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Abstract—The attitude tracking control problem of a rigid
spacecraft with external disturbances and an uncertain inertia
matrix is addressed using the adaptive control method. The adap-
tive control laws proposed in this paper are optimal with respect
to a family of cost functionals. This is achieved by the inverse
optimality approach, without solving the associated Hamilton–
Jacobi–Isaacs partial differential (HJIPD) equation directly. The
design of the optimal adaptive controllers is separated into two
stages by means of integrator backstepping, and a control Lya-
punov argument is constructed to show that the inverse optimal
adaptive controllers achieve disturbance attenuation with
respect to external disturbances and global asymptotic conver-
gence of tracking errors to zero for disturbances with bounded
energy. The convergence of adaptive parameters is also analyzed
in terms of invariant manifold. Numerical simulations illustrate
the performance of the proposed control algorithms.

Index Terms—Adaptive control, attitude tracking control,
disturbance attenuation, integrator backstepping, inverse optimal
control, nonlinear system.

I. INTRODUCTION

ATTITUDE control systems are required to provide the
present generation of spacecraft with attitude maneuver,

tracking and pointing capabilities. The equations that govern
attitude maneuvers and attitude tracking are nonlinear and
coupled, thus, the attitude control system must consider these
nonlinear dynamics. Various nonlinear control algorithms, such
as nonlinear feedback control [1], [2], variable structure control
[3], [4], sliding control [5] and optimal control [6], etc., have
been proposed for solving the attitude tracking control problem
for spacecraft with known parameters. However, in a practical
situation, the mass properties of the spacecraft may be uncertain
or may change due to onboard payload motion, rotation of solar
arrays or fuel consumption. Therefore, the nonlinear attitude
control system should be able to adapt to uncertainties in the
mass properties and have robust capability to attenuate external
disturbances.

Adaptive control method [7] is a natural choice to deal
with uncertain parameters and has been applied to the attitude
tracking control problem of spacecraft. In [8], an adaptive
tracking law was developed; however, it is not globally valid
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because of a singularity of the attitude representation using
Rodriguez parameters. In [9], a passivity-based adaptive control
scheme was designed to achieve attitude tracking with a global
convergence. Using a singularity-free representation of space-
craft attitude and based on control Lyapunov functions, the
authors of [10] and [11] developed adaptive feedback control
laws for a zero-disturbance spacecraft to achieve asymptotic
attitude tracking with a global convergence of the tracking
errors to zero. In [12] and [13], an integrated power and attitude
control system was studied using flywheels and control moment
gyroscopes, respectively, and adaptive tracking controllers were
designed for the power/attitude tracking problem. The degree
of optimality of these adaptive controllers were not stated
explicitly. Also, the disturbance attenuation problem was not
involved in designing these adaptive attitude controllers.

The optimal control of nonlinear systems without distur-
bances boils down to the solvability of a Hamilton–Jacobi–
Bellman (HJB) equation. By solving the HJB equation directly,
an optimal controller [6] was designed for a spacecraft to track a
constant attitude trajectory. Due to its inherent robustness with
respect to external disturbances and uncertainties, nonlinear

optimal control [14] is a potential approach for solving
the optimal attitude tracking control problem with external
disturbances. However, the practical applications of op-
timal control remain open due to the difficulty in solving the
associated Hamilton–Jacobi–Isaacs partial differential (HJIPD)
equation. Various techniques have been proposed to study
particular suboptimal control problems. These techniques
were based on solving the associated HJIPD inequality by
algebraic and geometric tools [15], [16], power series [17], and
other numerical methods [18], [19].

An alternative approach to the design of robust optimal
feedback controllers is the so-called inverse optimal control
approach [20], [21], which circumvents the task of solving
the HJIPD equation and results in a feedback controller that is
optimal with respect to a set of meaningful cost functionals.
The application of this approach to the attitude control problem
was first presented by Bharadwaj et al. [22] and Krstić [23],
who designed an inverse optimal feedback controller for the at-
titude regulation problem of a rigid spacecraft without external
disturbances and uncertainties in the inertia matrix. Krstić [23]
also used Rodriguez parameters to represent the spacecraft
attitude, which is only a regional solution because the attitude
representation using Rodriguez parameters has a singularity.

In this paper, the attitude of spacecraft is represented by the
unit quaternion, which is singularity-free. The adaptive control
method and the inverse optimal control approach are combined
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to account for the uncertainty in the inertia matrix of the space-
craft, the disturbance attenuation, and the optimality of the atti-
tude controllers, for the attitude tracking control problem. The
method of integrator backstepping [20] is used to construct a con-
trol Lyapunov function and stabilizing control laws. The main
contributions of this paper relative to other works are as follows.

1) By means of an adaptive control Lyapunov function,
the nonadaptive inverse optimal control approach in
[21] is extended to uncertain nonlinear systems with
exogenous disturbances. An inverse optimal adaptive
control algorithm is presented and then applied to the
attitude tracking control problem. The attitude tracking
controllers derived in this paper are global.

