
ETH Library

Inverse Learning for Data-driven
Calibration of Model-based
Statistical Path Planning

Journal Article

Author(s):
Menner, Marcel; Berntorp, Karl; Zeilinger, Melanie N.; Di Cairano, Stefano

Publication date:
2021-03

Permanent link:
https://doi.org/10.3929/ethz-b-000447052

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Intelligent Vehicles 6(1), https://doi.org/10.1109/tiv.2020.3000323

Funding acknowledgement:
157601 - Safety and Performance for Human in the Loop Control (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000447052
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/tiv.2020.3000323
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Inverse Learning for Data-driven Calibration of

Model-based Statistical Path Planning
Marcel Menner, Karl Berntorp, Melanie N. Zeilinger, and Stefano Di Cairano

Abstract—This paper presents a method for inverse learning
of a control objective defined in terms of requirements and their
joint probability distribution from data. The probability distri-
bution characterizes tolerated deviations from the deterministic
requirements and is learned using maximum likelihood estima-
tion from data. Further, this paper introduces both parametrized
requirements for motion planning in autonomous driving ap-
plications and methods for the estimation of their parameters
from driving data. Both the parametrized requirements and their
joint probability distributions are estimated using a posterior
distribution such that the control objective is personalized from
a prior as driver data are accumulated. Finally, three variants
of the learning method are presented that vary in computational
complexity and data storage requirements. Key advantages of the
proposed inverse learning method are a relatively low computa-
tional complexity, a need for a limited amount of data, and that
the data do not have to be segmented into specific maneuvers,
which makes the method easily implementable. Learning results
using data of five human drivers in a simulation environment
suggest that the proposed model for human-conscious driving
along with the proposed learning method enable a more natural
and personalized driving style of autonomous vehicles for their
human passengers.

Index Terms—Machine Learning, Intelligent Control, Au-
tonomous Vehicles

I. INTRODUCTION

HUMANS’ cognitive abilities to operate a dynamical

system are often difficult to match by an autonomous

control design. One reason is that it is difficult to analytically

model human knowledge and desires, or to incorporate human

intent into a control objective. Autonomous driving is one

example where humans’ capabilities of real-time decision

making and trading-off various objectives are hard to achieve

by pure model-based control approaches [1], [2]. Calibrating a

control objective to achieve human-like behavior of a system

as complex as an autonomous vehicle can be a challenging,

time-consuming, and expensive task. On the other hand, a

pure data-driven approach may require a large amount of

data that cover all driving conditions, which is again hard

and expensive to gather. As such, the best option appears

to be a sensible synthesis of model-based and data-driven

Manuscript received November 14, 2019; revised April 01, 2020; accepted
May 30, 2020. M. Menner was partially supported by the Swiss National
Science Foundation under Grant PP00P2 157601/1. (Corresponding author:

Marcel Menner.)

M. Menner and M. N. Zeilinger are with the Institute for Dynamic
Systems and Control, ETH Zurich, 8092 Zurich, Switzerland (e-mail: mmen-
ner@ethz.ch; mzeilinger@ethz.ch). M. Menner was an intern at Mitsubishi
Electric Research Laboratories (MERL) for part of this work.

K. Berntorp and S. Di Cairano are with Mitsubishi Electric Research Labo-
ratories (MERL), Cambridge, MA, 02139, USA (e-mail: berntorp@merl.com;
dicairano@merl.com).

approaches using the former to define models and objective

classes based on well-established problem knowledge, and

the latter to define their relative importance based on drivers’

behaviors. Inverse learning methods offer an attractive design

paradigm to systematically calibrate a control law or control

objective of a model-based approach using data.

The motivation for this work is to automate the calibration

of autonomous vehicles to achieve a more natural and per-

sonalized driving style for the individual human passenger,

while retaining safety and behavioral guarantees of model-

based motion-planning algorithms. The desire to personalize

autonomous vehicles originates from the fact that the feeling of

comfort and cautiousness in traffic varies between individual

human passengers. In this paper, we define a driving style

as the individual preferences in operating a vehicle as a

trade off between potentially conflicting objectives, such as

the time to reach the destination, comfort, and cautiousness.

Related definitions are presented in [3], [4], and a thorough

review of driving styles related to road safety is presented

in [5]. In the context of this paper, we aim at finding the

motion-planner parameter tuning that minimizes—in some

appropriate sense—the difference between the behavior of the

autonomously driven and the manually driven vehicle with

respect to some key performance indicators, which we refer

to as driving requirements.

II. KEY CONTRIBUTIONS

In this paper, we propose a method to learn a control objec-

tive, which consists of parametrized deterministic requirements

and a probability distribution. The deterministic requirements

represent goals that a dynamical system aims to satisfy,

whereas the probability distribution represents tolerated devi-

ations from the requirements accounting for uncertainties and

noise, or that the requirements may not be perfectly achieved.

The considered control objective for decision-making has been

proposed in [6], [7], where a particle filter extracts the motion

plan for autonomous driving from given requirements and their

joint probability distribution. This paper considers the inverse

problem, where motion plans are generated by a different

actor, e.g., a human, who demonstrates how to operate the

dynamical system. In the context of the motion-planning ap-

plication, a human driver demonstrates their preferred driving

style by taking full control of the vehicle, which will be

possible for autonomous vehicles with autonomy levels until at

least SAE Level 4 [8]. Indeed, the learning approach is aimed

at improving the experience of riding the autonomous vehicle,

while the correct system operation is guaranteed before this

calibration step by the motion-planning algorithm.

This paper extends our initial investigation [9] with the

following: It i) incorporates a prior for the motion planner’s

parameters in order to gradually personalize the driving style

as data are accumulated; ii) details the algorithm for estimating

the parameters of the control objective; and iii) proposes and

analyzes three variants of the learning method that vary in

computational complexity and storage requirements.

More specifically, we propose a parametrized requirement

function to be used for personalized motion planning, along

with methods to learn its parameters, where we use four

requirements: to stay close to the centerline, to track a nominal

velocity, to limit the longitudinal and lateral accelerations

for comfort, and to maintain a safety distance from obstacle

vehicles. Hence, we personalize the motion planner with

respect to these four requirements but additional requirements

can be added, similarly. Further, we propose a regularized

likelihood maximization method to estimate the probability

distribution from demonstrated motion plans, which we model

to be the result of an estimation problem in a Kalman-filter

framework. The regularized likelihood maximization method

can be interpreted as maximum a posteriori estimation, where

the prior is given by a common belief and a structural belief.

The common belief is used to incorporate commonly used

parameters and the structural belief is used to favor structurally

beneficial parameters for the motion planner. Simulations

with five human drivers suggest that both the probability

distribution and the parameters of the requirement function are

individual, thereby allowing for tailoring the motion planner

to individual preferences. Although we validate the proposed

learning method using the particle filter algorithm in [7], the

method is generally applicable to calibrate control strategies

having a well-defined requirement function, which is the case

for most optimization-based control strategies.

The first key advantage of the proposed method is the low

computational complexity, where we propose three variants

making the method adjustable to the available hardware.

For example, one variant only requires a few parameters to

be updated recursively and its computational complexity is

independent of the data size. The second key advantage is

that our method is not maneuver based, i.e., the data need not

be segmented prior to learning. These two key results make

the algorithm easily implementable on hardware suitable for

automotive applications.

Gray-box learning philosophy: While a pure end-to-end

learning approach results in a black-box algorithm that is

difficult to assess and verify, a pure model-based approach

may be easier to assess and verify but is difficult to calibrate

for achieving a personalized driving style. Here, we pursue

a gray-box learning approach and calibrate the model-based

motion-planner in [7] using data, i.e., motion plans generated

by human drivers. In this way, the overall driving behavior is

guaranteed to have the general properties and guarantees of the

motion planner [7], including collision avoidance and specific

behaviors in safety-critical decisions. Yet, among the admissi-

ble motion plans, the ones that are closer to the driver’s natural

behavior and that enhance passenger comfort are chosen.

Thus, our objective is not to imitate the human’s individual

driving style but to use the motion plans demonstrated by

Motion Planner

§ XI

Validation

§ X

Gray-box Learning

Summary: § VIII

Demonstrations

§ IX

Controller Model

Probability Dist.

§ V

Requirements

§ VII-A

data

controller

structure

estimated

parameters

Calibration of

Probability Dist.

§ VI

Calibration of

Requirements

§ VII-B

0 2 4 6 8
0

2

4

6

8

-1

0

1

Fig. 1. Core components, their connections in the learning procedure, and
their allocation in the paper. The data provided by human drivers are used
to calibrate the parameters of the controller. Due to the gray-box learning
approach, the estimated parameters are interpretable and thus, can be validated
prior to their employment in the motion planner.

the individual driver to calibrate the parameters of the motion

planner such that the autonomous vehicle behavior is as close

as possible—in an appropriate sense—to that of the human

driver. Since we learn the parameters of a given algorithm,

rather than the algorithm itself as in black-box learning, the

autonomous vehicle behavior will still satisfy the invariant

motion-planner constraints, e.g., the safety constraints. As a

consequence, the calibrated motion planner will try to be as

close as possible to the driver behavior, within the space of

admissible, i.e., safe, behaviors. In particular, the resulting

motion planner will not imitate negative behaviors such as

unsafe maneuvers or violations of the rules of the road, e.g.,

exceeding the speed limit. Due to the more limited scope of

learning, a reduced amount of data is sufficient for the learning

algorithm to operate, since we are learning parameters, rather

than the entire algorithm. Fig. 1 illustrates the core components

of the approach, i.e., the controller, the data generation, the

learning algorithm, the validation of the estimated parameters,

and the motion planner.

III. QUALITATIVE COMPARISON WITH RELATED WORK

Some recent research directions present interesting relations

with the techniques proposed here and are worth some dis-

cussions. Recent reviews provide additional background on

learning objectives from demonstrations [10], [11].

A. Inverse Optimal Control (IOC)

IOC methods model observed data to be the result of an

optimal control problem [12]–[23] and often aim at trans-

ferring human expertise to an autonomous system, e.g., for

humanoid locomotion [14], [15], identifying human move-

ments [16]–[18], or robot manipulation tasks [19]. Typically,

IOC methods such as [18], [19] use the Karush-Kuhn-Tucker

(KKT) conditions and assume a deterministic control objective

and the resulting control actions are deterministic. Under this

assumption, the performance may deteriorate in the presence

of imperfect information such as noisy or suboptimal data.

