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1. Introduction. The purpose of this paper is two-fold. We define a class
of spaces called solenoidal spaces, which generalize the solenoids of van Dant-
zig [13], and study their structure (§§4,5). Then we use part of the struc-
ture developed to prove a theorem on the homogeneity of certain solenoidal
spaces (§6). A solenoidal space is the limit of an inverse limit sequence of
"nice" spaces (the precise definition is below) where the bonding maps are
regular covering maps (2). We will see that these spaces still have many of
the properties of the classical solenoids.

A space X is called homogeneous if for each pair x, y of points of X there
is a homeomorphism of (X, x) onto (X, y). M. K. Fort, Jr. [8] asked the
general question, "When is an inverse limit space homogeneous?" The
pseudo-arc, which is known to be homogeneous (see Bing [l]), can be de-
scribed roughly as an inverse limit of arcs where the bonding maps become
sufficiently "crooked." Perhaps one can obtain some result on homogeneity
in which "crookedness" of the bonding maps is one of the assumptions. (See
Brown [4] for a precise definition of t-crooked map.) Probably one should re-
strict himself to the case where the factor spaces are 1-dimensional, for the
following reason. Brown [4] has shown that an inverse limit of locally con-
nected continua with sufficiently crooked bonding maps is hereditarily inde-
composable; and Bing [2] has shown that if X is an ra-dimensional, hereditari-
ly indecomposable continuum and n > 1, then X is not homogeneous. The
word "probably" was used two sentences ago because of the fact that dimen-
sion may be lowered by taking an inverse limit of continua with "onto"
bonding maps (although it can never be raised).

The theorem in § 6 goes in the opposite direction from the preceding sug-
gestion, by assuming that the bonding maps are "smooth." The assumption
of local smoothness in the sense of differentiability will of course do no good.
A kind of global smoothness is needed; this is why covering maps are appro-
priate. Case [5] has taken an inverse limit of universal curves where the
bonding maps are regular covering maps to get a new example of a 1-dimen-
sional homogeneous continuum containing arcs. Two of our theorems almost
generalize two of his, but, as they stand, do not imply his.

For notation and terminology on inverse limit sequences refer to [7]. We
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( ) In [14] van Heemert dealt with inverse limits of manifolds where the bonding maps are

covering maps.
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consider only the case where the directed set of indices is the positive
integers. If (X,/) is an inverse limit sequence, the maps /„: X„—> Xm (reí ̂  re)
are called bonding maps. If x E X„, then xn will often be used to denote the
reth coordinate /„(x) of x. The symbol | will be used to indicate the ends of
proofs.

2. Motivation: The P-adic solenoid. If P= ipx,p2, ■ ■ •) is a sequence of prime
numbers (1 not being included as a prime), the P-adic solenoid 2P is de-
fined as the limit of the inverse limit sequence (X, /), where for each
re, X„ = \z: \z\ = 1 j (unit circle in the complex plane), and where each bond-
ing map f¡¡+1: Xn+x^X„ is given by fn+1iz)=zp". Call prime sequences P
and Q equivalent (written P ~ Q) if a finite number of terms can be deleted
from each sequence so that every prime number occurs the same number of
times in the deleted sequences. Bing [3] remarked that if P~ Q then 2p is
homeomorphic to 2Q and suggested, "Perhaps the converse of this is true."
One can see that P ~ Q if and only if 2 P is homeomorphic to 2q (written
2p= 2q) as follows(3): From the continuity theorem for Cech cohomology
[7, p. 261] one sees that P'(2p) is isomorphic to the group FP of P-adic ra-
cionáis (all rationals of the form k/ipyp2- • • p„) where k is an integer and re
is a positive integer). Also it can be seen that 2P, as a topological group, is
topologically isomorphic to the character group of FP (written 2p«toPPp).
By number-theoretic considerations one can see that FP is isomorphic to Fq
(written FP m F0) if and only if P ~ Q. Thus

2p = 2Q => P'(2p) « P1(2q) => FP~F0=>P^ Q.