2) For the zero-disturbance case, the proposed inverse op-
timal adaptive controller achieves asymptotic attitude
tracking with a global convergence of tracking errors
to zero for all initial conditions. In comparison with
the work of [8]–[13], the adaptive control law in this
paper is inverse optimal with respect to a meaningful
cost functional involving tracking errors and control
efforts.

3) When external disturbances are considered, an adap-
tive attitude tracking controller is designed that is
inverse optimal and achieves disturbance attenu-
ation without solving the associated HJIPD equation
directly. The closed-loop attitude system under the
inverse optimal adaptive tracking controller is input-to-
state stable, therefore bounded (and persistent) external
disturbances are allowed in the attitude control system
and will lead to bounded tracking errors. In compar-
ison with the suboptimal controllers in [15], [16],
[24], [25] that were designed for the attitude stabilizing
problem and required the -gain to be larger than
certain values, the inverse optimal adaptive controller
presented in this paper allows the disturbance atten-
uation level of the closed-loop system to be chosen
sufficiently small so as to achieve any level of distur-
bance attenuation at the cost of a larger control effort.

The remaining of the paper is organized as follows. In Sec-
tion II, important results on the inverse optimal adaptive control
problem are presented. In Section III, the attitude tracking con-
trol problem of a rigid spacecraft is formulated using the unit
quaternion to represent the attitude orientation. In Section IV,
we present our main results on designing inverse optimal adap-
tive control laws to solve the attitude tracking control problem.
Numerical simulations are shown in Section V to demonstrate
the performance of the adaptive feedback control algorithms.
Finally, conclusions follow in Section VI.

II. INVERSE OPTIMAL ADAPTIVE CONTROL

In this section, the inverse optimal adaptive control problem
is formulated and some important results on optimal adaptive
controller design are presented. First, the following notations
are introduced. For a vector , let
denote the Euclidean norm of and let represent the
quadratic form for a positive definite symmetric matrix

. For a matrix , we use the standard nota-

tion to denote the induced 2-norm of ,
where denotes the maximal eigenvalue of .
Let denote the Lie derivative of the Lyapunov function

with respect to , that is, .
A continuous function is said to belong to class

if it is positive definite, strictly increasing and .
It is of class if and as . A
function is of class if, for each
fixed , is of class and, for each fixed ,

. For a positive integer , the set
is a linear space consisting of square integrable -valued
functions, i.e., implies that is
finite. The commonly used cases are .

Consider the nonlinear uncertain system

(1)

where , , the mappings , and are
smooth, is a constant unknown parameter vector. Let
denote an estimate of with the estimation error ,
and for a positive definite symmetric matrix

.
Definition 1: The adaptive control problem for (1) is solv-

able if there exist a function smooth on
with , a smooth function and a positive def-
inite symmetric matrix such that the dynamic feed-
back controller

(2a)

(2b)

guarantees that the solution is globally bounded,
and as , for all .

Definition 2: [26] A smooth function
, positive definite and radially unbounded in for each ,

is called an adaptive control Lyapunov function (aclf) for (1)
if there exist a positive–definite symmetric matrix ,
a continuous function positive definite in for each

and a control smooth on
with such that satisfies

(3)

for the auxiliary system

(4)

The approach adopted in Definition 2 to stabilize (1) is to first
replace the problem of adaptive stabilization of (1) by a problem
of nonadaptive stabilization of an auxiliary system (4), and then
design an adaptive controller by applying the results got from
the auxiliary system and the concept of “certainty equivalence”
[7]. This approach allows us to study adaptive stabilization in
the framework of control Lyapunov functions.

If is an aclf and is a stabilizing control law of
the auxiliary system (4), we can construct a new Lyapunov func-
tion candidate and choose
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the tuning function of (2b) as . The
control law stabilizes the auxiliary system (4) but may
not stabilize the original system (1). However, its certainty
equivalence form is an adaptive stabilizing control law
for the original uncertain system (1). To see this, replacing
by the estimate obtained from the parameter update law (2b)
with the tuning function and applying the
inequality (3), we have

(5)

Then the “certainty equivalence” controller prevents
from destroying the nonpositivity of the Lyapunov

derivative . Based on the inequality (5), one can easily
construct a continuous weighting function positive
definite in for each , as expressed in Theorems 1 and
3, for the following inverse optimal adaptive control problem.

Definition 3: The inverse optimal adaptive control problem
for the system (1) is solvable if there exist a positive constant

, a smooth nonnegative function , a positive–definite
symmetric matrix , a real-valued function posi-
tive definite in for each , and a dynamic feedback law (2) that
solves the adaptive control problem and also minimizes the cost
functional

(6)

for each .
Definition 3 is a bit different from [26, Def. 5.12] in that a

smooth nonnegative function that penalizes the ter-
minal state is introduced in the cost functional (6) to avoid
imposing an assumption that as . In the next
two theorems we design inverse optimal adaptive controllers for
the uncertain nonlinear system (1) in the sense of Definition 3.