Some notable exceptions are [20], where a bi-level optimiza-

tion approach is proposed to address imperfect data; [21],

where a risk-metric model is introduced to circumvent risk-

neutral, deterministic objective functions; [22], where policies

are constructed for scenarios with multiple future outcomes;

and [23], where the concept of active learning is incorporated

into the risk-sensitive framework in [21] enabling an agent to

query demonstrations from an expert.

Distinction from IOC: The systematic difference between

our method and IOC [12]–[23] lies in the stochasticity of

the control objective, which models decision-making explic-

itly as nondeterministic and suboptimal. In the context of

autonomous driving, this model is especially relevant due

to the presence of uncertainty in the environment, modeling

errors, and sensing and localization errors. The advantage of

KKT-based inverse learning paradigms is the consideration of

operational constraints, which also facilitates the learning of

constraints, e.g., in [18], [24]. However, these methods require

the data to be segmented into specific maneuvers in which the

assumptions on the data—expressed by the KKT conditions—

are satisfied. Automatic segmentation of demonstrations into

maneuvers or subtasks is addressed, e.g., in [25]–[27], and

the reader is referred to [10] for a detailed discussion. In

contrast, for our method, the data need not be segmented

into maneuvers prior to learning. On the other hand, while

the motion planner is subject to constraints, they are not

explicitly considered in the learning procedure. However, for

the motion-planning application, this does not pose an issue

as operational constraints neither should be changed by the

learning algorithm to ensure safety, e.g., the road boundary,

nor are actually reached in normal driving conditions, e.g., the

peak lateral and longitudinal accelerations of the autonomous

vehicle.

B. Inverse Reinforcement Learning (IRL)

IRL methods [28]–[37] also learn an objective function from

demonstrations and model data to be the result of probabilistic

decision-making in a Markov decision process. IRL typically

considers a finite state and action space and can be formulated

either as a model-based or a model-free approach, depending

on prior knowledge. In model-based IRL, which is the closest

to the approach considered here, the transition probabilities

between states are assumed to be known. A notable parallel

development to our work using maximum entropy IRL with

a finite state and action space is [37], where reward func-

tions are tuned based on human driving data. In order to

overcome the limitation of finite discrete actions, [37] uses

high-resolution sampling of time-continuous actions leading

to a high-dimensional state space representation.

Distinction from IRL: The main difference between the

proposed method and IRL [28]–[37] is in the formulation

of the control problem using a continuous state space in

a Kalman filter framework rather than a Markov decision

process with a potentially finite state and action space. This

difference in the control problem yields a systematic difference

in the corresponding inverse problem. For example, [37] uses

a high-dimensional state space representation to make IRL

applicable to learning driving behaviors, whereas we choose

a low-dimensional, continuous state space. Furthermore, the

amount of data often tends to be proportional to the size

of the space, and hence high-dimensional state spaces may

require a considerable amount of time for the learning process

to succeed.

C. Imitation Learning & Supervised Learning

Further related—but conceptually different—approaches are

to learn policies rather than an objective function [38], [39],

which is often referred to as imitation learning, or to use

labeled data in order to learn an objective function, e.g.,

using supervised learning [40]–[42]. Notably, [40] uses semi-

supervised learning with a similar motivation, where drivers

are classified into aggressive and normal driving styles based

on a few labeled data points.

Distinction from imitation learning & supervised learning:

Compared to policy-based imitation learning methods [38],

[39], which tend to replicate the demonstrated motion plans,

we learn parameters of an algorithm to obtain the closest

behavior among the allowed ones. Therefore, we are more

constrained in the solution but need less data and have prop-

erties that are invariant through the learning process, which we

can use to enforce safe behaviors while learning. Compared

to supervised learning methods [40]–[42], we do not require

labeled data in order to learn a control objective. On the other

hand, inverse learning methods that use unlabeled data, such

as IOC, IRL, and our method, require the assumption that the

data represent desirable behavior.

IV. NOTATION & PRELIMINARIES

p(x0:T |y) := p(x0,x1, ...,xT |y) denotes the conditional

probability density function (PDF) of xk ∈ R
n at time-steps

k = 0, ..., T , conditioned on y. Given mean vector µ and

covariance matrix Σ, N (µ,Σ) and p(x|µ,Σ) stand for the

Gaussian distribution and PDF, respectively, with

p(x|µ,Σ) =
1

√

(2π)n|Σ|
exp

(

− 1

2
(x− µ)

T
Σ

−1 (x− µ)
)

.

The notation x ∼ N (µ,Σ) means x sampled from N (µ,Σ),
the expected value of x is E[x], and ∝ reads proportional to.

For a matrix Z ∈ R
n×m, zij = (Z)ij is the element in the

ith row and jth column and vec is the vectorization operator

with vec(Z) = [z11...zn1, z12...zn2, ..., z1m...znm]T. D =
diag(x1, ...xn) is a diagonal matrix with dii = xi. We define

Y = setmaxnorm (X ,M) and Y = setminnorm (X ,M) as op-

erators that return the set Y containing the M largest/smallest

elements in the set X with respect to a given norm; x =
med(X) and y = max(X) as the median and the maximum

value of the scalar elements in X ; and ‖x‖Σ = xT
Σx.

Gradient of a PDF: We use Einstein’s summation conven-

tion [43] for conciseness, e.g., for A ∈ R
n1×n3 , B ∈ R

n1×n2 ,

C ∈ R
n2×n3 , A = BC can be expressed as

(A)ab = (B)az (C)zb ⇔ (A)ab =

n2
∑

z=1

(B)az (C)zb .

Let Σ ∈ R
n×n be a function of Y ∈ R

m×m and p(x|0,Σ)
be a Gaussian PDF. Then,

(

∂ log p(x|0,Σ)

∂Y

)

ab

=

(

∂ log p(x|0,Σ)

∂Σ−1

)

zy

(

∂Σ−1

∂Y

)

zyab

and, using xT
Σ

−1x = trace(Σ−1xxT),

∂ log p(x|0,Σ)

∂Σ−1
=
∂(1

2
log |Σ−1| − 1

2
trace(Σ−1xxT))

∂Σ−1

=
1

2
Σ− 1

2
xxT,

cf., (57) and (101) in [44]. For xk ∼ N (0,Σk) with k =
1, ..., T and time-varying Σk,

(

∂ log
∏T

k=1
p(xk|0,Σk)

∂Y

)

ab

=

T
∑

k=1

(

∂ log p(xk|0,Σk)

∂Y

)

ab

=

T
∑

k=1

(

1

2
Σk −

1

2
xkx

T
k

)

zy

(

∂Σ−1

k

∂Y

)

zyab

. (1)

Let Σ̂T = 1

T

∑T
k=1

xkx
T
k be the sample covariance. If Σk =

Σ (time-invariant) for all k, (1) simplifies to

T

2

(

Σ− Σ̂T

)

zy

(

∂Σ−1

∂Y

)

zyab

. (2)

V. PROBLEM STATEMENT

We consider discrete-time system dynamics of the form

xk = f (xk−1) + g (xk−1)uk, (3)

where f and g are in general nonlinear functions, xk ∈ R
nx

is the state at time k, and uk ∈ R
nu denotes the input

applied from discrete time-step k − 1 to k. In the context of

autonomous driving, (3) represents the motion model of the

vehicle. Note that we deviate from the standard literature by

using uk with index k instead of k − 1 in (3) to ease notation

in the following. The behavior of (3) is modeled with respect

to requirements yk ∈ R
ny with

yk = hθ(xk,uk) + vk, (4)

where we call hθ the requirement function and vk is the

slack, with yk = hθ(xk,uk) if all requirements are obeyed

perfectly. Based on our definition in (3), the requirements

are a function of the current control uk and the predicted

state achieved by applying that control, xk. This allows us to

quantitatively model several key performance indicators as a

control objective.

A. Motion Planner & Modeling Assumptions

The requirement function hθ is modeled as deterministic

with potentially unknown parameters θ. On the other hand,

the tolerated deviations from the requirements, represented

by the slack vk, are modeled as probabilistic and, therefore

inflict a probability distribution upon the requirements. Using

the probability distribution and the requirement function, the

motion planner considered in [7] constructs the state trajectory

PDF given the requirements—i.e., p(x0:T |y0:T) with yk in (4)

from time k = 0 to k = T—and extracts the state trajectory

from the PDF. The extracted state trajectory is then used as

motion plan. In this context, the motion-planning problem is

formulated as a statistical estimation problem, in which the

requirements yk in (4) are treated as sensor measurements

and uk in (3) is the input (process) disturbance. We model the

input disturbance in (3) as Gaussian distributed uk ∼ N (0,Q)
and the slack in (4) as vk ∼ N (0,R).

Control inputs & motion plan: In order to find the control

inputs that result from this model, we use independence of the

random variables to write the joint probability recursively,

p (x0:T |y0:T) ∝
T
∏

k=1

p (xk|yk,xk−1) (5)

and, at the first order, hθ(xk,uk) ≈ Hkxk + Dkuk with

Hk = ∂hθ(x,uk)/∂x|x=x̂k
, Dk = ∂hθ(x̂k,u)/∂u|u=ûk

,

Gk = g(xk−1),

p (xk|yk,xk−1) ≈ N
(

x̂k,GkΣkG
T
k

)

, (6a)

where

x̂k = f(xk−1) +Gkûk (6b)

ûk = Kk (yk − hθ(f (xk−1) ,0)) (6c)

Kk = Q (HkGk +Dk)
T
Γ
−1

k (6d)

Γk = (HkGk +Dk)Q (HkGk +Dk)
T
+R (6e)

Σk = (I −Kk(HkGk +Dk))Q. (6f)

Eq. (6) is derived using the conditional Gaussian distribution

of uk and vk and is similar to a measurement update of

an extended Kalman filter, where x̂k is the optimal state

estimate, Kk is the optimal Kalman gain, Γk is the innovation

covariance, and Σk is the estimate covariance.

The resulting motion plan—i.e., the assumption on the

data—is obtained from (6),

x0:T with xk ∼ N
(

x̂k,GkΣkG
T
k

)

, (7)

where the control inputs are

uk = Kk (yk − hθ(f (xk−1) ,0)) + σk (8)

with the gain Kk in (6d) and σk ∼ N (0,Σk) with Σk in (6f).

The resulting motion plan and the control inputs are therefore

entirely specified by the covariance matrices Q and R along

with yk and hθ .

