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INVERSE H-SEMIGROUPS AND ¢-SEMISIMPLE
INVERSE H-SEMIGROUPS()

BY
MARY JOEL JORDAN, S.C.

Abstract. An H-semigroup is a semigroup such that both its right and left con-
gruences are two-sided. A semigroup is z-semisimple provided the intersection of all
its maximal modular congruences is the identity relation. We prove that a semi-
group is an inverse H-semigroup if and only if it is a semilattice of disjoint Hamilton-
ian groups. Using the set E of idempotents of S as the semilattice, we show that an
inverse H-semigroup S is ¢-semisimple if and only if for each pair of groups G., G,
in the semilattice, with f=e in E, the homomorphism ¢, on G, into G., defined by
ag;,.=ae, is a monomorphism; and for each e in E, for each a#e in G., there exists
a subsemigroup T, of S such that a ¢ T, and, for each fin E, T, © G,= H;, where
H;=G; or H, is a maximal subgroup of prime index p in Gy.

Introduction. In this paper we adopt the definition of a Hamiltonian semigroup
presented by R. H. Oehmke [6]. Let o be an equivalence relation on a semigroup S.
If a is equivalent to b we shall write a o b. The o-class containing a will be denoted
by o,. An equivalence relation ¢ on a semigroup S is a right (left) congruence
provided a,b,ce S and ac b imply (ac) o (bc) ((ca) o (cb)). If an equivalence
relation is both a right and a left congruence, we shall call it a two-sided congruence
or, more briefly, a congruence. We use the natural partial ordering on relations and
say that o <p if and only if @, b€ .S and a o b imply a p b. Clearly, the identity
relation ¢ and the universal relation v are congruences and <o <v for each con-
gruence o on S. A congruence o #v is called maximal if for each congruence o’ on
S such that o £ 0’ v, either =0’ or ¢’=v. An H-semigroup S is defined to be a
semigroup such that every right congruence and every left congruence is a two-
sided congruence on S. Since a subgroup of a group is normal if and only if its
corresponding right (left) congruence is two-sided, then the class of H-semigroups
contains the Hamiltonian groups in addition to the commutative semigroups,
where we include all commutative groups in the set of all Hamiltonian groups.
An inverse H-semigroup is a semigroup that is an inverse semigroup as well as an
H-semigroup.
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76 M. J. JORDAN, S.C. [January

Using the above definitions we prove in §2 that a semigroup is an inverse H-
semigroup if and only if it is a semilattice of disjoint Hamiltonian groups.

We define 7 to be the intersection of all the maximal modular congruences on a
semigroup S, where a congruence o is called modular if there is an element e of S
such that (ea) o a and (ae) o a for all a in S. The element e is called an identity for
o. We refer to = as the t-radical of S. §'is said to be ¢-semisimple if 7= [7]. In §3,
we give necessary and sufficient conditions for an inverse H-semigroup S to be
t-semisimple. This result has several nontrivial corollaries.

The author expresses her gratitude to Professor Robert H. Oehmke for his
guidance in the preparation of this paper.

1. Preliminary definitions and results. An element b of a semigroup S is an
inverse of an element a of S provided aba=a and bab=»b. S is an inverse semigroup
provided every element of S has a unique inverse. The inverse of an element a of
an inverse semigroup S will be denoted by a~*so thataa~la=aand a~laa " *=a~1.
The preceding definitions are taken from [1].

We also make use of the following results which have been proved in [1, pp. 23—
30]. Let S be an inverse semigroup. The set E of idempotents of S is a semilattice,
i.e., a commutative idempotent semigroup with the induced ordering e <fif and
only if ef=e. If a,be S then (@ *)"*=a and (ab)"*=b"'a~*. Every principal
right ideal and every principal left ideal of S has a unique idempotent generator.
The idempotent e=aa~! (f=a~'a) is the unique idempotent generator of aS (Sa).

