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ABSTRACT

In this paper, we study inverse optimization problems defined as follows: Let S

denote the set of feasible solutions of an optimization problem P, let c be a specified cost

vector, and x0 be a given feasible solution. The solution x° may or may not be an optimal

solution of P with respect to the cost vector c. The inverse optimization problem is to

perturb the cost vector c to d so that x0 is an optimal solution of P with respect to d and

lid - clip is minimum, where lid - clip is some selected Lp norm. In this paper, we consider

the inverse linear programming problem under the L 1 norm (where we minimize

Ejj ldj -cj, with J denoting the index set of variables xj) and under the Lo norm

(where we minimize max{ldj - cjl: j E J}). We show that the dual of the inverse linear

programming problem with the L 1 norm reduces to a modification of the original

problem obtained by eliminating the non-binding constraints (with respect to x) and

imposing the following additional lower and upper bound constraints: Ixj - xj < 1 for all

j J. We next study the inverse linear programming problem with the Loo norm and

show that its dual reduces to a modification of the original problem obtained by

eliminating the non-binding constraints (with respect to x) and imposing the following

single additional constraint: jEj xj - x9° < 1. Finally, we show that (under reasonable

regularity conditions) if the problem P is polynomially solvable then the inverse versions

of P under L1 and L, norms are also polynomially solvable. This result uses ideas from

the ellipsoid algorithm and, therefore, does not lead to combinatorial algorithms for

solving inverse optimization problems.

1 Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

2 Sloan School of Management, MIT, Cambridge, MA 02139, USA.
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1. INTRODUCTION

Inverse problems have been studied extensively by researchers working with

geophysical data. Tarantola [1987] describes inverse problems in the following manner:

"Let S represent a physical system. Assume that we are able to define a set of model

parameters which completely describe S. These parameters may not all be directly

measurable (such as the radius of Earth's metallic core). We can operationally define

some observable parameters whose actual values hopefully depend on the values of the

model parameters. To solve the forward problem is to predict the values of the

observable parameters, given arbitrary values of the model parameters. To solve the

inverse problem is to infer the values of the model parameters from given observed

values of the observable parameters."

In terms of the above notation, a typical optimization problem is a forward

problem since it identifies the values of observable parameters (decision variables) given

the values of the model parameters (cost coefficients, right-hand side vector, and the

constraint matrix). An inverse optimization problem consists of inferring the values of

the model parameters (cost coefficients, right-hand side vector, and the constraint matrix)

given the values of observable parameters (decision variables). In the past few years,

there has been sufficient interest in inverse optimization problems in the operations

research community, and a variety of inverse optimization problems have been studied by

researchers.

In this paper, we study inverse optimization problems defined in the following

manner. Let P denote an (instance of an) optimization problem with S as the set of

feasible solutions and c as the cost vector; that is, P = min{cx : x E S}. Suppose that x0 E

S. The solution x ° may or may not be an optimal solution of P with respect to the cost

vector c. For a cost vector d, we define P(d) as a variation of problem P with the cost

vector c replaced by d, that is, P(d) = min{dx : x E S}. An inverse optimization problem

with Lp norm is to identify a cost vector d such that x° is an optimal solution of P(d) and

lid - clp = [ jEJ Idj - cj P ]l/p is minimum, where J denotes the index set of variables xj.

In words, the inverse optimization problem is to perturb the cost vector c to d so that x is

an optimal solution with respect to the perturbed cost vector and the cost of perturbation

is minimum. In Section 2, we describe several applications of the inverse optimization

problems and give references for some other applications.
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We briefly survey the available research on inverse optimization problems.

Geophysical scientists were the first ones to study inverse problems. The book by

Tarantola [1987] gives a comprehensive discussion of the theory of inverse problems in

the geophysical sciences. Within the mathematical programming community, the interest

in inverse optimization problems was generated by the papers due to Burton and Toint

[1992, 1994] who studied inverse shortest path problems arising in seismic tomography

used in predicting the movement of earthquakes. In the past few years, inverse

optimization problems have been studied rather intensively. The table shown in Figure 1

summarizes the references on inverse optimization of relevance to mathematical

programmers.