Remark 1: In contrast to (8), in [7], a particle filter extracts

the motion plans from (5), where the control inputs become

uN
k = ûk +

∑N
i=1

wk,iσk,i
∑N

i=1
wk,i

with σk,i ∼ N (0,Σk) and weights wk,i of the N particles

computed as

wk,i = ‖yk − h (f(xk−1) + g(xk−1)(ûk + σk,i))‖Γ−1

k

.

For N →∞, uN
k yields asymptotically the optimal (determin-

istic) motion planner, i.e., uN
k → argmaxuk

p(xk|yk,xk−1).
Although the optimal motion planner would be desirable

for autonomous systems, it is in general prohibitive due to

the limited amount of computational resources on automo-

tive micro-controllers [45]. Furthermore, it is an ill-suited

model for learning from (human) data, which naturally are

subject to noise and other sources of suboptimalities. The

benefits of the model in (8)—i.e., uk ∼ N (ûk,Σk)—are that

nondeterministic decision-making is considered explicitly and

its Gaussian distribution facilitates computationally tractable

maximum likelihood estimation, which can be implemented on

computational platforms suitable for automotive applications.

B. Conceptual Idea & Problem Definition

In this paper, we learn the probability distribution of the

requirement function, defined by Q and R, as well as the pa-

rameters θ. For human passengers who have not demonstrated

their individual preferred driving style, the motion planner uses

common covariance matrices Qc and Rc along with common

parameters θc. Personalization is achieved through adapting

the parameters θ and the covariance matrices Q and R, where

θc, Qc, and Rc are used as a prior. This conceptual idea is

stated formally with the following two problems.

Problem 1: Given motion model (3), the requirement

function (4) with known parameters θ, how motion plans are

generated (7), (8), and a set D of human driven vehicle data

D = {(x0,y0), . . . , (xT ,yT)}, determine Q, R in (8) that

(at least locally) maximize p(Q,R|Qc,Rc,x0:T ,y0:T).
Problem 2: Given motion model (3), the parametric require-

ment function (4), the assumption on the motion plans (7), (8),

and the data D, determine θ maximizing p(θ|θc,x0:T ,y0:T).
Problem 1 and Problem 2 are addressed in Section VI

and Section VII, respectively. Section VIII summarizes the

learning procedure and presents three variants of the proposed

method and their hardware requirements. Fig. 2 illustrates the

concept of state trajectory PDFs and how decision-making can

differ between humans. It displays the probability distributions

p(x0:T |y0:T) for two realizations of parameters in a traffic

scenario with one moving obstacle vehicle, where the color

map indicates initial conditions that are more or less likely.

VI. ESTIMATION OF COVARIANCE MATRICES

In this section, we present our method for estimating the

covariance matrices Q and R given the requirement function

hθ and data generated as in (8).

A. Optimization Problem Setup

We estimate the covariance matrices from the distribution

p(Q,R|Qc,Rc,x0:T ,y0:T)

∝ p(x0:T ,y0:T |Q,R,Qc,Rc)p(Q,R|Qc,Rc),
(9)

0 20 40

0

20

40

60

obstacle

vehicle

Position pX in [m]

P
os
it
io
n
p
Y

in
[m

]

p(x0:T |y0:T
)

min

max

0 20 40

obstacle

vehicle

Position pX in [m]

Fig. 2. Illustration of two driver profiles and their probability distribution.
Left: Probability distribution resulting from Qc,Rc, and parameters θc.
Right: Probability distribution from a personalized motion planner. The
personalized motion planner is likely to overtake the obstacle vehicle during
the turn (low probability of trailing the obstacle vehicle), whereas the motion
planner with the common parameters is more likely to stay behind the obstacle
vehicle (low probability of changing lanes).

where p(x0:T ,y0:T |Q,R,Qc,Rc) = p(x0:T ,y0:T |Q,R) is

the likelihood of the observations and p(Q,R|Qc,Rc) is a

prior distribution. The two distributions are further specified

in the following. In (9) and what follows, x0:T refers to

observations of closed-loop driving and differs from the open-

loop motion planner in Section V-A being generated by the

inputs in (8) rather than by uk ∼ N (0,Q).
1) Likelihood p(x0:T ,y0:T |Q,R): Consider the system

dynamics (3) and the measurement (requirement) equation (4).

If the control inputs are as in (8), then

p(x0:T ,y0:T |Q,R) =
T
∏

k=1

p(uk|0,Q)p(vk|0,R)
p(wk|0,R)

p(ek|0,Γk)

(10)

with ek = yk − h(f(xk−1),0), wk = ek − Jkuk, and

Jk = HkGk +Dk, which is formally shown in Theorem 1.

The reformulation in (10) is essential for the efficiency of the

likelihood maximization algorithm detailed in Section VI-B.

Theorem 1: Consider (3) and let p(x0,y0) = 1. If vk ∼
N (0,R) in (4) and uk as in (8) with Kk as in (6d) and

σk ∼ N (0,Σk), then (10) holds.

Proof: The joint probability on the left hand side of (10) is

equal to the product of the probabilities of all random variables

(Markov property),

p(x0:T ,y0:T |Q,R) =

T
∏

k=1

p(uk|ûk,Σk)p(vk|0,R). (11)

Reformulating (11) using Lemma 1 shows (10).

Lemma 1: Let uk as in (8) and ûk = Kkek. Then,

p(uk|ûk,Σk) = p(uk|0,Q)
p(wk|0,R)

p(ek|0,Γk)
.

Proof: We need to show that (i):

‖uk − ûk‖Σ−1

k
= ‖uk‖Q−1 + ‖wk‖R−1 − ‖ek‖Γ−1

k

and (ii): |Σk| = |Q| |R|
|Γk|

.

The identity (i) can be shown by using KT
kΣ

−1

k Kk =
R−1 − Γ

−1

k and Σ
−1

k Kk = JT
kR

−1 and (ii) follows from:

|Σk| = |Q||Inu
−KkJk| = |Q||Inu

−QJT
kΓ

−1

k Jk|
= |Q||Iny

− JkQJT
kΓ

−1

k |,

where the last equality is Sylvester’s determinant identity [46].

Finally,

|Iny
− JkQJT

kΓ
−1

k | = |Γk − JkQJT
k ||Γ−1

k | = |R||Γ−1

k |

shows (ii).

Corollary 1: Let the data be generated by purely stochastic

control inputs uk = σk. Then, the sample covariances Q =
1/T

∑T
k=1

uku
T
k and R = 1/T

∑T
k=1

vkv
T
k are the maxi-

mum likelihood solutions to maxQ,R p(x0:T ,y0:T |Q,R).
Proof: This follows directly from the Markov property

with ûk = 0 and Σk = Q, for which the sample covariance

is the maximum likelihood estimator [47].

Remark 2: Let xk ∈ R
nx with xk ∼ N (0,Σ) for k =

1, ..., T . The probability that the sample covariance Σ̂T =
1

T

∑T
k=1

xkx
T
k confidently estimates Σ is

p
(

‖Σ− Σ̂T ‖2 ≤ ǫ‖Σ‖2
)

≥ 1− δ, if T ≥ 3n2
x

ǫδ

for any ǫ > 0 and δ ∈ (0, 1) [48], [49]. This confidence bound

for the sample covariance holds for purely stochastic control

inputs as shown in Corollary 1. For control inputs as in (8),

a convergence analysis is more challenging and omitted here

as the resulting distribution in (10) is not Gaussian.

2) Prior belief p(Q,R|Qc,Rc): We use the notion of

a prior belief to incorporate both a common belief and a

structural belief. The common belief defines deviations from

the common covariance matrices Qc and Rc, whereas the

structural belief favors structurally beneficial covariance ma-

trices. We model p(Q,R|Qc,Rc) as a Gaussian distribution,

p
(

tc (Q,R)
∣

∣0, σ2
cI

)

p
(

ts (Q,R)
∣

∣0, σ2
sI

)

, (12)

where the functions tc and ts along with the variances σ2
c and

σ2
s are used for the common belief and the structural belief. In

this context, σ2
c and σ2

s trade off prior belief and the likelihood

of the observations.

3) Logarithmic likelihood maximization: Overall, we esti-

mate Q and R by maximizing the log-likelihood,

max
Q,R

log (p(x0:T ,y0:T |Q,R)p(Q,R|Qc,Rc)) (13a)

s.t. Q ∈ CQ,R ∈ CR, (13b)

where CQ, CR can be used to enforce constraints on Q,R,

e.g., Q = QT � 0,R = RT � 0. We optimize (13) with the

projected gradient method outlined in Section VI-B.

B. Optimization Algorithm: Projected Gradient Descent

Let ξi = [vec(Qi)T vec(Ri)T]T as the vectorized rep-

resentation of the covariance matrices at iteration i of the

optimization algorithm. Further, let

c(ξi) = log (p(x0:T ,y0:T |Q,R)p(Q,R|Qc,Rc)) (14)

be the log-likelihood as in (13a). Algorithm 1 summarizes the

estimation procedure for Q and R. We initialize Q = Qc and

R = Rc (Line 1). At each iteration, we compute the gradient

with respect to Q and R (Line 3), denoted dQ and dR,

compute the step size l (Line 4–6), and project the updated

matrices (Line 7) onto the constraint set in (13b) (Line 8).

1) Gradient computation: The gradient of the prior belief

log p(Q,R|Qc,Rc) in (14) depends on the functions tc and ts
in (12). For computing the gradients of log p(x0:T ,y0:T |Q,R)
with respect to Q and R, we use (10),

log p(x0:T ,y0:T |Q,R) =
T
∑

k=1

log p(uk|0,Q) +
T
∑

k=1

log p(vk|0,R)

+

T
∑

k=1

log p(wk|0,R)−
T
∑

k=1

log p(ek|0,Γk).

(15)

The gradient of the first three terms in (15) is computationally

cheap to evaluate as it does not scale with the time duration of

the collected data T , cf., (2). The computational complexity of

the last term scales linearly with T with O(T (n4
y(n

2
y +n

2
u))),

cf., (1), as the covariance matrix Γk is time-varying.

2) Selection of step-size: The step-size l does not affect

the optimal solution but the convergence rate of the learning

algorithm and is sometimes referred to as the learning rate in

the literature [50]. We select the step-size by backtracking

line search [51], where the idea is to reduce the step-size

from an initial value l until a strict improvement is achieved

(Line 4–6). The approach can be implemented efficiently for

the considered application as c(ξi) in (14) is relatively cheap to

evaluate. The step-size for the next iteration i+1 is initialized

adaptively as in Line 9. The rationale behind this initialization

is that the magnitude of the gradient does not change too

abruptly between iterations i and i+ 1.