Theorem 1: Suppose there exist an aclf for (1), a
positive definite symmetric matrix , a positive definite
symmetric matrix and a feedback control law

that stabilizes the auxiliary system (4). Then, the dynamic feed-
back control law

together with the parameter update law

minimizes the cost functional in (6) with , where

Proof: It is a straightforward extension of [26, Th. 5.13]
to the multiple-input–multiple-output (MIMO) case with some
necessary modifications. Therefore, the proof is omitted.

Theorem 2: Suppose the nonlinear system (1) is globally
adaptively stabilizable with an aclf , a smooth control
law and a smooth tuning function , and (3) is
satisfied with , where
is positive definite and symmetric for all and . Assume that

, and are smooth and vanish at . Then,
the inverse optimal adaptive control problem with
for the augmented system

(7a)

(7b)

is also solvable with a smooth dynamic feedback control law.
Proof: It is a straightforward extension of [26, Lemma

5.20] and [7, Lemma 4.7, Cor. 4.9] to the MIMO case with some
necessary modifications. The proof is omitted here.

Remark 1: It should be noted that the augmented system in
[26, Lemma 5.20] is augmented by an integrator , which
is different from (7) and can be considered as a special case of
the system (7). A nonlinear adaptive controller is designed for
the augmented system (7) in [7, Lemma 4.7 and Corollary 4.9]
using the nonlinearity cancellation technique, which is in gen-
eral not guaranteed to be inverse optimal. Theorem 2 establishes
the inverse optimality for the augmented system (7).

In Theorems 1 and 2, we have addressed the inverse optimal
adaptive control problem for the zero-disturbance nonlinear
system (1). We then proceed to consider the inverse optimal
adaptive control problem for uncertain systems with dis-
turbances. The next theorem establishes an inverse optimal
adaptive feedback controller for such systems.

Theorem 3: Consider the nonlinear system with disturbances

(8)

and the auxiliary system

(9)

where is a Lyapunov function candidate; is a class
function whose derivative is also a class function;

denotes the transform where
stands for the inverse function of . Suppose that there
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exists a real matrix such that the
control law

(10)

asymptotically stabilizes (9) with respect to . Then, the
dynamic feedback control

(11a)

(11b)

with solves the inverse optimal adaptive control problem
for the nonlinear system (8) by minimizing the cost functional

(12)

for any , where

(13)

and is the set of locally bounded functions of .
Remark 2: If the parameter is known, the control problem

is reduced to a nonadaptive inverse optimal problem with no ,
which was considered in [21, Th. 3.1]. Theorem 3 is an impor-
tant extension of [21, Th. 3.1], as the adaptive control problem
of uncertain parameters is also considered to form an inverse
optimal adaptive control problem. The proof here is based on
that of [21, Th. 3.1], with certain significant modifications for
the adaptive case.

Proof: Since the control law in (10) stabilizes
the auxiliary system (9), it follows from Definition 2 that there
exists a continuous function positive definite in for
each such that

which brings

Since , and is positive definite,
is also positive definite in for each . Therefore,

the cost functional in (12) is a meaningful cost functional,
which puts penalties on the state , the control input
and the disturbance .

Substituting in (13) into in (12) and applying the
dynamic feedback control law (11), along the trajectories of (8)
we get

where is the
“worst-case” disturbance and we have made use of the property

. (See [21, Lemma A1].)
It was shown in the proof of [21, Th. 3.1] that

and the equal sign “ ” is satisfied if and only if . Hence,
the minimum of the cost functional in (12) is reached with

, and the dynamic feedback control law in
(11) with the tuning function minimizes the
cost functional (12).
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The following nonlinear problem, which is similar to
[21, Def. 5.1] but extended to adaptive control, is a special
case of the inverse optimal control problem in Theorem 3 if we
choose .

Definition 4: The inverse optimal adaptive control
problem for the system (8) is solvable if there exist a posi-
tive constant , a smooth nonnegative function ,
a positive–definite symmetric matrix , a real-valued
function positive definite in for each , and a dynamic
feedback law (2) that solves the adaptive control problem and
also minimizes the cost functional

(14)

for each , where is the set of locally bounded functions
of .

Remark 3: If we let , and , the
Lyapunov function in Theorem 3 solves the following
HJI equation:

Replacing by the estimate and applying the parameter up-

date law , we see that the “certainty equiv-
alence” controller achieves

-level of disturbance attenuation [14], [15] given by

for all and for each . Precisely, since
is positive definite in for each , we may define an output
function such that . Hence, the
closed-loop system has an -gain from the disturbance
to the block vector . However, it should be noted that
the above was derived with a fixed . In other words, and

vary with in general. Therefore, a different corresponds
to a different problem and a smaller does not imply a
better disturbance attenuation. Fortunately, for our attitude con-
trol problem in Section IV, we are able to prove a bound of the

-gain from to that is indeed in the order of , which can
then be made arbitrarily small at the cost of a larger . See Re-
mark 9 for details.

