruence on S and from this it follows that p is a left (right) con-

gruence on S'.

Let S be an //-semigroup. Let / be an ideal of S and T a subsemigroup of S

such that / u T= S and / n T= 0. Write

a p b o a, b e I or a, b e T.

Then p is a maximal modular congruence on S, where each element of T is an

identity for p and p is not cancellative.

Let 5" be an inverse //-semigroup. For e e E, let Te = {J {Gf : e^f}. Define the

relation p(e) on S by

a p<e> boa, be Te or a, be Te

where T'e = S—Te. If e is not a minimum idempotent in S, we claim that p(c) is a

maximal modular congruence on S with identity e and p(e) is not cancellative. Since

e e Te, re#0. Let d, b e Te, say deG„ be Gk. Then e^f and e%\k imply e^fk

so that db e Gfk^Te and Te is a subsemigroup of 5*. Assume e is not minimum in E

so that # 0. Let d e T'e, b e S, say d e Gf and 6 e Gfc. Now rfelj implies/< e or

/ ? <?. If/<<? then/fe< e and <#> e Gfk^T'e. Iff ? e then/7c <e or fkle and 6 1^

Thus T'e is a right ideal of S. By Lemma 1.2, T'e is an ideal of S. It follows that p<e>

is a maximal congruence on S with identity e and p(e) is not cancellative.

Let a be a maximal modular congruence on an inverse //-semigroup S. For each

e e E, let He be the subgroup of Ge induced by ct. Then, as in the proof of Theorem

2, we know that for a,beS, say aeGf,be Gk, a ob o aft"1 e ///fc and / ct (fk) a k.

Let a be an identity for ct, say a e G,. Then for each seS, (as) a s implies (fas) a (fs)

so that (as) a (fs) a s. Thus /is an identity for ct.

It is generally known that ct is cancellative if and only if E^ ct„.

Suppose ct is not cancellative and let e e E be an identity for ct. If h e E is an

identity for ct, then h a (eh) a e and h e ae. Since a is not cancellative there exists

f e E such that/%\ ae, so that/is not an identity for ct. Let I={f e E : fis not an

identity for ct}. Then / is an ideal in E. Let /= (J {Gf : f el}. Then J is an ideal of

S and J' is a semigroup of S. Oehmke [7] has shown that if ct is a maximal con-

gruence and J any ideal of S, then either / is contained in a cr-class S0 (which is

also an ideal of 5) or J contains an element of each cr-class. If x e ae O /, then

x a e and x e Gf, for some f el. But then x a (ef) so that e a (ef) and, since also
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(ef) a f then e of and f s I, which is a contradiction. Hence ae n J= 0 and there

exists a o--class So sucn that J^S0. Suppose there is some b e S0 such that b $ J,

that is, beGh where ha e. Let /e /. Then b a f implies bf e Hhf and h a (hf) a f

so that foe. Contradiction. Therefore J=S0. Since J is an ideal and J' is a semi-

group, we have the maximal modular congruence a* defined by a a* b o a, b e J

or a, b eJ', where each element of J is an identity for a*. Clearly 0^0*. Hence

ct = o-* and we have proved the following lemma.

Lemma 3.1. If a is a maximal modular congruence on an inverse H-semigroup S,

then a is cancellative or a has exactly two congruence classes, namely the semigroup

of identities for a and the ideal of nonidentities for a.

Suppose a is cancellative. Then E^ae where ae = (J{Hf :feE}. Since a is

maximal, then S/a has no nontrivial congruences. Therefore S/a is the semigroup

{0, 1} or S/a is simple. Since a is cancellative, it follows that Sfo^{0, 1}. Since S

is an inverse //-semigroup, then S/a is an inverse //-semigroup. Therefore, by

Lemma 1.2, every one-sided ideal of S/a is a two-sided ideal. Hence S/a is both left

and right simple, so that S/a is a Hamiltonian group [1, p. 6]. Since S/a has no

nontrivial congruences, then S/a has no nontrivial homomorphisms, so that S/a

is a simple group. Since S/a is Hamiltonian, then S/a has no nontrivial subgroups.

