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Inverse thermal problem is applied to natural convective flow with radiative heat transfer.

The bottom wall temperature in the 2-D cavity domain is estimated by using gas tempera-

ture measurements in the flow field. The inverse problem is solved through a minimization of

an objective function using the conjugate gradient method with adjoint problem. The effects

of functional form of bottom wall temperature profile, the number and the position of

measurement points, and the measurement errors are investigated and discussed. The con-

jugate gradient method is found to work well in estimating the bottom wall temperature,

even when natural convection with radiation phenomena is involved.

1. INTRODUCTION

The inverse problem has various application possibilities in the science and
engineering fields, but the inverse problem may not always be solved due to its intrin-
sic ill-posed nature. Its ill-posed nature makes many algorithms used for direct
problems inapplicable to inverse problems, so that peculiar numerical schemes must
be applied to stabilize the solution.

Among others, there is literature that considers the inverse convection
problem. The most commonly solved problem is duct flow. In these problems, the
temperature or heat flux information is used to estimate the wall or inlet conditions.
Huang and Özisik [1] estimated the wall heat flux in forced convection. Li and Yan
determined the wall heat flux for laminar flow in an annular duct [2], and for the
turbulent flow in a parallel plate duct [3]. For a similar condition, Liu and Özisik [4]
estimated the spatially varying inlet temperature profile, while Bokar and Özisik [5]
estimated the temporally varying inlet temperature profile. Recently, Park and
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Chung [6] solved the natural convection problem. They found the heat source at
the given point by using temperature information.

On the other hand, there is limited literature relating to the inverse radiation
problem. Li [7] estimated thermal properties by considering conduction and
radiation, whereas Park and Yoon [8] and Park and Yoo [9] found the radiative
properties and the temporally varying heat source in a three-dimensional domain,
respectively. There were also inverse radiation problems which were studied by
Kim and Baek [10], Li [11], and Hong and Baek [12, 13].

Based on these previous works, a more complicated inverse problem is
considered. The natural convection problem has many engineering applications.
So, in this study, the inverse natural convection and radiation problem is considered.
Initially, there is stationary flow in the cavity domain. When only a part of the bot-
tom wall is heated up, a natural convective flow is induced because of the buoyancy.
Consequently, the fluid flow rotates in the cavity as heat is continuously transferred
from the bottom wall to fluid. Given gas temperature measurements in the flow
regime, the bottom wall temperature can be determined.

There are many methods applicable to solve the inverse problem, but the
most commonly used method is the conjugate gradient method [14]. Especially,

NOMENCLATURE

c specific heat, J=(kg �K)

dk direction of descent at kth

iteration

F bottom wall temperature

distribution

H, L height and length of domain

I radiative intensity

k conductivity, W(m �K)

M the number of sensors

g acceleration of gravity

G nondimensional radiative

intensity

N conduction to radiation

parameter

Pe, Ra, Re nondimensional variable

O, Q, R, U, V Lagrange multiplier

S objective function

T nondimensional temperature

T�
ref : reference temperature, Tw

DT sensitivity function

u, v nondimensional velocity

u�mean representative velocity,

m=(q �L)
x, y nondimensional length

variable

Y measured temperature

a thermal expansion coefficient,

K�1

b extinction coefficient, i.e., sum

of absorption and scattering

coefficient, m�1

bk search step size at kth iteration

d Dirac delta function

e convergence criterion

ex wall emissivity

ck conjugation coefficient at kth

iteration

j absorption coefficient, m�1

q density, kg=m3

qw wall reflectivity

m viscosity

r standard deviation

rSB Stefan-Boltzmann constant

s optical thickness

x random number

X solid angle

Superscript

k number of iteration
� dimensional variable

Subscript

b black body

m mth measurement point

mean average value

R radiation

w wall
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the conjugate gradient method with adjoint problem is strongly recommended
because it doesn’t require time-consuming sensitivity coefficient calculations. So,
the conjugate gradient method with adjoint problem is employed in this study.

2. FORMULATION

2.1. Direct Problem

A steady natural convection and radiation flow is considered, as shown in
Figure 1. When the bottom wall is partially heated up, the hot flow will rise due
to the buoyancy and be cooled by the cold wall. In this study, thermofluid dynamic
properties of fluid are assumed to be temperature independent, while the radiative
heat transfer is taken into account.

