
University of Huddersfield Repository

Xu, L. J., Tian, G.Y., Duan, Y. and Yang, S. X.

Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators

Original Citation

Xu, L. J., Tian, G.Y., Duan, Y. and Yang, S. X. (2001) Inverse kinematic analysis for triple-
octahedron variable-geometry truss manipulators. Proceedings of the Institution of Mechanical 
Engineers Part C Journal of Mechanical Engineering Science, 215 (2). pp. 247-251. ISSN 09544062

This version is available at http://eprints.hud.ac.uk/id/eprint/2479/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Inverse kinematic analysis for triple-octahedron
variable-geometry truss manipulators

L J Xu1, G Y Tian2*, Y Duan1 and S X Yang1

1School of Manufacturing Engineering, Sichuan University, Chengdu, People’ s Republic of China
2School of Engineering, University of Hudders® eld, UK

Abstract: In this paper, a new triple-octahedron variable-geometry truss manipulator is presented.

Its inverse kinematic solutions in closed form are studied. An input± output displacement equation in

one output variable is derived. The solution procedure is given in detail. A numerical example is

illustrated.

Keywords: inverse kinematics, triple-octahedron variable-geometry truss manipulator, closed-form

solution, robot manipulator

NOTATION

ai; bi; ci; di; ei coeYcients of fourth-order polynomial

equations …i ˆ 1; 2†
Ai, Bi, Ci joint points of the triple-octahedron,

variable-geometry truss manipulator

…i ˆ 1; 2; 3; 4†
Ai, Bi, Ci position vectors of points in the ® xed

coordinate system

c, s cosine and sine mathematical

functions
G, H, D, E projective points of perpendicular in the

triangular planes

kij coeYcients of the functions between

known geometrical parameters and input
parameters …i; j ˆ 1; 2; . . . ; 6†

li lengths of six extensible links (actuator

members) …i ˆ 1; 2; . . . ; 6†
mi lengths of inextensible links

…i ˆ 1; 2; . . . ; 6†
M; Mi normals of the triangular planes

…i ˆ 1; 2; 3†
N; Ni parallel line of the coordinate axes

…i ˆ 1; 2; 3†
oxyz moving coordinate system

O, O 0
i, O 00

i foot of perpendicular in the triangular

planes …i ˆ 1; 2; 3; 4†
OXYZ ® xed coordinate system

pi coeYcients of 16th-order polynomial

equations …i ˆ 1; 2; . . . ; 16†

qi coeYcients of fourth-order polynomial

equations for y3 …i ˆ 1; 2; 3; 4; 5†
[T] input± output displacement transform

(the homogeneous transformation matrix

from coordinate system o1x1y1z1 to

coordinate system OXYZ†
xi; yi coordinate values of joint points

³i dihedral angles between the end-eVect

platform place and moving actuated
planes …i ˆ 1; 2; 3†

’i joint angles of links within the triangular

planes …i ˆ 1; 2; 3†
Âi dihedral angles between the base

platform place A1B1C1 and the middle

actuated planes …i ˆ 1; 2; 3†

1 INTRODUCTION

A variable-geometry truss mechanism (VGTM) is a

statically determinate truss that has been modi® ed to

contain some number of variable length links. VGTMs
have very good stiVness± weight ratios and are theoreti-

cally composed of two force links. No bending moments

or torques can be transmitted at the joints. Moreover,

they can be designed to be collapsible. These char-

acteristics give VGTMs potential applications, discussed

by Arun et al. [1], such as beams to position equipment
in space, supports for space antenna, berthing devices

and manipulator arms. As a robot manipulator,

VGTMs have higher stiVness than serial link manip-

ulators and a large workspace compared with parallel

ones. Therefore, they are considered as a new type of
robot manipulator.

The MS was received on 15 September 1999 and was accepted after
revision for publication on 20 April 2000.
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All variable-geometry truss mechanisms are made up

of some combination of fundamental units, such as the
tetrahedron, octahedron, decahedron and odecahedron.