A left (right) zero of a semigroup S is an element a of S such that as=a (sa=a),
for each s € S [1]. Let ¢ be a left (right) zero of an inverse semigroup S. Then for
each s € S, csc=c implies scs=sc (scs=cs) is an inverse of ¢. But ¢ has a unique
inverse, namely ¢, so that, for each s € S, sc=c¢ (cs=c). Hence ¢ is a right (left)
zero of S and S has at most one (left, right) zero.

In [6] Oehmke proved the following result which we state as a lemma.

LeEMMA 1.1. If S is an H-semigroup and I is a right (left) ideal of S then, for any b
in S, bISI (Ib<I) or bI={c} where c is a left zero (Ib={c} where c is a right zero).

We use this result to show that every one-sided ideal of an inverse H-semigroup
S is two-sided and thus we obtain that S is a semilattice of disjoint groups.

LEMMA 1.2. A right (left) ideal of an inverse H-semigroup S is two-sided.

Proof. Let I be a right ideal of S and b€ S. By Lemma 1.1, either b/<I or
bI={c} where c is a left zero. If the latter is true, then, since c is also a right zero
and [ is a right ideal, we have {c¢}=Ic< I so that b/={c}< ] and [ is a left ideal in
either case. By a similar proof, any left ideal of S is a right ideal of S.

Let S be an inverse H-semigroup and e an idempotent of S. Since Se is an ideal
and e € Se, it follows that Se=eS. Then for any a € S we have ae=a if and only
if ea=a. But for a € S there exists a unique element a~*! € .S such that aa~* and
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1972] INVERSE H-SEMIGROUPS 71

a~'a are idempotents. Thus we have (aa~')a=a so that a(aa~)=a, and also
a=a(a"'a) so that (a~'a)a=a. Hence

a la =aYaaa ') = (@ 'aa)a~! = aa".

It is well known that if every element of an inverse semigroup S commutes with its
inverse then S is a union of disjoint groups. Thus we have the following lemma:

LeEmMMA 1.3. If S is an inverse H-semigroup then S is a union of disjoint groups.

If Y is a semilattice such that S={J {S, : « € Y} is a decomposition of S such
that, for every pair of elements o, 8 of Y, there is an element y of Y such that
S.Ss< S,, we say that S is the union of the semilattice Y of semigroups S, « € Y.
We also abbreviate the expression and say that S is a semilattice of semigroups of
type € to mean that S is the union of the semilattice of semigroups S,, « € ¥,
where each S, is of type €.

Let S be an inverse H-semigroup and let G,={b € S : bb~*=e¢}. It readily follows
that G, is a maximal subgroup of S and S=\J{G, : e € E}, where G. N\ G,=3
for e#f. Using Lemma 1.3, we obtain the result that E is contained in the center of
S [1, pp. 127-128] so that Theorem 1 follows.

THEOREM 1. If S is an inverse H-semigroup then S is a semilattice of disjoint
groups, and if f2e in E, the mapping ¢; ., defined by ap; .=ae where ac Gy, is a
homomorphism of G, into G,. Also, g, is the identity mapping of G; and if fZ ez g,
then @; op.o=9;.q. Moreover, every product in S is known, since for a e G, and
b € G,, ab=(ap;,r)(bpe,se)-

2. In this section we shall obtain a characterization of inverse H-semigroups,
namely:

THEOREM 2. A semigroup S is an inverse H-semigroup if and only if S is a semi-
lattice of disjoint Hamiltonian groups.

Proof. Let 6 be a right congruence on an inverse H-semigroup S. Let G, be a
maximal subgroup of S and let 8’ be the restriction of 3 to G,. By a straightforward
argument, it can be shown that there is a subgroup H, of G, such that &' is the
right congruence on G, induced by H,. On the other hand, for any e in E, let H,
be any subgroup of G,. Let o be the right congruence induced by H, on G,. If
f<e, let H/=G,. If e and f are not comparable, written e ? f, let H;=G,. If f=e,
let H,=(H,)p; . where ;. is the homomorphism on G, into G,. Let a,b€ S.
Write

ac'b<a,beG;and ab~*e H; for some feE.