We define the following nondimensional variables.

x ¼ bx�; y ¼ by�; T ¼ T�

T�
ref

; u ¼ u�

u�mean

; v ¼ v�

u�mean

; p ¼ p�

qu�2mean

Ra ¼ gaT�
ref

bu�2mean

; Re ¼ qu�mean

mb
; Pe ¼ qcu�mean

kgb
; G ¼ I�

rSBT
�4
ref

; N ¼ kgb

4rSBT
�3
ref

ð1Þ

Figure 1. Problem geometry and boundary conditions.
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where the superscript asterisk means the dimensional variables. The governing
equations can be represented by [15]

qu
qx

þ qv
qy

¼ 0 ð2aÞ

u
qu
qx

þ v
qu
qy

¼ � qp
qx

þ 1

Re

q2u
qx2

þ q2u
qy2

 !
ð2bÞ

u
qv
qx

þ v
qv
qy

¼ � qp
qy

þ 1

Re

q2v
qx2

þ q2v
qy2

 !
þRaðT �TsysÞ ð2cÞ

Pe u
qT
qx

þ v
qT
qy

� �
¼ q2T

qx2
þ q2T

qy2

 !
�r �~qqR ð2dÞ

dGð~ssÞ
ds

¼ Gb �Gð~ssÞ ð2eÞ

Here, the system temperature, the divergence of radiative heat flux, and black
body intensity are, respectively, given by

Tsys ¼ 1

2
ðThot þ TcoldÞ ð3aÞ

r �~qqR ¼ j
Nb

T4 � 1

4

Z
Gð~ssÞdX

� �
ð3bÞ

Gb ¼ T4

p
ð3cÞ

In order to close the current problem by using the equation set above, the
following boundary conditions are needed.

x ¼ x0; xf ; u ¼ v ¼ 0; T ¼ Tw ¼ 300K;

y ¼ yf ; u ¼ v ¼ 0; T ¼ Tw ¼ 300K

y ¼ y0; u ¼ v ¼ 0; T ¼ FðxÞ

Gð~ssÞ ¼ ew
p
T4
boundary þ

qw
p

Z
~nn�~ss0<0

~nn �~ss0�� ��Gð~ss0ÞdX0; ð~nn �~ss0 > 0Þ ð4Þ

The radiative transfer equation mentioned above is solved using the discrete
ordinates method (S4 approximation) [15].
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2.2. Inverse Problem

For the inverse problem, the bottom temperature profile F(x) is regarded as
unknown. It is to be determined by using the temperature measurements using M
sensors located at appropriate locations (xm, ym), m¼ 1, . . . , M in the cavity. The
conjugate gradient method (CGM) is applied to minimize the following functional.

SðFðxÞÞ ¼
XM
m¼1

½Ymðx; yÞ � Tðxm; ym;FðxÞÞ�2 ð5Þ

where Ym and T are measured and estimated nondimensional fluid temperature at
the measurement locations. The estimated temperature T is the solution of the
direct problem by assuming the bottom wall temperature profile F(x). Two auxili-
ary problems are required for the successful implementation of the CGM: the
sensitivity problem and the adjoint problem.

Sensitivity problem. To obtain the sensitivity problem, it is assumed in
the direct problem that when F(x) undergoes a small increment DF(x), the velocity
u and v, the pressure p, the temperature T, and the intensity G change by Du, Dv,
Dp, DT, and DG, respectively. From this assumption, the following sensitivity
problem is obtained.

qDu
qx

þ qDv
qy

¼ 0 ð6aÞ

Du
qu
qx

þ u
qDu
qx

þ Dv
qu
qy

þ v
qDu
qy

¼ � qDp
qx

þ 1

Re

q2Du
qx2

þ q2Du
qy2

 !
ð6bÞ

Du
qv
qx

þ u
qDv
qx

þ Dv
qv
qy

þ v
qDv
qy

¼ � qDp
qy

þ 1

Re

q2Dv
qx2

þ q2Dv
qy2

 !
þRaDT ð6cÞ

Pe Du
qT
qx

þ Dv
qT
qy

� �
þ Pe u

qDT
qx

þ v
qDT
qy

� �

¼ q2DT
qx2

þ q2DT
qy2

 !
� j
Nb

4T3DT � 1

4

Z
DGð~ssÞdX

� �
ð6dÞ

dDGð~ssÞ
ds

¼ 4

p
T3DT � DGð~ssÞ ð6eÞ

And the boundary conditions are given by following equations.

x ¼ x0; xf Du ¼ Dv ¼ 0 DT ¼ 0

y ¼ yf Du ¼ Dv ¼ 0 DT ¼ 0

y ¼ y0 Du ¼ Dv ¼ 0 DTðx; y0Þ ¼ DF

DGð~ssÞ ¼ 4ew
p

T3DT þ qw
p

Z
~nn�~ss0<0

~nn �~ss0�� ��DGð~ss0ÞdX0; ð~nn �~ss0 > 0Þ ð7Þ

INVERSE NATURAL CONVECTION PROBLEM WITH RADIATION 319

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
a
e
k
,
 
S
e
u
n
g
 
W
o
o
k
]
 