Hence S/a is a cyclic group of prime order. Thus there exists a prime number p

such that, for every a $ ae, the <r-classes may be written as aa, oas>,..., aav, where

aap = ae and a" is an identity for a. In fact, for every ceae,c a e implies (cs) a (es) as

and (sc) a (se) a s so that c is an identity for a. By a similar argument, if a $ ae,

then a is not an identity for a. If Ge = He then GeQoe. If Ge^He then a partitions

Ge into cosets of He. The number of these cosets must be p, for otherwise S/a

would contain a proper subgroup. Hence the cosets of He must form a cyclic

group of prime order and He must be a maximal subgroup of Ge. We state these

results in the following lemma:

Lemma 3.2. If a is a maximal modular cancellative congruence on an inverse

H-semigroup S, then S/a is a cyclic group of prime order p such that for each non-

identity element g for a, the cosets of S/a are ae, ag,..., agp-i. Moreover, if a' is

the restriction of a to Ge, then for each e in E,a' = v or a' induces a maximal subgroup

He of Ge where the cosets of He form a cyclic group of prime order p.

Lemma 3.3. If T is a proper subsemigroup of S such that for each e e E, T n Ge

= He, where He = Ge or He is a maximal subgroup of index p in Ge, and for each

pair of groups Ge, Gs in the semilattice S, where e^f the homomorphism <pKe on Gf

into Ge defined by a<pUe = ae is a monomorphism, then T induces a maximal modular

cancellative congruence on S.

Proof. Define a on S by a a b o ab'1 e Hk[, where a e Gk, b e Gs. Clearly, a is

reflexive, symmetric and compatible. That a is transitive follows from the hypothe-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] INVERSE //-SEMIGROUPS 81

sis that for each e,f 'm E wheref=\e, the homomorphism <p/e is a monomorphism.

Therefore a is a congruence on S. It follows immediately from the definition of a

that T=ae and a is modular. Then E^ae and a is cancellative. If a<o' where, for

each e e E, a' induces the subgroup Ke in Ge, then there exists a,beS such that

a a' b and a f b. Say ae Gs, b e Gh. Then ab'1 e Kfh and ab'1 $ Hfh which implies

that Hlh^Klh so that K!h = G!h, since Hfh is then maximal in Gfh. If k>fh, then

Gk = Kk. For k<fh, Hk<=(Gf)<prhtk^Kk^Gk. Assume Kk^Gk. Since /7fc has index/?

in Gfc, then has finite index j in Gfc and the index m of Hk in is such that

p = mj [4, p. 63]. Then either m=p and/= 1, or m= 1 and j=p. If m = 1, then Hk = Kk,

which is a contradiction. If j= 1, then Gk = Kk, contrary to the assumption. Thus,

for &<//z we must have Gk = Kk. If k 1 fh then fhk<fh and Gfhk = Kfhk. Since

■Pfc.z/ifc is a monomorphism then Gk = Kk. Therefore a' = v and a is maximal. This

completes the proof.

Define the relation p on S as follows:

x p y o there exists e e E such that ex = ey.

Clearly p is a congruence on 5*. Then for each e,f'mE,epf since (ef)e = ef=(ef)f.

Thus E^pe. Once again we note that S/p is an inverse //-semigroup containing

exactly one idempotent so that S/p is a Hamiltonian group. Let a be any maximal

modular cancellative congruence on S and let a,beS such that a p b. Then

a p b => there exists em E such that     = eft

=> (ea) ct (eft) => a a ft.