Conversely,

P ~ Q ==> FP = Fq ==> FP = top^Q => 2p = toP2Q.

3. Solenoidal spaces. For basic notions of covering space theory refer to [9]
or [11].

Definition 3.1. A solenoidal sequence is an inverse limit sequence (X,/)
such that (1) each space X„ is nice in the sense that it is connected, locally
pathwise connected, and semi-locally simply connected, and (2) each bond-
ing map /": X„—>Xy is a regular covering map. The limit X„ will be called
a solenoidal space.

Remark 3.2. The spaces Xn are assumed to be nice in order to guarantee
the constructions of covering space theory. In particular, they could be
polyhedra.

Remark 3.3. Condition (2) implies that each bonding map /„: X„—»Xm
im zi re) is a regular covering map.

Remark 3.4. If each X„ is a continuum then X„ is a continuum.

( ) Essentially the same result was stated by van Dantzig.
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Example 1. For each re, let Xn be the r-dimensional torus Tr = Sl X •■•
XS1 (r times). Take each /£+1: Xn+1^X„tobe of the form ft+1(zx, • • -,zr) =
(zi1, • • •,zPr), where the p/s are positive integers.

Example 2. For each re, Xn is obtained as follows. Take two disjoint copies
of S1 and identify them at the 2"_1 points exp(27riA/2n-1), A = 0, • • -, 2"-1 - 1.
(Xi is a figure eight.) Then the map s: S1—*Si given by s(z) = z2 induces
a covering map f„+1: Xn+1—>X„. The regularity of /" follows from the fact
that its covering transformations act transitively on the fibers.

Example 3. If Yi is any nice space, Pi is the fundamental group 7r(Yi, ¿>i),
and (P2, Fj, • • •) is a decreasing sequence of normal subgroups of Fx, then we
can construct a solenoidal sequence (Y,g) with base points bn in Y„ such that

(g?)*(*(Yn,bn)) = Fn.

Example 4. As a special case of the method of Example 3, we obtain a
solenoidal sequence of closed 3-manifolds as follows. Let (X,f) be as in
Example 2. Let Yi be the connected sum of the 3-manifold S1 X S2 with it-
self. Then Pi = it(Yubx) is a free group on two generators, hence isomorphic
to t(Xx, 1). The decreasing sequence ((/f)* ir(X„, 1)), re = 2, • • -, of normal
subgroups of ir(Xi, 1)  then defines a decreasing sequence  (P2,P3, •••)  of
normal subgroups of Pi. Hence we may obtain (Y,g). One might say that
the solenoidal sequence (X,f) of 1-polyhedra serves as a model for con-
structing the solenoidal sequence (Y,g) of 3-manifolds.

4. A lemma on covering transformations. The result of this section will be
used twice in § 5. Suppose we are given a commutative diagram

(4.1)

(X\,bx)^—(XM,
where the three maps are regular covering maps and the base points bk are
fixed throughout the discussion. Let Pi be the fundamental group ir(Xx,bx)
and for A = 2,3 let F„ = (/f),(x(Xto bk)). Thus Fx D F2 ~) P3 and P2,P3 are
normal in Fu Let Gk be the covering transformation group of fx. There is a
canonical isomorphism <pk of Qk= Fx/Fk onto Gk. Since F3EF2 there is a
natural homomorphism v. Q3^Q2 (given by v(aF3) = aF2). Now define
u: G3—>G2 by commutativity in

G2^—G3

(4.2) 4>
V

<t>Z

Q2<-Q
Lemma 4.1. (a) If g3EG3and g2 = u(g3) then the diagram

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



200 M. C. MC CORD [January

(4.3)
Xf1—x*

ë2fl
X2< X3

#3

is commutative, (b) If g2 E G2, g3 £ G3, and the diagram (4.3) is commutative
at some point x3 £ X3, then g2 = p(g3).