A
t
:
 
1
0
:
5
8
 
1
0
 
M
a
r
c
h
 
2
0
1
0



Adjoint problem and gradient equation. To derive the adjoint problem,
Eqs. (2a)–(2e) are multiplied by the Lagrange multipliers O(x, v), Q(x, y), R(x, y),
U(x, y), and V(x, y, X). Each resulting expression is integrated over the space
domain, and then added to the right-hand side of objective function to yield the
following.

SðFðxÞÞ ¼
XM
m¼1

½Ymðx; yÞ � Tðxm; ym;FðxÞÞ�2 �
Z
x

Z
y

Oðx; yÞ qu
qx

þ qv
qy

� �
dxdy

�
Z
x

Z
y

Qðx; yÞ u
qu
qx

þ v
qu
qy

þ qp
qx

� 1

Re

q2u
qx2

þ q2u
qy2

 !" #
dxdy

�
Z
x

Z
y

Rðx; yÞ u
qv
qx

þ v
qv
qy

þ qp
qy

� 1

Re

q2v
qx2

þ q2v
qy2

 !
�RaðT � TsysÞ

" #
dxdy

�
Z
x

Z
y

Uðx; yÞ Pe u
qT
qx

þ v
qT
qy

� �
� q2T

qx2
þ q2T

qy2

 !
þr �~qqR

" #
dxdy

�
Z
x

Z
y

Z
X
Vðx; y;XÞ dGðsÞ

ds
�Gb þGðsÞ

� �
dXdxdy ð8Þ

Next, the variation DS(F(x)) is obtained. After some algebraic manipulations, the
resulting expressions are allowed to go to zero. Thereby, the following adjoint prob-
lem is obtained to determine the Lagrange multiplierO(x, v),Q(x, y), R(x, y),U(x, y),
and V(x, y, X) such that

qQ
qx

þ qR
qy

¼ 0 ð9aÞ

u
qQ
qx

þ v
qQ
qy

¼ � qO
qx

� 1

Re

q2Q
qx2

þ q2Q
qy2

 !
þQ

qu
qx

þR
qv
qx

þ PeU
qT
qx

ð9bÞ

u
qR
qx

þ v
qR
qy

¼ � qO
qy

� 1

Re

q2R
qx2

þ q2R
qy2

 !
þQ

qu
qy

þR
qv
qy

þ PeU
qT
qy

ð9cÞ

Pe u
qU
qx

þ v
qU
qy

� �
¼ � q2U

qx2
þ q2U

qy2

 !
�RRaþ 4j

Nb
T3U � 4

p
T3

Z
X
VdX

þ
XM
m¼1

2½Ym � Tg�dðx� xmÞdðy� ymÞ ð9dÞ

dVð~ssÞ
ds

¼ � jg
4Nb

U þVð~ssÞ ð9eÞ
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where d( ) is the Dirac delta function, and the boundary conditions for the above
equations are

x ¼ x0;xf Q ¼ R ¼ 0 U ¼ 0 V ¼ 0

y ¼ y0; yf Q ¼ R ¼ 0 U ¼ 0 V ¼ 0
ð10Þ

The gradient direction of the objective function is determined by

rS½FðxÞ� ¼ qU
qy

����
x;y0

ð11Þ

This is the gradient equation that relates the gradient of the functional S[F(x)] to the
Lagrange multipliers.

Iterative procedure. Assuming that all dependent variables and rS[F(x)] are
available at the kth iteration, the iterative procedure is performed as follows.
The boundary temperature at step kþ 1 is computed from

Fkþ1ðxÞ ¼ FkðxÞ � bkdkðxÞ ð12Þ

where dk is the direction of descent which is determined from

dk ¼ rS½FkðxÞ� þ ckdk�1 ð13Þ

and the conjugation coefficient ck is obtained from the Fletcher-Reeves expression
[14] such that

ck ¼
R
x frS½FkðxÞ�g2dxR

x frS½Fk�1ðxÞ�g2dx with c0 ¼ 0 ð14Þ

The search step size bk is obtained by minimizing the functional given by Eq. (5) with
respect to bk such that

bk ¼
PM

m¼1 ½Tðxm; ym;FkðxÞÞ � Ym�DTðxm; ym; dkÞPM
m¼1 ½DTðxm; ym; dkÞ�2

ð15Þ

where T (xm, ym; d
k) is the solution of the sensitivity problem which is obtained by

setting DF(y)¼ dk

Discrepancy principle for stopping criterion. If the problem contains no
measurement error, the traditional check condition is specified by

