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Abstract: To intercept a maneuvering target in a two-dimensional plane, the inverse optimal guidance
law based on zero effort miss (ZEM) and disturbance observer (DO) is studied in this paper. Firstly,
the relative kinematics equation is simplified to obtain the missile-target ZEM and its dynamics.
In order to enhance the robustness of the inverse optimal guidance law, the integral of the ZEM is
introduced as a new state to form an augmented system with the original system based on the idea of
proportional integral (PI) control. Then, the target maneuver acceleration is assumed as the unknown
external disturbance of the guidance augmented system, which is estimated by the DO. Based on the
estimated value of DO and the backstepping method, the inverse optimal guidance law is designed to
reduce the adverse effect of the disturbance on the guidance system. Finally, simulations are designed
to verify the effectiveness of the inverse optimal guidance method based on DO.

Keywords: zero effort miss; inverse optimal guidance; disturbance observer; proportional integral
control; backstepping method

1. Introduction

Missiles are modern weapons guided by guidance systems that actively fly and ulti-
mately destroy the targets according to the control systems. Compared to the traditional
weapons, missiles have guidance systems that can autonomously capture targets, mea-
sure relevant information, plan flight paths, and complete predetermined strike missions.
Generating the missile’s flight path is the primary role of the missile guidance system.
The missile guidance system comprises a detection equipment and a guidance command-
forming device [1]. The detection equipment measures the relative position and motion
information or the deviation between the flight trajectory and the predetermined trajectory
of the missile. The command-forming device calculates and generates guidance commands
according to the deviation and measured information to determine the trajectory required
for the missile to attack the target successfully [2]. Obviously, missile guidance law plays
an essential role in missile guidance and control.

There have been many research results on missile guidance laws so far. Since the
1950s, optimal guidance theory has been extensively studied with the development of
aerospace technology. The main problem of optimal guidance research is to design the
optimal guidance law, which minimizes the given performance index and satisfies specific
constraints according to the system model and the guidance objective. A penalty term was
added to the performance index in [3] to constrain the change in guidance command and to
avoid the acceleration saturation. The concept of ZEM was first proposed by Newman [4],
which was used to characterize the miss between the missile and the target during guidance
without control. In [5], a weighted ZEM guidance law with direct applicability to various
operational objectives was proposed. For the long-range interception problem, a new ZEM
prediction method was derived in [6] by considering gravitational acceleration at different
stages, using modern control theory and Newton’s binomial theorem. In [7], a data-driven
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online estimation algorithm based on ZEM and remaining flight time was proposed to
estimate the ZEM effectively and accurately. In [8], a ZEM-based guidance was employed
in the highly nonlinear orbital transfer and raising problems, indicating that the designed
ZEM guidance was more suitable for dealing with uncertainties and perturbations. For
Mars precision landing, a new two-phase ZEM feedback guidance strategy was proposed
in [9], which directly accommodated a variety of constraints and requirements, such as
retrorocket thrust magnitude limits, obstacles over the surface of Mars, and abnormal initial
conditions.

In the context of optimal missile guidance, the performance function is generally taken
as a weighted function of miss, guidance energy, and flight time. However, there is no
analytical solution to the corresponding optimal guidance problem for general guidance
systems. Namely, the optimal guidance problem can only be approximately solved by
numerical methods. In order to avoid solving the Hamilton–Jacobi–Bellman (HJB) equation
directly, the inverse optimal guidance method has been proposed. The so-called inverse
optimal guidance determines the performance function reversely, which makes the specific
form of guidance law optimal. The inversely determined performance function generally
has practical physical meaning. In [10], an inverse optimal control method was studied
for the spacecraft rotational motion. The technique solves an HJB equation and leads
to the obtaining of a particular form for the stable control law and for the significant
performance index. For the helicopter longitudinal state’s stabilization problem with
external disturbances, an inverse optimal control law based on the nonlinear DO was
proposed in [11], and the stability of the closed-loop system was proved, which avoided
the difficulty of solving the HJB equation directly. By introducing inverse optimal control
into the design of guidance law, the efficiency of solving guidance law can be improved.

The concept of ZEM was introduced in the field of guidance. The ZEM-based optimal
guidance technology was widely used in guidance law design. An optimal quadratic
performance index with an exponential time-varying gain was designed in [12]. The
convergence speed of ZEM and the robustness of time-varying gain optimal guidance
law were improved. In [13], an optimal interception angle guidance law using gravity for
extra-atmospheric interception in the case of ballistic terminal processes was proposed. A
finite-time optimal regulation problem was established by taking the instantaneous ZEM
and cut-off angle error, as the system states. Inspired by the works above, it is promising to
introduce inverse optimal control and ZEM into the missile guidance law design.