III. ATTITUDE TRACKING CONTROL PROBLEM

The spacecraft is modeled as a rigid body with actuators that
provide torques about three mutually perpendicular axes that
define a body-fixed frame . The attitude kinematics and dy-
namics of a rigid spacecraft can be modeled as (see [27, Ch. 4])

(15a)

(15b)

(15c)

where denotes the unit quaternion repre-
senting the attitude orientation of the spacecraft in the body
frame with respect to an inertial frame and satisfies the
constraint ; is the angular velocity of the
spacecraft with respect to the inertial frame and expressed in
the frame :

(16)

is the constant, positive–definite inertia matrix of the spacecraft
and expressed in ; and denote the control
torques and the external disturbances respectively; is the 3

3 identity matrix; the operator denotes a skew-symmetric
matrix acting on the vector and has the form

which satisfies the following important properties:

(17)

In the case of tracking a desired attitude motion, the attitude
tracking problem is formulated similarly as in the related work
[2], [3], [11]. The target attitude of the spacecraft in the body-
fixed frame with respect to the frame is described by the
unit quaternion that satisfies

. Let be the desired angular velocity of with
respect to and be expressed in the frame . The following
assumptions are made about and .

Assumption 1: The desired angular velocity and its
derivative are bounded for all , i.e., there exist some
finite constants and such that and

for all .
Let be the unit quaternion representing the

orientation error of relative to . The error quaternion
satisfies the constraint and is related to
and by quaternion multiplication [27, App. A]. The
corresponding direction cosine matrix
relating to is given by

(18)

where is the Lie group of orthogonal matrices with de-
terminant 1. It follows from [27, Ch. 4] that ,

, and . Note that both and
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stand for exactly the same physical attitude orienta-
tion, resulting in the same . The angular ve-
locity error of the frame with respect to is then
represented by .

Definition 5: Under Assumption 1, the attitude tracking con-
trol problem is to find a continuous dynamic feedback control

such that and as
.

From (18) and the constraint , it follows that
if and only if . Therefore, the attitude

tracking problem is solved if and only if and
as . The attitude tracking control problem is thus trans-
formed into the problem of stabilizing the error system and ,
and the equations that govern their motion are given by [2], [11]

(19a)

(19b)

(19c)

IV. INVERSE OPTIMAL ADAPTIVE ATTITUDE TRACKING

In this section, we present adaptive feedback control laws to
solve the inverse optimal adaptive control problem for the at-
titude tracking of spacecraft. The inverse optimality approach
used herein requires the knowledge of a control Lyapunov func-
tion and a feedback control law of a particular form. We con-
struct both of them via the method of integrator backstepping
[7], [20].

Observe that the error system in (19) is a nonlinear cascade
interconnection, that is, the kinematics subsystem (19a) and
(19b) is stabilized only indirectly through the angular velocity
vector . Stabilizing control laws for cascade systems can be ef-
ficiently designed using the method of integrator backstepping.
By this method, in (19a) and (19b) is considered as a virtual
control input and a control law is designed to stabilize the
kinematics subsystem. Subsequently, the actual control is
designed to stabilize the dynamics subsystem (19c) without
destabilizing the kinematics subsystem (19a) and (19b).

Step 1) Control of the kinematics subsystem: Consider in
the kinematics subsystem (19a) and (19b) as a virtual control
input and design the control law

(20)

where is positive definite. On the conver-
gence of and , we have the following lemma.

Lemma 1: With the control law (20), the vector in the kine-
matics subsystem converges to zero asymptotically for all initial
conditions , and as whenever the initial con-
dition .

Proof: We first proceed to show that as
whenever . Let and be the minimum and

maximum eigenvalues of , i.e., and
. Applying the virtual control law (20) to (19b) and

using the condition , we have

It follows from the comparison principle [28, Lemma 2.5, p. 85]
that satisfies the inequalities

for all . (The first one is obtained from
by letting .) Hence, for all if

. Otherwise, for all and
for all with

. In particular, when and ,
is strictly increasing for all , i.e., for

all .
Applying the fact that whenever , we

have that as . Furthermore, we can show the
global asymptotic stability of under the control
law (20) by selecting the following Lyapunov function for the
kinematics subsystem:

(21)

where the constant . The derivative of is given by

(22)

Hence, the global asymptotic stability of fol-
lows for all initial conditions except

Since both and represent
exactly the same physical attitude orientation, we can practically
conclude that the kinematics subsystem of attitude motion under
the control law (20) is globally asymptotically stable.

