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An articulated figure is often modeled as a set of rigid segments connected with joints. Its
configuration can be altered by varying the joint angles. Although it is straightforward to
compute figure configurations given joint angles (forward kinematics), it is more difficult to find
the joint angles for a desired configuration (inverse kinematics). Since the inverse kinematics

problem is of special importance to an animator wishing to set a figure to a posture satisfying a
set of positioning constraints, researchers have proposed several different approaches. However,

when we try to follow these approaches in an interactive animation system where the object on

which LOoperate is as highly articulated as a realistic human figure, they fail in either generality
or performance. So, we approach this problem through nonlinear programming techniques. It has

been successfully used since 1988 in the spatial constraint system within Jack ‘W,a human figure
simulation system developed at the University of Pennsylvania, and proves to be satisfactorily
eff]cient, controllable, and robust. A spatial constraint in our system involves two parts: one
constraint on the figure, the end-eflector, and one on the spatial environment, the goal. These
two parts are dealt with separately, so that wc can achieve a neat modular implementation.
Constraints can be added one at a time with appropriate weights designating the importance of
this constraint relative to the others and are always solved as a group. [f physical limits prevent

satisfaction of all the constraints, the system stops with the (possibly local) optimal solution for

the given weights. Also, the rigidity of each joint angle can be controlled, which is useful for

redundant degrees of freedom.
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1. INTRODUCTION

In computer animation, an articulated figure is often modeled as a set of rigid

segments connected by joints. Abstractly, a joint is a constraint on the

geometric relationship between two adjacent segments. This relationship is

expressed with a number of parameters called joint angles. With judicious

selection of joints so that, for example, segments are connected to form a tree

structure, a collection of the joint angles of all the joints corresponds exactly

to a configuration of the figure. This correspondence provides an immediate

computer representation of articulated figure configurations such that given

a set of joint angles, it is straightforward to compute the corresponding

configuration; however, the problem of finding a set of joint angles that

corresponds to a given configuration-the inverse kinematics problem—is

nontrivial.

The inverse kinematics problem is extremely important in computer ani-

mation because it is often the spatial appearance, rather than the joint

angles, that an animator finds easier to express. Naturally, the problem has

received considerable attention in computer animation as well as in robotics

(see section 2), but the various algorithms reflect particular aspects of the

problem and fail to provide a general, efficient, and robust solution for

positioning highly articulated figures in an interactive animation system.

The several applications of inverse kinematics for articulated figures are as

follows:

—In interactive manipulation, where an animator poses a figure in the

spatial environment, joint angles are merely internal (and possibly hidden)

representations of postures (configurations) [Phillips et al. 1990]. The joint

angles defining the target configuration may be much more important than

the process taken by the joint angles to arrive at the target: for manipula-

tion, interactive responsiveness is essential.

—Fast response is also essential for animation control of articulated figures

where the mapping from spatial configurations to joint angles must be

done repeatedly. For example, if the path of an end-effecter is described by

a space curve [Girard and Maciejewski 1985] or by strength constraints

[J.=e et al. 1990], the prediction of the next configuration along the path is
iteratively transformed to joint angles at regular time steps.

—Inverse kinematics may be used to compute the reachable workspace of an

end-effecter [Alameldin et al. 1990]. The joint angles themselves are not

important. Rather, they answer the questions of whether a spatial configu-

ration can be achieved or what the overall shape of the workspace looks

like. These issues arise in human factors evaluations [Badler et al. 1993].

—With additional control mechanisms and collision detection, inverse kine-

matics can be augmented to achieve collision auoiol-vzce [Zhao 1994].

Combining spatial and joint constraints into collision-free motion is a

fundamental goal of robotics, and a variety of exact and heuristic solutions

exist. The problem is that the complexity grows exponentially with the

number of degrees of freedom, making exact solutions effectively impossi-

ble on a figure with the articulation of a simulated human.
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We offer a new and feasible approach to the inverse kinematics problem

based on nonlinear programming: a numerical method for solving the mini-

mum of a nonlinear function. Our approach searches for the solution in the

high-dimensional joint angle space for computational economy. It also deals

with joint limits intrinsically rather than as a special case. Last, it has been

successfully implemented and has found numerous applications.

Because of the complex nature of nonlinear functions, many efficient

nonlinear programming algorithms terminate when they find local minima.

The algorithm we chose has this limitation, too. In practice, however, this is

not an unacceptably serious problem. Local minima are less likely when the

target configuration is not too distant from the starting one. If local minima

are encountered during interactive manipulation, users can easily perturb

the figure configuration slightly to get around the problem. Often, additional

spatial constraints will help guide a solution away from local minima. For

example, weak constraints to keep the hand away from the body and the

elbow down will often prevent the arm from falling into “gimbal lock

configurations.

2. BACKGROUND

Inverse kinematics for determining mechanism motion is a common tech-

nique in mechanical engineering, particularly in robot research [Paul 1981].

In robotics, however, the greatest concern is with the functionality of manipu-

lators; overly redundant degrees of freedom are usually not desired, except

when needed for special purposes. Moreover, the computation is usually

carried out on particular (fixed) linkage geometries. In contrast, many inter-

esting objects in the computer animation domain, such as human figures and

other characters, have many redundant degrees of freedom when viewed as a

tree-structured kinematic mechanism. 1 So, it was necessary to look for effec-

tive means for solving this problem under circumstances applicable to com-

puter animation.