3) Projection: The projection is used to enforce Q ∈
CQ,R ∈ CR. We enforce the constraint of positive definite

covariance matrices using the spectral decomposition of a

matrix X ∈ R
n×n as in [52], [53],

X = V diag(λ1, ..., λn)V
T,

where V comprises the eigenvectors of X and λi are its n
eigenvalues. The projection of X onto the cone of positive

definite matrices S+
n , denoted as projS+

n
(X), is

projS+
n
(X) = V diag(max(ελ, λ1), ...,max(ελ, λn))V

T

with a small ελ > 0 to ensure strict positive definiteness.

The computational complexity of the spectral decomposition is

O(n3), which is feasible for the considered problem dimension

since it applies to Q and R, and not to the leaning data.

Additional constraints, which are specific to the application

can also be included as it will be shown in Section X-A.

VII. REQUIREMENTS FOR AUTONOMOUS DRIVING AND

THEIR PERSONALIZATION

The requirements for the motion-planning application are

• to follow the centerline of a target lane,

Algorithm 1 Estimation of Q, R

1: Q0 = Qc, R0 = Rc, l = 1, i = 0
2: while l ≥ ε ⊲ ε = 10−8 in our case

3: dQ, dR← getGrad

4: while c(ξi)− c(ξi + l∇ξc(ξ
i)) > − l

2
|∇ξc(ξ

i)|2
5: l← γl ⊲ γ = 0.7 in our case

6: end while

7: Q = Qi + l · dQ; R = Ri + l · dR
8: Qi+1,Ri+1 ←project(Q,R)

9: l← l/γnα , i← i+ 1 ⊲ nα = 3 in our case

10: end while

• to maintain a nominal velocity,

• to limit longitudinal and lateral acceleration, and

• to maintain a safety distance from surrounding obstacles.

The requirements yk in (4) at time k as are formalized as

yk =

0
vnom
0
0

, hθ(xk,uk) =

hl(pX,k, pY,k)
vx,k

hcθ(ax,k, ay,k)
hoθ(dk, vx,k)

,

where hl(pX , pY) denotes the squared distance from the cen-

terline at vehicle position pX , pY , vnom and vx are the nominal

and current velocity, respectively, hcθ(ax, ay) is the passenger

comfort requirement with longitudinal acceleration ax and

lateral acceleration ay acting on the vehicle, and hoθ(d, vx) is

the obstacle avoidance requirement with separation distance

d between ego vehicle (EV) and the obstacle vehicles (OVs).

As both the centerline and the velocity tracking requirements

are physical quantities, they are modeled as invariant and only

their relative importance is learned. However, both the passen-

ger comfort and obstacle avoidance requirements are expected

to structurally vary between drivers and are introduced next.

A. Individual Requirements

1) Passenger comfort requirement: We model the passenger

comfort requirement as a penalty for longitudinal and lateral

accelerations, as well as their coupling. The magnitude of

accelerations and their coupling are well known to relate to the

individual driving style [54], where performance drivers may

achieve simultaneous longitudinal and lateral acceleration, and

more cautious drivers tend to do either one or the other. The

passenger comfort requirement is formalized as

hcθ(ax, ay) = ā · cθ(ax, ay)− c
0

c1 − c0 , (16)

with c1 = (
√

(ā2 + ǫ)
nc

+
√
ǫ
nc)

1
nc , c0 = (2

√
ǫ
nc)

1
nc , and

cθ(ax, ay) =
(

√

(a2x + ǫ)
nc

+
√

((s · ay)2 + ǫ)
nc)

1
nc

and a small ǫ > 0. The parameter s defines a unilat-

eral scaling—i.e., for s 6= 1, the comfort requirement is

not commutative hcθ(ax, ay) 6= hcθ(ay, ax)—and c1, c0 are

normalization constants ensuring that hcθ(0, 0) = 0 and

hcθ(ā, 0) = hcθ(0, ā/s) = ā. The exponent nc shapes the level

sets of (16) such that, for higher nc, the level sets are more

-1 0 1

-1

0

1 nc = 2

nc = 1

nc =
1

2

-1 0 1

-1

0

1 h
c
= 1

h
c
=

1

2

h
c
=

1

4

h
c
=

1

8

h
c
=

1

16

Fig. 3. Left: Level sets hc = 1 with varying nc, s = 1, and ǫ = 0. Right:
Varying level sets hc with nc = 1

2
, s = 1, and ǫ = 0.01.

circular, see the left plot in Fig. 3. For ǫ = 0, s = 1, (16) is the

nc-(pseudo)norm for [ax ay]
T. Here, we introduce ǫ > 0 (and

c1, c0 as a consequence) for two reasons: First, hcθ(ax, ay)
becomes differentiable with respect to its inputs ax, ay for all

nc. Second, the penalty for combined longitudinal and lateral

accelerations is reduced for smaller values, i.e., the level set

is more circular around the origin, see the right plot in Fig. 3.

2) Obstacle avoidance requirement: The obstacle avoid-

ance requirement is modeled as a piecewise linear function

hoθ(d, vx) =

{

1

ts
(dmin + tsvx − d) if dmin + tsvx ≥ d

0 else,

(17)

where dmin is the minimum distance to be kept from the

OVs and tsvx is the traveled distance of the EV within the

safety time ts at velocity vx and considers that the safety

distance from the OVs is velocity dependent. The scaling

1/ts is introduced to obtain a comparable magnitude of hoθ
for different ts, which is important for estimating Q,R due

to the prior p(Q,R|Qc,Rc). Lateral obstacle constraints are

considered through the motion planner as discussed in [7].

B. Estimation of Requirement Parameters

We estimate the personalized requirement parameters

θ =
[

s nc dmin ts
]T

from the distribution p(θ|θc,x0:T ,y0:T), which we model

as p(θ|θp, I)p(θ|θc, σ2
θI), with the common parameters

θc = [sc ncc dcmin tcs]
T, the personal parameters θp =

[sp np
c d

p
min t

p
s]

T estimated from x0:T ,y0:T , and the variance

σ2
θ . Then,

θ = argmax
θ̃

p(θ̃|θp, I)p(θ̃|θc, σ2
θI) (18a)

=
σ2
θ

σ2
θ + 1

θp +
1

σ2
θ + 1

θc. (18b)

Next, we present algorithms for estimating θp from data of

human driving.

1) Estimation of passenger comfort requirement: The esti-

mation of the parameters np
c and sp is achieved by Algorithm 2

and described next. Let

A =

{[

ax,0
ay,0

]

, ...,

[

ax,T
ay,T

]}

Ac = {ax,0, ..., ax,T , ay,0, ..., ay,T }
Ax = {ax,0, ..., ax,T } , Ay = {ay,0, ..., ay,T } .

Estimation of sp: We compute the unilateral scaling pa-

rameter sp as the ratio between longitudinal and lateral ac-

celerations, each represented by the median as measure of

central tendency. We use the median, rather than the mean, as a

robust estimator in the presence of outliers. More specifically,

sp results from the median of the M largest longitudinal

accelerations and divided by the median of the M largest

lateral accelerations (Line 1 in Algorithm 2).

Estimation of np
c : In order to estimate np

c , we first estimate

amax denoting the value of the level set of the largest accel-

erations. We compute amax as the median of the M largest

elements in absolute value of the set defined by Ax∪ (s ·Ay),
where s · Ay = {s · ay0

, ..., s · ayT
} (Line 2). Then, np

c is

obtained by estimating the shape of the level set amax using the

passenger comfort requirement as (pseudo)norm. Thereby, we

compute a set with strong coupling of longitudinal and lateral

accelerations using a small nc,0, denoted F0. Finally, the

exponent np
c is increased iteratively until the median comfort

level in F0 is greater than or equal to amax (Line 5–9).

Algorithm 2 Estimation of npc , sp given ε

1: sp = med(A⋆
x)/med(A⋆

y) with A⋆
x = setmax|·| (Ax,M),

A⋆
y = setmax|·| (Ay,M)

2: amax = med(A⋆
c), A

⋆
c = setmax|·| (Ax ∪ (s · Ay),M)

3: Choose smallest candidate exponent nc,0.

4: F0 = setmaxhc (A,M) using nc,0 and set npc = nc,0
5: do

6: Compute comfort levels C0 of elements in F0 with np
c

7: δ̄c0 = med(C0)
8: np

c ← np
c + δnc. ⊲ δnc = 0.01 in our case

9: while δ̄c0 ≥ amax

2) Estimation of obstacle avoidance requirement: We use a

system identification-like approach similar to [55] to estimate

the parameters dpmin and tps , as described in Algorithm 3 and

explained next. The intuitive idea is that the observed data

originate from either of two models: driving with or without

traffic. Considering the piecewise linear hoθ in (17), we want

the switch between the two models to coincide with dpmin =
d − tpsvx, where dpmin < d − tpsvx indicates traffic-free and

dpmin > d− tpsvx is traffic-affected driving.

Estimation of dpmin: We estimate dpmin as the maximum

value of the M smallest observed distances with D =
{d0, ..., dT } (Line 1 in Algorithm 3). In other words, dpmin

is designed as the M th smallest observed distance, which is a

more robust and conservative estimator than, e.g., the smallest

distance.

Estimation of tps: Let

hr
θ(x,u) =

[

hl(pX , pY) vx hcθ(ax, ay)
]T

(19a)

Hr
k =

∂hr
θ(x, ûk)

∂x

∣

∣

∣

x=x̂k

, Dr
k =

∂hr
θ(x̂k,u)

∂u

∣

∣

∣

u=ûk

(19b)

vr
k =

[

0 vnom 0
]T − hr

θ(xk,uk) (19c)

erk =
[

0 vnom 0
]T − hr

θ(f(xk−1),0), (19d)

where r denotes reduced (by the obstacle avoidance require-

ment). If the parameters of hcθ are known (Section VII-B1),

we can use Algorithm 1 to estimate Qr and Rr using (19) for

traffic-free driving (Line 2 in Algorithm 3). Further, in (8), let

Kk = KTF
k +KTA

k , where KTF
k = Kr

kT is the gain matrix

in the absence of traffic (traffic-free) with T = [I3 03×1],

Kr
k = QrJr

k
T
(

Jr
kQ

rJr
k
T +Rr

)−1

, Jr
k = Hr

kGk +Dr
k,

and KTA
k is the residual gain matrix (traffic-affected). This

decomposition of Kk in (8) yields

σk = uk −KTF
k ek ∼ N

(

KTA
k ek,Σk

)

.