For the practical engineering application of missiles, it is not enough considering
only the guidance under ideal conditions. Guidance is affected by various factors such as
model uncertainties, target maneuvers, crosswinds, etc. These factors affect the guidance
accuracy and the guidance efficiency to a certain extent. Therefore, researchers have
developed disturbance estimate techniques based on feedforward compensation to estimate
the disturbances that can not be measured directly. For a class of uncertain systems with
unknown frequency sinusoidal disturbances, a disturbance suppression method based on
frequency factor observer and full-dimensional state observer was proposed in [14]. A new
finite time extended state observer was proposed in [15] for nonlinear systems affected by
external disturbances, one has also proved that all error signals can converge to zero in
finite time. A control scheme based on DO and backstepping control was proposed in [16]
for strictly feedback nonlinear systems to suppress disturbances. Considering a nonlinear
uncertain system affected by external disturbances, a controller based on adaptive fuzzy
DO was designed in [17] to improve the robustness of the system. Therefore, it is necessary
to consider the influence of disturbance in the design of the guidance law.

Some scholars have applied the disturbance estimate technology to the missile guid-
ance field and proposed a series of effective guidance laws. Dwivedi [18] proposed a
method to accurately estimate the states and ZEM of non-maneuvering or maneuvering
targets, which can ensure fewer misses and lower guidance energy loss. Liu [19] designed a
composite guidance law based on DO for the missile guidance system with input saturation.
The improved saturation function was used to deal with saturation, while the DO was used
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to estimate unknown target acceleration and model uncertainty. For a strong nonlinear
missile system with external disturbance, Yang [20] developed an anti-disturbance com-
posite guidance controller based on DO in three channels of missile pitch, roll, and yaw,
respectively. For the three-dimensional large maneuvering target interception problem,
the unknown target acceleration was regarded as an external disturbance in [21], and a
DO was designed to estimate it. Combined with the sliding mode guidance method, it can
achieve accurate target interception. Since the DO technology is efficient, it is instrumental
to reducing the adverse effect of target acceleration by designing the DO for the guidance
method proposed in this paper.

Motivated by the disturbance estimate technique and inverse optimal guidance, a
backstepping method with DO and inverse optimal guidance is designed in this article.
The DO is designed to estimate the acceleration of the maneuvering target. The conver-
gence of ZEM and its integral is confirmed by inverse optimal guidance and Lyapunov
stability analysis.

The main contribution of this paper is to design a new robust inverse optimal guidance
law based on disturbance observer and ZEM. The simulation experiment is designed to
compare it with two guidance laws, and it is proved that the guidance law designed in this
paper has advantages in guidance accuracy and guidance time. By changing the system
parameters, changing the initial conditions, and adding feedback noise, the robustness of
the guidance law designed in this paper is further demonstrated.

The following structure of this paper is divided into five sections. Section 2 introduces
the two-dimensional guidance model, linearizes the model, and gives the guidance target.
Section 3 treats an unknown target maneuver as an external disturbance and designs a DO
for obtaining an accurate target maneuver estimate. In Section 4, the ZEM-based inverse
optimal guidance law is derived in detail. Section 5 designs simulations to verify the
effectiveness of the guidance method. Section 6 summarizes the full paper.

2. Problem Statement and Modeling

The relative kinematics model of the missile-target interception system is introduced
in this section, which forms the foundation for designing inverse optimal ZEM guidance
law. To simplify the analysis and derivation in the below, the following assumptions are
given [22]:

Assumption 1. The missile and the target are both assumed as ideal point-mass;

Assumption 2. The guidance process takes place in a two-dimensional plane;

Assumption 3. The flight speed of the missile and the target remains unchanged;

Assumption 4. Both the target acceleration and the derivative of the target acceleration are
bounded.

Figure 1 demonstrates the relative motion schematic diagram for the missile-target
interception system in a two-dimensional plane [23]; M denotes the missile and T denotes
the target, XIOYI denotes the initial inertial frame, α stands for the line-of-sight (LOS)
angle, θM represents the missile’s flight path angle, θT represents the target’s flight path
angle, r stands for the relative distance between the missile and the target, aM stands for
the normal acceleration of the missile and aT stands for the normal acceleration of the
target, VM represents the missile’s flight speed, while VT represents the target’s flight speed.
According to the principle of relative kinematics, the missile-target interception system
relative kinematics equation can be obtained as [24].
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Figure 1. Two-dimensional guidance geometry.