Korein and Badler began to study and implement methods for kinematic

chain positioning, especially in the context of joint limits and redundant

degrees of freedom [Korein and Badler 1982; Korein 1985]. Redundancy in

the arm linkage was reduced to an “elbow circle” that could be separately

constrained by, for example, joint limits or gravity considerations. Badler et

al. [1987] used 3D position constraints to specify spatial configurations of

articulated figures. A simple recursive solver computed joint angles to satisfi

and combine multiple position constraints.

Girard and Maciejewski [1985] adopted a method from robotics. In their

work they calculated the pseudoinverse of the Jacobian matrix that relates

the increment of the joint angles to the displacement of the end-effecter in

space. The main formula is

AO = J+ Ar,

1There is an alternative method of viewing such figures as deformabk objects, in which case

different representational structures and manipulation techniques are applicable.
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where A 0 is the increment of the joint angle vector; Ar is the displacement of

the vector representing the position and/or orientation of the end-effecter in

space; and J+ is the pseudoinverse of the Jacobian dr/d). To understand

this, we can think of r as a 3D column vector denoting the position of the

hand, and O as an n-dimensional column vector consisting of all joint angles

which may contribute to the motion of the hand, e.g., all the joint angles from

the shoulder to the wrist. This is a differential equality; in other words, the

equality holds only if we ignore the displacement of higher order O(lAr12 ). It

was developed to drive the robot, where the increment is small because actual

motion has to be carried out physically in a continuous way. However, to

position a human figure simply in a computer-simulated environment, it

would not be economical to move the end-effecter r by “small” steps. Also, in

making a computer animation sequence, it would not be optimal either to

take a step size smaller than necessary. Moreover, the pseudoinverse calcula-

tions required for each step in this formula are normally quite expensive, and

they did not address joint limits.

Witkin et al. [1982] used energy constraints for position and orientation.

The constraints are satisfied if and only if the energy function is zero. Their

constraint solution integrates the differential equation:

de(t)/dt = –w?(o),

where 0 is the parameter (e.g., joint angle) vector that defines the configura-

tion of the system; E is the energy function of 13; and V is the gradient

operator. If (?(t) is the integral with some initial condition, IX (l(t )) decreases

monotonically with time t, because

-&)) =we):

. –(VE(0))2.

In the joint angle @ apace,

E(6) = constant

defines a line, called the isoenergy line, on which the energy function E takes

identical values. For any number (energy level), there is such a line. Under

this physical interpretation of the energy function, Witkin et al.’s method

[19821 searches the path from the initial conjuration to the target configu-
ration which is, at any point, perpendicular to the isoenergy lines.

Instead of associating energy functions with constraints, Barzel and Barr

[1988] introduced deviation fimctions which measure the deviation of two

constrained parts. They discussed a variety of constraints-such as point-to-

point, point-to-nail, etc.-and their associated deviation functions. A segment

in a system of rigid bodies is subjected to both external forces, such as

gravity, and constraint forces, which force the deviations to zero whenever

they are found to be positive. Constraint forces are solved from a set of

dynamic differential equations that requires that all deviations go to zero

exponentially in a certain amount of time.
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An approach based on physical modeling and interpretation is also used by

Witkin and Welch [1990] on nonrigid bodies whose deformations are con-

trolled by a number of parameters. To apply this method to articulated

figures, a joint would be considered as a point-to-point constraint and added

to the system as an algebraic equation. This poses some practical problems

that render such solutions inappropriate to highly articulated figures. First,

it is not unusual to have several dozen joints in a highly articulated figure,

adding to the number of constraint equations substantially. Second, a joint of

an articulated figure is meant to be an absolute constraint: it should not

compete with any constraint that relates a point on a segment of the figure to

a point in space. Such competition leads often to numerical instability.

We notice that all those methods have a property in common: the target

configuration is the result of a process from a start state. This process has

some physical meaning. In Girard and Maciejewski’s method [1985], the

process is determined by the end-effecter path; in Witkin et al.’s method

[19821, it is determined by the energy function (the path in o space is
perpendicular to the family of isoenergy lines); in Barzel and Barr’s method

[1988] or other dynamic methods such as those in Witkin and Welsh [ 1990],
the process is determined by the physical interpretations of each segment and

by external and constraint forces exerted on it. Not only can these methods

solve the constraints, but they also offer a smooth process in which the

constraints are satisfied in certain contexts. The achieved target configura-

tion is therefore natural in the sense that it results from a process that the

user is more or less able to comprehend and control. But this property is not

free.

If we are only concerned about the target configuration defined by the

spatial constraints, rather than the physical realization, physical methods

could be computationally inefficient because they add extra burdens to the

original geometric problem. For example, in searching for a (local) minimum

along a curve, one may first choose a small step size and then compute the

function value until it rises. Another way to find a solution could be to first

locate an interval in which the minimum lies, then to use the golden ratio

method (a method similar to binary search) to find the minimum. The first

method gives a direct, but gradual picture of how the function changes to the

minimum, whereas the second method is statistically much faster.

Therefore, since a target configuration can be defined by the minimum of

an energy function E (see Witkin et al. [1987]), why don’t we look for the

minimum directly? As for naturalness of the target configuration, we may

give the user more immediate control by permitting the specification of

additional constraints, as long as the solution remains affordable.

Nonlinear programming is a numerical technique to solve for (local) min-

ima of nonlinear functions. The solution search maintains numerical effi-

ciency and robustness; the intermediate values from the starting state to the

final one could be in general fairly “irregular.” There are two classes of

nonlinear programming problems. One is unconstrained nonlinear program-

ming, where the variables are free to take any values; the other one is

constrained nonlinear programming, where the variables can only take val-
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ues in a certain range. The constraints on the variables fit exactly to joint

limits of articulated figures. Although the latter problem can be theoretically

reduced to the former one, both unconstrained and constrained nonlinear

programming problems have been studied extensively because simple reduc-

tion may result in numerical instability. So, we propose a new approach to

the inverse kinematics problem based on nonlinear programming methods.