Step 2) Control of the full rigid-body models: We consider
that the inertia matrix is constant, but is unknown
or poorly known. In this case, we can replace it by an estimate
and update the estimate by an adaptive scheme. To isolate the
uncertain parameter, a linear operator acting
on the vector is defined by

(23)

and the parameter vector is defined by

(24)

then it follows that

(25)



LUO et al.: INVERSE OPTIMAL ADAPTIVE CONTROL FOR ATTITUDE TRACKING OF SPACECRAFT 1645

Let denote the parameter estimate of and be the estima-
tion error defined by . We also make the following
notations:

(26)

(27)

(28)

Then, it follows that

(29)

where , and
are given by

(30a)

(30b)

(30c)

is defined by (18), and is
given by

(31)

Hence, the stabilizing control problem of in (19c) with
the control input is transformed into the stabilizing control
problem of in (29) with an auxiliary control input . When

, we have that and then the kinematics sub-
system (19a) and (19b) is asymptotically stable as analyzed in
Lemma 1, that is, and subsequently as
according to (26).

Once is designed, we can also obtain the actual control
input by (27) and (28). is independent of the
tracking errors and .

In summary, we need to design a dynamic feedback control
law

and an adaptive parameter update law

to stabilize the full-model system (19a), (19b), and (29) with an
uncertain parameter .

A. Zero-Disturbance Case

First, we consider the zero-disturbance case, , which is
a special case, but has some interesting properties such as opti-
mality, asymptotic property and global convergence. Next the-
orem presents an adaptive feedback controller that achieves the
global asymptotic attitude tracking in the sense of Definition 5.

Theorem 4: Suppose that Assumption 1 is satisfied and the
external disturbance in (29) is . Let ,

and be constant, positive definite and

symmetric and let . Then, the dynamic feedback control
law

(32a)

(32b)

with satisfying

(33)

solves the adaptive attitude tracking control problem asymptot-
ically, that is, and as . Furthermore, is

bounded for all and as .
Here, the smooth matrix functions

, , and
are defined by

(34)

(35)

(36)

(37)

the matrix is of the form (16), obtained from the estimate ;
the matrices , and are given
as in (30).

Proof: We define an adaptive control Lyapunov function
for the nonlinear system (19a), (19b) and (29) with

an unknown parameter as follows:

(38)

Along the solutions of (19a), (19b), (29), and (32b) we have

(39)

To render negative, one natural choice like the adaptive
feedback control laws in [10], [11] is

which cancels all the nonlinear terms in (39), where
is a positive–definite symmetric matrix. However, this feedback
control law based on nonlinearity cancellation is not guaranteed
to be inverse optimal in general. To design an inverse optimal
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adaptive controller to solve the attitude tracking problem, we
employ the “nonlinear damping” technique as follows.

From (24) and (25), it follows that for all
. Suppose that the matrices and are

defined as in (36) and (37), respectively, such that

Applying the tuning function in (32b), the matrix
in (30b), the matrix in (30c) and some

properties of in (17), we can rewrite (39) as

where . It can be
easily shown that due to the fact that is
symmetric and and are skew-symmetric.
Therefore, for all . Introducing two
smooth matrices as in (34) and

as in (35), we have

(40)

The choice

with satisfying (33) renders

(41)

which shows that is negative semidefinite, where
is positive definite and symmetric such that

the smooth matrix is positive defi-
nite and symmetric. Since is nonincreasing and
bounded below, i.e.,

for all , and since is a constant, it follows that the signals
, , , , and are all bounded for all

. As and are bounded by Assumption 1, it follows
that , and are bounded and
consequently and are bounded for all , which
implies that and are uniformly continuous functions.

Integrating both sides of (41) with respect to and applying
, we have

Using the Barbalat’s Lemma [28, Lemma 4.2, p. 192], we con-
clude that and as , and consequently

as . Hence, the dynamic feedback control law
(32) stabilizes the attitude error system (19a), (19b), and (29)
with an uncertain parameter and zero external disturbance,
and thus the adaptive attitude tracking control problem is solved
and asymptotic tracking is achieved with the tracking errors
converging to zeros. As the matrices , and

are bounded and , it follows that
as .

Remark 4: In the absence of external disturbances, ,
both are the equilibrium points of the
system (19a), (19b), (29), and (32b) that describes the adaptive
attitude tracking control problem. Both of them stand for exactly
the same physical attitude orientation. However, it was shown
in [10] that the point is an unstable
equilibrium point. On the other hand, it can be seen from the
proof of Theorem 4 that the equilibrium point

is uniformly stable [1, Th. 4.1] under the dynamic
feedback control law (32).

Remark 5: Under the assumption that and with the
adaptive control law (32), the tracking errors and converge
to zeros asymptotically, which ensures that the attitude tracking
is achieved with a global convergence for any initial conditions.
The parameter update law (32b) represents a scheme for ad-
justing the adaptive parameter . Although the derivative value

of the adaptive parameter as , does not
necessarily converge to zero as .

Replacing by in (32b), by and by
in (32a), where the scalars , and omitting some
high-order terms in the states and , we obtain a simplified
adaptive attitude tracking controller as those in [10] and [11]

(42a)

(42b)

Using the Lyapunov function

and applying (17), we have that

where ,
,

, is the largest eigenvalue of the inertia matrix , and ,
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are defined by (36) and (37), respectively. If the controller
gains , and satisfy the following inequalities:

then . Thus, asymptotic attitude tracking is achieved for
this simplified controller (42). From the foregoing derivations,
we see that the adaptive attitude tracking controller (32) relaxes
these constraints on the gains of the simplified controller (42) and
allows the gains and to be other matrices, hence the de-
signer has much more freedom in selecting the controller gains

and . Furthermore, knowledge of the largest eigenvalue
of is not required in designing the adaptive control law (32).