ṙ = VT cos(θT − α)−VM cos(θM − α)

α̇ =
VT sin(θT − α)−VM sin(θM − α)

r

(1)

In terms of the principle of kinematics, the kinematic equation of the missile is written
as [1]

ẋM = VM cos(θM)

ẏM = VM sin(θM)

θ̇M =
aM
VM

(2)

where (xM, yM) denotes the missile’s position coordinate in the initial inertial frame XIOYI .
According to the principle of kinematics, the kinematic equation of the target is

obtained as [1]
ẋT = VT cos(θT)

ẏT = VT sin(θT)

θ̇T =
aT
VT

(3)

where (xT , yT) represents the target’s position coordinate in the initial inertial frame XIOYI .
To obtain the ZEM in real-time, the reference inertial frame XROYR is obtained by

rotating the initial inertial frame XIOYI by a constant angle α0 counterclockwise. During
the actual guidance process, the change in the LOS angle is small. Therefore, α0 is generally
selected as the initial value of LOS angle such that cos(α− α0) ≈ 1, sin(α− α0) ≈ 0.

The relative kinematic equation can be linearized in the YR direction in the reference
inertial frame as [22]

ẏ = v

v̇ = aTα − aMα

(4)

where y stands for the component of relative distance r in the YR direction, v denotes
the component of closing velocity Vr = ṙ in the YR direction, aTα and aMα stand for the
components of the normal acceleration of the missile and of the target in the direction
perpendicular to the LOS, respectively, being defined as

aMα = aM cos(θM − α)

aTα = aT cos(θT − α)
(5)
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Remark 1. It can be demonstrated that (5) is unavailable when {|θM − α| = π
2 , |θT − α| = π

2 }.
Hence, the feasible region S is given as S = {θM, θT , α : |θM − α| 6= π

2 , |θT − α| 6= π
2 }.

We define z as the ZEM of the linearized model (4). According to [5], the ZEM of
system (4) can be expressed as

z = y + vtgo (6)

where tgo = t f − t stands for the remaining guidance time and t f represents the guidance
end time. More generally, we call tgo the time-to-go.

Since the speeds of the missile and of the target remain unchanged, the remaining
guidance time can be approximately determined as [24]

tgo = −
r
ṙ

(7)

Remark 2. In the actual guidance process, if the relative distance r is less than a specific constant
value rm (rm > 0), then the guidance process can be considered to be over [1]. Therefore, the
time-to-go has a lower bound, namely, there exists a positive constant N > 0 such that tgo ≥ N.

Since ZEM is a predictor, ZEM guidance has the property of prediction. The ZEM
of the guidance system is the difference between the predicted longitudinal distance and
the actual longitudinal distance produced by the current longitudinal velocity during the
current remaining time-to-go. The purpose of ZEM guidance is to make z approaches zero,
namely, to make the prediction difference approaches zero, which ensures the effectiveness
of the guidance. A ZEM-based feedback guidance command can be designed according to
the property of ZEM. The convergence of ZEM can be guaranteed, thereby ensuring the
accuracy and the effectiveness of the ZEM guidance.

Remark 3. Regarding the effectiveness of ZEM guidance, the following analysis is given. Due to
the small change in the LOS angle, the LOS angle in Figure 1 can be linearized as [22]

α = α0 +
y
r

(8)

Considering (4) and (7), the derivative of α can be expressed as

α̇ =
ẏr− ṙy

r2 =
−vṙtgo − ṙy

(ṙt2
go)

=
y + vtgo

−ṙt2
go

(9)

Invoking (9) and (6), we can obtain that

z = −ṙα̇t2
go (10)

In the guidance phase, we hope to make z approach zero through the guidance method, namely,
α̇→ 0. Thus, in the guidance stage, the ZEM guidance is similar to the parallel approach guidance.