Our target application is interactive manipulation of highly articulated fig-

ures, such as human figures, where joint integrity and joint limits must not

be violated.

3. SPATIAL CONSTRAINTS

The basic entity considered here is the articulated figure. Such objects are

defined in the Peabody language developed for the Jack m software system at

the University of Pennsylvania [Badler et al. 1993]. A Peabody figure con-

sists of rigid segments connected together by joints. Each joint has several

rotational and translational degrees of freedom subject to joint limits. The

data structure can be viewed as a tree, where nodes represent segments and

edges represent joints.

Given the data structure, we need to address the problem of placing a

figure into a desired posture. As discussed in section 1, we wish to be able to

adjust the posture directly in the spatial domain. Our spatial constraints are

designed for this purpose.

A spatial constraint is simply a demand that the end-effecter on a segment

of a figure be placed at and/or aligned with the goal in space. To say that a

constraint is satisfied is equivalent to saying that the goal is reached. The

end-effecter’s propensity to stick to the goal persists until the constraint is

disabled or deleted. Figure 1 is a diagram of the multiple spatial constraint

system in Jack. The system consists of three major components: Objective

Function Generator, Assembler, and Nonlinear Programming solver. They

are described in the following sections.

4. END-EFFECTORS

4.1 End-Effecter Mappings

Formally, we can view an end-effecter as a mapping:

where @ is the joint angle space, the set consisting of all joint angle vectors,

and

L= R3XS2XS2, (2)

where R 3 denotes the set of 3D vectors, and S 2 the set of 3D unit vectors.

Accordingly, e(6) is a 9D vector, whose first component triple forms a

positional vector designating the spatial position of a point on the end-effecter

segment, and whose second and third component triples form two unit
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Fig. 1. Spatial multiconstraint system.

vectors designating directions of two independent unit vectors on the end-

effector segment. Given an instance of the joint angles of all the joints, 0, the

end-effecter e associates a 9D vector e(0) = L according to the figure de fi-

ition. Since segments of a figure are rigid, the angle between the last two unit

vectors should remain unchanged. A convenient choice is to set it to 90

degrees. These nine numbers uniquely determine the position and orientation

of the end-effecter segment in space. The first three numbers are indepen-

dent, but the next six numbers are not. They must satisfy two unity equa-

tions and one expanded angle equation. These three equations remove three

degrees of freedom from e(0), so that e(0) has only six independent quanti-

ties, exactly what is needed to determine the position and orientation of a

rigid body in space.

Consider an example. Let the end-effecter segment be the right hand, and

let the pelvis be fixed temporarily to serve as the root of the figure tree. Given

joint angles of all the joints from the waist to the right wrist present in vector

0, the location and orientation of the right hand can be computed and the

result put in e(6), provided that a point and two orthonormal vectors at-

tached to the hand have been selected for reference.

In practice, the components in e(e) may not be equally important. Some-

times we may be interested only in the position (the first three) components,

say, for the location of the tip of the index finger. At other times, we may be

interested in only one of the two unit vector components in e(0), say, for the

direction (but not the roll angle) of the (unit) vector corresponding to the

index finger. We may also want two unit vector components in e(0) to define
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the entire orientation of the end-effecter segment. In general, we need to

permit any combination of these cases. So, the end-effecter mapping e is

labeled with a type, and only the desired components are present in e(d).

4.2 End-Effecter Computational Module

The End-Effecter module is part of the Objective Function Generator (see

Figure 1). Since the data structure of the figure is a tree, the end-effecter

depends only on those joints that lie along the path from the root of the figure

tree to the distal segment or the end-effecter segment. Let us call this path

the joint chain (Figure 2). For simplicity, we assume each joint in Figure 2

has only one degree of freedom. A joint with multiple degrees of freedom can

be decomposed conceptually into several one-degree-of-freedom joints with

zero distance in between. The length of the joint chain is the total number of

(one-degree-of-freedom) joints along the chain; in Figure 2, it is n.

Given O= (t?l,tlz,..., ~~)~, where superscript T denotes the transposition

operator, this module computes the end-effecter vector e(0). For the sake of

computational efllciency, the algorithm we chose to solve the constraint

requires the derivative quantities

de

(-
de de de

—. —. ..—
w (?01 802 )m= ‘

The matrix de/&3 is the Jacobian matrix. Its use will be explained later.

Naturally, it is this module’s responsibility to compute it.

The vector e( f3) is composed of some combination of a point vector and two

unit vectors on the end-effecter segment. Referring to Figure 2, let r be a

point vector and v be a unit vector on the end-effecter segment. It is clear

that in order to compute e(9) and de/ dl, it is sufficient to know how to

compute r(d), V(0), 8r/W, and dv/d(?.