Proof, (a) Let A3 = [ax]F3 be the element of Q3 such that <b3(h3) — g3 (where
ax is a loop on bx), and let A2 = v(h3) — [ai]P2. By commutativity of (4.2) we
have <b2(h2) = g2. Now lift ax by f\ to the path a2 starting at b2. Then from
the definition of <b2, g2 is the unique element of G2 such that g2ib2) = a2(l).
Lift a2 by f2 to the path a3 starting at b3. But f\a3 = f\f\a3 = f\a2 = ax,
so that^3 = <b3(h3) satisfies^3(63) = a3(l). We conclude that f¡g3(b3) = f!a3(l)
= a2(l) =g2(b2).

Now take an arbitrary point x3 in X3 and let x2 = /2(x3). We can determine
g2(x2) and g3(x3) as follows. Take a path ß3 from 2>3 to x3, and let ß2 = f2ß3
and ßx = f\ß2 = ffß3. Since ß2 is a path from b2 to x2 we see (e.g. from [11,
p. 196]) that if we lift ßx by fx to the path ß'2 starting at g2(b2), then g2ix2)
= ß'2il). Since flg3(b3) = g2(b2) (by the preceding paragraph) we may lift
ß'2 by fi to the path ß'3 starting at g3(b3). Then, since ffß'3 = ßx = fxß3, we
have g3(x3) = 183(1)• Thus f¡g3(x3) = ßß'3(l) = ß'2(l) = g2(x2), which shows
the commutativity of (4.3).

(b) We are supposing that at some point x3, g2f2(x3) = fig3(x3). By part
(a), then, g2fi(x3) = p(g3)f2(x3). But an element in G2 is determined by its
value on a single point, so that g2 = p(g3).

Remark 4.2. This lemma shows that the definition of p is independent of
the choice of the base points bk.

5. The structure of solenoidal spaces. We assume in this section that we are
given an arbitrary solenoidal sequence (X, /). To avoid triviality we assume
that for each n the covering /"+1: Xn+1—>X„ is A„-to-l where kn is a cardinal
greater than 1.

Let us choose once and for all a base point b = (bx,b2, ••■) in X„. For
each n, let Pn = (fx)*(ir(Xn,bn)) so that we have a descending sequence
of groups Pi D P2 3 •••, each P„ being normal in Pi = ir(Xi, 61). Let Qn =
Pi/P„ and let </>„ be the canonical isomorphism of Qn onto the covering trans-
formation group Gnoffx: X„—>Xj. Defining homomorphisms p"+1: Qn+i—>Qn
and ul+x: Gn+x—>Gn according to the prescription of the preceding section, we
get inverse limit sequences of groups (Q, v) and (G,p) with limit groups Q„
and G„. Since from the definition of pl+\ <bnvnn+l = unn+l<bn+x, the sequence
(#„) induces an isomorphism $„: Qa^G„. Consider each G„ as a discrete
topological group, and give Gœ the inverse limit topology.

Lemma 5.1. G„ is totally disconnected and perfect. If the coverings f"+l are
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finite-to-one then G„ is homeomorphic to the Cantor set.

Proof. It is easy to see that an inverse limit of totally disconnected spaces
is totally disconnected. From the fact that for each gn in Gn, (p2+1) ~1(gn)
contains kn > 1 elements, one can see that G. is perfect. If each k„ is finite,
then each G„ is finite, so that Gœ is compact metric and is therefore homeo-
morphic to the Cantor set. |

Lemma5.2. G„ acts on Xœ as an effective topological transformation group.
Proof. Suppose g = (gx,g2, ■■•) E G„. By Lemma 4.1 we have for each re the

commutativity relation gnfn+1 = fH+1gn+u so that g induces a homeomor-
phism of X„„ onto itself, which we still denote by g, i.e., for

x = (xi, x2, • • •) E X„,
g(x) = (gxixx), g2ix2), •••). Obviously we have (1) (g-g')(x) =gig'ix)) and
(2) the identity element of Gœ is the unique element of G„ which acts as the
identity transformation on X„. Now we want to show that the map
G„ X X„^X„ given by ig, x) ^g(x) is continuous. Suppose (g°,x°) is given
and U is a neighborhood of g°ix°). By [7, p. 218] we may assume that
(7=/n_1(l/„) where Un is a neighborhood of g°(x°). Since G„ is discrete,
y = Mn-1(gn) is a neighborhood of g°. Since glfn is continuous, there is a
neighborhood W of x° such that g°Jn(W) E Un. Then if (g,x) E VX W,
fng(x)  = gnfn(x) = glfn(x) E Un,   SO   that  g(x) E U.   I

Lemma 5.3. If x and x' are in Xœ and fx(x) = fx(x'), then there is one and
only one g in Gœ such that g(x) = x'.