Considering (4), (6), tgo = t f − t and taking the derivative of z with respect to time,
one yields

ż = ẏ + vṫgo + v̇tgo

= v + (aTα − aMα)tgo − v

= −tgoaMα + tgoaTα

(11)

In the guidance process, it is hoped that ZEM should quickly converge to the neighbor-
hood of zero within the time-to-go so that the relative distance r converges to zero, ensuring
the effectiveness of ZEM guidance. Equation (11) indicates that the unknown acceleration
of the target will affect the dynamics of ZEM, thereby affecting the convergence of ZEM.
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To enhance the robustness of the ZEM-based inverse optimal guidance law, referring
to the idea of PI controller, the integral of ZEM is introduced as a new state. We define the
state variables of the augmented system as [25]

x1 =
∫ t

0
zdt, x2 = z (12)

We define the disturbance d = tgoaTα , the composite guidance law u∗ = aMα , and we
derive the state variables x1 and x2 of the augmented system. Then the dynamics of the
augmented system can be written as

ẋ1 = x2

ẋ2 = −tgou∗ + d
(13)

The idea of this article is to regard the target maneuver as an external disturbance. A
disturbance observer is designed to estimate the unknown target acceleration. Then, the
estimated values are feedforwarded into the guidance channel to suppress the adverse
effects of the unknown target acceleration on the guidance system. On this basis, the
integral of the ZEM is regarded as a new system state of augmented system. A ZEM-based
inverse optimal robust guidance law based on the augmented system is designed. The
guidance accuracy is guaranteed, and the system robustness is improved.

In order to design the composite ZEM-based inverse optimal guidance law, firstly, two
lemmas are given.

Lemma 1 (See the work in [10]). Consider a nonlinear affine in the control system as

ẋ = F(x) + G(x)u (14)

where x ∈ Rn contains the system states, u ∈ Rm contains the system inputs, F : Rn → Rn is
a smooth nonlinear vector-valued function with F(0) = 0, and G : Rn → Rn×m is a nonlinear
matrix-valued function. Then, the specific form of state feedback control law is

u = −c ·Q−1(x)[LGV(x)]T (15)

where LGV(x) = ∂V
∂x G(x) is optimal with respect to the following performance index function

J =
∫ ∞

0

[
h(x) + uTQ(x)u

]
dt (16)

where c ≥ 2 is a constant parameter to be designed, Q(x) > 0 is a positive definite matrix,
V(x) represents a positive definite radially unbounded Lyapunov function of the nonlinear affine
system (14), while h(x) is given by

h(x) = −2c
{

LFV(x)− LGV(x)Q−1(x)[LGV(x)]T
}

+ c(c− 2)LGV(x)Q−1(x)[LGV(x)]T
(17)

Lemma 2. If there exists a C1 continuous and positive definite Lyapunov function V(x) such
that [26]

v1(‖x‖) ≤ V(x) ≤ v2(‖x‖) (18)

for a control system with bounded initial conditions with

V̇(x) ≤ −ρ1V(x) + ρ2 (19)

where v1, v2 : Rn → R are class K functions, and ρ1 and ρ2 are positive constants, then the
solution of state x(t) is uniformly bounded.
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3. Design of the Disturbance Observer

For the guidance augmented system (13) with unknown target maneuvering, assuming
that the states of the system can be measured, the disturbance observer is designed as [16]

ξ̇ = −k1ξ − k2
1x2 + k1tgou∗

d̂ = ξ + k1x2
(20)

where ξ denotes the internal state of the disturbance observer, k1 > 1 is a parameter to be
designed, and d̂ is the observed value of d.

We define the estimated error ed of the disturbance d as

ed = d̂− d (21)

Considering (13) and (20), the derivative of ed can be obtained as

ėd = ˙̂d− ḋ = ξ̇ + k1 ẋ2 − ḋ

= −k1ξ − k2
1x2 + k1tgou∗ + k1(−tgou∗ + d)− ḋ

= −k1(ξ + k1x2) + k1d− ḋ

= −k1d̂ + k1d− ḋ

= −k1ed − ḋ

(22)

The derivative of d can be written as

ḋ = tgo ȧTα − aTα (23)

Because aTα , ȧTα and tgo are all bounded, the derivative of d is also bounded. Namely, there
exists a constant ∆ > 0 such that |ḋ| ≤ ∆.

Defining the Lyapunov function Vd(ed) =
1
2 e2

d and taking the derivative of Vd, we have

V̇d = ed ėd

= −k1e2
d − edḋ

≤ −(k1 − 0.5)e2
d + 0.5ḋ2

≤ −(k1 − 0.5)e2
d + 0.5∆2

(24)

It can be concluded from (24) and Lemma 2 that the observed error ed is uniformly
bounded.

We define the estimation error associated with the target’s acceleration as eT = âTα −
aTα ; in terms of the definition of disturbance d, the following relationships hold

âTα =
d̂

tgo
, eT =

ed
tgo

(25)

Since the time-to-go tgo has a lower bound and the estimation error of the disturbance
observer is uniformly bounded, the estimation error associated with the target’s acceleration
is also uniformly bounded.