Because all the joints in our current human figure model are rotational

joints, we discuss only rotational joints here .2 Let the i th joint angle along

the chain be @i, and the rotation axis of this joint be unit vector u. It turns

out that r(0) and V(0) can be easily computed with cascaded multiplications

of 4-by-4 homogeneous matrices. The derivatives can be easily computed, too

2The translational joints can be treated similarly and are actually even simpler,
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(see Whitney [19721):

Jr
—=ux(r– r,)
/?0‘

dv
=U xv.

m ‘

(3)

(4)

5. GOALS

5.1 Goal Potential Functions

A goal can also be viewed as a mapping:

{

P: L-+R+

X= L+ P(X)=R+
(5)

where the domain L is the same as the range of the end-effecter mapping

defined in (2), and R+ is the set of nonnegative real numbers. Since the

function P assigns a scalar to a combination of position and directions in

space, we call it a potential function. When the end-effecter vector e(O) is

plugged into the potential function P as the argument, it produces a nonneg-

ative real number, P(e( o )), which is understood as the distance from the

current end-effecter location (position and/or orientation) to the associated

goal. For each end-effecter and goal pair, the range of the end-effecter must

be the same as the domain of the potential function.

5.2 Goal Computational Module

The Goal module is the other part of the Objective Function Generator

(Figure 1). It computes the potential P(x) and its gradient, the column vector

formed by all its partial derivatives. Let

(
~

d (7T
v== — — .. . —

dxl (7X2 dxn )
where x‘ denotes the ith component of the vector x. The gradient of P(x) can

thus be written as VxP(x).

The following are potential functions and their gradients for some useful

types of goals implemented in Jack. Note that this module is completely

independent of the data structure of the articulated figure.

Position Goals. The goal is defined by a point p, a 3D vector, in space. The

domain L, which should be the same as the range of the corresponding

end-effecter mapping, is accordingly R3.

The potential function

P(r) = (p – r)z, (6)

and the gradient

V=P(r) = 2(r – p). (7)
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Orientation Goals. The orientation goal is defined by a pair of orthonor-

mal vectors,

Accordingly, the domain

Theoretically, the potential

{Xgjyg}.

L= S2XS2.

function could be

P(xe, ye) = (Xg – X,)2 + (yg – ye)2.

In practice, however, this may not be adequate nor desirable, because this

potential function, when combined with a position goal, would in effect make

one unit difference in length as important as about one radian difference in

angle. To make one length unit commensurate with d degrees in angle, we

need to multiply the above P by a factor cd such that

1 27r
—. —d
cd 360

or, explicitly,

Cd = 360/( 2~d). (8)

To be more flexible, the potential function is chosen to be

P(x,, ye) = C:x(xg – X,)2 + Cjy(yg – y,)2. (9)

The gradient is then

vx,P(xe, ye) = 2c3Jxe – Xg) (lo)

Vy,w% ?Ye) = @y(Y, – Yg). (11)

A goal direction, such as yg, could be unconstrained by setting cdY to O. This

is useful, for example, to constrain the orientation of the normal to the palm

of a person holding a cup of water.

Position/Orientation Goals. The position and orientation goals can be

treated separately, but sometimes it is more convenient to combine them

together as one goal. The potential fimction for the position/orientation goal

is chosen to be a weighted sum of the position and orientation components:

P(r, x,, y,) = wP(p – r)2 + wOcjX(xg – x,)2 + wOc~f(yg – y.)2 (12)

where WP and WOare weights assigned to position and orientation, respec-

tively, such that

Wp+wo=l.

The domain

L= R3XS2XS2
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and the gradients V, P, VxeP, and VYeP can be calculated from (7), (10), and

(11) above.

Ainzing-at Go&. The goal is defined by a point p in space; the end-effec-

ter is defined by a position vector r and a unit vector v on the end-effecter

segment. The goal is reached if and only if the ray emanating from r in the

direction v passes through p. The domain of the potential function

L= R3x S2.

This type of goal is useful, for example, in posing a human figure facing

toward a certain point. The potential function

i

p–r

!

2

P(r, v) = cj
11P- rll - v

(13)

where cd is defined in (8), and the gradient is calculated as:

V, P(r, v) = 2c3(llp – r112v – (p – r) “V(P – r))/ltp - r113 (14)

VvP(r, v) = –2cj
(

p–r

)lip-rll -v”
(15)

Line Goals. The goal is defined by a line which passes through points p

and p + U, where v is a unit vector. A point r on the end-e flector segment

will be constrained to lie on this line.

The potential function is

P(r) = ((p – r) – (p – r)” VV)2. (16)

Its domain is

L =R3,

and its gradient is

V=P(r) = 2(v. (p – r)v– (p – r)). (17)

Plane Goals. The goal is defined by a plane with a unit normal v and a

point p on it. Similar to the Line Goal, a point r on the end-effecter segment

is constrained to lie on this plane.

The potential function is

P(r) = ((p – r). U)2. (18)

Its domain is

L =R3,

and the gradient is

V,P(r) = –2vc(p – r)v. (19)
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Half-Space Goals. The goal is defined by a plane specified the same way

as in the Plane Goal. The plane is used to divide space into two half-spaces. A

point r on the end-effecter segment “reaches” the goal if and only if it is in

the same half-space as the point p + v.

The potential function is

(
o

P(r) =
if(p–r)”v<O

((p – r)” V)2 otherwise.

Its domain is

L = R3.

And the gradient is

{

o

V,P(r) =
if(p–r)-v<O

–2v. (p – r)v otherwise.

(20)

(21)

6. SPATIAL CONSTRAINT AS A NONLINEAR PROGRAMMING PROBLEM

A spatial constraint constrains an end-effecter to a goal. From Sections 4 and

5, with the current joint angles being 8, the “distance” from the end-effecter

to the goal is simply

G(t)) = P(e(0)). (22)

This quantity can be computed by first invoking the end-effecter module to

compute e(6), then invoking the goal module with e( (3) as the input argu-

ment of the potential function. This process is illustrated in Figure 1. Ideally,

we want to solve the algebraic equation

G($) = O.