Proof. Let x = (x1(x2, •••) and x' = (x'x,x2, ■ ■ ■ ) where X! = xi. Since
fï(xn) = fx(x'„) and /" is regular, there is a unique gn E Gn such that g„ixn)
= x'n. Since

gnfn      (Xn+l)  = gn(Xn) = X'n = /„      (x^+i)  = fn     gn+l(xn+l) í

Lemma 4.1(b)  gives that gn = Pn+1ign+/)- Thus g= igx,g2, ■ • •) E G„, and
from the definition of the action of G„, gix) = x'.

Now we wish to introduce the (common) universal covering space of the
spaces Xi, X2, • • •. This step is essential to carrying out our program. Recall
that we have fixed a base point b = (61,62» ■••) inX„.Letp!: (X,6) —» iXx,bx)
be the universal covering space of X! (which exists since Xx is nice). As-
suming the covering map p„: (X, 6) —> (X„, b„) has been defined, let p„+i:
(X, 6) —> (Xn+1,6„+1) be the unique covering map which satisfies the relation
fn+1Pn+i = Pn- Because of this relation, the sequence ipx,p2, ■ ■ ■), so defined,
induces a map p„: (X,6) = (X„,6); explicitly, p„(x) = (p,(x),p2(x), • ■ ■).
In the case of the solenoids, X is a line that p„ maps continuously and 1-1
onto a path component of X„, which is dense in X„. (This follows from
general results proved below.)
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Now let Y^= G„XX and define Pœ: Yœ^Xœ by P„(g,x) = £p„(x).
Call a subset V of X simple if px maps V homeomorphically ontopi(V). The
following lemma is used in the next two theorems.

Lemma 5.4. P„ is a local homeomorphism of Yœ onto Xœ. In fact, if V is
any simple open subset of X, then P„ maps G„ X V homeomorphically onto
/fWVU

Proof. To save a duplication, we first prove the following

Sublemma. For any ra let g°E Gn, let W = pñl(g°), and let V be an open
subset of X. Then Pm(W X V) = fñl[gnPn(V)\, which is an open set.

Proof. The latter set is open since p„ is open. To show the equality suppose
that xEfñl[gnPÁV)]. Then xn = g°pn(v) where vE V. Since then xx =
fígnPÁv) = fîPn(v) = P\(v), there is by Lemma 5.3 a unique g in G„ such
that x = gpAv) = P~(g,v). But then gnpn(v) = xn = glpn(v), so that g„ =
gn, which means that g£W. Therefore xEPAWx V). The reverse in-
clusion is obvious.

From the Sublemma it follows that P„ is an open map, since sets of the
form WX V form a basis for the open sets of Y„.

Now let V be a simple open subset of X. In the Sublemma take re = 1.
(Gi consists of the identity element alone.) Then we have P„(G„ X V)
= fi~1[Pi(V)]. Furthermore, P„ is 1-1 on G„ X V. For suppose PAg.v)
= Pm(g',v'). ThenpjiiJ) =pi(S'), and since px is 1-1 on V, v = v'. From the
uniqueness part of LemmaJ>.3, g = g'- Finally, since P. is open, P„ is a
homeomorphism on G „ X V. I

Theorem 5.5. Y„ is a generalized covering space of Xœ with respect to the
map P„.

Note. We use the definition in Hu [9, p. 104] . Thus we must show that
there is an open covering of X„ by sets V such that Pz1(V) can be repre-
sented as a disjoint union of open subsets of Y«,, each of which is mapped
homeomorphically onto V by P„.