4. Design of the Inverse Optimal Guidance

In terms of Lemma 1, it is essential to know the Lyapunov function of the system (13)
in order to design an inverse optimal guidance law based on disturbance observer and
ZEM. Considering the particularity of the system (13), its Lyapunov function is constructed
by using the backstepping guidance method given in [27].
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Step 1. To design the inverse optimal guidance law based on DO and ZEM, we define

e1 = x1 − x1d (26)

e2 = x2 − λ (27)

where x1d = 0 and λ ∈ R is a virtual control law that should be designed.
Taking the derivative of e1 and invoking (13), we can obtain

ė1 = ẋ1 = x2 (28)

Considering (27), Equation (28) can be written as

ė1 = λ + e2 (29)

The virtual control law λ is designed as

λ = −k2e1 (30)

where k2 > 0 is a parameter to be computed.
By substituting (30) into (29), ė1 can be obtained as

ė1 = −k2e1 + e2 (31)

Selecting the Lyapunov function of the system (31) as V1(e1) =
1
2 e2

1 , differentiating V1
with respect to time, one yields

V̇1 = e1 ė1 = −k2e2
1 + e1e2 (32)

Step 2. Considering (27) and (30), the derivative of e2 is written as

ė2 = ẋ2 − λ̇

= ẋ2 + k2 ė1

= −tgou∗ + d + k2(−k2e1 + e2)

= k2e2 − k2
2e1 − tgou∗ + d

(33)

To ensure the stability of the error system, the composite guidance law u∗ is designed as

u∗ = uopt + ud (34)

where uopt denotes the inverse optimal guidance law that should be designed, while ud
represents the feedforward guidance law.

Substituting (34) into (33), the derivative of e2 can be obtained as

ė2 = k2e2 − k2
2e1 − tgouopt + d− tgoud (35)

Obviously, the feedforward guidance law term ud can be designed as

ud =
d̂

tgo
(36)

Invoking (36) and (21), Equation (35) becomes

ė2 = k2e2 − k2
2e1 − tgouopt − ed (37)
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The composite guidance law u∗ = u∗(ed, e1, e2) is to be designed to make the error
systems (37) and (31) boundedly stable; for this purpose, the candidate Lyapunov function
V is chosen as

V(ed, e1, e2) = Vd + k2
2V1 +

1
2

e2
2 (38)

Taking the derivative of V with respect to time, V̇ can be written as

V̇ = k2
2e1 ė1 + e2 ė2 + ed ėd (39)

The specific form of the optimal guidance law (15) is designed according to Lemma 1.
Considering that the composite guidance law is designed into two parts, the derivative of
V can also be divided into three parts, which can be written as

V̇ = LFV + LGV · uopt + LGV · ud (40)

Considering (37) and (39), the coefficient term of the inverse optimal guidance law
uopt can be expressed as

LGV =
∂V
∂e2

G = −tgoe2 (41)

In terms of the specific form of (15), uopt can be designed as

uopt = −cQ−1(x1, x2)LGV

= cQ−1(x1, x2)tgoe2
(42)

where Q(x1, x2) > 0 is a design function.
Substituting (22), (31), and (37) into (39), V̇ can be computed as

V̇ = k2
2e1(−k2e1 + e2) + e2

(
k2e2 − k2

2e1 − tgouopt − ed

)
+ ed

(
−k1ed − ḋ

)
= −k3

2e2
1 − k1e2

d + k2e2
2 − e2ed − edḋ− tgoe2uopt

≤ −k3
2e2

1 − k1e2
d + k2e2

2 + 0.5e2
2 + 0.5e2

d + 0.5e2
d + 0.5ḋ2 − tgoe2uopt

= −k3
2e2

1 − (k1 − 1)e2
d + (k2 + 0.5)e2

2 + 0.5ḋ2 − tgoe2uopt

≤ −k3
2e2

1 − (k1 − 1)e2
d + (k2 + 0.5)e2

2 + 0.5∆2 − tgoe2uopt

(43)

The design, the analysis and the stability proof of the inverse optimal guidance law
based on a disturbance observer and ZEM can be summarized as the following theorem.