In reality, however, this equation is not always satisfiable because the goal

(set) is not always reachable. Thus, the problem would be naturally general-

ized to find 6 in a feasible region that minimizes the function G(0). Most of

the joint angles in our figure definition have lower limits and upper limits,

and the joint angles for the shoulder are confined in a polygon. These limits

can all be expressed as linear inequalities. Therefore, we recast the problem

as nonlinear programming subject to linear constraints on variables. For-

mally,

(
minimize G(0)

subject to a~@=bi, i=l,2,... ,l (23)

a~O<bi, i=l+l, 1+2, . . ..k.

where a,, i=l,2, ..., k are column vectors whose dimensions are the same

as that of 0’s. The equalities allow for linear relationships among the joint

angles, and the inequalities represent the lower limit 1i and upper limit u; on
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0‘, the ith joint angle, as do the inequalities

–()’< –li

O’<u’.

The polygonal region for the shoulder joint angles (elevation, abduction, and

twist) can be similarly expressed as a set of inequalities.

7. SOLVING THE NONLINEAR PROGRAMMING PROBLEM

The problem posed in (23) to find the minimum of the objective function G(0)

is intractable without knowledge of the regularity of the objective function.

Properties such as linearity or convexity that regulate the global behavior of

a function may help to find the global minimum. Research in nonlinear

programming is mostly done to solve for local minima. It is still worthwhile

because, in practice, functions are moderate: the local minimum is often what

one wants, or if it fails to be, some other local minimum found by another

attempt with a new initial point would quite likely suflice.

For interactive response rates, we chose to compromise for local, rather

than global, minima. From years of observation, we have not seen many

serious problems. The algorithm we used to solve problem (23) is described in

the Appendix. It iterates to approach the solution. At each iteration, it

searches for a minimum along a certain direction. In order for the search

direction to point to the solution more accurately so that fewer iterations will

be needed, the direction is determined based on not only the gradient at the

current point, but also the gradients at the previous iterative steps.

Our method is both monotonic (after any iteration, the value that the

objective function takes never increases) and globally convergent (it con-

verges to a (local) minimum regardless of the initial point). These two

properties are very attractive because the configuration could otherwise

diverge arbitrarily, which could cause disaster had the previous posture

resulted from substantial user effort.

To carry out the computation, we need to compute G(0) and its gradient

‘JOG(o). It becomes easy now after preparation in Sections 4 and 5. The

function value can be computed as in (22), and the gradient can be computed

as follows:

g(0)~fVoG

()
de T—— VxP(e),
-x

(24)

where de/ W and VXP(e) are readily computed by the end-effecter and the

goal modules, respectively. It is clear that as the number of joint angles along

the chain n grows, the computational complexity of G and g is linear for the

goals listed in Section 5.2. This is the case because the end-effecter module

needs 0(n) time, and the goal module needs 0(1) time.

Now we are ready to solve a single constraint. Referring to Figure 1, the

objective function G and its gradient g are computed by the Objective
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Function Generator at the request of the Nonlinear Programming module at

each iteration. To solve for multiple constraints, we only have to add up all

the objective functions and their gradients, and pass the sums to the Nonlin-

ear Programming module. This is explained in the following sections.

8, MULTIPLE CONSTRAINTS

A single constraint is far fi-om adequate in defining a posture. Unlike

methods given in Girard and Maciejewski [1985], Witkin et al. [1987], and

Barzel and Barr [1988] where the constraint is satisfied as a result of

evolution from the initial conjuration, this method approaches the solution

over the configuration space. Among the infinite number of possibilities due

to high redundancy across multiple degrees of freedom, no attempt is made to

assure that the solution is a “natural evolution” from the starting configura-

tion. For example, in constraining the hand to the goal, the elbow might

assume a feasible but undesirable position. An additional constraint for the

elbow could be necessary for a satisfactory posture. More constraints would

be needed for more complex postures.

Our system, therefore, handles multiple constraints. Since the objective

function G(0) defined in (22) is nonnegative, multiple constraints are solved

by minimizing the sum of the objective fhnctions associated with all the goals

Gall(0) = f ~iGi(6) (25)
1=1

where m is the number of constraints; subscript i denotes the association

with the ith constraint; Wi is a nonnegative weight assigned to the i th

constraint to reflect the relative importance of the constraint; and

Gi(d) = P1(ei(8)). (26)

Thus, the multiple constraints can be solved in problem (23) with G

replaced by G ‘] defined in (25).

Note that the Gi(t?) can be computed independently, and only a number of

additions are needed to compute Gdl( 8 ). This is also true for the gradient

because for the gradient operator Ve is additive.

Constraints may also be tied together disjunctively; that is, they are

considered to be satisfied if any one of them is satisfied. To solve this

problem, we define the objective function as

fJall(e) =
iE(N,m}{Gi(e)}”

(27)

It is useful for collision avoidance, for example, to constrain an end-effecter

outside a convex polyhedron, because the outaide space can be viewed as the

disjunction of the outward half-spaces defined by the polygonal faces.

9. ASSEMBLER OF MULTIPLE CONSTRAINTS

Aa stated in the previous sections, the overall objective function for multiple

constraints can be found by computing separately and independently the
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objective functions for individual constraints and then adding them together.

In this section, we shall explain how the Assembler works.

The Objective Function Generator module takes a joint chain, an array of

corresponding joint angles, a goal type, and other parameters of a constraint

as its input and computes the objective finction value G and its gradient g.