The solution to the position analysis problem of VGTMs

can be carried out using a number of diVerent approa-

ches. In recent years, a number of fruitful investigations

have been made to explore position analysis problems for

VGTMs [1 ± 8]. The authors applied a homotopy con-
tinuation algorithm to solve the inverse displacement

analysis problem of triple-octahedron, variable-geo-

metry truss manipulators [9]. Although all the possible

solutions can be found, the computation is expensive. A

closed-form inverse displacement analysis by an elim-
ination method will provide more information about the

geometry and kinematic behaviour of manipulators, and

this information is also extremely useful in practice for

the control of manipulators. In this paper, inverse dis-

placement analysis in closed form is implemented for
triple-octahedron, variable-geometry truss manipulators

by using the elimination method. A 128th-degree alge-

braic equation in one output variable is derived.

2 CONSTRAINT EQUATIONS

A six-degree-of-freedom (6 DOF), triple-octahedron,

variable-geometry truss manipulator is represented

schematically in Fig. 1. The manipulator consists of

three octahedra Ai‡1Bi‡1Ci‡1 ¡ AiBiCi …i ˆ 1; 2; 3†
stacked upon one another. This includes an end-eVec-
tor platform A4B4C4, a base platform A1B1C1 and two

middle actuated planes in which six extensible links are

located respectively. Referring to Fig. 1, the ® xed

coordinate system oxyz is rigidly attached to the base

platform so that the z axis coincides with the normal to

the base face and the x axis aligns with line A1B1. The
moving coordinate system o1x1y1z1 is attached to the

top triangular face so that the z1 axis coincides with

the normal to the top face and the x1 axis is aligned

with line B4C4. Let Â1; Â2; Â3 denote respectively the

dihedral angles between planes A1B1B2; A1C1A2;
B1C1C2 and plane A1B1C1, and ³1; ³2; ³3 denote

respectively the dihedral angles between planes

B4C4B3; A4B4A3; A4C4C3 and plane A4B4C4. The lines

B2O; A2O 0 and C2O 00 are perpendicular to lines

A1B1; A1C1 and B1C1 respectively, and lines
B3O1; A3O 0

1 and C3O 00
1 are orthogonal to lines

B4C4; A4B4 and A4C4 respectively.

According to the coordinate system established above,

the position vectors of points A2; B2 and C2 in the ® xed

coordinate system oxyz can be written as follows:

A2 ˆ

¡O 0A2cÂ2s’1 ¡ O 0D

O 0A2cÂ2c’1 ‡ O 0D

O 0A2sÂ2

2

6664

3

7775

B2 ˆ

0

OB2cÂ1

OB2sÂ1

2

6664

3

7775

C2 ˆ

O 00C2cÂ3s’2 ‡ O 00E

O 00C2cÂ3c’2 ‡ O 00E

O 00C2sÂ3

2

6664

3

7775

…1†

The position vectors of points A3; B3 and C3 in the

moving coordinate system o1x1y1z1 can be derived and

expressed in the ® xed coordinate system oxyz as follows:

A3

1

" #
ˆ T‰ Š

¡A3O
0
1c³2s’3 ¡ O 0

1G

A3O 0
1c³2c’3 ‡ O 0

1G

A3O
0
1s³2

1

2

6666664

3

7777775

B3

1

" #

ˆ T‰ Š

0

O1B3c³1

O1B3s³1

1

2

6666664

3

7777775
Fig. 1 A six-degree-of-freedom, triple-octahedron, variable-

geometry truss manipulator
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C3

1

" #

ˆ T‰ Š

O 00
1C3c³3s’4 ‡ O 00

1H

O 00
1C3c³3c’4 ‡ O 00

1H

O 00
1C3s³3

1

2

6666664

3

7777775

…2†

The constraint equations of the reverse displacement
analysis problem of triple-octahedron VGTMs can be

written as follows:

B3 ¡ B2… †T B3 ¡ B2… † ˆ m2
1

C3 ¡ B2… †T C3 ¡ B2… † ˆ m2
2

C3 ¡ C2… †T C3 ¡ C2… † ˆ m2
3

A3 ¡ C2… †T A3 ¡ C2… † ˆ m2
4

A3 ¡ A2… †T A3 ¡ A2… † ˆ m2
5

B3 ¡ A2… †T B3 ¡ A2… † ˆ m2
6

…3†

where m1, m2; . . . ; m6 are the lengths of the ® xed-length

links B2B3, B2C3, C2C3, C2A3, A2A3 and A2B3 respec-

tively. After substitution of equations (1) and (2) and
triangular identity cÂi ˆ …1 ¡ x 2

i †=…1 ‡ x 2
i †, sÂi ˆ …2xi†=

…1 ‡ x 2
i †, c³i ˆ …1 ¡ y 2

i †=…1 ‡ y 2
i †, s³i ˆ …2yi†=…1 ‡ y2

i †
…i ˆ 1; 2; 3† into equations (3) and rearrangement, the

following are obtained:

k11y
2
1 ‡ k12y1 ‡ k13

¡ ¢
x 2

1‡ k14y
2
1 ‡ k15y1 ‡ k16

¡ ¢
x1

‡ k17y 2
1 ‡ k18y1 ‡ k19

¡ ¢
ˆ 0

k21y
2
3 ‡ k22y3 ‡ k23

¡ ¢
x 2

1‡ k24y
2
3 ‡ k25y3 ‡ k26

¡ ¢
x1

‡ k27y 2
3 ‡ k28y3 ‡ k29

¡ ¢
ˆ 0

k31y
2
3 ‡ k32y3 ‡ k33

¡ ¢
x 2

3‡ k34y
2
3 ‡ k35y3 ‡ k36

¡ ¢
x3

‡ k37y 2
3 ‡ k38y3 ‡ k39

¡ ¢
ˆ 0

k41y
2
2 ‡ k42y2 ‡ k43

¡ ¢
x 2

3‡ k44y
2
2 ‡ k45y2 ‡ k46

¡ ¢
x3

‡ k47y 2
2 ‡ k48y2 ‡ k49

¡ ¢
ˆ 0

k51y
2
2 ‡ k52y2 ‡ k53

¡ ¢
x 2

2‡ k54y
2
2 ‡ k55y2 ‡ k56

¡ ¢
x2

‡ k57y 2
2 ‡ k58y2 ‡ k59

¡ ¢
ˆ 0

…k61y 2
1 ‡ k62y1 ‡ k63†x 2

2 ‡ k64y
2
1 ‡ k65y1 ‡ k66

¡ ¢
x2

‡ k67y
2
1 ‡ k68y1 ‡ k69

¡ ¢
ˆ 0

…4†

3 ELIMINATION OF EQUATION

Equation (4) can be rewritten in the following form:

u1x 2
1 ‡ v1x1 ‡ w1 ˆ 0 …5†

u2x 2
1 ‡ v2x1 ‡ w2 ˆ 0 …6†

u3x 2
3 ‡ v3x3 ‡ w3 ˆ 0 …7†

u4x 2
3 ‡ v4x3 ‡ w4 ˆ 0 …8†

u5x 2
2 ‡ v5x2 ‡ w5 ˆ 0 …9†

u6x 2
2 ‡ v6x2 ‡ w6 ˆ 0 …10†

Multiplying equations (5) and (6) by x1, two additional

equations are obtained. The total four equations can be

represented by the following matrix form:

u1 v1 w1 0

0 u1 v1 w1

u2 v2 w2 0

0 u2 v2 w2

2

6666664

3

7777775

x 3
1

x 2
1

x1

1

2

6666664

3

7777775
ˆ 0 …11†

The necessary and suYcient condition of existence of a

non-zero solution for equation (11) is that the determi-

nant of the coeYcient matrix is equal to zero. This

results in the following polynomial equation:

q1 y 4
1 ‡ q2 y 3

1 ‡ q3 y 2
1 ‡ q4 y1 ‡ q5 ˆ 0 …12†

where coeYcients qi …i ˆ 1; 2; . . . ; 5† are not higher than

fourth-order polynomials about y3. Similarly, eliminat-

ing x 2
3 and x3 from equations (7) and (8) and x 2

2 and x2

from equations (9) and (10) respectively gives

a1 y 4
2 ‡ b1 y 3

2 ‡ c1 y 2
2 ‡ d1 y2 ‡ e1 ˆ 0 …13†

a2 y 4
2 ‡ b2 y 3

2 ‡ c2 y 2
2 ‡ d2 y2 ‡ e2 ˆ 0 …14†

where a1; b1; c1; d1 and e1 are all the polynomials about

y3, the order of which is not higher than 4, and

a2; b2; c2; d2 and e2 are all the polynomials about y1, the
order of which is not higher than 4.
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Equations (13) and (14) can be grouped into four sets.

Eliminating y 4
2; y 3

2; y 2
2 and y2 from each of the equations

gives the following four cubic equations [10]:

…ab†y 3
2 ‡ …ac†y 2

2 ‡ …ad †y2 ‡ …ae† ˆ 0

…ac†y 3
2 ‡ ‰…ad † ‡ …bc†Š y 2

2 ‡ ‰…ae† ‡ …bd †Š y2 ‡ …be† ˆ 0

…ad †y 3
2 ‡ ‰…ae† ‡ …bd †Š y 2

2 ‡ ‰…be† ‡ …cd †Š y2 ‡ …ce† ˆ 0

…ae†y 3
2 ‡ …be†y 2

2 ‡ …ce†y2 ‡ …de† ˆ 0

…15†
from which it is possible to form the following system of

equations:

…ab† …ac† …ad † …ae†

…ac† …ad † ‡ …bc† …ae† ‡ …bd † …be†

…ad † …ae† ‡ …bd † …be† ‡ …cd † …ce†

…ae† …be† …ce† …de†

2

6666664

3

7777775

y 3
2

y 2
2

y2

1

2

6666664

3

7777775
ˆ 0

…16†
where …ab† ˆ a1b2 ¡ a2b1, etc.

By making the determinant of the coeYcient matrix

equal to zero, the following equation is obtained:

p1 y 16
1 ‡ p2 y 15

1 ‡ p3 y 14
1 ‡ ¢ ¢ ¢ ‡ p16y 1 ‡ p17 ˆ 0

…17†

where pi …i ˆ 1; 2; . . . ; 17† are not higher than 16th-order
polynomials about y3.

Multiplying equation (17) separately by y1; y 2
1; y 3

1 and

equation (12) separately by y1; y 2
1; . . . ; y 14

1 ; y 15
1 gives 20

equations in matrix form as follows:

For equation (18) to have a non-trivial solution, the

determinant of the coeYcient matrix is set equal to zero,
and thus an output displacement equation containing

only one variable y3 is obtained. This is a 128th-order

algebraic equation about y3. For each value of y3, the

corresponding y1 can be obtained from equation (18), y2

from equation (16) and x1 from (11). Similarly to the

computation of x1, the variables x2and x3 can also be
found.

As soon as xi and yi …i ˆ 1; 2; 3† are found, Â1; Â2; Â3

and ³1; ³2; ³3 can be evaluated from triangular formulae,

and then the position vectors of points Ai, Bi, Ci

…i ˆ 2; 3† in the oxyz coordinate system can be computed
by substituting Â1; Â2; Â3 and ³1; ³2; ³3 into equations

(1) and (2). Furthermore, the lengths of actuator mem-

bers li …i ˆ 1; 2; . . . ; 6† can be found.

4 NUMERICAL EXAMPLE

A triple-octahedron VGTM is taken as an example to

explain the method. The lengths of ® xed-length links,

each side of the end-eVector triangular platform and

each side of the base triangular platform, are all 30 mm,
i.e.