Theorem 1. Considering that the guidance system (13) under external disturbance satisfies As-
sumptions 1–4, the disturbance observer is designed as (20), the composite guidance law u∗ is
designed as (34), the feedforward guidance law ud is designed as (36), and the Lyapunov function is
choosen as (38). We choose c = 2, and the inverse optimal guidance law uopt is designed as

uopt =
(k2 + k3 + 0.5)e2

tgo
(44)

where k3 > 0 will be designed by minimizing the following performance functional

J =
∫ ∞

0

[
h(x1, x2) + uT

optQ(x1, x2)uopt

]
dt (45)

where

Q(x1, x2) =
ctgoe2

uopt
=

2t2
go

k2 + k3 + 0.5
≥ 0 (46)
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Considering (17), we have

h(x1, x2) = (2k2 + 2k3 + 1)(x2 + k2x1)
2 ≥ 0 (47)

Then, the composite guidance law

u∗ = uopt + ud

=
(k2 + k3 + 0.5)e2

tgo
+

d̂
tgo

(48)

can make the system (13) boundedly stable.

Proof of Theorem 1. Bringing the inverse optimal guidance law (44) into (43), one yields

V̇ ≤ −k3
2e2

1 − (k1 − 1)e2
d + (k2 + 0.5)e2

2 + 0.5∆2 − tgoe2uopt

= −k3
2e2

1 − (k1 − 1)e2
d + (k2 + 0.5)e2

2 + 0.5∆2 − tgoe2
(k2 + k3 + 0.5)e2

tgo

= −k3
2e2

1 − (k1 − 1)e2
d − k3e2

2 + 0.5∆2

≤ −ρV + C

(49)

where
ρ = max {k1 − 1, k3

2, k3}
C = 0.5∆2

(50)

According to Lemma 2, the equilibrium point x1 = x2 = 0 is boundedly stable.

5. Simulation

To verify the effectiveness of the inverse optimal guidance law designed in this paper
on the missile and target interception system, we design simulations and give a specific
analysis in this section. The simulation parameters are given in Table 1. Note: The symbol
p(0) denotes the initial value of p. In all simulation scenarios, we limit the magnitude
of the missile’s normal acceleration to no more than twice the magnitude of the target’s
normal acceleration.

Table 1. Simulation parameters.

Parameter Value Unit

VM 544 m/s
VT 408 m/s

r(0) 5000 m
(xM(0), yM(0)) (0, 0) m

α(0) 0 Degree
θM(0) 45 Degree
θT(0) 60 Degree

α0 0 Degree
k1 20
k2 5
k3 5

In order to reflect the effectiveness of the inverse optimal guidance law mentioned
in this article, a contrast analysis is performed with augmented proportional navigation
(APN) [22] and parallel approaching guidance (PAG) [23].

5.1. Constant Maneuver

The target maneuver is taken as a constant maneuver, with the amplitude of 9g, where
g is the gravity acceleration. In the guidance process, state x1, state x2, disturbance and
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its estimation, target’s acceleration and its estimation, normal accelerations of the missile
and of the target, the relative distance, and trajectories of the missile and of the target are
shown in Figures 2–8.

Figure 2 displays the change in the integral of ZEM during the interception process.
It can be seen from Figure 2 that state x1 can quickly converge to the neighborhood of
0, which meets the design requirements of the inverse optimal guidance law. Figure 3
is a schematic diagram of the change in the ZEM during the interception process. From
Figure 3, we can remark that state x2 quickly converges to the neighborhood of 0, which
meets the design requirements of the inverse optimal guidance law.
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Figure 2. The change of the integral of ZEM with constant maneuver.
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Figure 3. The change in ZEM with constant maneuver.
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Figure 4. The disturbance d and its estimation d̂ with constant maneuver.

Under the action of the disturbance observer, the disturbance and its estimation are
shown in Figure 4. This figure demonstrates that the unknown disturbance can be estimated
quickly and accurately.
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Figure 5. The target’s acceleration aTα
and its estimation âTα

with constant maneuver.
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Figure 6. The normal acceleration of the missile aM and the target aT with constant maneuver.
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Figure 7. Time evolution of the relative distance between the missile and the target with constant
maneuver.

Figure 5 demonstrates the maneuvering target acceleration and its estimation. It
can be concluded from Figure 5 that the designed disturbance observer can achieve fast
and effective tracking, but the tracking error suddenly increases just before the end of
the guidance. However, unlike the precise estimation of the disturbance in Figure 4, the
estimation of the target acceleration deviates rapidly from the actual value just before the
end of the guidance. Considering the relationship eT = ed/tgo between the disturbance
estimation error and the target acceleration estimation error, we can see that at the moment
before the end of the guidance, although the disturbance estimation error ed will quickly
converge to the small neighborhood of zero, the target acceleration estimation error eT
will grow rapidly due to the gain

(
1/tgo

)
→ ∞. Although the estimation of the target

acceleration has a large deviation immediately before the end of the guidance, because the
moment when the deviation occurs is close to the end of the guidance, and according to
Figure 6, the normal acceleration of the missile does not change due to the sudden change
in the estimated value of the target maneuvering acceleration. A sudden change occurs so
that it does not adversely affect the guidance system.
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Figure 8. The flight trajectories of the missile and the target with constant maneuver.