Figure 1. Reference on inverse optimization problems.

We will now briefly survey our research on inverse optimization. In

Sokkalingam, Ahuja and Orlin [1996], we studied the inverse spanning tree problem and

developed an O(n3) algorithm under the L1 norm and an O(n2) algorithm under the Lo

norm, where n is the number of nodes in the network. Subsequently, Ahuja and Orlin

[1998a] suggested an O(n2 log n) algorithm to solve the inverse spanning tree problem
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Inverse shortest path problem Burton and Toint [1992, 1994], Burton,

Pulleyblank, and Toint [1997], Cai and Yang

[1994], Xu and Zhang [1995], Zhang, Ma, and

Yang [1995], and Dial [1997]

Inverse maximum capacity path problem Yang and Zhang [1996]

Inverse spanning tree problem Ma, Xu, and Zhang [1995], Sokkalingam, Ahuja,

and Orlin [1995], and Ahuja and Orlin[1998a]

Inverse sorting problem Ahuja and Orlin [1997]

Inverse shortest arborescence problem Hu and Liu [1995]

Inverse bipartite k-matching problem Huang and Liu [1995a]

Inverse minimum cut problem Yang, Zhang, and Ma [1997], and

Zhang and Cai [1998]

Inverse minimum cost flow problem Huang and Liu [1995b],

and Sokkalingam [1996]

Inverse matroid intersection problem Cai and Li [1995]

Inverse polymatroidal flow problem Cai, Yang, and Li [1996]



under L1 norm. Ahuja and Orlin [1997] studied the convex ordered set problem, a

generalization of the inverse sorting problem.

In this paper, we consider inverse optimization problems under the L 1 and Loo

norms. We first consider inverse linear programming problem under the L 1 norm (that is,

we minimize jaJ idj -cj ) and the LX norm (that is, we minimize max{ldj - cjl j E J}.

Finally, we consider general inverse optimization problems under L1 and Loo norms. The

second part of this paper, Ahuja and Orlin [1997b] consider the following special cases of

the inverse linear programming problem under the L1 and Lo norms: the shortest path

problem, the assignment problem, the minimum cut problem, and the minimum cost flow

problem. In an another paper, Ahuja and Orlin [1997c] consider inverse network flow

problems for the unit weight case as in the second part of the paper and develop

combinatorial proofs that do not rely on the inverse linear programming theory.

The major contributions made in this paper are as follows:

1. We show that if the problem P is a linear programming problem, then its inverse

problem under the L 1 norm is also a linear programming problem. The dual of the

inverse problem has the same objective function as P and the constraint set comprises

only the binding constraints of P (with respect to the solution x0 ) plus the following

additional lower and upper bound constraints on the variables: x - 1 < x x 0 + 1

for all j, 1 < j < n (or, alternatively, Ixj - x9 1 < 1, for all j, 1 < j < n).

2. We show that if the problem P is a linear programming problem, then its inverse

problem under the Lo norm is also a linear programming problem. The dual of the

inverse problem has the same objective function as P, and the constraint set comprises

only the binding constraints of P (with respect to the solution x0 ) plus the following

additional constraint: xj - xjl < 1.

3. We also study the weighted versions of L1 and Loo norms, where the objective

functions is to minimize EjJwjl dj -cj , and to minimize max{wjldj - cjl j E J},

respectively, for some non-negative weights wj's.
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4. We present a unified approach to solve inverse linear programming problems. When

the linear programming results are adapted for special cases, such as network flow

problems, we match or improve many results obtained by several researchers.

5. We show that (under reasonable regularity conditions) if the problem P is polynomially

solvable, then inverse versions of P under the L1 and L, norms are also polynomially

solvable. This result uses ideas from ellipsoid algorithm and, therefore, does not lead

to combinatorial algorithms for solving inverse optimization problems.

2. APPLICATIONS OF INVERSE OPTIMIZATION PROBLEMS

In this section, we briefly describe several applications of inverse optimization

problems collected from the literature and provide references for a few other applications.