Proof. Let Vx be an open set in Xi such that p^l( Vx) is the disjoint union
U V" of open sets in X such that for each i, px maps V1 homeomorphically
onto Vx. Let V=/f1(Vi). Now by Lemma 5.4, P„ maps each G„ X V'
homeomorphically onto V. Furthermore, U (G„ X V') is a disjoint union of
open sets in Y„, which we claim is all of P~l(V). For if (g,x) EPZl(V),
thenpifï) G Vx, so that ï G V" for some i. It is obvious that the collection
of such sets V covers X„. |

Theorem 5.6. (X„, fu Xu G„) is a principal fibre bundle.

Proof. The three properties (a), (b), (c) established below can be seen to
be equivalent to those in Steenrod's  [12] definition of a principal fibre
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bundle; except that, since we have the group G„ acting on the left of X„,
G„ will have to act on the right of the fibre (G» itself) in Steenrod's defini-
tion, (a) G„ acts on X„ as a topological transformation group, as has been
shown in Lemma 5.2. (b) (X., /b Xx) is a locally trivial fibre space with
fibre G„. Let V be a simple open subset of X and let px( V) = Vx. Such sets
Vx can be taken as coordinate neighborhoods in Xi. Let q: Vy—» V be the
inverse of px\V. The map (g, v) —> (g, q(v)) is then a homeomorphism of
G„ X Vy onto G„ X V. Thus by Lemma 5.4, the map <t>: G„ X Vi-»/fl(Vi)
given by (p(g,v) = Pa(g,q(v)) is a homeomorphism. And for every (g,v) in
Go. X Vy we have fy<t>(g,v) = fxgp„q(v) = pxq(v) = v. (c) Finally, the action
of Gœ is compatible with the fibre space structure, for we have for any g and
g' in G„ and any v in Vx that 4>(gg'» = P*(gg'\q(v)) = (gg')p^q(v)
= g[g'P~Qiv)] = gPAg',q(v)) = g<f>(g',v). |

Corollary 5.7. X„ is not locally connected at any point.

Proof. By Theorem 5.6 and Lemma 5.1, Xœ is locally like a product of a
totally disconnected, perfect space with another space. |

In order to understand the structure of X„ more, we now study its path
components. For this the maps p„ and P„ will be useful.

Theorem 5.8. Let K denote the subsetp„(X) o/X„. A subset of X„ is a path
component ofX . if and only if it is a "translate" of K by some element g of G„,
i.e., it is of the form g(K). Each path component of X„ is dense in X„.

Proof. Let us take a translate g(K) and prove it is a path component. First
of all, g(K) is pathwise connected since it is a continuous image of the path-
wise connected space X. Suppose a is a path from a point x in g(K) to a point
y in X... We must show that y also is in g(K). Now x = gp„(x) for some
x in X; that is, (g, x) lies over x with respect to the generalized covering map
P„ (Theorem 5.5). Thus we may lift a by P„ to a path S in Y„ starting at
(g,x). But jgjXXisa component of Y„, and since à begins in this com-
ponent, it must end in it. Thus 5(1) is of the form (g,y), and we have
gpAy) = P.ig.y) = P.äil) =a(l) =y, so thatyEg(P).

Thus the setsg(P) are path components. They exhaust all of X„, for by
Theorem 5.5, P„ maps Y„ onto X„.

To show that the setsg(P) are dense in Xm, it is sufficient to show that
K is dense. Open sets of the form V = /n_1(K) where Vn is open in X„ form
a basis for the open sets in X„. Take any such Vn. Since pn: X^Xn is onto,
there is a point i; in X for which pn(v) E Vn. Then p„(v) E P O V. |

The path components g(K) are of course disjoint if they are different,
but there can be g 9e g' such that g(P) = g'(K). We will determine when
this can happen. Since G„ is a group, g(K)=g'(K) is equivalent to
g~1g'(K) = P. So we will determine which g are such that #(P) = K. In this

'"V

direction we let H denote the covering transformation group of px: X—>Xi,
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and we define a certain homomorphism a: 77—>G„. It will turn out that
g(K) = K if and only if g is in the image of a. Also the kernel of o has signifi-
cance (Theorems 5.12 and 5.13).