Figure 7 presents the relative distance between the missile and the target, while
Figure 8 demonstrates the trajectory during the guidance process. Figures 7 and 8 prove
that the missile achieves precise interception of the target. Comparing Figure 7 with
Figures 2 and 3, it can be found that at around 1.8 s, ZEM and its integral are close enough
to 0. After 1.8 s, ZEM changes around 0, so the predicted value is always about 0, but
due to the limitation of relative distance and relative speed, it takes a considerable time to
achieve interception; however, ZEM and its integral are always about 0 to ensure the final
successful intercept.

Under the action of inverse optimal guidance and disturbance, the guidance accuracy
and the guidance time of different guidance methods are shown in Table 2. The guidance
accuracy is defined as the minimum relative distance between the missile and the target
during the guidance process, and the guidance time is defined as the time corresponding
to the minimum relative distance between the missile and the target. It can be concluded
from Table 2 that compared to APN and PAG, the inverse optimal guidance law designed
in this paper can effectively improve the guidance accuracy under the premise that the
guidance time is close.

Table 2. Performances of different guidances with constant maneuver.

Guidance Accuracy/m Gidance Time/s

ZEM guidance 0.55 8.7
APN 3.84 8.8
PAG 2.83 8.8

To verify the robustness and applicability of the guidance method proposed in this
paper, we changed the parameters and initial conditions and carried out a series of simula-
tions with the same constraints on the acceleration amplitude. The simulation results are
shown in Tables 3 and 4.

From Tables 3 and 4, it can be seen that the guidance law designed in this paper is
robust and widely applicable. Guidance time is not affected by system parameters, and
changes in initial conditions can affect guidance time. All simulation results show that
effective interception is achieved.

When the feedback command is corrupted by white noise with noise power 1, the
corresponding changes in x1, x2, and r are shown in Figures 9–11. As can be seen from
Figures 9–11, x1, x2, and r all converge. Therefore, the guidance law designed in this paper
is still valid.
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Table 3. Performances of different parameters with constant maneuver.

k1 k2 k3 Gidance Time/s Guidance
Accuracy/m

25 5 5 8.77 0.41
30 5 5 8.77 0.40
35 5 5 8.77 0.39
40 5 5 8.77 0.40
45 5 5 8.77 0.37
20 5 5 8.77 0.29
20 10 5 8.77 0.12
20 15 5 8.77 0.02
20 20 5 8.77 0.14
20 25 5 8.77 0.26
20 5 10 8.77 0.41
20 5 15 8.77 0.41
20 5 20 8.77 0.41
20 5 25 8.77 0.41
20 5 30 8.77 0.41

Table 4. Performances of different initial conditions with constant maneuver.

VM VT r(0) θM(0) θT(0) Gidance
Time/s

Guidance
Accu-

racy/m

510 408 5000 45 60 9.21 0.16
544 374 5000 45 60 8.41 0.03
544 408 6000 45 60 9.83 0.53
544 408 5000 30 60 8.78 0.85
544 408 5000 45 50 9.41 0.46
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Figure 9. The change of the integral of ZEM with white noise and constant maneuver.
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Figure 10. The change in ZEM with white noise and constant maneuver.
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Figure 11. Time evolution of the relative distance between the missile and the target with white noise
and constant maneuver.

5.2. Square Wave Maneuver

The target maneuver is taken as a square wave maneuver with a magnitude of 9 g and
a period of 4 s. In the guidance process, state x1, state x2, disturbance and its estimation,
target’s acceleration and its estimation, normal accelerations of the missile and of the target,
and the relative distance between the missile and the target, as well as the trajectories of
the missile and the target, are depicted in Figures 12–18.

It can be seen from Figures 12 and 13 that the sign of the target acceleration changes,
while the estimated values of the disturbance also change suddenly. The change in dis-
turbance estimate leads to the change in guidance command u∗. Finally, the ZEM and its
integral deviate from 0 suddenly. However, after the deviation, it will quickly converge to 0.
At the end of guidance, the zero effort miss and its integral converge to the neighborhood
of 0, which indicates that the inverse optimal guidance law designed in this paper is still
valid.
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Figure 12. The change of the integral of ZEM with square wave maneuver.
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Figure 13. The change in ZEM with square wave maneuver.