Based on the state-feedback control law (32a) and the adaptive
parameter update law (32b) and applying Theorems 1 and 2, we
can easily construct a dynamic feedback control law that solves
the inverse optimal adaptive attitude tracking problem with re-
spect to a meaningful cost functional by the following theorem.

Theorem 5: Suppose that the external disturbance and
Assumption 1 is satisfied. Then, the dynamic feedback control
law

(43a)

(43b)

with any , solves the inverse optimal assignment problem
for the attitude tracking control system (19a), (19b), and (29) by
minimizing the cost functional

(44)

for each , where

(45)

and is defined by (33); is con-
stant, positive definite, and symmetric; the matrices ,

and are given as in (30).
Proof: From the proof of Theorem 4, we have that

with positive definite
in and , which implies that

from which we observe that is positive definite
in and , i.e., it is positive whenever , for each

. Therefore, the cost functional in (44) is a meaningful
cost functional, penalizing both the tracking errors and as
well as the control effort .

Substituting in (45), and

into the cost functional in (44) and applying the fact that
, we get the following expression

of along the solutions of the attitude tracking error system
(19a), (19b), (29) and the adaptive parameter update law (43b):

Substituting into in (40), we can
see that the dynamic feedback control law (43) also solves
the adaptive attitude tracking problem of the system (19a),
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(19b) and (29), i.e., , and
. It follows that .

Hence, the minimum of the cost functional is reached only
if . In other words, the control law
in (43a) is inverse optimal and minimizes the cost functional
(44). The value function of the cost functional (44) is given by

.
Remark 6: When the external disturbance is assumed

zero, under the adaptive feedback control law (43), the attitude
tracking errors and converge to zeros asymptotically for
any initial conditions, which ensures that asymptotic attitude
tracking is achieved with a global convergence.

Remark 7: The parameter in Theorem 5 represents a
degree of freedom for the design. It also follows from the proof
of Theorem 5 that for the inverse optimal adaptive control law
(43)

Maximizing the left-hand side over gives an bound on the
attitude tracking errors and the control efforts

which implies that .

B. With External Disturbances

In Theorems 4 and 5, we have presented dynamic feedback
control laws that solve the adaptive control problem and the in-
verse optimal adaptive control problem, respectively, for the at-
titude tracking problem of the system (19) without external dis-
turbances, . When external disturbances exist, em-
ploying the inverse optimal approach [21] and Theorems 1–3,
we can present a dynamic feedback control law that solves a ro-
bust inverse optimal control problem by the following theorem.

Theorem 6: Suppose that Assumption 1 is satisfied. Let the
constant matrices , and be
symmetric and positive definite. Suppose the matrices ,

, and are as defined
in (30) and (34), respectively. The smooth matrix
of (35) is redefined as

(46)

for some given . Then, the dynamic feedback control

(47)

together with the adaptive parameter update law (32b), adap-
tively stabilizes an auxiliary system that consists of (19a), (19b)
and the following equation:

(48)
with respect to the aclf

, that is, and as for all initial
conditions. Furthermore, the dynamic feedback control law

(49a)

(49b)

with any solves an inverse optimal control problem for
the adaptive attitude tracking control system (19a), (19b), and
(29) by minimizing the cost functional

(50)

for each , where is the set of locally bounded functions
of , the weighting matrix is of the same form
as (33) with the smooth matrix being replaced by
(46), and the state weight is given by

(51)

Proof: The first part of the proof is similar to that of The-
orem 4 and the second part is analogous to that of Theorem 3.
We outline the proof briefly. Considering the adaptive control
Lyapunov function in (38) and along the solutions
of (19a), (19b), (48), and (49b), we have

Applying the matrices in (30b), in
(30c), in (34) and in (46), we
can rewrite as

Then, the state-feedback control law

yields
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As analyzed in Theorem 4, we can conclude that, under the
adaptive feedback control laws (47) and (32b), the auxiliary
system (19a), (19b), and (48) is globally adaptively stable, i.e.,

, and as for any initial condition.
Also

which implies that

Therefore, is positive definite in and for each
, and the cost functional in (50) is a meaningful cost func-

tional for the attitude tracking control problem, putting penalties
on the attitude tracking errors and the control effort .

Substituting in (51), and
into the cost functional in (50), we

obtain the following expression of along the solutions of the
attitude control system (19a), (19b), (29), and (49b):

It is clear that

and the “worst-case” disturbance is given by

(52)

Hence, the minimum of the cost functional is reached only
if , i.e., the control law in (49a)
is inverse optimal and minimizes the cost functional (50). The
value function of (50) is .