Let X: Pi—»77 be the canonical isomorphism (with respect to the base
point b EX). For each n let rn: Fx—>Q„ = Fx/Fn be the natural homomor-
phism. Since i>n+1 Tn+X = rn, the t„'s induce a homomorphism t: Pi —» Qœ given
by r(a) = (rx(a), r2(a), • • •)• Now define o by commutativity in the diagram

H->G0

(5.1) <t>.

Pi->Q„
Lemma 5.9. For each h in H the following diagram is commutative:

X-»X

o(h)
*X0

Proof. Let g = o(h). Proving that gp„ = p„h is equivalent to proving that
for each n, gnpn = pnh (where gn = pn(g))- To show the latter we use Lem-
ma 4.1. In the preliminary discussion of that section replace diagram (4.1)
by the commutative diagram

(Xi,Ai) ix:,bn).

Then diagram (4.2) gets replaced by the diagram

where, according to § 4, on is defined by commutativity in this diagram. Then
by Lemma 4.1, onih)pn = p„A. Thus we need only show that gn = <r„(A). But
gn= ßnig) = ßn°ih) = ßn <f> » rX_1(A) = </>„ Vn tX_1(A) = 0nTnX_1(A) = on(h). |

Theorem 5.10. For gE G„, g(K) = K if and only if g = o(h) for some
h EH.
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Proof. Suppose first g= o(h). Then for each x in X, by the preceding
lemma, gpœ(x) = p„A(x) £ K so that g(K) EK, whence g(K) = K. Con-
versely, suppose g(K) = K. Then for some x and y in X we have gp„(x)
= P»(y)- Then since Pi(x) = Pi(y), there is an A in H such that A(x) = y.
But then gp„(x) = p„(y) = p„ A(x) = <r(A)p„(x). Thus § and <r(A) are ele-
ments of Gœ which agree on a point, so they are equal. |

Corollary 5.11. If the fundamental group Fx of Xx is countable (in particu-
lar if Xx is a polyhedron) then Xœ Aas uncountably many path components.

Proof. Let S be the set of path components of Xœ. Define a map w from
the space G„/<r(77) of left cosets of <7(77) to S by w(go(H)) = g(K). By the
preceding theorem, w is well defined and 1-1; by Theorem 5.8, w is onto. Now
Gœ is uncountable since each bonding map ß„+1: Gn+x—>Gn has everywhere
nondegenerate point inverses. And since a(H) = <r\(Fx) is countable,
Gœ/o(H) is uncountable. |

In the cases of solenoids the map p„ of X onto K is 1-1. What is the gen-
eral situation? This question is answered by the following theorem.

Theorem 5.12. (a) The map p^: X—>X„ is 1-1 if and only if the homomor-
phism <j:H^G^ is 1-1. (b) The kernel of r. Fx—>Qœ is N = C)ñ-iFn.
(c) Hence pœ is 1-1 if and only if N = 1.

Proof, (a) Suppose p„ is 1-1. Then a must be 1-1, for if a(h) = 1, we have
by Lemma 5.9 that for all x in X, pœA(x) = u(/i)p„(ï) =p„(x). Hence
h(x) = x, and A = 1. Conversely, suppose a is 1-1 and suppose p„(x)
= p„(y). Then sincepx(x) = px(y) there is an A in H such that A(x) = y;
therefore p„(x) =pœ(y) =p„A(x) = o-(A)ptD(x). Since <r(A) is in G„ and
has a fixed point, it must be the identity. Thus A = 1, and x = A(x) = y.

(b) Suppose a E ker r. This means that r(a) = (aFx,aF2, ■■■) = (Fx, F2, ■ ■ •)
so that aEFn for each n, and a EN. The converse is then obvious.