Thus the intersection a of all the maximal modular cancellative congruences of S

is greater than or equal to p. Now for any/, e in E, where f<e,if the homomorphism

<peJ is not a monomorphism then there exist a^b in Ge with fa=fb so that

a p ft => a a ft. Suppose that 5* is /-semisimple. From Lemma 3.1, it is clear that the

intersection ß of all the maximal modular noncancellative congruences of S

separates S into its maximal subgroups. Thus, if <peJ is not a monomorphism then

a ab and aßb imply a r ft so that ryti, contrary to the supposition. Let

a e Ge, e e E. Since aß e then there must be a maximal modular cancellative

congruence a on S such that a jir e. From Lemma 3.2 it follows that there exists a

maximal subgroup He of index p in Ge such that a $ He. Since we know that, for

each f e E, the restriction of a to Gs induces a subgroup Hf of Gr such that Hf is of

index /? in Gf or Hf = Gf, and since E^ae, then the union of these subgroups is a

proper inverse subsemigroup of S. Let &~ be the collection of all inverse subsemi-

groups Tv of S such that, for each e in £, Tp n Ge = He, where He = Ge or //e is a

maximal subgroup of prime index /> in Ge. Then we may say that, if S is /-semi-

simple, then for each e in E, for each a/e in Ge, there exists TveT such that

a$Tj,. Conversely, assume that for each /, e in E, where e</, <p/>e is a mono-

morphism; and for each e in for each a=/=e in Ge, there exists Tpe &~ such that

a e Tj,. Suppose a t ft, where aeGe, ft e G/. Since j8 separates S into its maximal
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subgroups, then e =/. If a^b then ab'^^e, and by assumption there exists Tpe&~

such that ab'1 $ Tp. By Lemma 3.3, it follows that there exists a maximal modular

cancellative congruence a on S separating a and b. Thus if a r b, then a — b and S

is r-semisimple. We can now state the main result of this section.

Theorem 3. An inverse H-semigroup S is t-semisimple if and only if for each pair

of groups Ge, Gf in the semilattice, with /> e, the homomorphism <p/e on Gf into Ge,

defined by a<pfie = ae, is a monomorphism, and for each e in E, for each a^=e in Ge,

there exists a subsemigroup Tp of S such that a$Tp and, for each f in E, Tp n G, = H,,

where Hf = G, or Hs is a maximal subgroup of prime index p in Gf.

Corollary 3.1. S is an inverse H-semigroup all of whose maximal modular con-

gruences are cancellative if and only if S is a Hamiltonian group.

Corollary 3.2. 5* is a t-semisimple inverse H-semigroup all of whose nontrivial

maximal modular congruences are not cancellative if and only if S is a semilattice.

Corollary 3.3. If S is a t-semisimple inverse H-semigroup, then S is a semilattice

of disjoint t-semisimple Hamiltonian groups.

Proof. Let f e E. It suffices to show that Gf is /-semisimple. Let a, b be distinct

elements of Gf. Since a ß b then there must be a maximal modular cancellative

congruence a on S such that a?f b. Let the a-classes be ae, ag,..., cy-i. Let a' be

the restriction of a to G,. Then a p1 b. Now a ab implies either a $ ae or b $ ae.

Say a $ ae. Then the rr-classes may be written as af, aa,..., oap-* so that the a-

classes are a'h a'a,..., a'ap-i. Further, Gs\a is a cyclic group of prime order so that

a is a maximal congruence on Gs separating a and b. Hence Gf is /-semisimple.

Lemma 3.4.1. A t-semisimple Hamiltonian group is commutative.

Proof. Let G be a /-semisimple Hamiltonian group and assume G is not com-

mutative. Then G=QxAxB where Q is a quaternion group, A a commutative

group of exponent two, B a commutative group where each element has odd order.

Since Q is a finite /7-group then Q is nilpotent, and since A and B are commutative

then A and B are nilpotent [3, p. 155, p. 149]. Therefore G is nilpotent [5, p. 212].