Remark 8: The parameter in Theorem 6 represents a
degree of freedom for the design. Also, applying the inverse op-
timal adaptive attitude controller (49), we obtain the derivative
value as

along the solutions of (19a), (19b) and (29). It follows from the
Young’s inequality [29] that

where the “=” sign is satisfied only when
. Note that . Therefore, we have

Then, there must exist finite constants and such
that

(53)

which implies that the closed-loop system under the dynamic
feedback control law (49) is -to- -stable in the sense of
input-to-state stability (ISS) [28], [30]. In turn, it follows from
the definition of ISS that, if we denote , there
exist some continuous functions and
such that

Therefore, the inverse optimal adaptive control law (49) guar-
antees the boundedness of the tracking errors and for any
bounded (and persistent) external disturbance. We emphasize
that the inverse optimal adaptive control (49) is not restricted to
disturbances with bounded energy but any
bounded (and persistent) external disturbances are allowed.
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Remark 9: Following the discussion in Remark 3, we can
conclude that the inverse optimal adaptive control law (49)
shows inverse optimality with respect to the external
disturbance and the performance index (50) in the sense
of Definition 4. Furthermore, we can obtain a bound of the
attenuation level from directly to the tracking errors
that is in the order of . To see this, integrating both sides of
(53) with respect to we can present an bound on and
by the following inequality:

(54)

for all . Hence, the inverse optimal adaptive controller
(49) attenuates external disturbances and the -gain from
to is bounded by . Moreover, the
disturbance attenuation level can be made arbitrarily small at
the cost of a larger . A smaller will lead to a larger control

because the last term in (46) implies that the value of is
getting larger.

It follows from (54) that if , the tracking errors
and is bounded

for all , implying that , , , , and are all bounded
signals. As analyzed in the proof of Theorem 4, if , and
are bounded too, we can conclude that and are bounded and,
hence, and are uniformly continuous. Then by (54) and the
Barbalat’s lemma [28, p. 192], and as .
In other words, if and is bounded, asymptotic
attitude tracking is achieved with a global convergence for all

initial conditions. Note also that consequently.

C. Convergence of the Adaptive Parameters

As stated in Remark 5, the estimation error does
not necessarily converge to zero as . However, can
converge to its nominal value under certain conditions on the
references and .

Proposition 1: Assume that the desired angular velocity
is periodic and the external disturbance is zero. Let

(55)

Under the inverse optimal adaptive control law (43),
as , where is a constant in .

Proof: The proof is similar to that of [11, Th. 2]. Theorem
4 says that converges to a constant. To show that this
constant is in , we proceed as follows. With defined by (26)
and , we have the differential equations (19a), (19b),
(29), and (43b), where the control input is given by (43a) and
the matrices , and are defined
by (30). Since and is periodic, the closed-loop system
becomes a periodic system.

Consider the Lyapunov function candidate de-
fined by (38). Applying the matrix defined by (33), along
the trajectories of the attitude tracking control system (19a),
(19b), (29), and (43b) we obtain the derivative as

Hence, if and only if . Furthermore, when the
latter is true, if and only if because of
(29), (43a) and the fact that , vanish at

. Then it follows from LaSalle’s result on periodic
systems [31, Th. 2.8] that will converge to the set

as .
Proposition 1 states that the adaptive parameter converges

to a constant in an invariant manifold under the inverse op-
timal adaptive control law (43). The following proposition is a
straightforward corollary of Proposition 1, stating when the es-
timate can converge to its nominal value as .

Proposition 2: Assume that the desired angular velocity
is periodic and the external disturbance is zero. Let

and suppose that

... (56)

where 6 is the dimension of . Then, under the adaptive control
law (43), as .

Proof: The proof is similar to that of [11, Prop. 2]. Since
Proposition 1 implies , and (56) implies ,
we have as .

As a result, the inertia matrix can be completely identified
for the zero-disturbance case if the reference signal is peri-
odic and the rank condition (56) is satisfied. We emphasize that
when the external disturbance is persistent and bounded,
the adaptive parameter might not converge to even if the rank
condition (56) holds, as shown in the simulations that follow.

V. SIMULATION RESULTS

An attitude maneuver control problem of a rigid-body micro-
satellite is simulated to demonstrate the performance of the
adaptive feedback attitude tracking controller. The desired atti-
tude motion of the spacecraft is described in the body frame .
The spacecraft is assumed to have the inertia matrix of
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Fig. 1. Relative rate error ! in the zero-disturbance case.

Fig. 2. Orientation error � in the zero-disturbance case.

which is unknown to the controller in the frame . Arbitrarily,
we suppose that the desired angular velocity to be tracked
is given in the body frame by

With this choice of the reference signal , it is easy to check
that (56) is satisfied so that it is possible to verify the conver-
gence of the adaptive parameter .

