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Approximate higher order polynomial inversion of the top-hat filter is developed with which the
turbulent stress tensor in Large-Eddy Simulation can be consistently represented using the filtered
field. Generalized (mixed) similarity models are proposed which improved the agreement with the
kinetic energy transfer to small scales. These similarity models are analyzed for random periodic
signals and the ensemble averaged spectra of the turbulent stress tensor and the corresponding
models are compared.

I. INTRODUCTION

The numerical simulation of transitional and turbu-
lent flows forms a field of considerable interest. Direct
numerical simulation (DNS) of such flows in simple ge-
ometries is nowadays possible, but requires a full spatial
and temporal resolution of all relevant scales of motion.
For more complex flows modeling of the equations, which
reduces the degrees of freedom of the dynamical system,
is required. A concise modeling arises in large-eddy sim-
ulation (LES) and involves a spatial convolution filter
[1–3]. Filtering the nonlinear terms in the Navier-Stokes
equations leads to contributions which contain the unfil-
tered solution and require modelling. The filter appears
explicitly in the turbulent stress tensor for which various
models have been proposed, some of which are formu-
lated independent of a specific filter. Moreover, the ap-
plication of two different filters does not alter the mathe-
matical structure of the resulting filtered equations. This
‘independence’ of the adopted filter is quite undesirable
if a detailed comparison between DNS and LES is at-
tempted e.g. to assess the quality of ‘subgrid-models’
or to separate modeling-errors from numerical errors [4].
Disregarding numerical errors, a ‘perfect’ LES would re-
quire the DNS solution and the selection of a specific
filter. Then, the filtered nonlinear terms can be eval-
uated exactly at each instant leading to uDNS = uLES
where uDNS (uLES) denotes the DNS (LES) solution and
the bar represents the filter.

From this observation one may anticipate that if uDNS
can be recovered approximately to some degree from
uLES through an appropriate ‘inversion’ of the filter-
operation, a suitable subgrid-model may be obtained for
LES. This approach involves the specific filter explicitly
and leads to generalized similarity models. Recovering
uDNS from uLES can be realized accurately for solution-
components with wave-lengths up to the filter-width.
Contributions from yet smaller scale components can not
be recovered accurately and additional physical informa-
tion is required to model the full turbulent stress tensor
[5]. In this paper we develop approximate higher order
polynomial inversion for the top-hat filter in section II
and study the resulting generalized similarity models in
section III for random periodic solutions in 1D as well as
for 3D turbulent flow in a mixing layer [3]. In section IV
we summarize our findings.

II. HIGHER ORDER POLYNOMIAL INVERSION

In this section we construct approximate higher order
polynomial inversion with which the original solution can
be recovered to some degree from the filtered solution.
We adopt the top-hat filter in real space as ‘basic’ filter
although the approach can also be developed for other
(higher order) compact support filters [6].

The filtering of a signal u is defined by u→ u:

u(x) =
∫ x+∆/2

x−∆/2

u(ξ)
∆

dξ (1)

where ∆ denotes the filter-width. The filter may also
be written as a convolution integral and the Fourier-
transform of the filter-kernel H = sin(k∆/2)/(k∆/2). It
can be shown that H(k∆) − 1 ∼ (k∆)2 if (k∆) is small
and an effective damping occurs if k∆ becomes large.

The Fourier-transform H has infinitely many roots
which implies that the filter-operation has no exact in-
verse. To reconstruct the signal u from u we introduce
approximate inversion. This is based on the requirement
that polynomials up to a certain degree are invariant un-
der the combined action of the filter and its approximate
inverse. For this purpose we introduce the inversion-
kernel JL(y) = (1/∆)

∑L
m=0 a

(L)
2my

2m with y = (x−ξ)/∆.
The coefficients {a(L)

2m} are constructed such that∫ x+∆/2

x−∆/2
dξJL((x− ξ)/∆)

∫ ξ+∆/2

ξ−∆/2
ds
s2m

∆
= x2m (2)

for m = 0, .., L which implies a linear system of equa-
tions for {a(L)

2m}. The inversion is denoted by the hat-
symbol and implies x̂m = xm for all m = 0, .., 2L+ 1.
In table I some inversion operators are listed.

TABLE I. Inversion-kernels ∆JL for the top-hat filter.

L ∆JL
0 1
1 −30y2 + 7

2
2 2310y4 − 525y2 + 127

8
3 −396396y6 + 137445y4 − 47145

4 y2 + 2399
16

1
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FIG. 1. Fourier-transform GL versus k∆ of the top-hat
filter combined with JL for L = 0 (solid), L = 1 (dashed),
L = 2 (dotted) and L = 3 (dash-dotted).

In order to quantify the effectiveness of the approxi-
mate inversion we consider the application of the top-hat
filter to u = sin(kx) followed by the application of an
approximate inversion. Since the approximate inverse
can be written as a convolution integral it is sufficient to
consider the Fourier-transform GL of the combined op-
eration since û = GLu. In figure 1 we plotted GL for in-
creasing inversion-order. If k∆ is small it may be shown
that GL = 1 − O((k∆)2(L+1)). One clearly observes a
significant improvement in the reconstructed signal if L
is increased since GL is much closer to 1 over a wider
range of k∆. In particular, an almost perfect recovery
is accomplished for modes with k∆ up to ≈ π if L ≥ 2.
In combination with the Fourier-transform H of the top-
hat filter, we also infer that the inversion operation as-
sumes large values as k∆ approaches 2π, i.e. small scale
solution-components (and numerical errors) in uLES will
be greatly amplified by the approximate inversion if L is
large. These contributions require special attention and
may necessitate the introduction of additional physical
modeling.