Now every maximal subgroup of a nilpotent group is normal, is of prime index,

and contains the derived group [3, p. 154]. Hence the intersection $ of the maximal

(normal) subgroups of G contains the derived group G'. But G is /-semisimple so

that its Frattini subgroup O consists of the identity only. Thus G' contains the

identity only and G is commutative. But this contradicts our assumption so that

the result follows.

Corollary 3.4. IfS is a t-semisimple inverse H-semigroup, then S is commutative.

Corollary 3.5. If S is an inverse H-semigroup with a minimum idempotent e,

then S is t-semisimple if and only if Ge is t-semisimple and, for each group Gf in

the semilattice with /s: e, the homomorphism <pf >e on Gf into Ge, defined by a<p/>e,

is a monomorphism.
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Proof. Only the sufficiency requires proof. Let/, heE with f^h and assume

there exist a / b in Gf such that ah = bh in Gh. Then ae = ahe = bhe = be in Ge implies

a = b, since cc/j6 is a monomorphism. Contradiction. Hence, for each /, h in E,

where fi^h, <pfth is a monomorphism. Let feE and a^/in Gf. Assume ae C>/.

Since <pftC is injective then ae^e in Gc, so that there exists a maximal subgroup He

in Ge such that ae $ He. Thus a = ae<pfj $ HecpfJ = Hf in G/. But Hf is a maximal

subgroup of Gf and a$Hf imply a £ <1>/. Contradiction. Hence Gf is r-semisimple.

It remains to show that for each fin E, for each a^/in Gh there exists a subsemi-

group Tp of 5 such that a $ Tp and, for each h in £, Tv n Gf = Hh, where Hh = Gh

or //",, is a maximal subgroup of prime index in Gh. Let a^fin Gf. Since Gr is

/-semisimple, there exists a maximal subgroup if, in Gf such that a £ i/,. ft follows

that Gf/Hf has no nontrivial subgroups and is therefore cyclic of prime order p

so that the cosets of Hf may be written as Hf, Hfa,..., HfO?'1. Hfe is a subgroup

of Ge which does not contain ea. Let He be a subgroup of Ge maximal with respect

to not containing ea and such that Hfe^He [8, p. 22]. But then He is a maximal

subgroup of Ge and Ge/He is cyclic of prime order. Since r/>/>e is a monomorphism

from G/ into Ge and Hf is a maximal subgroup of Gf, it follows that ea' $ He,

l£ti£p— 1, and >Ye, //(.a,..., Heap~1 are distinct cosets of /Ye. Hence these must

be all the cosets of rYe so that He is maximal and of index p in Ge. For each h in

£, let Hh = {He)<phiC. ft follows that for each Hh either Hh = Gh or /7ft is maximal

and of index p in G„. Further, for h, k in E, let x e /7„, v e >Yfc. Then

xe, yeeHe => x>>e e He => xy e Hhk.

Thus the union of all /4, A e £, as defined above, is a subsemigroup 7^ with the

desired properties and the proof is complete.

Corollary 3.6. If S is a finite inverse H-semigroup, then S is t-semisimple if

and only if Ge is t-semisimple, where e is the minimum idempotent of E, and for each

subgroup Gr,f>e, the homomorphism yUe from Gf into Ge, defined by a(pftC = ae,

is a monomorphism.

Corollary 3.7. If S is a t-semisimple inverse H-semigroup with no nontrivial

modular congruences, then S is either a cyclic group of prime order or the unique

semilattice of two elements.

Proof. Since S is /-semisimple, it has maximal modular congruences, that is,

i is a maximal modular congruence. Since there is no nontrivial modular (non-

cancellative) congruence on S, then S is a group or S is the semilattice of two

elements. In the former case, any congruence on S would be modular, so it follows

that S has no nontrivial subgroups, hence is cyclic of prime order.

Corollary 3.8. If S is an inverse H-semigroup with zero, then S is t-semisimple

if and only if S is a semilattice.
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