(c) In diagram (5.1) X and 0œ are isomorphisms. Hence ker a = X(7Y). The
statement follows from (a) and (b). |

Theorem 5.13. The fundamental group of each path component of X„ is
isomorphic to N = il^=iPn.

Proof. By Theorem 5.8 all path components are homeomorphic. We will
show that for the map fx: (X„,2>) —* (Xi, Ai), r¡ = (fx) ̂  takes

*(K,b) = ir(X„,¿))

isomorphically onto N. Since fx = fxfn, the range of n is in N.
To prove that the range of?) is all of N, suppose [ax] E N. Since [ay] E Fn,

the lifting of «i by /" to the path an starting at bn is a loop on bn. And since
then fn+lan+x = an, we may define a loop a on b by a(t) = (ay(t), a2(t), ■ ■ ■),
for which obviously t/([ a]) = [ a x]. To show that i\ is 1-1, suppose v([ a]) = 1.
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This means that there is a homotopy ft,1 of loops on bx such that ftó = ai
and h\ = b2. Applying successively the covering homotopy theorem to the
maps fn+1 we may construct a sequence (re") such that for each re, (1) ft"
is a homotopy of loops on 6„ in X„, (2) ftg = «„, (3) hi = 6„, and (4) /n"+1ftr+1
= ft?. This sequence then induces a homotopy ht of loops on 6 in X„ such
that h0= a and fti = 6. |

Remark 5.14. If (X,f) is an inverse limit sequence where each map /" is a
covering map, but is not necessarily regular, the proof above shows that
for every x in Xœ, if Kx denotes the path component of x, then w(Kx,x)
-n^i(/f)*wx„,xn)).

6. Homogeneity of certain solenoidal spaces. Let us call a space X path-
homogeneous if for every pair of points x, y in X there is a path a from x to y
and a homeomorphism ft of (X, x) onto (X, y) such that ft induces the same
isomorphism of ir(X, x) onto 7r(X, y) as the path a does.

Theorem 6.1. If (X,/) is a solenoidal sequence for which Xy is path-homo-
geneous, then the solenoidal space X„ is homogeneous.

Proof. Let us use the notation of the preceding section. Suppose x and y
are points in X„, We wish to show that there is a^homeomorphism of (X„, x)
onto (X„,y). Since Xi is path-homogeneous there is a path ay from xx to yx
and a homeomorphism hy. (Xi.Xi) —» iXy,yy) such that (fti)* = (ai)* :
7r(Xi,Xi)-*7r(Xi,3/i);thatis, (AiUM) = IM* [«f'-7-«i]= («0* (M)
for all [t]E w(Xy,Xy). Now lift ay by Pi to some path a in X". Let u
= p„(S(0)) and ü = p„(5(l)). Since Uy = Xy there is, by Lemma 5.3, a
(unique) element g of G„ such that ^(u) = x. (In particular g is a homeomor-
phism of (X„,u) onto (X„,x).) Similarly there is ag' in G„ such that g'(t>)
= y. If we can find a homeomorphism 6 of (X„,ií) onto (X„,t>) we will be
through, since theng'ftg-1 takes x onto y.

We will construct such an h from ft y by a lifting process which makes use
of the path 5. Let an = pna; this path goes from un to vn. Observe that
ft+1an+i = fn+1Pn+ià = p„à = an. Let \pn: w(Xn, uj -» ir(X„, ün) denote the
isomorphism induced by «,. We claim that the following diagram is commu-
tative.

w(Xy,Uy)<     ifl)*        *(X2,U2)U^hL-w(X3,U3)J^-

(6.1) +
if!)* in),

<i>
(/34)*

(Xi, l>i) «- îr(X2, V2)<- tt(X3, V3)<
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For suppose [y]E ir(Xn+i,un+x). Then

(n+x*„+i(M) = (/r1)* [ocñU ■ 7 • «.+1]
Xñn+1.

l)

ñ
n+1.

«n]=^n(/nn+%([T]).