In the numerical simulations of the adaptive attitude tracking
controllers, we assume that the initial attitude orientation of
the spacecraft in the frame is given by the unit quaternion

, the initial angular velocity
of the spacecraft in is
and the initial value of the adaptive parameter is given by

. The gains of
the inverse optimal adaptive control law (43) are chosen to be

, , and . Without loss
of inverse optimality, we choose .

At first, we consider the zero-disturbance case. Applying the
inverse optimal adaptive attitude controller (43), we illustrate
the simulation results as Figs. 1–6, from which we conclude that
the adaptive attitude tracking is achieved when the inertia matrix

Fig. 3. Control effort u given by (43a) with � = 2.

Fig. 4. Actual control effort u = u � u .

in the body frame is uncertain. Figs. 1 and 2 depict the time
histories of the tracking errors and , which show that the in-
verse optimal adaptive tracking controller (43) achieves a good
performance on the attitude tracking with satisfactory tracking
errors and and a rapid convergence. Fig. 3 plots the time his-
tory of the control effort given by (43a). The actual control
effort that is input to the actual attitude system
is shown in Fig. 4, where is given by (27). Figs. 5 and 6 in-
dicate that the estimate of the adaptive parameter converges
to the nominal value , i.e., in accordance with Propo-
sition 2. It is observed from the numerical simulations that the
attitude tracking is achieved rapidly, while the convergence of
the adaptive parameter takes a much longer time. The smaller
the matrix , the more time it takes for the convergence of the
adaptive parameters.

Next, we consider the tracking control problem in the pres-
ence of external disturbance . The disturbance model is de-
scribed by
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Fig. 5. Adaptive parameters ^� , ^� , and ^� .

Fig. 6. Adaptive parameters ^� , ^� , and ^� .

Fig. 7. Relative rate error ! with external disturbances.

where in the second bracket denotes an impulsive
disturbance with magnitude 1 and width seconds, activating
at the time point . Letting and applying the robust
inverse optimal adaptive control law (49), we present the simu-
lation results as in Figs. 7–10. Figs. 7 and 8 depict the time his-
tories of the rate error and the attitude error , from which we
conclude that the adaptive tracking control law (49) can achieve
the adaptive attitude tracking with satisfactory tracking errors

Fig. 8. Orientation error � with external disturbances.

Fig. 9. Adaptive parameters ^� , ^� , and ^� .

Fig. 10. Adaptive parameters ^� , ^� , and ^� .

and and a good convergence even in the presence of ex-
ternal disturbances. Figs. 9 and 10 indicate the estimate of the
adaptive parameter . When , the disturbances work
persistently and then we can see that does not converge to
the nominal value even using the same adaptive update law.
If we get rid of the external disturbances and let for

, simulations show that the adaptive param-
eter estimates will converge back to the nominal value .
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Fig. 11. Relative rate error ! for various attenuation levels.

Fig. 12. Tracking error � for various attenuation levels.

Finally, to illustrate the capacity of disturbance attenuation,
three different attenuation levels are considered, ,

and . The simulation results are shown in
Figs. 11 and 12 in terms of and , the third components of
the tracking errors and . As expected, a smaller yields a
better attenuation of the external disturbance .

VI. CONCLUSION

An attitude tracking control system is indeed a nonlinear cas-
cade system. Therefore, stabilizing such a system can be effi-
ciently achieved using the method of backstepping. Employing
the adaptive control method and the inverse optimal control ap-
proach, this paper has presented inverse optimal adaptive con-
trol laws to solve the attitude tracking problem of a rigid space-
craft with an uncertain inertia matrix. In the zero-disturbance
case, the inverse optimal adaptive controller proposed in this
paper achieves asymptotic attitude tracking of the desired atti-
tude motions with a global convergence for all initial conditions.
The control law is inverse optimal with respect to a meaningful
cost functional that consists of penalties on both the tracking er-
rors and the control effort. When external disturbances are
considered, we have presented a robust adaptive attitude con-
trol law, which is not only inverse optimal with respect to a
meaningful cost functional that penalizes the tracking errors and
the control effort, but also forms a closed-loop attitude system

that has a guaranteed -gain from the external disturbances
to the tracking errors. Any given level of disturbance at-
tenuation can be achieved at the cost of a larger control effort.
Such optimal control laws have been obtained without solving
the Hamilton-Jacobi-Isaacs equation directly. Numerical simu-
lations have been done to verify the performance of the proposed
attitude tracking algorithms.
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[23] M. Krstić and P. Tsiotras, “Inverse optimal stabilization of a rigid space-
craft,” IEEE Trans. Autom. Control, vol. 44, no. 5, pp. 1042–1049, May
1999.



1654 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 11, NOVEMBER 2005

[24] C.-D. Yang and C.-C. Kung, “Nonlinear H flight control of general
six-degree-of-freedom motions,” J. Guid., Control Dyna., vol. 23, no. 2,
pp. 278–288, 2000.

[25] J. Kuang and A. Y. T. Leung, “H feedback for attitude control of
liquid-filled spacecraft,” J. Guid., Control Dyna., vol. 24, no. 1, pp.
46–53, 2001.
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