It readily follows that o’ is an equivalence relation on S. Assume a o’ b and let
ceG.lf()k<e,f<eor(2)k<e,f ?etheneither fk <eorfk ? esothat H; =Gyy.
In these cases H;=G; and H,=G,. Hence H, - H .= H;. A similar argument
obtains the same result in each of the remaining cases so that (ac) ¢’ (bc) and o’

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




78 M. J. JORDAN, S.C. [January

is a (right) congruence on S. Therefore, if a,b€ G, and ao b, then ab~' € H,
implies o is the restriction of ¢’ to G, so that o is a congruence on G,. Then H, is a
normal subgroup of G, and G, is Hamiltonian. Hence, if S is an inverse H-semi-
group, then S is a semilattice of disjoint Hamiltonian groups.

Let Y be any semilattice and to each element « of Y assign a group G, such that
G, and G, are disjoint if «#B in Y. To each pair of elements «, B of Y such that
«>f, assign a homomorphism ¢, , of G, into G, such that if «>pB>y, then
Po, 5P,y =Pa,y LEt @, be the identity automorphism of G,. Let S be the union of
all the groups G,, « € Y, and define the product of any two elements a,, b; of S
(a, in G, by in Gy) bY aybs=(auPu,0s)(bs®s.a5)- Then S is an inverse semigroup
which is a union of groups [1, p. 128].

Assume the groups G,, « € Y, are Hamiltonian. It remains to show that S is an
H-semigroup. Let o be a right congruence on S. For each G,, o restricted to G,
induces a right congruence o, on G,. Since G, is Hamiltonian then o, is two-sided
so that o determines a normal subgroup H, of G,. Let e, be the identity of G,.
Recall that E is in the center of S where E is the semilattice of idempotents of S.
Then we have

a, 0 by = (aseqses) o (bgeaes) = (anes) o (bes)
= (aaeﬂ) Oag (bﬁea) = aaeﬂ(bﬁea)_l = aabﬂ—l € Hyyp.
Further,
a, 0 b = (abs Do es = (ab5*) o eqp

so that e,z o e; and, by symmetry, e,; o e, s0 that e; o e.; 0 €,.
Conversely,
asbzt € Hys and eg o e,5 0 €, = (a5 1) 0 €45 0 €5 and a, o (aqes)
= (a,e3) o by and a, o by.
Let ¢, € S and assume a, o b,.
- - -1
ag o b > aabﬁ Y€ Hup = (aub5 ) 0ap €as = (b5 ?) 0 €45

- - -1
= (aqbj 'e,) o (ewpe,) = (a.b5'e,) 0upy €agy = Auby e, € Heyg,.
Since H,;, is a normal subgroup of G, then

(creaep)anbye,(crenes) ™ = cyaby eyt = (c,a0)(c,bp) ™" € Heg,y
and
(craa)_ l(crbﬁ) € Haﬁr'
Further, a, 0 by = e; 0 e,5 0 €, = €,, 0 €,44 0 €,5. Thus we have (c,a,) o (¢,bg) and

o is also a left congruence. By an analogous proof, if o is a left congruence on S,
then o is a right congruence on S. Hence S is an inverse H-semigroup.

3. In this section we first identify the maximal modular congruences of an
inverse H-semigroup S, and then obtain necessary and sufficient conditions for S
to be t-semisimple.
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A homomorphic image of an inverse semigroup is an inverse semigroup. More-
over, in any homomorphism, the inverse of an element is mapped onto the inverse
of the image of that element [2, p. 57].

As one might also expect, the homomorphic image of an H-semigroup S is an
H-semigroup. For if  is a homomorphism from S onto S’, S’ is obviously a
semigroup. And if u’ is any right (left) congruence on S’, we can define » on S by

apb < (ah) ' ().

Then p is a congruence on S and from this it follows that p’ is a left (right) con-
gruence on S’.

Let S be an H-semigroup. Let I be an ideal of S and T a subsemigroup of S
such that /U T=S and I N T=&. Write

apb<a,belora,beT.

Then p is a maximal modular congruence on S, where each element of T is an
identity for p and p is not cancellative.