Looking at the first rectangle in (6.1), using what Hu [9, p. 90] calls the fibre
map theorem, and recalling that (h^ = \pu we have a unique map

h2: (X2,u2)-^ (X2,v2)

which makes the first rectangle in (6.2) below commutative. Furthermore,
h2 is a homeomorphism. For, using i^r1 and ^¡T1, there is a (unique) map
h'2: (X2,v2) -» (X2,u2) such that f\h'2 = kx~lfh But then f\h'2h2 = hxlf¡h2
= hx'lhifl = fl, and from the uniqueness of liftings, h'2h2 = identity. Simi-
larly h2h2 = identity. Now since (/{% is a monomorphism, (ra2)* = \¡/2. Thus
we can use the second rectangle of (6.1) to get a homeomorphism h3 making
the second rectangle of (6.2) commutative. We continue this process, obtain-
ing (huh2,h3, ■■■).

(Xi,Ul)<
fl fi ft

(6.2) hi f\
(Xi,Oi)<

(X2,u2)*

h2

-(X2,V2)<r
ñ

(X3,u3)«

ra3

(X¡,t;3)«-
ñ

-(Xœ,u)

h

-(X\,,v).

Clearly the induced map h is the desired homeomorphism. |
Let us use n-manifold in the very general sense of a connected Hausdorff

space, each of whose points is contained in an open set homeomorphic to
euclidean re-space E".

Lemma 6.2. Every n-manifold is path-homogeneous.

Corollary 6.3. // (X, /) is a solenoidal sequence where Xi is an n-manifold,
then Xœ is homogeneous.

Proof of Lemma 6.2. By an isotopic deformation h, of a space S let us mean
an isotopy ht: S—>S such that h0 = identity.

Let M be an ra-manifold. First suppose U is an open subset of M for which
there is a homeomorphism g: U^En, and let z,icG U. Let \g(z), g(w) j
C \x E En: ||x|| < r j. It is easy to see that there is an isotopic deformation
h't of P" such that h-(g(z)) = g(w) and for each t, h[ is the identity on

\xEE": \\x\\ er}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



208 M. C. MC CORD [January

Define h¡:M-^M by h,(m) = g1 h^g(m) for m EU and ht(m) = m for
m(£U. Using the fact that M is Hausdorff one can see that ft, is an isotopic
deformation of M; and hy(z) = w.

Now let x and y be arbitrary points of M. Since M is connected, there is
a chain of open sets (Uy, U2, •••, i/r), each homeomorphic to P", such that
xEUy and y E U,. For each ¿ = 2,3, • • •, r choose x, E l/¿-i Pi t/i> and let
Xi = x, xr+1 = y. By the preceding paragraph there is for each ¿ = 1,2, • • -,
r an isotopic deformation ft,' of M such that fti(x¡) = xi+x. Then the com-
position ft, = ft,r • • • ft2 ft,1 is an isotopic deformation of M such that fti(x) = y.

Now it follows from [6, p. 57] that the path a from x to y defined by
ait) = ft,(x)  (0 z% t z% 1)   induces  the  same  isomorphism  of  wiM, x)   onto
wiM,y) as fti does. |

The author suspects that Corollary 6.3 is no longer valid when the bonding
maps are nonregular covering maps, even when the X„'s are compact dif-
ferentiable manifolds. (J. Segal [ 10] announced in an abstract that if (X,/)
is an inverse limit sequence where each X„ is a homogeneous, connected,
and locally pathwise connected space and where the bonding maps are cov-
ering maps, then X„ is homogeneous. However he informed the author of an
error in the proof.) The author has shown that such a counterexample can
be constructed if a certain group theoretic construction can be made; and,
in turn, this can be done provided a certain sequence of graphs and covering
maps can be produced. The idea includes using Theorem 5.13 (see Remark
5.14) to show that the continuum has two nonhomeomorphic path compo-
nents.

Added in proof: Richard M. Schori (Dissertation, State University of
Iowa, 1964) has constructed an inverse limit sequence of compact, orientable
2-manifolds such that the bonding maps are (nonregular) covering maps and
such that the limit is not homogeneous.
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