Hence, in the absence of traffic KTA
k ek = 0, σk = uk −

KTF
k ek is sampled from a distribution with zero mean and,

in the presence of traffic KTA
k ek 6= 0, uk−KTF

k ek is sampled

from a distribution with mean KTA
k ek.

We use this change in mean for estimating tps with

tps = arg min
t̃ps ,T ,ai

∑

k∈T

Ik +
∑

k/∈T

Jk (20a)

with Ik = ‖uk−Kr
ke

r
k‖22, Jk = ‖uk−Kr

ke
r
k−p(dk, vx,k)‖22,

and

T = {i | dpmin + t̃psvx,i ≤ di}, (20b)

where p(d, vx) =
∑1

i=0
ai

(

dpmin + t̃psvx − d
)i

with the coef-

ficients ai ∈ R
nu is used to approximate the nonzero mean.

Note that (20) is a combinatorial problem, however, for a fixed

tps , it reduces to a convex least squares problem in ai. We solve

(20) by enumerating tps in ∆tinc increments (Line 3–6).

Algorithm 3 Estimation of dpmin, tps

1: dpmin = max(D⋆) with D⋆ = setmin|·| (D,M)
2: Get Qr,Rr with Algorithm 1 for traffic-free driving

3: for all tps ∈ [0s ts,max] in ∆tinc increments

4: Compute T in (20b)

5: Solve (20) with fixed tps and T for ai

6: end for ⊲ ts,max = 10s, ∆tinc = 0.01s in our case

7: Choose tps with smallest cost (20a)

VIII. OVERALL ALGORITHM, VARIANTS, AND

COMPUTATIONAL REQUIREMENTS

In this section, we summarize the overall inverse learning

algorithm, where Problem 1 and Problem 2 as stated in

Section V were addressed as follows:

Result 1: Algorithm 1 solves Problem 1.

TABLE I
VARIANTS OF ALGORITHM

Data Storage Computational Complexity

Variant I O(TnD) O(T (n4
y
(n2

y
+ n2

u
)))

Variant II O(TnD) O(n4
y
(n2

y
+ n2

u
))

Variant III O(3n2
y
+ n2

u
) O(n4

y
(n2

y
+ n2

u
))

Result 2: Eq. (18) using θp
estimated with Algorithm 2 and

Algorithm 3 solves Problem 2.

Furthermore, we present three variants for the practical im-

plementation of the proposed inverse learning method in

this section. The three variants have different computational

complexities and data storage requirements, as well as model

assumptions and approximations. Variant I is the unmodified

algorithm as presented in Section VI and Section VII. Vari-

ant II uses an approximation of the time-varying covariance Γk

as time-invariant Γ. Variant III uses the same approximation

Γk ≈ Γ and, additionally, models the parameters of the

requirement function as constant θ = θc. Table I specifies

the expected data storage and computational complexity for

the three variants.

Variant I: The implementation of Variant I requires storage

of data that scale linearly with T , where nD in Table I is

the number of numerical values to be stored at each time-

step. For the considered application, not all data need to

be stored, e.g., the road data and both the EV’s and an

OV’s positions are sufficiently represented by the centerline

tracking error and separation distance d between the EV and

the OV. The computational complexity is linear in T , see

Section VI-B1. Algorithm 4 outlines the estimation procedure

for the parameters Q, R, and θ.

Variant II: The implementation of Variant II has the same

storage requirements as Variant I. However, Variant II has

lower computational complexity due to approximating Γk ≈
Γ = (HG+D)Q(HG+D)T+R with some constant H , G,

and D. Algorithm 4 outlines the estimation procedure, where

Line 2 and 4 are considerably less computationally demanding.

Variant III: In addition to approximating Γk ≈ Γ, in

Variant III we model the requirement function parameters

as constant θ = θc, i.e., the requirement function is not

personalized. Then, the sample covariance matrices

ÛT =
1

T

T
∑

k=1

uku
T
k , V̂ T =

1

T

T
∑

k=1

vkv
T
k ,

Ŵ T =
1

T

T
∑

k=1

wkw
T
k , ÊT =

1

T

T
∑

k=1

eke
T
k

define a sufficient statistic for the distribution in (10), i.e., the

data can be compressed into the sample covariance matrices

without losing information. As a result, the data size to be

stored is independent of T as the sample covariance matrices

can be updated recursively, e.g.,

ÛT =
1

T
uTu

T
T +

T − 1

T
ÛT−1.

Fig. 4. Simulation setup for learning from data of human driver.

TABLE II
OBSTACLE VEHICLES’ INITIAL POSITIONS & VELOCITIES

Vehicle ID 1 2 3 4 5 6 7

Initial Position [m] 100 300 500 600 350 550 600
Lane right right right right left left left
Velocity [km/h] 19.8 19.8 19.8 19.8 16.2 16.2 16.2

For Variant III, the covariance matrices Q and R are estimated

as in Line 4 in Algorithm 4 using hθc . In this case, the closed-

loop behavior is still personalized but only through Q, R.

Algorithm 4 Overall estimation procedure for Q,R,θ

1: Get s, nc in (18) using sp, npc estimated with Alg. 2

2: Get QTF,RTF using Alg. 1 with hr
θ

3: Get dmin, ts in (18) using dpmin, t
p
s estimated with Alg. 3

4: Get Q,R using Alg. 1 with hθ

IX. SIMULATION SETUP WITH HUMAN DRIVER

We carried out simulations with human participants who

controlled a vehicle in CarSim using the torque-feedback

Thrustmaster T300RS gaming steering wheel with a MATLAB

interface, see Fig. 4. We constructed a two-lane oval circuit

with two straight segments of 200 m connected by two 180◦

turns with radius 53.6 m at the centerline of the right lane,

resulting in (2·200+2π·53.6) m length. Both lanes were 3.6 m

in width. The ego vehicle and the obstacle vehicles drove anti-

clockwise. Each test driver completed the following:

Task 0: The driver familiarized themself with the driving

simulator and was prepared for Task 1 and Task 2. No data

were recorded during this task.

Task 1 (15 min recorded): The driver was instructed to stay

in the right lane and that the nominal velocity is 50 km/h. This

task did not involve OVs.

Task 2 (15 min recorded): The driver was allowed to use

both lanes and the nominal velocity was again 50 km/h. We

added 7 OVs, as specified in Table II, where the initial position

is the distance along the track and the start at 0 m is the

beginning of a straight segment and is the initial position of the

EV. The OVs drove slowly to increase the number of following

and overtake actions the driver will demonstrate.

X. LEARNING RESULTS & HARDWARE REQUIREMENTS

Five human drivers participated in the study. Four of them

were normal drivers and one (Driver 3) had professional

test driving training, and aimed at exercising a performance

driving style. The driving frequency and experience of the five

participants are stated in Table III. We present the parameter

estimation results in this section and the behavior of the motion

planner that uses such parameters in Section XI.

A. Design Choices

We consider the kinematic single track vehicle model [56]

ẋ =

ṗX
ṗY
ψ̇
v̇x
δ̇

=

vx cos(ψ + β)/ cos(β)
vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1
u2

represented in discrete time with the sampling period Ts =
0.5 s, where pX and pY mark the EV’s position in the world

frame, ψ is the heading (yaw) angle, vx is the longitudinal

velocity, δ is the steering angle of the front wheel, L = lf + lr
is the wheel base, and β = arctan(lr tan(δ)/L) is the

kinematic body-slip angle. Accelerations are computed as

ax = v̇x and ay = vxψ̇. The inputs u1 and u2 are the

longitudinal acceleration and the steering rate.

Estimation of requirement function parameters: We choose

the variance over the common parameters as σ2
θ = (T/T1/2)

2

such that θ → θp for T → ∞, θ = 0.5θp + 0.5θc for

T1/2 = T , and ∂θ/∂T |T=0 = 0, i.e., not transitioning

too quickly from θc. We choose T1/2 = 5 · 60/Ts, i.e.,

T1/2 = T corresponds to five minutes of driving. Further,

we choose M = round(0.01N) for estimating θp and design

the passenger comfort requirement with ā = 5 and ǫ = 0.01.

Constraints CQ, CR: We require Q to be diagonal because,

if Q had nonzero off-diagonal elements, the longitudinal

acceleration and steering rate would more likely be cou-

pled. For instance, if q12 > 0 (E[u1u2] > 0), accelerating

(v̇x,k = u1 > 0) would imply a preference on steering to

the right (δ̇ = u2 > 0), which is unnatural. Further, we

impose Q = QT � ελ · I and R = RT � ελ · I with

ελ = 10−3 and model the centerline tracking as independent

of the other requirements with r12 = r13 = r14 = 0 to avoid

oscillations, e.g., of the velocity with the centerline tracking

error (E[(vnom − vx)(0− hl)] = 0).
Prior (structural belief): We design the structural belief to

accommodate particle-filter algorithms, which we use to solve

the motion-planning problem. In this context, the signal-to-

noise ratio ‖JQJT‖/‖R‖ with J = HG+D is to be chosen

close to one [57]. We choose ts(Q,R) = vec(JQJT −R)
and σ2

s = 1

T with G = g(x⋆), H = ∂h(x,0)/∂x|x=x⋆ , and

D = ∂h(x⋆,u)/∂u|u=0
, where x⋆ denotes a nominal state

where all requirements are fulfilled (vx = 50km/h, δ = 0).

Prior (common belief): We choose σ2
c = σ2

θ and

tc(Q,R) = [vec(Q−Qc)T vec(R−Rc)T]T. Then,

p
(

tc(Q,R)|0, σ2
cI

)

=
∏

∀ij

p
(

qij |qcij , σ2
c

)

∏

∀ij

p
(

rij |rcij , σ2
c

)

defines a Gaussian distribution over each element of Qc,Rc.