SðFkþ1ðxÞÞ < e ð16Þ

where the value of the tolerance e is chosen such that sufficiently stable solutions are
obtained. However, the observed temperature data contains some measurement
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errors. As the estimated temperatures approach the measured temperatures that
contain some errors, a large oscillation may appear during the minimization of the
function (Eq. (5)) in the inverse solution, thereby resulting in an ill-posed nature for
the inverse problem. However, the CGM may become well-posed if the discrepancy
principle is used to stop the iterative procedure. When the residuals between measured
and estimated temperatures are of the same order of magnitude of e such that

Y ðxmeasured; ymeasuredÞ � Tðxmeasured; ymeasuredÞj j � r ð17Þ

where r is the standard deviation of the measurements which is assumed to be a
constant. The following expression is obtained for stopping criteria e by substituting
Eq. (17) into Eq. (5).

e ¼
XM
m¼1

r2 ¼ Mr2 ð18Þ

Then, the stopping criterion is given by Eq. (16) with e determined from Eq. (18).

3. RESULTS AND DISCUSSION

Now, the bottom wall temperature condition is to be predicted when measure-
ments for gas temperature are available in the flow regime in the presence of convec-
tion and radiation. The computational accuracy of the present inverse analysis is
examined. A test function is considered with simulated measurements Ymeasured.
The estimated bottom wall temperature is then compared with the exact one. The
length of domain, L, is 0.1m and height, H, is 0.1m. The grid system is
241� 241. The gas properties are qg¼ 0.4975 kg=m3, cg¼ 1075 J=kg �K, kg¼
0.0524W=m �K, and j¼ 0.1m�1. The corresponding Reynolds number, Rayleigh
number, and Pelect number are about 13,000, 5,000, and 9,000, respectively.

The simulated measured gas temperature data, Ymeasured, are generated by
adding some random errors to the computed exact temperatures as follows.

Ymeasured ¼ Texact þ xr ð19Þ

where r is the selected standard deviation which takes values of 4.0K and 8.0K,
while x is a random number between �2.576�x� 2.576, which represents 99%
confidence bound for the measured temperature.

Two types of functional form for F(x) are selected as follows:

ð1Þ FðxÞ ¼ 600 sin
x� 0:045

0:01
p

� �
þ 300 ð0:045m < x < 0:055mÞ

FðxÞ ¼ 300 ð0:0m � x < 0:045m and 0:055m < x � 0:1mÞ
ð20aÞ

ð2Þ FðxÞ ¼ 700 ð0:04m < x < 0:06mÞ
FðxÞ ¼ 300 ð0:0m � x < 0:0475m and 0:0525m < x � 0:1mÞ ð20bÞ
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where x and F(x) are dimensional variables. These two test functions are shown
in Figure 2.

The direct problem is validated by solving the natural convection problem as
obtained by Poots [16]. The vertical wall of rectangular enclosure is heated, whereas
the other walls are cooled. The heat flux is calculated for various Grashof numbers.
A comparison of the results is shown in Figure 3. The present Nusselt number
distribution is almost the same as that of Poots [16].

Figure 2. Two test cases for the bottom wall temperature distribution. (a) Test function (1)—sinusoidal

variation of wall temperature and (b) test function (2)—stepwise variation of wall temperature.
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Figure 4 shows the streamline when the center part of the bottom wall is heated
up like test function (1). The hot region of the bottom wall is represented by the
black region, while the cold region of the bottom wall is represented by the gray
region. The heated gas of the center region goes up while the cooled gas near the side
wall falls down. Almost similar flow motion is shown for the heated bottom wall of
test function (2).

In order to estimate the effect of measurement error, the number of measure-
ment points and measurement positions are fixed. The number of measurement
points is 5, while the measurement positions are located at grid numbers of
(111,15), (116,15), (121,15), (126,15), and (131,15). The simulated measurement
values are listed in Table 1. These are uniformly distributed from the center pos-
ition and located 2mm above the bottom wall. Figure 5 illustrates the estimated
bottom wall temperature for the test function (1). The solid line shows the exact
solution, whereas the dotted and dash-dotted lines represent the results when the
measurement error is 4.0K and 12.0K, respectively. Regardless of measurement
error, the overall test function contour is found to be successfully estimated. Based
on this fact, the CGM method is considered to be very useful for this radiative as
well as convective flow inverse problem even with some measurement error. In this
figure, the asymmetry is also observed since each local position is inversely calcu-
lated. Figure 6 shows the estimated heat flux for test case one. While the positive

Figure 3. Variation of the Nusselt number with Grashof number.
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heat flux represents the heat flux from the gas, the negative one is the heat flux
from the bottom wall.