With the use of disturbance observer, the disturbance and its estimated value is shown
in Figure 14. Figure 15 presents the target’s acceleration and its estimated value. It can be
seen from Figures 14 and 15 that the estimation accuracy of the disturbance observer is
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good enough. As the time-to-go decreases, the estimation error of the target’s acceleration
increases and, at the same time, the estimated value of the target’s acceleration deviates
from the actual value.
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Figure 14. The disturbance d and its estimation d̂ with square wave maneuver.

Figure 15. The target’s acceleration aTα
and its estimation âTα

with square wave maneuver.

From Figure 16, it can be seen that the normal acceleration of the interceptor does not
suddenly change due to the sudden change in the target maneuvering acceleration, so it
will not cause adverse effects on the guidance system.
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Figure 16. The normal acceleration of the missile aM and the target aT with square wave maneuver.

As can be seen from Figures 17 and 18, the interceptor achieves accurate interception
of the target.

Table 5 shows the guidance accuracy and the guidance time of the guidance method
proposed in this paper and APN and PAG. It can be concluded from Table 5 that compared
to APN and PAG, the inverse optimal guidance law designed in this paper has advantages
over APN and PAG in terms of guidance accuracy. By analyzing the two maneuvering
forms, it can be found that the guidance law designed in this paper has better robustness.
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Figure 17. Time evolution of the relative distance between the missile and the target with square
wave maneuver.
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Figure 18. The flight trajectories of the missile and the target with square wave maneuver.

Table 5. Performances of different guidances with square wave maneuver.

Guidance Accuracy/m Guidance Time/s

ZEM guidance 0.22 27.85
APN 1.03 27.85
PAG 0.87 27.88

To verify the robustness and applicability of the guidance method proposed in this
paper, we changed the parameters and initial conditions and carried out a series of simula-
tions with the same constraints on the acceleration amplitude. The simulation results are
shown in Tables 6 and 7.

Table 6. Performances of different parameters with square wave maneuver.

k1 k2 k3 Gidance Time/s Guidance
Accuracy/m

25 5 5 27.85 0.49
30 5 5 27.85 0.49
35 5 5 27.85 0.42
40 5 5 27.85 0.0.43
45 5 5 27.85 0.41
20 5 5 27.85 0.41
20 10 5 27.85 0.41
20 15 5 27.85 0.44
20 20 5 27.85 0.48
20 25 5 27.85 0.54
20 5 10 27.85 0.47
20 5 15 27.85 0.49
20 5 20 27.85 0.46
20 5 25 27.85 0.41
20 5 30 27.85 0.42
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Table 7. Performances of different initial conditions with square wave maneuver.

VM VT r(0) θM(0) θT(0) Gidance
Time/s

Guidance
Accu-

racy/m

510 408 5000 45 60 36.18 0.54
544 374 5000 45 60 23.23 0.34
544 408 6000 45 60 33.33 0.24
544 408 5000 30 60 27.85 0.40
544 408 5000 45 50 31.04 0.18

From Tables 6 and 7, it can be seen that the guidance law designed in this paper is
robust and widely applicable. Guidance time is not affected by system parameters, and
changes in initial conditions can affect guidance time. All simulation results show that
effective interception is achieved.

When the feedback command is corrupted by white noise with noise power 1, the
corresponding changes in x1, x2, and r are shown in Figures 19–21. As can be seen from
Figures 19–21, x1, x2, and r all converge. Therefore, the guidance law designed in this paper
is still valid.
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Figure 19. The change of the integral of ZEM with white noise and square wave maneuver.
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Figure 20. The change in ZEM with white noise and square wave maneuver.
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Figure 21. Time evolution of the relative distance between the missile and the target with white noise
and square wave maneuver.
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6. Conclusions

Aiming at the problem of maneuvering target interception, an inverse optimal guid-
ance law based on a disturbance observer and ZEM is proposed in this paper in two-
dimensional form. Firstly, the model is linearized, and the integral of ZEM is introduced
to obtain the augmented system. Then a disturbance observer is designed to estimate
the acceleration of the maneuvering target, and it is compensated by the feedforward
technique. The Lyapunov function is constructed based on the backstepping method, an
inverse optimal guidance law being designed. Finally, the simulation experiment shows
that compared with APN and PAG, the guidance method designed in this paper improves
the guidance accuracy significantly. For constant-value maneuvers, the guidance accuracy
is improved by 85% and 80% compared to APN and PAG, respectively. For square wave
maneuvers, the guidance accuracy is improved by 78% and 75% compared to APN and
PAG, respectively.
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