Since the partial derivatives with respect to the joint angles other than those

on the joint chain are zero, the gradient determined by this module has to

include only the derivatives with respect to the joint angles on the chain. This

property lends itself to a clean modular implementation. Two gradient vec-

tors so structured for different constraints do not add directly, however: the

i th joint angle in one chain may not be the same as the i th joint angle in

another chain. The difference is resolved by the Assembler module.

Suppose there are m constraints. Let El, be the ordered set of joint angles

on the joint chain of the ith constraint, and n ~be the number of joint angles

in (9,. Let

m
@)=(J @i,

1=1

the union of all @i with the order defined in

number of joint angles in @. In general, n

(28)

a cert~in way, and let n be the

s ~,., n,, because of possible

overlap among all (3,. Let us define the index tame as a mapping

{

M,: {1,2,..., n,}+ {1,2, n}., n}

J ~ M,(j),
(29)

such that the jth joint angle in Eli corresponds to the Mi(j)th joint angle in

the overall index system @. This index table, along with the weight of the

constraint, is passed to the Assembler so that the effect of the i th constraint

on the gradient of the overall objective function Gal’ can be correctly estab-

lished. Once the gj—the derivative of the objective function of the ith

constraint Gi with regard to the jth joint angle in @, —are available the

Assembler does:

Fori=l tomdo
M,(J1 ~ ~ M,(J) + ~ig~, for]” = l,z, . . ..ni.

g

where g J stands for the partial derivative of Ga’i with regard to the jth joint

angle in @. They are initially set to zero.

10. RECONCILIATION OF JOINT CHAINS

It was suggested in (28) that only a union was needed to combine all the joint

chains. In fact, it is slightly more complicated, because we allow the user to

specify the set of joints in the joint chain to be used as resources for

constraint satisfaction. Thus, the joint chain need not go all the way from the

end-effecter back to the figure definition root: it may be specified when the

constraint is defined. Since the constraints may be input sequentially, a joint

that may affect the end-effecter of one constraint but is not picked for the
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joint chain, could be picked for the joint chain of another constraint. For

example, the waist joint might not be selected for the constraint on the right

hand, but may later be selected for the constraint on the left hand. Similar

observations were previously made in Badler et al. [1980].

So some reconciliation is necessary to unite @is into 0. It is done by

possible extension of a joint chain. For instance, if a joint in @~ but not in @~

affects the end-effecter of constraint B, it will be added to @~. When a

constraint is added to or deleted from the system, the reconciliation must be

redone. However, by careful deliberation, this operation does not have to be

done from scratch.

11. RIGIDITIES OF INDIVIDUAL DEGREES OF FREEDOM

Our nonlinear programming algorithm utilizes gradient quantities. Given the

same error tolerance for termination, a variable would undergo more dis-

placement if the value of the objective function changes relatively more due to

the unit increment of that variable (partial derivative). This property can be

used to control the rigidity of individual degrees of freedom by assigning

scaling factors to the joint angles. The scaling factor in effect changes the unit

of the joint angle, and hence scales the derivative respectively. The greater a

partial derivative is compared to the others, the closer the search direction is

to the direction of the corresponding variable.

12. IMPLEMENTATION

A spatial multiconstraint system, in which the rigidity of individual degrees

of freedom can be controlled, has been implemented in Jack [Badler et al.

1993]. The kernel algorithm used to solve the nonlinear programming prob-

lem is presented in the Appendix. A constraint maybe of any type, or a set of

disjunctively combined constraints of any type, listed in Section 5.2. The

system maps from spatial specifications of articulated figure conilgurations to

joint angles.

The pose displayed in the left panel of Figure 3 is achieved by using six

constraints. Two position/orientation constraints on the two hands were used

to hold the tube, where one direction of the orientation component is sup-

pressed so that only the normals to the palms and the tube are aligned. Two

plane constraints on the elbows were used to stretch the elbows on two side

planes, To have the figure look down toward the bottom of the tube, we used

two more constraints: a line constraint on the view point (the point at the

middle of the two eyes) to the central axis of the tube and an aiming-at

constraint to point the viewing vector toward the bottom of the tube.

The torso of the body in Figure 3 has 17 segments. A three-degree-of-free

dom joint connects each pair of vertebral segments. These joints, however, are

grouped together to form a joint group that is driven by three independent

parameters: forward extension, lateral bending, and axial rotation. So, the

number of effective de~ees of freedom of the torso is just three. The joint

connecting the sternum to the clavicle and the joint connecting the clavicle to

the upper arm are similarly grouped to form the shoulder complex, which has
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Looking down toward the end of the tube (left panel: vertebral joints are grouped; right 

panel: vertebral joints are independent). 

three effective degrees of freedom: elevation, abduction, and twist. The new 

modeling construct joint group developed for interdependencies among joints 

and their incorporation into the spatial multiconstraint system are described 

in Badler et al. [1993] and Zhao [1993]. In all, there are 22 degrees of 

freedom: the others are two at the two elbows, six at the two wrists, three 

from the torso to the neck, and two from the neck to the head. Running on a 

Silicon Graphics workstation 340 VGX, and starting from an upright neutral 

position, the solution took about five seconds. 

For comparison, the right panel of Figure 3 demonstrates the result of 

exactly the same task as above except that the vertebral joints are not 

grouped. Since there are 17 vertebral joints, each with three degrees of 

freedom, there are 48 (17 X 3 - 3) more degrees of freedom than the previous 

task, or 70 degrees of freedom in total. As expected, it took about 10 seconds 

longer. The joint angle distribution along the vertebral joints is interesting. 