Let S be an inverse H-semigroup. For e € E, let T,=\J {G,; : e<f}. Define the
relation p® on S by

ap®b<abeT,ora,beT,

where T,=S—T,. If e is not a minimum idempotent in S, we claim that p® is a
maximal modular congruence on S with identity e and p® is not cancellative. Since
ecT, T,#@.Letd,beT,, say de G;,, be G,. Then e<f and e<k imply e<fk
so that db € G;,.<T, and T, is a subsemigroup of S. Assume e is not minimum in E
sothat T,#@. Letde T,, be S, say de G, and b € G;,. Now d € T, implies f<e or
fle.If f<ethenfk<eand dbe G,,=T..If f 7 e then fk<eor fk ?e and db e T,.
Thus T, is a right ideal of S. By Lemma 1.2, T, is an ideal of S. It follows that p®
is a maximal congruence on .S with identity e and p® is not cancellative.

Let o be a maximal modular congruence on an inverse H-semigroup S. For each
e € E, let H, be the subgroup of G, induced by o. Then, as in the proof of Theorem
2, we know that fora,be S,sayae G;,,be G,,aocb <ab~' € H;, and fo (fk) o k.
Let a be an identity for o, say a € G,. Then for each s € S, (as) o s implies (fas) o (fs)
so that (as) o (fs) o 5. Thus f'is an identity for o.

It is generally known that o is cancellative if and only if E<o,.

Suppose o is not cancellative and let e € E be an identity for o. If A€ E is an
identity for o, then A o (eh) o e and h € o,. Since o is not cancellative there exists
f€ E such that f'¢ o,, so that fis not an identity for o. Let I={fe E : fis not an
identity for o}. Then I is an ideal in E. Let J=\J {G; : f€ I}. Then J is an ideal of
S and J’ is a semigroup of S. Oehmke [7] has shown that if ¢ is a maximal con-
gruence and J any ideal of S, then either J is contained in a o-class S, (which is
also an ideal of S) or J contains an element of each o-class. If x o; N J, then
x o e and x € G;, for some fe I. But then x o (¢f) so that e o (¢f) and, since also
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(ef) o f, then e o f and f e I, which is a contradiction. Hence ¢, N J=2 and there
exists a o-class S, such that J<S,. Suppose there is some b € S, such that b ¢ J,
that is, b € G, where hoe. Let fe I. Then b o f implies bf € H,; and h o (hf) o f,
so that fo e. Contradiction. Therefore J=S,. Since J is an ideal and J’ is a semi-
group, we have the maximal modular congruence o* defined by ao* b <a,beJ
or a, belJ’, where each element of J is an identity for o*. Clearly o <o*. Hence
a=0* and we have proved the following lemma.

LeMMA 3.1. If o is a maximal modular congruence on an inverse H-semigroup S,
then o is cancellative or o has exactly two congruence classes, namely the semigroup
of identities for o and the ideal of nonidentities for o.

Suppose ¢ is cancellative. Then E<e, where o,=\J{H, : f€ E}. Since o is
maximal, then S/o has no nontrivial congruences. Therefore S/ is the semigroup
{0, 1} or S/e is simple. Since o is cancellative, it follows that S/o+{0, 1}. Since S
is an inverse H-semigroup, then S/o is an inverse H-semigroup. Therefore, by
Lemma 1.2, every one-sided ideal of S/o is a two-sided ideal. Hence S/o is both left
and right simple, so that S/o is a Hamiltonian group [1, p. 6]. Since S/e has no
nontrivial congruences, then S/o has no nontrivial homomorphisms, so that S/o
is a simple group. Since S/o is Hamiltonian, then S/o has no nontrivial subgroups.
Hence S/o is a cyclic group of prime order. Thus there exists a prime number p
such that, for every a ¢ o, the o-classes may be written as a,, 0,2, ..., 0,7, Where
a,»=0,and a? is an identity for ¢. In fact, for every ¢ € o, ¢ o eimplies (cs) o (es) o s
and (sc) o (se) o s so that c is an identity for o. By a similar argument, if a ¢ o,,
then g is not an identity for o. If G,= H, then G.<o,. If G,# H, then o partitions
G. into cosets of H,. The number of these cosets must be p, for otherwise S/c
would contain a proper subgroup. Hence the cosets of H, must form a cyclic
group of prime order and H, must be a maximal subgroup of G,. We state these
results in the following lemma:

LemMA 3.2. If o is a maximal modular cancellative congruence on an inverse
H-semigroup S, then S/o is a cyclic group of prime order p such that for each non-
identity element g for o, the cosets of Sfo are o4, 0,,..., a,,-1. Moreover, if ¢’ is
the restriction of o to G, then for each e in E, ¢’ =v or o’ induces a maximal subgroup
H, of G, where the cosets of H, form a cyclic group of prime order p.

LeMMA 3.3. If T is a proper subsemigroup of S such that for each ec E, TN G,
=H,, where H,=G, or H, is a maximal subgroup of index p in G., and for each
Dpair of groups G, G, in the semilattice S, where e < f, the homomorphism ¢; . on G;
into G, defined by ag; .=ae is a monomorphism, then T induces a maximal modular
cancellative congruence on S.

Proof. Define o on S by aoc b < ab~* € H,;, where a € Gy, b € G,. Clearly, o is
reflexive, symmetric and compatible. That o is transitive follows from the hypothe-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




1972] INVERSE H-SEMIGROUPS 81

sis that for each e, fin E where f= e, the homomorphism g, . is a monomorphism.
Therefore ¢ is a congruence on S. It follows immediately from the definition of o
that T=o, and o is modular. Then E<o, and o is cancellative. If o <o’ where, for
each e € E, o' induces the subgroup K, in G,, then there exists a, b € S such that
adc'bandag¢b. Sayae Gy, be G, Thenab™* € K;;, and ab~* ¢ H,;, which implies
that H;, < K, so that K;, =G, since Hj, is then maximal in Gj,. If k> fh, then
Gy=K,. For k<fh, H,<(G))es .< K= G,. Assume K, <=G,. Since H, has index p
in Gy, then K, has finite index j in G, and the index m of H, in K is such that
p=mj[4,p.63]. Theneitherm=pandj=1,orm=1andj=p. [f m=1,then H, =K,
which is a contradiction. If j=1, then G, =K,, contrary to the assumption. Thus,
for k<fh we must have G,=K,. If k ? fh then fhk <fh and G,,, =K. Since
@k, sni 18 @ monomorphism then G, =K. Therefore ¢'=v and o is maximal. This
completes the proof.
Define the relation p on S as follows:

X p y <> there exists e € E such that ex = ey.

Clearly p is a congruence on S. Then for each e, fin E, e p f since (ef )e=ef=(ef)f.
Thus E<p,. Once again we note that S/p is an inverse H-semigroup containing
exactly one idempotent so that S/p is a Hamiltonian group. Let o be any maximal
modular cancellative congruence on S and let a, b € S such that a p b. Then

a p b = there exists e in E such that ea = eb

= (ea) o (eb) = a o b.

Thus the intersection « of all the maximal modular cancellative congruences of S
is greater than or equal to p. Now forany £, ein E, where f< e, if the homomorphism
@.,; 1S not a monomorphism then there exist a#b in G, with fa=fb so that
a pb = aob. Suppose that S is t-semisimple. From Lemma 3.1, it is clear that the
intersection 8 of all the maximal modular noncancellative congruences of §
separates S into its maximal subgroups. Thus, if ¢, ; is not a monomorphism then
acb and a B b imply a 7 b so that 7+, contrary to the supposition. Let a#e,
aeG,, ecE. Since apfe then there must be a maximal modular cancellative
congruence ¢ on S such that a ¢ e. From Lemma 3.2 it follows that there exists a
maximal subgroup H, of index p in G, such that a ¢ H,. Since we know that, for
each f'e E, the restriction of o to G, induces a subgroup H; of G, such that H; is of
index p in G; or H;=G, and since E<a,, then the union of these subgroups is a
proper inverse subsemigroup of S. Let J be the collection of all inverse subsemi-
groups T, of S such that, for each e in E, T, N\ G.=H,, where H,=G, or H, is a
maximal subgroup of prime index p in G.. Then we may say that, if S is z-semi-
simple, then for each e in E, for each a#e in G,, there exists T, € J such that
a ¢ T,. Conversely, assume that for each f, e in E, where e<f, ¢, . is a mono-
morphism; and for each e in E, for each a#e in G,, there exists T, € 7 such that
a € T,. Suppose a 7 b, where a € G,, b € G,. Since B separates S into its maximal
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subgroups, then e=f. If a#b then ab~'#e, and by assumption there exists T, € 7
such that ab~* ¢ T,. By Lemma 3.3, it follows that there exists a maximal modular
cancellative congruence o on § separating a and b. Thus if a 7 b, then a=b and §
is t-semisimple. We can now state the main result of this section.