Geophysical Sciences

Geophysical scientists often do not have all the model parameters, since they may

be very difficult or impossible to determine (such as the radius of Earth's metallic core).

They may have some estimates of model parameters and values of the observable

parameters are used to improve the estimates of the model parameters. Consequently,

inverse problems have been extensively studied by geophysical scientists (see, for

example, Neumann-Denzau and Behrens [1984], Nolet [1987], Tarantola [1987], and

Woodhouse and Dziewonski [1984]). An important application in this area concerns

predicting the movements of earthquakes. To model earthquake movements, consider a

network obtained by the discretization of a geologic zone into a number of square cells.

Nodes corresponding to adjacent cells are connected by arcs. The cost of an arc

represents the transmission time of certain seismic waves from corresponding cells, and

is not accurately known. Earthquakes are then observed and the arrival times of the

resulting seismic perturbations at various observation stations are observed. Assuming

that the earthquakes travel along shortest paths, the problem faced by geologists is to

reconstruct the transmission times between cells from the observation of shortest time

waves and a priori knowledge of the geologic nature of the zone under study. This

problem is an example of an inverse shortest path problem. Inverse problems also arise

in X-ray tomography where observations from a CT-scan of a body part together with a

priori knowledge of the body is used to estimate its dimension. The book by Tarantola

[1987] gives a comprehensive treatment of the theory of inverse problems and provides

additional applications.
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Isotonic Regression

An important application of inverse problem arises in isotonic regression. The

isotonic regression problem is defined as follows: Given a = {al, a2, ... , an} E R n, find x

= {xl, x2 , ... , xn}e Rn, so as to minimize Ilx - allp = [j=1 Jxj - ajlP]l/P for some positive

integer p subject to the isotonicity (or monotonicity) constraints x1 < x2 < .... < xn. The

isotonic regression problem is an important problem in regression. The isotonic

regression problem arises in statistics, production planning, and inventory control; the

books by Barlow et al. [1972] and Robertson et al. [1988] describe several applications.

As an application of isotonic regression, consider a fuel tank where fuel is being

consumed at a slow pace and measurements of the fuel tank are taken at different points

in time. Suppose that these measurements are al, a2, ... , an. Due to the errors in the

measurements, these numbers may not be in the non-increasing order despite the fact that

that the true amounts of fuel remaining in the tank are non-increasing. However, we need

to determine these measurements as accurately as possible. One possible way to

accomplish this could be to perturb these numbers to are x1, x2, ... , xn so that x1 2 x2

>... xn and the cost of perturbation given by C 1(xl-al) + C2(x 2-a 2) + ... + Cn(xn-an) is

minimum, where Cj(xj)'s are convex functions that give the cost of perturbing the data.

(This problem may be transformed to the isotonic regression problem by replacing xj's by

their negatives.) This is clearly an example of an inverse problem where a priori

knowledge about the system (that the observations must be in the non-increasing order) is

used together with the observations (a1 , a2 , ... , an) to estimate the model parameters (x1,

x2, .. , xn). Ahuja and Orlin [1997] describe highly efficient algorithms to solve the

isotonic regression problem, which they also refer to as the convex ordered set problem.

Traffic Equilibrium

In a transportation network, users make a number of trips between different

origin-destination pairs. Travel costs are flow dependent and as the flow increases so

does the travel costs. Drivers usually select their routes in a way so as to minimize their

travel cost (or time). Under certain idealized assumptions, the resulting flow in such a

network is a user equilibrium flow, where no user can decrease its travel cost unilaterally

by changing its route (see, for example, Sheffi [1985]). This user equilibrium flow does

not necessarily correspond to the most efficient way of using the transportation network.
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A transportation planner may want to enforce a flow that minimizes the total travel cost

over the network; such a flow is called the system optimal flow. A user equilibrium flow

may or may not be the same as the system optimal flow. If not, then tolls may be

imposed on some road segments of the route so that the user equilibrium flow becomes

identical to the system optimal flow. If we denote by x0 the system optimal flow, by x*