The effect of measurement error is also investigated for the test function (2).
Figure 7 shows the estimated bottom wall distribution. The number of sensors is 9
and the sensor locations are at grid numbers of (101,15), (106,15), (111,15),
(116,15), (121,15), (126,15), (131,15), (136,15), and (141,15). Compared with test
function (1), the results show a smaller difference when the measurement error is
4.0K and 12.0K; and, actually, the temperature distribution determined is more
inaccurate compared with the exact solution than that in test function (1) since
the temperature distribution is discontinuous.

From Figures 5 and 7, it can be found that the inverse estimation is inaccurate
when the bottom wall temperature has a stepwise variation like in test function (2).

Figure 4. The streamline in the cavity domain for test case (1).

Table 1. Simulated measured values for test case (1)

Measurement

error

Grid point number

of sensor locations

Simulated measured

values (K)

4 (111,15) 410.6

(116,15) 555.6

(121,15) 662.5

(126,15) 556.8

(131,15) 396.5

12 (111,15) 421.2

(116,15) 543.8

(121,15) 676.7

(126,15) 547.0

(131,15) 378.7
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Consequently, in the following discussion, only the test function (1) is considered for
further numerical experiments.

Figure 8 illustrates the estimated bottom wall temperature in which the number
of measurement points is changed. In this case, the measurement error is fixed at

Figure 5. Effect of measurement error for test case (1): temperature estimation.

Figure 6. Effect of measurement error for test case (1): heat flux estimation.
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4.0K. This figure shows that nine measurement sensors yield the most accurate
results. When the number of measurement sensor is only one, the results are most
inaccurate because the measurement information is insufficient.

The measurement sensor locations are vertically changed in Figure 9. In this
figure, the measurement error is fixed at 4.0K and the x-directional measurement

Figure 7. Effect of measurement error for test case (2).

Figure 8. Effect of the number of measurement points for test case (1).
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positions are also fixed at grids of 111, 116, 121, 126, and 131. The symbol, D, repre-
sents the distance from the bottom wall to the sensor locations. When the sensors
are located 2mm above the bottom wall, the inverse results are best. When the
sensor location is 3mm away from the bottom wall, the estimated temperature is
mostly poor.

The horizontal position of measurement sensors is also changed. Table 2
shows the sensor locations, while Figure 10 shows the estimated results. In this
figure, the measurement error is also fixed at 4.0K. When the sensors are all
located on the left-hand side of the center position as in cases (4) and (5), the
inverse solutions are very poor. The sensor at the center position is observed to

Figure 9. Effect of vertically different measurement positions for test case (1).

Table 2. Sensor locations in x

Case number

Grid point number (distance from the

center position (mm)), of sensor locations

Case 1 111, 116, 121, 126, 131

(�4.2, �2.1, 0, 2.1, 4.2)

Case 2 106, 111, 116, 121, 126

(�6.3,�4.2,�2.1, 0, 2.1)

Case 3 101, 106, 111, 116, 121

(�8.4,�6.3,�4.2, �2.1, 0)

Case 4 96, 101, 106, 111, 116

(�10.5,�8.4,�6.3,�4.2, �2.1)

Case 5 91, 96, 101, 106, 111

(�12.6,�10.5,�8.4,�6.3,�4.2)
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play an important role in determining the temperature distribution at the bottom
wall, as in cases (1)–(3).

4. CONCLUSION

In this study, an inverse natural convection problem with radiative phenomena
was studied using the conjugate gradient method. The heated bottom wall tempera-
ture distribution was inversely estimated. In order to examine the effects of measure-
ment error and locations on two functional forms of wall temperature distribution,
various numerical experiments were done.

In conclusion, the conjugate gradient method with adjoint problem was
found to be very successful in inversely predicting the bottom wall temperature
profile even if the thermal radiation, which was of elliptic nature in its math-
ematical behavior, was involved in the problem. However, its accuracy was
strongly dependent on the type of unknown temperature distribution. When
some discontinuities were present, the solution accuracy was severely deterio-
rated, and locations of measurement points were also observed to influence
the accuracy. As the measurement positions are located far away, the results
became more inaccurate, since the effects of measurement points on unknown
wall temperature became poor.
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