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Forhigh-dimensional chemometric data, the inverse matrix (X‘X)™' problem in regression models is a difficulty. Multi-
collinearity and identification result from the inverse matrix problem. The usage of the least absolute shrinkage and selection
operator (LASSO) and partial least squares are two existing ways of dealing with the inverse matrix problem (PLS). For regressing
the chemometric data sets, we used extended inverse and beta cube regression. The existing and proposed methods are compared
over near-infrared spectra of biscuit dough and Raman spectra analysis of contents of polyunsaturated fatty acids (PUFA). For
reliable estimation, Monte Carlo cross-validation has been used. The proposed methods outperform based on the root mean
square error, indicating that cube regression and inverse regression are reliable and can be used for diverse high-dimensional

data sets.

1. Introduction

Predictions have long been a key component of modern data
science, whether in statistical analysis or machine learning.
Modern technology allows for massive data expansion, yet
this data frequently contains meaningless information,
making prediction difficult. Researchers are employing
novel methodologies and algorithms to extract information
and build robust prediction models. Predictor variables that
are either directly or indirectly related to other predictor
factors are commonly included in such models. Multiple
linear regression is widely employed in modern research
fields such as chemometrics, econometrics, and bio-
informatics [1]. Multiple linear regression models determine
the relationship between multiple independent variables
X, X5, X3, ... 5 X, Le, X, and dependent variable Y. It
can be written as Y = X3 + y, where f is the vector of model
coefficients ~ estimated by ordinary least square
B = (XtX)"'X'Y that represents the relation between re-
sponse and predictors while 4 is the error term in the model.

Certain traits or assumptions are associated with mul-
tivariate regression models for prediction. The correlation

between predictor factors and the increased number of
predictor variables are two of the characteristics. In presence
of multicollinearity and a larger number of predictors, the
inverse matrix that is (X*X)™! does not hold. In chemo-
metrics, most of the data sets faced such issues. For instance,
near-infrared (NIR) and Raman spectroscopy calibrations of
chemical components in food samples [2], the fatty acid
composition and quantities of major constituents in
a complex food model system [3] by using Raman spec-
troscopy. NIR is a vibrational spectroscopy method based on
overtones and combinations of basic vibrational modes,
whereas Raman is a vibrational spectroscopy technique
based on fundamental stretching and deformation modes
[4]. In comparison to Raman, the latter technique’s spectral
bands are usually wider, giving NIR a poor chemical se-
lectivity. The Raman and near-infrared spectroscopies are
both appropriate for food analysis that is quick and useful.
Here, measurements are feasible with fiber optics [5]. Both
techniques conduct the qualitative, quantitative, and
structural information about the samples [6]. For solving the
inverse matrix problem penalized regression models are
being used. Examples of the penalized regression models
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include ridged regression [7] and least absolute selection and
shrinkage operator (LASSO) [8]. An alternative way is to use
partial least squares [9] which utilizes the latent variables.
Another dimension is to use the Moore-Penrose generalized
inverse [10] for solving the inverse matrix issue. We have
introduced the cube penalized regression and have reused
the generalized inverse in multiple linear regression.
Moore-Penrose generalized inverse is a method for solving
singular matrices of high-dimensional regression data. Like
other well-known LASSO and ridge regression methods, the
concept of beta cube regression is established by considering
the cube of the penalty parameter. These proposed methods
are compared with reference methods i.e., LASSO and PLS
over chemometric high-dimensional data [11-13]. Even
though there is a vast literature on the topic of collinearity in
linear regression, there is still a need to enhance the out-
comes of traditional regression methods by incorporating
new regression approaches. Newly discovered methods can
save time by efficiently executing programs. Furthermore,
these techniques can produce precise and effective
outcomes.

2. Materials

Two data sets have been chosen for comparison. These data
sets are then subdivided into each response, and all re-
gression techniques will be run independently to each re-
sponse variable with independent variables.