Figure 4 shows the joint angle distribution along the (grouped) vertebral 

joints corresponding to the pose in the left panel of Figure 3. The 17 segments 

consist of 12 thoracic and five lumbar vertebrae. They are numbered from the 

top with the first lumbar vertebra succeeding the twelfth thoracic vertebra. 

In Figure 4, Tl denotes the joint connecting the second thoracic vertebra to 

the first thoracic vertebra, and so on. Note that T12 denotes the joint 

connecting the first lumbar vertebra to the twelfth thoracic vertebra, and L5 

denotes the joint connecting the lower torso (the sacrum) to the fifth lumbar. 

Figure 5 shows the joint angle distribution corresponding to the right panel of 

Figure 3 (with independent vertebral joints). In comparing Figures 4 and 5, it 

is clear that although both achieve a solution, the inverse kinematics algo- 

rithm based on function optimization methods alone results in irregular joint 

angle distribution along independent vertebral joints. Figure 4 illustrates 

more uniform results that are achieved by appropriately grouping these 

joints together. Our distributions are based on a kinematic model of the 
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Fig. 5. Joint angle distribution along the independent vertebral jointa.

human spine constructed by Monheit and Badler [1991] and Badler et al.

[1993].

The human models in Figures 6 to 8 are more primitive Jack bodies having

just five segments for the torso. Interdependencies among the joints were not

modeled. Figure 6 is a situation where the goal is not reachable if the joint

chain includes only the joints from the shoulder to the hand. The goal is the

position plus the direction of the normal to the right face of the box. If we add

more joints to this task, so that the joint chain starts at the waist, the goal

becomes reachable, but all joint angles along the torso segments are treated

equally. This leads to an awkward pose, as shown in Figure 7. To make it

more natural, we set the rigidities in lateral bending and axial rotation of the

torso segments to 0.5 (middle of the range [0, l]). The result is shown in

Figure 8. The task, with the joint chain starting at the waist, involves 22

degrees of freedom. It took about 2 seconds on a Silicon Graphics workstation

4D-25TG.

The task in the left panel of Figure 3 and Figure 8 involves an equal

number of degrees of freedom; it is worth explaining why the task in Figure 3
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Fig. 7. Successful but awkward reach. 

Fig. 6. Goal not reachable without acti- 

vating the torso. 

took about twice as long as the task in Figure 8, despite the clear superiority 

in speed that the Silicon Graphics 340 VGX enjoys over the 4D-25TG. The 

exact number of computational steps for each iteration (computational com- 

plexity) can be counted; it is O(n2) if the total number of degrees of freedom 

is n and the number of constraints is O(n) (see Appendix). However, the 

algorithm is iterative, and the number of iterations depends in part on 

spatial complexity (determined by the spatial relationship between the start- 

ing configuration to the target configuration) and the nonlinearity of the 

objective function (which can be affected by the functions used to produce 

joint angles of the grouped joints from a number of parameters). It is 

impossible to count exactly the total number of iterations with a given 

tolerance; the “computational complexity” in this dimension is usually mea- 

sured by convergence rate. Obviously, the task in Figure 3 is much more 
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Fig. 8. Natural reach with controlled 

rigidities in the vertebral joints. 

complicated than that in Figure 8. We have not quantitatively analyzed the 

time efficiency of this algorithm. To do this, one should take into account the 

number of degrees of freedom involved, the number of constraints solved, and 

the “spatial complexity” of the target. (In analyzing time efficiency of nonlin- 

ear programming algorithms, the algorithms are often tested on some typical 

and reasonably involved functions. Consensus on a test suite of typical or 

challenging inverse kinematics tasks has yet to be developed.) 

Over years of use, this inverse kinematics algorithm has proved to be 

robust and highly interactive, especially when constraints are manipulated 

on-screen [Phillips et al. 19931. The algorithm has been highly successful in 

modeling balance “behaviors” that take the static mass distribution of a 

figure into account during interactive manipulation of animation and move 

various body joints to restore balance [Phillips and Badler 1991; Badler et al. 

19931. Finally, inverse kinematics has been used to generate interactive 

collision and self-collision avoidance in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJack figure [Zhao 19941. While it 

can be faulted for occasionally producing unnatural joint angle transitions 

into a posture, it is controllable with additional spatial constraints, joint 

rigidities, or combined joint groups. The result is a tool of great versatility 

and ease of use for interactive articulated-figure manipulation. 

APPENDIX: Algorithm for Nonlinear Programming Subject to Linear 

Constraints 

From Sections 4.2-5.2 and Section 9, we can compute G( 0) and g( 0) = V,G( 8) 

in O(nm> steps, where m is the number of constraints and n the total 

number of degrees of freedom. Many algorithms have been developed to solve 

problem (23). Without constraints on joint angles, the variable metric method 

(or conjugate gradient method) is considered a good choice. To deal with 

linear equality and inequality constraints in (23), Rosen [ 19601 proposed the 

projection method, by which the search direction determined from the corre- 
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spending unconstrained problem is orthogonally projected to the subspace

defined by those constraints on variables. Goldfarb [1969] combined DFPs

method (a variable metric algorithm) [Fletcher and Powell 1963] with Rosen’s

projection method. After that, the variable metric method underwent further

improvements. The BFGS method [Broyden 1970; Fletcher 1970; Goldfarb

1970; Shanno 1970] has been considered most successful. One motivation for

the improvement is to get the best conditioning of the approximate inverse

Hessian matrix [Shanno 1970]. The algorithm we present here is the combi-

nation of the BFGS method and Rosen’s projection method. The overall

framework is similar to Goldfarb’s method. We just give an algorithmic

description. For the full rationale, Broyden [1970], Fletcher [1970], Goldfarb

[1970], and Shanno [1970] should be consulted. The algorithm, like others,

only finds a Kuhn-Tucker point: that is, a point at which the objective

function satisfies necessary conditions of a constrained local minimum.