The common parameters are chosen as the estimate of Vari-

ant III using all data from the five drivers combined,

Qc = diag(16.1, 0.0016) (21a)

Rc =

0.105 0 0 0
16.2 −4.10 −14.7

5.02 4.38
17.4

(21b)

θc =
[

s nc dmin ts
]T

=
[

1 1 8 5
]T
. (21c)

B. Estimation Results

Personalizing parameters over time (0 min – 15 min of

driving): First, we analyze the gradual personalization of

both the requirement function parameters and the covariance

matrices as data are collected over time using the three variants

proposed in Section VIII. Fig. 5 shows the transition of the

parameters θ and Q,R from the initial common parameters

θc and Qc,Rc (y-axis) for Task 1 (traffic-free scenario),

over time (x-axis). The variances σ2
θ , σ2

c , and σ2
s are chosen

such that the parameters do not transition too quickly from

the common ones, but also that the personalization does not

require too much training time, which can best be seen for

Driver 3. The first observation is that the parameters estimated

with Variant I and Variant II do not deviate much. This

suggests that the approximation Γk ≈ Γ of Variant II is

acceptable for the motion-planning application. For Variant III,

the parameters of the requirement function are kept constant

θ = θc and, as a result, the covariance matrices deviate

between Variant II and Variant III, most noticeable for R33

(E[(0− ho)2]) and R23 (E[(vnom − vx)(0− ho)]).
Personalized parameters (30 min of driving): Table III spec-

ifies the covariance matrices Q, R and the parameters s, nc of

the passenger comfort requirement as well as dmin, ts of the

obstacle avoidance requirement for the five drivers, estimated

with Variant II. It also shows scatter plots of accelerations

(absolute values) demonstrated by the five drivers. All demon-

strated accelerations of each driver are displayed in gray. The

level set hcθ(ax, ay) = amax is displayed as black line, where

s is estimated using the green data points (median of largest

longitudinal divided by the largest lateral accelerations) and

nc is such that the median of the black data points is amax.

The scatter plots show that Driver 3’s driving style yields

high lateral accelerations with amax/s = 7.32 m/s2 relative

to Driver 1, 2, 4, and 5 with amax/s = 2.68 m/s2, 1.45 m/s2,

2.79 m/s2, and 3.41 m/s2, respectively. It indicates that, in

general, Driver 1 and Driver 4 exhibit similar accelerations,

whereas Driver 2 and Driver 5 avoid larger accelerations.

Driver 2 is the most conservative keeping a minimum distance

to OVs of 13.6 m, compared to dmin < 9 m for the other

drivers, and reacting to OVs at ts = 7.00 s. Driver 3 is the

least conservative with dmin = 5.89 m and ts = 3.21 s. The

covariance matrices can be interpreted as follows: Low values

represent a low tolerance of violating the respective require-

ment, e.g., r22 = 1.63 of Driver 3 versus r22 > 10 for all other

drivers indicates that Driver 3 is more reluctant to deviate from

the nominal velocity. Further, low off-diagonal values relative

Variant I Variant II Variant III

D
r
iv
e
r
1

0

5

10

15

20 Q11

10
3
·Q22

−10
−5
0
5
10
15
20R22

R33

R23

0
1
2

nc

s

0

0.2

0.4

R11

D
r
iv
e
r
2

0

5

10

15

20 Q11

10
3
·Q22

−10
−5
0
5
10
15
20R22

R33

R23

0
1
2

nc

s

0

0.2

0.4
R11

D
r
iv
e
r
3

0

5

10

15

20 Q11

10
3
·Q22

−10
−5
0
5
10
15
20R22

R33

R23

0
1
2

nc

s 0

0.2

0.4
R11

D
r
iv
e
r
4

0

5

10

15

20 Q11

10
3
·Q22

−10
−5
0
5
10
15
20R22

R33

R23

0
1
2

nc

s

0

0.2

0.4
R11

D
ri
ve
r
5

0
5
10
15
20 Q11

10
3
·Q22

−10
−5
0
5
10
15
20R22

R33

R23

0 5 10
0
1
2

nc

s

Time t in [min]

0 5 10 15
0
0.2
0.4R11

Time t in [min]

Fig. 5. Parameter estimated as data are collected over time with Variant I
(diamond symbols), Variant II (solid lines), and Variant III (dashed lines) for
five drivers. The parameters θ,Q,R are obtained by solving Algorithm 4
using different amount of data from time 0min through time t (x-axis).

to their diagonal counterparts represent little coupling of the

respective two requirements, e.g., r23 = −0.725 of Driver 3

indicates that Driver 3 is not as likely to reduce their velocity

for the sake of reducing lateral accelerations on the vehicle.

An important off-diagonal element is r24, which represents the

covariance of the velocity and obstacle avoidance requirement.

For r24 < 0 (E[(vnom− vx)(0− ho)] < 0), the driver is more

likely to reduce the velocity when encountering traffic on the

target lane. Similarly, for r34 > 0 (E[(0− hc)(0− ho)] > 0),
the driver is more likely to sacrifice comfort in traffic.

C. Hardware Requirements & Computational Cost

Table IV shows the hardware requirements for the three

variants. The data storage requirements of the algorithms

using mex functions created with MATLAB are 982 kB for

Variant I and Variant II, and 307 kB for Variant III. Storing

the data of 30 min driving requires 1440 kB for Variant I and

TABLE III
ESTIMATED PARAMETERS & ACCELERATION SCATTER PLOTS

Driver 1

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]

Occasional driver

Q = diag(13.6, 0.0017)

R =

0.085 0 0 0

13.1 −6.39 −11.4

6.68 5.29

14.3

s = 2.71, nc = 0.95

dmin = 7.32 m, ts = 4.10 s

Driver 2

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]

Occasional driver

Q = diag(30.3, 0.0009)

R =

0.055 0 0 0

27.0 −5.31 −24.9

2.69 3.94

28.8

s = 3.17, nc = 0.89

dmin = 13.6 m, ts = 7.00 s

Driver 3

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]

Experienced driver with professional training

Q = diag(1.37, 0.0032)

R =

0.257 0 0 0

1.63 −0.725 −0.214

10.1 0.0856

1.54

s = 0.65, nc = 0.9

dmin = 5.89 m, ts = 3.21 s

Driver 4

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]

Everyday standard driver, naturally cautious

Q = diag(19.5, 0.0013)

R =

0.066 0 0 0

19.0 −5.22 −17.5

3.87 3.78

20.0

s = 1.92, nc = 0.86

dmin = 8.52 m, ts = 5.87 s

Driver 5

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]

Occasional driver with professional training

Q = diag(23.7, 0.0010)

R =

0.083 0 0 0

23.7 −4.06 −21.9

1.79 2.95

25.3

s = 0.9, nc = 0.81

dmin = 6.42 m, ts = 6.35 s

Variant II, however, Variant III requires only a few parameters

that can be updated online (recursively). On average, Variant I

requires 408 s, Variant II requires around 3 s, and Variant III

requires less than 0.5 s, using MATLAB with the hardware

configuration: 3.1 GHz Intel Core i7, 16 GB 1867 MHz DDR3,

and Intel Iris Graphics 6100 1536 MB.

Variant I and Variant II yield very similar parameters for

the motion-planning application, see Fig. 5. As Variant II is

comparably cheap, we favor Variant II over Variant I and

employ only Variant II and Variant III in the following.

TABLE IV
HARDWARE REQUIREMENTS FOR THE CONSIDERED APPLICATION

Data Storage CPU Time
Algorithm 30 min Driving

Variant I 982 kB 1440 kB 408 s
Variant II 982 kB 1440 kB 3.63 s
Variant III 307 kB 0.44 kB 0.356 s

XI. PERSONALIZED MOTION PLANNING

We use the particle-filter algorithm in [7] with the proposed

(personalized) requirement function and estimated covariance

matrices for validation, where we refer to the motion planner

trained with the data obtained from Driver x as Planner x, and

Planner C refers to the motion planner using the common

parameters in (21). In what follows, we show results of

planners obtained by specific combinations of variants and

drivers to make the features of the method more evident.

A. Results

Fig. 6 and Fig. 7 show the trajectories of driving without

OVs (Task 1) as mean and standard deviation over all laps of

Driver 1–5 and Planner 1–5. Fig. 6 compares the autonomous

motion planners trained with Variant II and Variant III and

Fig. 7 shows the planners for different durations of training

with Variant II. The figures display the velocity, the distance to

the centerline ∆CL, and the lateral acceleration over the track

position from 0 to 50% of the track, where the first segment

refers to the straight and the second segment is the 180◦ turn.

Personalized planners (30 min of driving): Consider first

Planner 1–5 trained with Variant II and all available data

(dashed black)—i.e., 30 min of driving—for a comparison

with their respective drivers (solid black). It can be seen that

the velocity and the lateral acceleration of the drivers and their

respective planners match relatively closely with some notable

exceptions. Driver 1, 3, 4 exceeded the nominal velocity

of 50 km/h on average on the straight segment. The path

planner avoids almost always exceeding the nominal velocity

by design as it is easier to fulfill the other requirements

using a lower velocity, which is desirable for autonomous

driving from a safety perspective. Planner 5 matches the lateral

accelerations of Driver 5 relatively closely. Driver 5 appears

to be suboptimal in many directions: The driver did not reach

the nominal velocity on the straight segment and has a large

error for tracking the centerline. Thus, despite the learning, the

path planner decide not to imitate these negative behaviors,

and it only follows the one that makes physical sense, i.e., the

reduced lateral acceleration. Further, the planners track the

centerline more closely than the drivers, which is due to the

optimization of the requirements.

Comparison of Variant II and Variant III: Fig. 6 shows a

comparison between Variant II and Variant III for Driver 1

and Driver 2, who tend to avoid higher lateral accelerations

compared to longitudinal accelerations (s > 2 in (16)). The

planners trained with Variant II with personalized requirement

function match the experiments very closely for both drivers.

The planners trained with Variant III capture the individual

Driver | Planners: Variant II Variant III Common

−1

0

1

∆CL [m]

0

10

20

30

40

50

Velocity [km/h]

D
ri
v
er

1
/
P
la
n
n
er

1

4

2

0

Lat. Acc.
[m/s2]

−1

0

1

∆CL [m]

Straight | Turn
0

10

20

30

40

50

Velocity [km/h]

D
ri
v
er

2
/
P
la
n
n
er

2

Straight | Turn

4

2

0

Lat. Acc.
[m/s2]

Fig. 6. Comparison of Variant II and Variant III. The velocity, centerline
tracking error, and lateral acceleration are displayed as functions of the track
position for Driver x (solid black), Planner C (dashdotted purple), Variant II
(dashed black), and Variant III (dashed blue).