2.1. NIR (Near-Infrared) Spectra of Biscuit Dough. The data
set contains 700 NIR spectra wavelengths (1100-2498 nm in
2nm increments) that have been utilized as predictor var-
iables. Fat, sugar, flour, and water yield percentages are
arranged into four response variables. As a univariate re-
sponse, the assessment of each answer is predicted in-
dependently [1, 14].

Figure 1 represents the flow for getting data from NIR
spectra [15].

2.2. Raman Spectra Analysis of Contents of PUFA. The fatty
acid composition across the 69 samples in the data set, when
using Raman spectroscopy to extract specific chemical in-
formation from small components in meals [16]. The fatty
acid content in this data set is provided as a percentage of the
total sample weight and total fat content. As predictors, the
samples produced 1096 wavelength variables. Figure 2 de-
picts the procedure for obtaining data from Raman spectra.

3. Methods

We have considered two reference methods LASSO and PLS
while we have proposed two methods beta cube regression
and generalized inverse regression.

3.1. Least Absolute Shrinkage and Selection Operator. The
LASSO operator stands for least absolute shrinkage and
selection operator. It has been introduced by Santosa and
Symes in 1986 [17]. It came into prominence in 2006 by

Mathematical Problems in Engineering

Tibshirani [18]. This is the type of regression model that
executes variable selection as well as regularization to in-
crease the estimation of accuracy. LASSO shrink 8 co-
efficients exactly equal to zero. LASSO is also called the L,
norm [19]. The LASSO estimator of 8 can be written as

-~ . ) P
Brasso = argming " Z (Y - XP)* subject to Z 1Bl <t,
i=1 j=1

(1)

where ¢ is the penalty on L, norm. Equation 1 can also be
written in the following form:

~ . 1 p
Brasso = argming Z”Y - XBl3 +A Z Bl (2)

=
Here, L, norm and L, norm are defined by

181, = ;-p:l |3;] and ||ﬁ||§ = ;Dzlﬁlz There is one-to-one
correspondence in ¢ and A. This relation is because of duality.
Thus, for every t> 0, there exists A> 0 such that both
problems play the same role [20]. The selection of A can be
done by cross validation. If A =0, LASSO estimator behaves
similarly to the ordinary least square. If A value rises,
a number of nonzero f3 coefficients decreases and if A value
approaches to co, then f$ becomes zero and LASSO provides
null model [21]. Due to the nondifferentiable objective
function, the LASSO does not provide a closed-form so-
lution to the problem. Still, there is a possibility of obtaining
closed-form by adding a soft threshold operator. That is how
the soft-thresholding operator is defined for LASSO
regression.

sign, (x) = x +A,if x< -4,
0,if |x| <A, (3)
x—Aif x> A

The 8 can be written as

~ . A
=1 0) L

r 1 Al p)
Brasso = ;(XtY)j t5 ifH(XtY)j <3
(4)
1 A
0if |(x'7) <3

A
=1
72

1

. 1, A
E(X Y) f;(x Y)j >

3.2. Partial Least Square (PLS) Regression. PLS is a substitute
of a multiple linear regression model [22]. It is an iterative
procedure. In PLS, the objective is to optimize the covariance
between X and Y. The PLS regression can be written as
Bors = W (P'W)™'Q. Here, P is the X-loading, Q is the Y-
loading, and W is the loading weights. PLS even performs
when data is noisy and missing.
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FiGgure 1: This figure represents the NIR spectra of biscuit dough.
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FiGure 2: This figure represents the Raman spectroscopy of fatty acids.

3.3. Generalized Inverse Regression. For Aisan x p matrix of
rank < p, then A™ of dimension p x n is called generalized
inverse matrix AA”A = A.