III. GENERALIZED SIMILARITY MODELS

In this section we formulate generalized similarity
models and compare them with the stress tensor τ =
u2−u2 if u is a random periodic signal in one dimension.
Subsequently we study the dissipative character of these
models using DNS-data obtained from turbulent flow in
a temporal mixing layer [3].

Consistent with the application of the filter in combi-
nation with a 2(L+1)-th order approximate inversion we
introduce the following class of models:

mL = û
2 − û

2
(3)

One may show that τ ∼ mL ∼ ∆2. These models
form a generalization of Bardina’s similarity model [5]
mB = u2−u2 which arises if the inversion operator is the
identity. This model is known to have a high correlation
with τ , but does not adequately describe the dissipation
of the small scales and overestimates the backscatter [3].
As will be shown, an increase in L leads to more accurate
models for τ which may resolve these shortcomings.

The properties ofmL may be illustrated with a Fourier-
analysis. We first consider u = sin(kx) for which

τ =
1
2
[1−H2(k∆)]− 1

2
[H(2k∆)−H2(k∆)] cos(2kx)

and mL = G2
L(k∆)τ i.e. an accurate model if GL(k∆) ≈

1. In figure 2 we show the amplitude (A) of the os-
cillating contribution to τ and mL which demonstrates
the effectiveness of the reconstruction as L increases.
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FIG. 2. Amplitude A corresponding to τ (solid) and
the models mL for L = 0 (dashed), L = 1 (dotted) and
L = 2 (dash-dotted) and Bardina (◦).

This single mode analysis can be extended to gen-
eral random periodic signals u =

∑
cke

ikx. Signals
consistent with a spectrum E can be obtained if ck =√
E(k)/2 exp(iθk) where {θk} are uniformly distributed

stochastic variables on [−π, π [. This yields for τ :

τ =
∞∑

n=−∞
dne

inx ; dn =
∞∑

k=−∞
ckcn−kFn,k (4)

where Fn,k = [H(n∆)−H(k∆)H((n− k)∆)] are ‘reduc-
tion factors’. For mL we find a similar result with re-
duction factors Tn,k = GL(k∆)GL((n − k)∆)Fn,k. A
specific realization of u has a corresponding spectrum
D(n) = |dn|2 + |d−n|2 of τ which can be determined from
(4). The ensemble averaged spectrum 〈D(n)〉 is given by

〈D(n)〉 =
∞∑

k=−∞
E(k)E(n − k)F 2

n,k (5)
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for τ and similarly for mL upon replacing Fn,k by Tn,k.
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FIG. 3. Averaged spectra versus n of τ (solid) and
mL with L = 0 (dashed), L = 1 (dotted), L = 2
(dash-dotted) and Bardina (◦) with ∆ = 0.01 and spec-
trum-parameters m = 4, k1 = 10 and k2 = 40.

In figure 3 an example is shown in which

E(k) = k−5/3M((k/k1)m)M(k5/3 exp(−(k/k2))) (6)

whereM(z) = 1− exp(−z). This model-spectrum shows
a behavior E(k) ∼ km if k is small, an inertial subrange
in which E(k) ∼ k−5/3 and an exponential tail for large k.
The correspondence between τ andmL is very accurate if
L is large enough and 1/∆ is chosen in the inertial sub-
range. Other model-spectra have also been considered
and give rise to similar results.

This Fourier-analysis involves the explicit analytical fil-
tering and approximate inversion of smooth known sig-
nals. In practice a solution typically is defined on a cer-
tain grid with spacing h and filtered numerically. The nu-
merical and analytical filtering are very close to eachother
for k-values up to 2π/∆ if ∆/h & 4 using Newton-Cotes
integration [6]. In a priori tests of the generalized simi-
larity models using DNS-data of turbulent flow in a tem-
poral mixing layer [3] a high correlation of mL with τ in
the turbulent regime was observed which increases with
L. In order to quantify the dissipative character of mL

we considered dynamic mixed models with mL as base
model combined with a dynamic eddy-viscosity contribu-
tion. An increase in L at constant ∆ leads to a decrease
in the eddy-viscosity, consistent with the improved re-
covery of the DNS solution. Conversely at constant L
a sufficiently large increase in ∆ may lead to an eddy-
viscosity term which is larger than the similarity part,
indicating an inaccurate reconstruction of the DNS so-
lution. The transfer of energy to small scales appears
better represented by the generalized similarity models
if the inversion order increases, provided 1/∆ is in the
inertial range. In case ∆ is too large additional dynamic
eddy-viscosity modeling is required in order to represent
the flow of energy to the subgrid scales.

IV. CONCLUSION

Generalized similarity models have been constructed
based on approximate inversion of the top-hat filter.
These (dynamic mixed) similarity models appear quite
promising for large-eddy simulation in view of the high
correlation combined with an accurate representation of
the kinetic energy transfer. The approximate inversion
adds only a small amount of numerical calculation com-
pared with other proposals. In the formulation of ref.
[1] a system of higher order partial differential equations
needs to be solved simultaneously with the LES equa-
tions. The approach in [7] is based on a second order
differential equation for u with source term u which also
increases the simulation time noticeably. Future research
is devoted to nonuniform filters in which the filter-width
∆ depends on the spatial coordinate. These filters add an
additional term to the filtered equations since ∂xu 6= ∂xu
which a priori is of comparable order of magnitude as
the turbulent stress tensor [6]. The use of the latter type
of filters is, however, required in order to systematically
develop LES for complex flows.
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