Driver | Planners: 30min 10min 5min Common

−1

0

1

∆CL [m]

0

10

20

30

40

50

Velocity [km/h]

D
ri
v
er

3/
P
la
n
n
er

3

4

2

0

Lat. Acc.
[m/s2]

−1

0

1

∆CL [m]

0

10

20

30

40

50

Velocity [km/h]

D
ri
v
er

4/
P
la
n
n
er

4

4

2

0

Lat. Acc.
[m/s2]

−1

0

1

∆CL [m]

Straight | Turn
0

10

20

30

40

50

Velocity [km/h]

D
ri
v
er

5/
P
la
n
n
er

5

Straight | Turn

4

2

0

Lat. Acc.
[m/s2]

Fig. 7. Personalizing planners over time. The velocity, centerline tracking
error, and lateral acceleration are displayed as functions of the track position
for Driver x (solid), Planner C (dashdotted purple), Variant II with 5 min of
driving data (dashed yellow), Variant II with 10 min of driving data (dashed
magenta), and Variant II with 30 min of driving data (dashed black).

driving behavior, too, but deviate from their respective drivers

slightly more. For example, Driver 2 avoids larger lateral

accelerations with |ay| ≈ 1 m/s2 during turns, which the

Planner 2 trained with Variant II matches closely. Also,

Variant III avoids the higher lateral accelerations of the motion

planner with the common parameters (|ay| ≈ 1.8 m/s2) to

maintain lateral accelerations with |ay| ≈ 1.3 m/s2 during the

turn. For Driver 3–5 (not displayed), the difference between

−30 −20 −10 0 10
0

20

40

Time [s]

D
is
ta
n
ce

[m
]

-3.7 0

−10

0

10

20

30

pX [m]

p
Y

[m
]

0

10

20

30

40

50

V
el
o
ci
ty

[k
m
/h

]

Planner C Planner 1

Planner 2 Planner 3

Fig. 8. Path planning in traffic. Top left: Velocity profiles. Bottom left:
Distance from OVs in target lane. Right: Lane-change trajectory with OVs
frozen at time of decision, where the OVs’ positions for Planner x are marked
with x stripes.

Variant II and Variant III is less significant, which is due to

the parameters s and nc being closer to one.

Personalizing planners over time (0 min – 30 min): Fig. 7

shows the planners’ trajectories for different training durations.

It displays the trajectories with 0 min of training (common

parameters), 5 min, 10 min, and all available data with 30 min.

The gradual personalization can best be seen for Planner 3 with

velocities during the turn of 36 km/h, 41 km/h, 48 km/h, and

49 km/h for the increasing training durations. For Driver 1

and Driver 2 (not displayed), the gradual personalization of

the motion planners is similar as for the displayed drivers.

Planners in obstacle situation (Variant II): Next, we con-

sider a motion-planning scenario where both lanes are initially

blocked by two slow OVs, velocities 30 km/h and 25 km/h on

the right and left lane, respectively. Approaching the blockage,

the planner must slow down and wait for the opportunity

to overtake. Fig. 8 illustrates the resulting trajectories of

Planner 1–3 as well as for the planner with the common

parameters (21). It displays the EV’s velocity, the minimum

distance to the other vehicles in the target lane, and a snapshot

of the path, where the positions of the two OVs are frozen at

the time of lane-change decision. It shows that Planner 2 is the

most conservative starting to decelerate early (vx < 35 km/h)

and keeping the largest distance from the OVs (d > 40 m

and d > 15 m on the right and left lane, respectively).

Also, Planner 2’s lane-change trajectory shows the smallest

curvature, which is expected from its lower tolerance for lateral

accelerations, and is consistent with Driver 2 being the most

cautious of the test subjects. Planner 3 is the least conservative,

decelerating later than the others (see velocity and distance for

t < −30 s) and its trajectory exhibits the highest curvature,

which is consistent with Driver 3’s performance driving style.

Generalization to other city-driving scenarios (Variant II):

Due to combining data-based—i.e., learning—and model-

based—i.e., particle-filter motion planning—approaches, the

planners generalize well to scenarios different from the train-

ing track. For example, the motion planners are able to execute

turns with different radii and adjust their velocities accord-

TABLE V
CIRCULAR TRACK - AVERAGED VELOCITIES

Radius 500 m 100 m 50 m 25 m

Planner C 46.4 km/h 41.0 km/h 35.6 km/h 28.3 km/h
Planner 1 46.0 km h 36.4 km/h 29.7 km/h 23.2 km/h
Planner 2 40.0 km h 26.0 km/h 19.4 km/h 13.8 km/h
Planner 3 49.7 km/h 49.3 km/h 49.0 km/h 48.2 km/h
Planner 4 44.6 km h 34.5 km/h 27.7 km/h 20.8 km/h
Planner 5 44.3 km h 34.1 km/h 27.5 km/h 20.7 km/h

ingly, even though the training data only cover turns with one

radius. In order to show the proposed method’s generalization

properties, we consider circular tracks with different radii.

Table V reports the mean of the velocities of Planner C and 1–

5 on the circular track. It shows that all planners decrease their

velocities with decreasing radius, which appears natural for

human drivers. Specifically, Planner 2 and 5, which generally

avoid higher lateral accelerations, slow down the most.

B. Discussion

The motion planners trained with both Variant II and

Variant III achieve a personalized driving style. Variant II

offers the advantage of increased personalization compared to

Variant III, however, Variant III is an attractive solution as the

hardware requirements are very limited. Due to combining

data-based design and model-based algorithm, the motion

planners exhibit similarities as well as individual components.

Similarities of planners & deviation from drivers: The

similarities of the planners and deviations from their respective

drivers are mainly caused by reasons related to increased

safety and fulfillment of requirements. The fulfillment of

requirements results in consistency of the planners, which can

be seen for instance by the low variance of the planners and the

constant velocities during the turn in Fig. 6 and Fig. 7. Further,

the motion planners avoid to exceed the nominal velocity and

achieve a relatively small centerline tracking error. These are

examples where the planners are not implemented to imitate

the driving style of the human entirely, but to achieve a more

natural and personalized driving style.

Individuality of planners: In the traffic-free driving scenario

in Fig. 7, the individuality of the planners can be best identified

in the velocity profile and its resulting lateral acceleration.

Planner 1, 2, 4, and 5 trained with Variant II take the turn

at 34 km/h, 25 km/h, 29 km/h, and 29 km/h with lateral

accelerations of 1.8 m/s2, 1.0 m/s2, 1.3 m/s2, and 1.3 m/s2,

which matches their respective drivers’ velocities very closely.

Planner 3 turns at a slightly higher velocity than Driver 3 in the

experiments, however, due to the optimization in the planning

algorithm, the velocity is more constant during the turn and

hence Planner 3 exhibits lower lateral accelerations than

Driver 3, thereby fulfilling both requirements more closely.

Also, the traffic-affected scenario in Fig. 8 shows highly

individual components. Planner 3’s velocity is monotonically

increasing during the overtake maneuver, which means that

longitudinal accelerations continue even during steering oper-

ation, as Driver 3 is comfortable with combined longitudinal-

lateral accelerations. Planner C, 1, and 2 exhibit a brief drop in

velocity for time > 0 s. This drop appears at the peak curvature

of the path when the EV turns right to align with the left lane

and is caused by the tolerance for lateral accelerations.

Expected limitation of estimated parameters: For sig-

nificantly different driving scenarios, both the drivers and

the planners may behave differently. For instance, in high-

speed freeway driving, lane-change maneuvers may be slower

(higher r11) and/or velocities more constant (smaller r22).

This might prompt mode-dependent parameter sets for each

planner, which will be addressed in future work.

XII. CONCLUSION

This paper presented an inverse learning method to cal-

ibrate/personalize autonomous vehicles from data of human

driving. It proposed a deterministic requirement function with

a priori unknown parameters and an algorithm for their

estimation. Further, it presented a likelihood maximization

method to estimate the probability distribution defining tol-

erated deviations from the requirements. Three variants of the

proposed inverse learning algorithm were presented that vary

in computational complexity and storage requirements, as well

as their level of approximation, making the inverse learning

method adjustable to the available hardware. Simulations with

five drivers showed that the estimates are different for each

individual, thus resulting in the motion planner generating

different motions that, while satisfying the intrinsic properties

of the planning algorithm, had a behavior similar to the

corresponding drivers.

REFERENCES

[1] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[2] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” J. Guid., Control, and Dyn., vol. 25,
no. 1, pp. 116–129, 2002.

[3] J. Elander, R. West, and D. French, “Behavioral correlates of individual
differences in road-traffic crash risk: An examination of methods and
findings.” Psychological bulletin, vol. 113, no. 2, pp. 279–294, 1993.

[4] T. Lajunen and T. Özkan, “Self-report instruments and methods,” in
Handbook of traffic psychology, 2011, pp. 43–59.

[5] F. Sagberg, Selpi, G. F. Bianchi Piccinini, and J. Engström, “A review
of research on driving styles and road safety,” Human factors, vol. 57,
no. 7, pp. 1248–1275, 2015.

[6] K. Berntorp and S. Di Cairano, “Particle filtering for online motion
planning with task specifications,” in Amer. Control Conf., 2016, pp.
2123–2128.

[7] K. Berntorp, T. Hoang, and S. Di Cairano, “Motion planning of
autonomous road vehicles by particle filtering,” IEEE Trans. Intell.

Vehicles, vol. 4, no. 2, pp. 197–210, 2019.
[8] SAE, “Taxonomy and definitions for terms related to on-road motor

vehicle automated driving systems,” Standard No. J3016, Jan. 2014.
[9] M. Menner, K. Berntorp, M. N. Zeilinger, and S. Di Cairano, “Inverse

learning for human-adaptive motion planning,” in 58th IEEE Conf.

Decision and Control, 2019, pp. 809–815.
[10] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent

advances in robot learning from demonstration,” Annu. Rev. Control,

Robot., and Auton. Syst., vol. 3, 2020.
[11] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-

based model predictive control: Toward safe learning in control,” Annu.

Rev. Control, Robot., and Auton. Syst., vol. 3, 2020.
[12] R. E. Kalman, “When is a linear control system optimal?” J. Basic Eng.,

vol. 86, no. 1, pp. 51–60, 1964.
[13] M. Menner and M. N. Zeilinger, “Convex formulations and algebraic

solutions for linear quadratic inverse optimal control problems,” in Eur.

Control Conf., 2018, pp. 2107–2112.

[14] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion–an inverse optimal control approach,” Auton.