THEOREM 3. An inverse H-semigroup S is t-semisimple if and only if for each pair
of groups G,, G; in the semilattice, with f = e, the homomorphism ¢, . on G, into G,
defined by ayp; .=ae, is a monomorphism, and for each e in E, for each a#e in G,,
there exists a subsemigroup T, of S such that a ¢ T, and, for each fin E, T, N G;=H,,
where H; =G, or H, is a maximal subgroup of prime index p in G,.

COROLLARY 3.1. S is an inverse H-semigroup all of whose maximal modular con-
gruences are cancellative if and only if S is a Hamiltonian group.

COROLLARY 3.2. S is a t-semisimple inverse H-semigroup all of whose nontrivial
maximal modular congruences are not cancellative if and only if S is a semilattice.

COROLLARY 3.3. If S'is a t-semisimple inverse H-semigroup, then S is a semilattice
of disjoint t-semisimple Hamiltonian groups.

Proof. Let f€ E. It suffices to show that G, is #-semisimple. Let a, b be distinct
elements of G,. Since a B b then there must be a maximal modular cancellative
congruence ¢ on S such that a # b. Let the o-classes be o,, oy, ..., o,o-1. Let ¢’ be
the restriction of o to G;. Then a ¢ b. Now a o b implies either a ¢ o, or b ¢ o,.
Say a ¢ o,. Then the o-classes may be written as oy, o, ..., 6,7-1 so that the o'-
classes are oy, oy, . . ., o,»-1. Further, G,/o" is a cyclic group of prime order so that
¢’ is a maximal congruence on G, separating a and b. Hence G, is t-semisimple.

LEmMMA 3.4.1. A t-semisimple Hamiltonian group is commutative.

Proof. Let G be a t-semisimple Hamiltonian group and assume G is not com-
mutative. Then G=Q x 4 x B where Q is a quaternion group, 4 a commutative
group of exponent two, B a commutative group where each element has odd order.
Since Q is a finite p-group then Q is nilpotent, and since 4 and B are commutative
then 4 and B are nilpotent [3, p. 155, p. 149]. Therefore G is nilpotent [5, p. 212].
Now every maximal subgroup of a nilpotent group is normal, is of prime index,
and contains the derived group [3, p. 154]. Hence the intersection ® of the maximal
(normal) subgroups of G contains the derived group G’. But G is t-semisimple so
that its Frattini subgroup @ consists of the identity only. Thus G’ contains the
identity only and G is commutative. But this contradicts our assumption so that
the result follows.

COROLLARY 3.4. If S is a t-semisimple inverse H-semigroup, then S is commutative.