AiBi ˆ BiCi ˆ AiCi ˆ 30 mm; i ˆ 1; 4

AiAi‡1 ˆ BiBi‡1 ˆ CiCi‡1 ˆ 30 mm; i ˆ 1; 2; 3

AiBi‡1 ˆ BiCi‡1 ˆ CiAi‡1 ˆ 30 mm; i ˆ 1; 2; 3

p1 p2 p3 p4 p5 p6 p7 p8 ¢ ¢ ¢ p16 p17 0

0 p1 p2 p3 p4 p5 p6 p7 ¢ ¢ ¢ p15 p16 p17

0 0 p1 p2 p3 p4 p5 p6 ¢ ¢ ¢ p14 p15 p16

0 0 0 p1 p2 p3 p4 p5 ¢ ¢ ¢ p13 p14 p15

q1 q2 q3 q4 q5 0 0 0 ¢ ¢ ¢ 0 0 0

0 q1 q2 q3 q4 q5 0 0 ¢ ¢ ¢ 0 0 0

0 0 q1 q2 q3 q4 q5 0 ¢ ¢ ¢ 0 0 0

0 0 0 q1 q2 q3 q4 q5 ¢ ¢ ¢ 0 0 0

0 0 0 0 q1 q2 q3 q4 ¢ ¢ ¢ 0 0 0

¢ ¢ ¢

¢ ¢ ¢

0 0 0 0 0 0 0 0 ¢ ¢ ¢ q1 q2 q3

0 0

0 0

p17 0

p16 p17

0 0

0 0

0 0

0 0

0 0

q4 q5

2

66666666666666666666666666666666664

3

77777777777777777777777777777777775

y 19
1

y 18
1

y 17
1

¢ ¢ ¢

¢ ¢ ¢

¢ ¢ ¢

¢ ¢ ¢

¢ ¢ ¢

¢ ¢ ¢

y 2
1

y 1

1

2

66666666666666666666666666666666664

3

77777777777777777777777777777777775

ˆ 0 …18†
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The position and orientation of the end-eVector are

given below:

T‰ Š ˆ

0:967 ¡0:259 0 6

0:259 0:967 0 7

0 0 1 60

0 0 0 1

2

6666664

3

7777775

All 128 sets of roots for equations (4) are obtained by

running a program on the computer. The solutions

are veri® ed. Eighteen sets of real roots are listed in
Table 1.

5 CONCLUSIONS

In this paper, closed-form solutions for the inverse

kinematic analysis of a triple-octahedron, varia-
ble-geometry truss manipulator are presented for the

® rst time. A 128th-degree algebraic equation in one

unknown is derived. A numerical example is tested. The

results show the method is simple, eVective and accu-

rate. In the experimental computation, no extraneous
roots are found.
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Table 1 Eighteen sets of real roots for equation (4)

x1 x2 x3 y1 y2 y3

1 0.752 1.991 1.467 ¡2:936 ¡3:991 ¡0:650
2 0.258 1.994 1.497 ¡0:389 ¡3:988 ¡0:650
3 0.707 1.414 1.414 ¡0:271 ¡4:253 ¡0:627
4 0.189 2.615 1.681 ¡0:493 ¡3:202 ¡0:738
5 0.144 4.620 3.544 ¡0:707 ¡1:414 1:179
6 0.707 1.414 1.414 ¡2:708 ¡4:253 ¡7:335
7 0.144 0.477 0.347 ¡0:673 ¡1:402 ¡1:419
8 0.144 0.483 0.346 ¡0:707 ¡1:414 ¡1:414
9 1.627 0.483 3.544 ¡0:707 ¡1:414 ¡1:414
10 0.707 1.414 1.449 ¡0:271 ¡0:446 ¡0:738
11 0.707 1.414 1.414 ¡2:708 ¡0:446 ¡7:335
12 0.707 1.414 1.414 ¡0:271 ¡0:446 ¡0:627
13 1.806 0.500 3.429 ¡0:783 ¡1:456 ¡2:535
14 1.627 4.620 3.544 ¡0:707 ¡1:414 ¡1:414
15 0.144 4.620 0.346 ¡0:707 ¡1:414 ¡1:414
16 1.627 0.483 0.346 ¡0:707 ¡1:414 ¡1:414
17 1.578 4.367 0.323 ¡0:686 ¡1:853 ¡1:347
18 0.144 0.483 3.544 ¡0:707 ¡1:414 ¡1:414
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