The generalized inverse is not unique in general, but it
always exists. As the inverse of a matrix does not exist if its
determinant becomes zero. The solution to finding the in-
verse of such a matrix is presented by an American math-
ematician, Moore in 1935, and later in 1955, a scientist
named Penrose developed a Moore inverse in a different
method [10]. Hence, is called Moore-Penrose Inverse. Al-
though Moore-Penrose generalized inverse is not unique in
the case of the nonsquare and singular matrix, it provides

accurate results in minimum time for regression data sets. In
the meanwhile, an author named Rao contributed a com-
putational method of a singular matrix called pseudo inverse
and used it to solve the least square theory to know esti-
mators of linear equations [23]. Finding the system of linear
equations is one of the most common uses of the generalized
inverse. Let Y = X then f = X"'Y, it is only true if X is
invertible matrix. If X is nonsquare, singular matrix, then its
Moore-Penrose generalized inverse can be represented as

Byiny = ginv(X'X)X'Y, (5)

where “ginv” presents the generalized inverse.



3.4. Beta Cube Regression. The concept of beta cube re-
gression is basically taken from [24] by considering the L3
penalty in ordinary least squares. By considering some
conditions, this regression method can be applied to real-life
data sets. The regression coefficients are estimated using this
approach by solving the following constraint, expressed as

R n p
Bcube = argmin Y (Y - XP)* subject to Y B <t.  (6)
B =1 j=1

Equation 6 can also be described as

-~ L P
Beube = argrﬁnmz (Y - XB* + 1) |BP. (7)
i=1

Jj=1

Equating the derivative of equation 7, we will obtain the
following equation:

Bowe = (2X'X +318) 2X'Y. (8)

B vector comes within the B after the derivation of
constraint. 8 vector in the previous equations can first be
generated randomly by normal random distribution and
against each value of A; 8 is computed. Then, from all
computed S, one optimal f is selected. This optimal f3 is
generated again and again by applying a loop in it to get the
best and minimum fS.

4. Model Building and Comparison

For model building, the model parameters are required to
tune. For this, we have used cross validation [25, 26].
Moreover, cross validation is used for the reliable com-
parison of reference regression models and proposed re-
gression models.

4.1. Cross Validation. Cross validation (CV) is a funda-
mental approach for verifying the dependability of a re-
gression model. The fundamental idea underlying CV is to
assess a model’s prediction performance using data that was
not used to develop the model. Typically, technique per-
formance is evaluated using new data. To eliminate this
reliance, the data set is divided into training and test sets
numerous times. The model parameters for all A possibilities
using the training data are derived for each split, and the
estimated parameters are evaluated on the corresponding
test set. The penalty parameter that performs best (in specific
respects) across all train sets is then selected [28].

4.2. Monte Carlo Cross Validation. Data splitting can be
carried out by Monte Carlo cross validation. In Monte Carlo
cross validation, each data point is tested arbitrary times and
partitions can be possible many times, and this method’s
result is high bias but low in variance. It splits the training
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data at random (maybe 70-30 percent, or 60-40 percent).
Data are split randomly to avoid overestimating or
underestimating the results [29].

4.3. Selection of Penalty Parameter. The penalized term in
regression is determined by a tuning parameter A, also
known as a penalty parameter. When data values are shrunk
towards a central point, such as the mean, it refers to the
degree of shrinking that happens.

4.4. Performance Estimation. We employed root mean
square error (RMSE), a method for measuring prediction
quality, to estimate the performance of regression models.
Using Euclidean distance, it predicts how far estimations
differ from actual values.

RMSE = ©)

where 7 is sample size, Y is the i actual response and Y, is
the i predicted response [30].

5. Results and Discussion

We have considered 2 data sets NIR spectra of biscuit dough
and Raman spectra analysis of contents of PUFFA for
modeling and comparison purposes. The descriptive sum-
mary of these data sets is presented in Tables 1 and 2.
Notably, the NIR data set has 4 response variables fat, flour,
sucrose, and water while the Raman data set has 2 response
variables weight and fat.