COROLLARY 3.5. If S is an inverse H-semigroup with a minimum idempotent e,
then S is t-semisimple if and only if G, is t-semisimple and, for each group G; in
the semilattice with f2e, the homomorphism ¢; , on G; into G,, defined by ags e,
is a monomorphism.
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Proof. Only the sufficiency requires proof. Let f, h € E with f=h and assume
there exist a# b in G, such that ah=>bh in G,. Then ae=ahe =bhe=be in G, implies
a=b>b, since ¢; , is a monomorphism. Contradiction. Hence, for each f, # in E,
where f2h, ¢, is a monomorphism. Let f€ FE and a#f in G,. Assume a e @,
Since ¢, , is injective then ae#e in G,, so that there exists a maximal subgroup H,
in G, such that ae ¢ H,. Thus a=aeg;} ¢ H.p;.i=H, in G,. But H, is a maximal
subgroup of G; and a ¢ H, imply a ¢ ®,. Contradiction. Hence G, is 7-semisimple.
It remains to show that for each fin E, for each a#fin G/, there exists a subsemi-
group T, of § such that a ¢ T, and, for each A in E, T, N G;=H,, where H,=G,
or H, is a maximal subgroup of prime index p in G,. Let a#f in G,. Since G, is
t-semisimple, there exists a maximal subgroup H; in G, such that a ¢ H,. It follows
that G;/H; has no nontrivial subgroups and is therefore cyclic of prime order p
so that the cosets of H; may be written as H;, H;a, ..., Hja?~*. He is a subgroup
of G, which does not contain ea. Let H, be a subgroup of G, maximal with respect
to not containing ea and such that He< H, (8, p. 22]. But then H, is a maximal
subgroup of G, and G,./H, is cyclic of prime order. Since ¢, . is a monomorphism
from G; into G, and H, is a maximal subgroup of G;, it follows that ed' ¢ H,,
1<isp-1,and H,, Hea,..., H.a?"! are distinct cosets of H,. Hence these must
be all the cosets of H, so that H, is maximal and of index p in G.. For each 4 in
E, let H,=(H,)py . It follows that for each H, either H,=G, or H, is maximal
and of index p in G,. Further, for A, k in E, let x € H,, y € H,. Then

xe,ye € H, = xye € H, = xy € Hy,.

Thus the union of all H,, h € E, as defined above, is a subsemigroup T, with the
desired properties and the proof is complete.

COROLLARY 3.6. If S is a finite inverse H-semigroup, then S is t-semisimple if
and only if G, is t-semisimple, where e is the minimum idempotent of E, and for each
subgroup Gy, f>e, the homomorphism o; , from G; into G,, defined by ap; .=ae,
is a monomorphism.

COROLLARY 3.7. If S is a t-semisimple inverse H-semigroup with no nontrivial
modular congruences, then S is either a cyclic group of prime order or the unique
semilattice of two elements.

Proof. Since S is s-semisimple, it has maximal modular congruences, that is,
¢ is a maximal modular congruence. Since there is no nontrivial modular (non-
cancellative) congruence on S, then S is a group or § is the semilattice of two
elements. In the former case, any congruence on S would be modular, so it follows
that .S has no nontrivial subgroups, hence is cyclic of prime order.

COROLLARY 3.8. If S is an inverse H-semigroup with zero, then S is t-semisimple
if and only if S is a semilattice.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




84 M. J. JORDAN, S.C.

REFERENCES

1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups. Vol. I, Math. Surveys,
no. 7, Amer. Math. Soc., Providence, R. L., 1961. MR 24 #A2627.

2. , Algebraic theory of semigroups. Vol. II, Math. Surveys, no. 7, Amer. Math.
Soc., Providence, R. 1., 1967. MR 36 #1558.

3. Marshall Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996.

4. A. G. Kuros, Theory of groups, 2nd ed., GITTL, Moscow, 1953; English transl., Vol. 1,
Chelsea, New York, 1955. MR 15, 501; MR 17, 124.

5. , Theory of groups, GITTL, Moscow, 1953; English transl., Vol. 2, Chelsea, New
York, 1956. MR 15, 501; MR 18, 188.

6. R. H. Oehmke, A generalization of commutativity for semigroups, Portugal. Math. 24
(1965), 179-187. MR 35 #5529.

7. , On maximal congruences and finite semisimple semigroups, Trans. Amer. Math. Soc.
125 (1966), 223-237. MR 34 #2739.

8. H. J. Zassenhaus; The theory of groups, 2nd ed., Chelsea, New York, 1958. MR 19, 939.

DEPARTMENT OF MATHEMATICS, SETON HILL COLLEGE, GREENSBURG, PENNSYLVANIA 15601

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