Robots, vol. 28, no. 3, pp. 369–383, 2010.
[15] D. Clever, R. M. Schemschat, M. L. Felis, and K. Mombaur, “Inverse

optimal control based identification of optimality criteria in whole-body
human walking on level ground,” in 6th IEEE Int. Conf. Biomed. Robot.

and Biomechatronics, 2016, pp. 1192–1199.
[16] J. F.-S. Lin, V. Bonnet, A. M. Panchea, N. Ramdani, G. Venture, and

D. Kulić, “Human motion segmentation using cost weights recovered
from inverse optimal control,” in IEEE-RAS 16th Int, Conf. Humanoid

Robots, 2016, pp. 1107–1113.
[17] A. L. E. N. Kleesattel and K. Mombaur, “Inverse optimal control

based enhancement of sprinting motion analysis with and without
running-specific prostheses,” in 7th IEEE Int. Conf. Biomed. Robot. and

Biomechatronics, 2018, pp. 556–562.
[18] M. Menner, P. Worsnop, and M. N. Zeilinger, “Constrained inverse

optimal control with application to a human manipulation task,” IEEE

Trans. Control Syst. Technol., 2019, doi: 10.1109/TCST.2019.2955663.
[19] P. Englert, N. A. Vien, and M. Toussaint, “Inverse KKT: Learning cost

functions of manipulation tasks from demonstrations,” Int. J. Robot. Res.,
vol. 36, no. 13–14, pp. 1474–1488, 2017.

[20] P. M. Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto, and
D. Kuhn, “Data-driven inverse optimization with imperfect information,”
Math. Program., vol. 167, no. 1, pp. 191–234, 2018.

[21] A. Majumdar, S. Singh, A. Mandlekar, and M. Pavone, “Risk-sensitive
inverse reinforcement learning via coherent risk models,” in Robot.: Sci.

and Syst., 2017.
[22] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal

probabilistic model-based planning for human-robot interaction,” in
IEEE Int. Conf. Robot. and Automat., 2018, pp. 1–9.

[23] R. Chen, W. Wang, Z. Zhao, and D. Zhao, “Active learning for risk-
sensitive inverse reinforcement learning,” arXiv:1909.07843, 2019.

[24] G. Chou, N. Ozay, and D. Berenson, “Learning constraints from locally-
optimal demonstrations under cost function uncertainty,” IEEE Robot.

and Automat. Lett., 2020, doi: 10.1109/LRA.2020.2974427.
[25] F. Meier, E. Theodorou, F. Stulp, and S. Schaal, “Movement segmen-

tation using a primitive library,” in IEEE/RSJ Int. Conf. Intell. Robots

and Syst., 2011, pp. 3407–3412.
[26] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Probabilistic

segmentation applied to an assembly task,” in IEEE-RAS 15th Int. Conf.

Humanoid Robots (Humanoids), 2015, pp. 533–540.
[27] A. Baisero, Y. Mollard, M. Lopes, M. Toussaint, and I. Lütkebohle,

“Temporal segmentation of pair-wise interaction phases in sequential
manipulation demonstrations,” in IEEE/RSJ Int. Conf. Intell. Robots and

Syst., 2015, pp. 478–484.
[28] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-

ment learning,” in 21st Int. Conf. Machine Learning, 2004, p. 1.
[29] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum

entropy inverse reinforcement learning,” in AAAI Conf. Artif. Intell.,
2008, pp. 1433–1438.

[30] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. and Auton. Syst., vol. 57,
no. 5, pp. 469–483, 2009.

[31] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with Gaussian processes,” in Advances Neural Inform. Process.

Syst., 2011, pp. 19–27.
[32] S. Levine and V. Koltun, “Continuous inverse optimal control with

locally optimal examples,” in 29th Int. Conf. Machine Learning, 2012,
pp. 475–482.

[33] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Co-
operative inverse reinforcement learning,” in Advances Neural Inform.

Process. Syst., 2016, pp. 3909–3917.
[34] K. Bogert, J. F.-S. Lin, P. Doshi, and D. Kulić, “Expectation-

maximization for inverse reinforcement learning with hidden data,” in
Int. Conf. Auton. Agents & Multiagent Syst., 2016, pp. 1034–1042.

[35] V. Joukov and D. Kulić, “Gaussian process based model predictive
controller for imitation learning,” in IEEE-RAS 17th Int. Conf. Humanoid

Robot., 2017, pp. 850–855.
[36] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse

optimal control via policy optimization,” in 33rd Int. Conf. Mach. Learn.,
2016, pp. 49–58.

[37] S. Rosbach, V. James, S. Grojohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in IEEE/RSJ Int. Conf. Intell. Robots

and Syst., Nov 2019, pp. 2658–2665.
[38] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends

in Cogn. Sci., vol. 3, no. 6, pp. 233–242, 1999.

[39] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philos. Trans. Roy. Soc. London. Ser. B:

Biol. Sci., vol. 358, no. 1431, pp. 537–547, 2003.
[40] W. Wang, J. Xi, A. Chong, and L. Li, “Driving style classification using

a semisupervised support vector machine,” IEEE Trans. Human-Mach.

Syst., vol. 47, no. 5, pp. 650–660, 2017.
[41] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer human

guidance: Augmenting comparison-based learning with feature queries,”
in ACM/IEEE Int. Conf. Human-Robot Interaction, 2018, pp. 132–140.

[42] M. Menner, L. Neuner, L. Lünenburger, and M. N. Zeilinger, “Using
human ratings for feedback control: A supervised learning approach
with application to rehabilitation robotics,” IEEE Trans. Robot., 2020,
doi: 10.1109/TRO.2020.2964147.

[43] A. Einstein et al., “The foundation of the general theory of relativity,”
Annalen der Physik, vol. 49, no. 7, pp. 769–822, 1916.

[44] K. B. Petersen and M. S. Pedersen, “The matrix cookbook (version:
Nov. 15, 2012),” 2012.

[45] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and
model predictive control for aerospace and automotive applications,”
in Amer. Control Conf., 2018, pp. 2392–2409.

[46] A. G. Akritas, E. K. Akritas, and G. I. Malaschonok, “Various proofs of
Sylvester’s (determinant) identity,” Math. and Comput. in Simul., vol. 42,
no. 4–6, pp. 585–593, 1996.

[47] P. S. Dwyer, “Some applications of matrix derivatives in multivariate
analysis,” J. Amer. Statist. Assoc., vol. 62, no. 318, pp. 607–625, 1967.

[48] R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Quan-
titative estimates of the convergence of the empirical covariance matrix
in log-concave ensembles,” J. Amer. Math. Soc., vol. 23, no. 2, pp. 535–
561, 2010.

[49] R. Vershynin, “How close is the sample covariance matrix to the actual
covariance matrix?” J. Theor. Probability, vol. 25, no. 3, pp. 655–686,
2012.

[50] C. M. Bishop, Pattern recognition and machine learning. New York:
Springer, 2006.

[51] L. Armijo, “Minimization of functions having lipschitz continuous first
partial derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 1–3, 1966.

[52] N. C. Schwertman and D. M. Allen, “Smoothing an indefinite variance-
covariance matrix,” J. Statistical Computation and Simul., vol. 9, no. 3,
pp. 183–194, 1979.

[53] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear algebra and its appl., vol. 103, pp. 103–118, 1988.

[54] R. S. Rice, “Measuring car-driver interaction with the gg diagram,” SAE
Technical Paper, Tech. Rep., 1973.

[55] M. Lavielle, “Using penalized contrasts for the change-point problem,”
Signal Process., vol. 85, no. 8, pp. 1501–1510, 2005.

[56] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty - a control
perspective,” Eur. J. Control, vol. 24, pp. 14–32, 2015.

[57] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp.
53–82, 2010.

Marcel Menner (Student Member, IEEE) received
the M.Sc. degree with high distinction in mechan-
ical engineering from the Technische Universität
München, Munich, Germany, in 2016, for which
he was awarded the Degree of Excellence. He is
currently working toward the Ph.D. degree with the
Institute for Dynamic Systems and Control, ETH
Zurich, Switzerland.

He was a visiting student with the Massachusetts
Institute of Technology, Cambridge, MA, USA
(2015–2016) and a Research Intern with the Mit-

subishi Electric Research Laboratories, Cambridge, MA, USA (2018–2019).
His research interests include intelligent systems and data-driven control with
a focus on learning from human interactions.

Karl Berntorp (SM’20) received the M.Sc. degree
in Engineering Physics in 2009 and the Ph.D. degree
in Automatic Control in 2014, from Lund University,
Lund, Sweden. In 2008 he was a visiting researcher
at Daimler AG in Sindelfingen, Germany. Since
2014 he has worked with Mitsubishi Electric Re-
search Laboratories in Cambridge, MA. His research
is on statistical signal processing, Bayesian infer-
ence, sensor fusion, and optimization-based control,
with applications to automotive, transportation, nav-
igation, and communication systems. His work in-

cludes design and implementation of estimation, constrained control, motion-
planning, and learning algorithms. Dr. Berntorp is the author of more than 70
papers in journals and conferences and has more than 10 granted patents.

Melanie N. Zeilinger (Member, IEEE) received the
Diploma degree in engineering cybernetics from the
University of Stuttgart, Germany, in 2006, and the
Ph.D. degree with honors in electrical engineering
from ETH Zurich, Switzerland, in 2011.

She is an Assistant Professor with the Depart-
ment of Mechanical and Process Engineering, ETH
Zurich, Switzerland. From 2011 to 2012, she was a
Postdoctoral Fellow with the École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. From
2012 to 2015, she was a Marie Curie Fellow and

Postdoctoral Researcher in a joint program with the Department of Electrical
Engineering and Computer Sciences at the University of California, Berke-
ley, CA, USA, and with the Max Planck Institute for Intelligent Systems,
Tübingen, Germany. From 2018 to 2019, she was a Professor with the
University of Freiburg, Freiburg im Breisgau, Germany. Her research interests
include distributed control and optimization, as well as safe learning-based
control, with applications to human-in-the-loop systems.

Stefano Di Cairano (SM’15) received the Master’s
(Laurea) and the Ph.D. degrees in information en-
gineering in 2004 and 2008, respectively, from the
University of Siena, Italy. During 2008-2011, he
was with Powertrain Control R&A, Ford Research
and Advanced Engineering, Dearborn, MI, USA.
Since 2011, he is with Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA, where he is
currently the Senior Team Leader for optimization-
based control, and a Distinguished Researcher in
Control and Dynamical Systems. His research fo-

cuses on optimization-based control and decision-making strategies for com-
plex mechatronic systems, in automotive, factory automation, transportation
systems, and aerospace. His research interests include model predictive
control, constrained control, path planning, hybrid systems, optimization, and
particle filtering. He has authored/coauthored more than 150 peer-reviewed
papers in journals and conference proceedings and 35 patents.

Dr. Di Cairano was the Chair of the IEEE CSS Technical Committee on
Automotive Controls and of the IEEE CSS Standing Committee on Standards.
He is the inaugural Chair of the IEEE CCTA Editorial Board and was an
Associate Editor of the IEEE TRANS. CONTROL SYSTEMS TECHNOLOGY.