In Figure 3, the suggested technique beta cube and
generalized inverse approaches are compared to reference
methods PLS and LASSO for prediction capabilities. The fact
that the RMSE of the generalized inverse is almost equal to
zero for cookie dough components demonstrates that it
works well for each data set. In comparison to PLS, the beta
cube performs best, with an RMSE value between 0 and 0.25.
LASSO has the lowest RMSE among all approaches for fat
and flour data sets, but it does not provide adequate results
for sugar and water data sets. For all data sets of biscuit
dough, in Figure 4 the generalized inverse is performing well
for threshold =0. This means for threshold =0, the models
are including all the § coeflicients. Beta Cube is picking
different penalty parameters between 0.1 and 1 and thus
getting the mean value of A around 0.5. This means the
model is picking approximately half of the relevant § co-
efficients. The PLS model is considering optimal compo-
nents in between the range 0.1 to 0.8 and providing a mean
value of thresholds around 0.45. LASSO is predicting
suitable results for threshold values equal to 0.1 and 0.2 for
fat and flour data sets. For sucrose and water data sets,
LASSO is not performing well even at a threshold value of 1.
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TaBLE 1: A descriptive description of the NIR biscuit dough data is provided.

Responses Fat Flour Sucrose Water
Mean 18.31 16.59 48.98 14.19
Variance 3.87 15.24 7.46 2.20
Training data 50 50 50 50
Testing data 22 22 22 22

TaBLE 2: The content of polyunsaturated fatty acids is described in detail.

Responses Sample weight Fat content
Mean 4.39 33.64
Variance 7.89 251.85
Training data 48 48
Testing data 21 21
Fat Flour
1.00 1.00
0.75 0.75
g g
5 0.50 . S 050
. ~
0.25 _ 0.25 g
0.00 — 0.00
Beta Cube G. Invsere LASSO PLS Beta Cube G. Invsere LASSO PLS
Model Model
Data Data
Train Train
= Test = Test
Sucrose Water
1.00  —
3
0.75
g2 2 0.50
Z z
1 0.25 I—F‘_l
0 —— = 0.00 E
Beta Cube G. Invsere LASSO PLS Beta Cube G. Invsere LASSO PLS
Model Model
Data Data
Train Train
= Test = Test

FiGUure 3: The RMSE of components of biscuit dough for each prediction method is presented.

Other methodologies’ prediction accuracy is determined =~ RMSE value between 0 and 0.15. When compared to all other
using PLS and LASSO algorithms. The RMSE of the gen-  techniques, LASSO delivers the lowest RMSE for these
eralized inverse for fatty acid is almost equal to zero, sug-  data sets.
gesting that it performs best for each data set, as shown in 5. For all data sets of fatty acid, in Figures5, the generalized
In comparison to PLS, the beta cube performs best, with an  inverse is performing well for threshold = 0. This means for
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FiGure 4: The distribution of threshold and components of biscuit dough is presented for each prediction method.
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Fatty acids (PUFA) in percentage of total fat content
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F1GuRre 5: For each prediction approach, the distribution of fatty acid thresholds as a percentage of total sample weight and total fat content

is shown.

threshold = 0, the models are including all the j coefficients.
Beta Cube is picking penalty parameters 0.1 and 0.2. In PLS,
the models are considering optimal components in between
the range of 0.1 to 0.75. For these data sets, LASSO is not
performing well even at the threshold value of 1 (Figure 6).

6. Limitations

Only the used data set makes the suggested results valid. Fur-
thermore, the suggested approach is not robust and cannot be
guaranteed to perform well in the presence of outliers.
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F1GuRre 6: The distribution of RMSE of fatty acids as a percentage of total sample weight and total fat content is presented for each prediction

method.

7. Conclusions

In terms of high-dimensional chemometric data set pre-
diction capabilities, the presented approaches outperform.
Among the data sets modelled are NIR of biscuit dough and
Raman of polyunsaturated fatty acids. In addition, the
suggested extended inverse and Beta Cube regression
techniques yield more consistent results. These regression
methods are designed for data sets with a large number of
independent variables relative to the sample size. Further-
more, they are effective for multicollinear data sets and
identification difficulties. Future studies should delve into
the extra features and many uses of the approaches
presented.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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