Without 10SS of generality, we assume that all the ai in (23) are unit

vectors, We say that point o is feasible if it satisfies all the equalities and

inequalities in (23). The ith constraint is said to be active at 0 if a~f) = b,. So,

an equality constraint is always active at a feasible point. We assume further

that at any point, the ai for active constraints are linearly independent. Let

A~ denote an n-byq matrix derived by lumping together q vectors from a,,

i.e.,

A~ = (a,,

In the following description of the

association with the i th iteration.

a,z s“” a,,).

algorithm, the superscript i denotes the

Step 1. Let 60 be an initial feasible point, and Hi an initially chosen

n-by-n positive definite symmetric matrix. Suppose there are q constraints

active at point 6’0. A is composed of these a,, and the first 1 columns of A~

are{a, :i=l,2, . . . ,11. H: is computed by applying (32) q times; g 0 = g( 0° ).

Step 2. Given 0‘, g’, and H;, compute H; g‘ and

a=(A~A,)-’A:gl.

If H~g’=Oand al<O, j=l+l,l+2 ,..., q, then stop. d’ is a Kuhn-Tucker

point.

Step 3. If the algorithm did not terminate at Step 2, either IIH~g’ II >
-1“2} or llH~g’11 s (l\2)a~a;~/2, where it is assumed thatmax{O, ~cr~a~~

I/Z > ~ia,lV~, i = z + l,. ... q — 1, and al, is the ith diagonal element
~qaq —

of ( Al A,, ) -1. They are all positive. (See Goldfarb [1969 ].) If the former holds,

procekd ~o Step 4.

Otherwise, drop the qth constraint from Aq, and obtain H; , from

(30)

13, No. 4, October1994.ACM Transactions on Graphics. Vol



334 . Jianmin Zhao and Norman 1. Badler

where P~_ ~ = 1 – A~. ~(A~_ ~Aq _ ~)- lA~_ ~ is a projection matrix; ai is the

qth column of A.; and AQ_ ~ is the n-by-(q – 1) matrix obtained by taking off

the qth column from A~.”

Letq+q- l,andgota Step2.

Step 4. Let the search direction

bj – a~o i
Aj = ~T~i >

J

Si = – If; g i, and compute

i=q+l, q+2,..., k

Ai = min{~j > O}.
J

Use any line search technique to obtain the biggest possible yi such that

O < Yi < min{l, Ai), and

(

P(oi + yisi) < P(6i) + 81#(g’)Tsi
(31)

g(ei + #si)Ts~ 2 a2(g*)Tsi

where 81 and 8Z are positive numbers such that O < al < 8P < 1 and al <0.5.

Let 13i+l = @i + yisi and gi+l =g(@i+ l).

Step 5. If Yi = At, add to A~ the aj corresponding to the min{Aj} in Step 4.

Then compute

(32)

Setq+q+ landi-i+l, and goto Step2.

Step 6. Otherwise, set u’ = y’s’ and y’ = g’+l – g’, and update H; as

follows:

If ( u i)~y i > ( Yi )~H~ yi then use the BFGS formula:

“+l=H’+[[l+(:~Mui(a
–Ui(yi)~H; – H:yi(mi)T)/(ai) Ty~.

Else use the DI?P formula:

u7ai)T H~yi(yi)~H:
H:+l= H;+

(aif’yi – (yi)TH; yi o

(33)

(34)

Seti&i+ l,andgoto Step2.

The inexact line search strategy (31) in Step 4 was proposed by Powell

[1976] who also suggested 81 = 0.0001 and ~z = 0.5. Since Si is a descent

direction, i.e., (g i)’si <0, this strategy guarantees that the fimction value is

decreased and (u ‘)~y’ > (1 – 8z)Kgi)~sil >0. Because, as we pointed out in
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Section 7, the gradient g(t)) is almost as expensive as the function P(8), we

used a cubic Hermite interpolation method in linear searching for the sake of

speed, which we feel is fairly effective. (The switch between the BFGS

forrm.da and the DFP formula in Step 6 was suggested by Fletcher [1970].)

Notice that all matrix multiplications are performed as an n-by-n matrix

and a vector, or an n-by-1 matrix and a l-by-n matrix. For example, matrix

multiplication H: a, a~H~ can be grouped as (Hi aj)( H ia )~. The inverse of a
q+matrix might take much time but, fortunately, for (AR Aq ) -1 there is an

eflicient recursive relation of(A~Aq)-l to (A~+l A~+l)-l and (A~_l Aq_l)-l.

(See Goldfarb [ 1969] for details.) So the complexity of one iteration is 0( n2 ),

provided that the number k of equalities and inequalities is 0(n).

The correctness of the algorithm was proved by Goldfarb [1969] for exact

line search in Step 4 and the DFP formula in Step 6. But, it is not hard to

follow the proof in Goldfarb [1969] to show the correctness of our algorithm,

being careful that his algorithm was for maximum while our’s is for mini-

mum. We tried both the BFGS and DFP formula and found that BFGS is

really better. Shanno [1970] compared them for many functions, and the

results are generally in favor of the BFGS formula.
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