the user equilibrium flow, then imposing tolls amounts to changing travel costs so that

the user equilibrium changes and becomes the same as the system optimal flow x0 . This

is an example of the inverse optimization problem. In case, the objective is to impose the

minimum total toll to make the user equilibrium flow identical to the system optimal

flow, then the resulting problem is an instance of the inverse optimization problem under

the L1 norm. In case, the objective is to minimize the maximum toll imposed on any

road, then the resulting problem is an instance of the inverse optimization problem under

the L, norm. As a matter of fact, these two problems are instances of the inverse

multicommodity flow problem where flow between different origin-destination pairs is

treated as a different commodity. This problem has been studied by Burton and Toint

[1992, 1994] and Dial [1997].

A Metric for Determining Deviation from Optimality

Consider a difficult optimization problem which, due to its intractability, cannot

be solved optimally for reasonably large size instances. Consequently, we use a heuristic

method to solve this problem. To assess the quality of a heuristically developed solution,

one needs metrics, also known as performance measures. The most widely accepted

performance measure for assessing the quality of a solution is the relative error, given by

[z' - z*]/z*, where z* is the optimal solution value and z' is a value of the solution

obtained by some heuristic method. (In practice, z* is replaced by a more readily

obtainable lower bound on z*.) We can use ideas from inverse optimization to define an

alternative measure of performance that can provide useful insights in practice. We say

that x0 is -optimal if the cost of each variable can be perturbed by at most £% of its

original value and x0 can be made optimal for the perturbed cost vector. This inverse

perspective is natural in cases where the objective function is only known approximately,

as is typically the case in practice.

Multi-Criteria Optimization

Inverse optimization problems have potential applications in multi-criteria

optimization and data envelopement analysis. Consider a multi-criteria optimization
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problem with different objectives zl(x), z2 (x), ... , Zk(X). One standard technique to

solve multi-criteria optimization problem is to reduce it to a single criterion optimization

problem by considering a weighted sum of different objectives; suppose that w1, w2, ... ,

wk is a given set of weights. Now suppose that we are given a proposed solution xo , and

we ask the question how to perturb theses weights by a minimum amount so that the

solution x is optimal for the weighted problem. This problem is an example of the

inverse optimization problem.

Stability Analysis

Inverse optimization is related to stability analysis which is a type of post-

optimality analysis similar to sensitivity analysis. Typically in sensitivity analysis, one

parameter (such as the cost of one variable) is allowed to change, but in the stability

analysis, multiple parameters are allowed to change simultaneously. Consider an

optimization problem P(c) with c as the cost vector and let x ° denote an optimal solution

of P(c). For a given Lp norm, the stability problem is to determine the largest value of £

such that x0 is optimal for P(d) for all values of d satisfying lid - clip < . In the inverse

problem, we are given a solution x which is not optimal for P(c) and we want to

determine the smallest value of E such that x0 is optimal for P(d) for some d satisfying lid

- clip < . The relationship between the stability problem and the inverse optimization

problem can also be explained in geometric terms. Let D denote the polyhedron of all

cost vectors d such that x ° is optimal for P(d). In the stability problem, we are given a

point c E D, and we wish to determine a ball of largest diameter with its center at c and

which is fully contained in D. In the inverse optimization problem, we are given a point c

0 D, and we wish to find the smallest distance between c and the polyhedron D. We refer

the reader to the survey papers by Sotskov et al. [1995, 1997] and Greenberg [1998] for

additional material on stability analysis.

3. FORMULATING THE INVERSE LINEAR PROGRAMMING PROBLEM

In this section, we study the inverse linear programming problem under the L1

norm. We will consider the inverse version of the following linear programming

problem, which we shall subsequently refer to as LP:

Minimize Ej J cjxj, (3.1 a)
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subject to

j4EJ aij Xj 2 bi, for all i E I, (3.lb)

where J denotes the index set of the decision vector x, and I denotes the index set of the

constraints. Notice that we have not imposed any non-negativity constraints on the

variables x. If there are any such constraints, they can be added as explicit constraints

and included in the constraint set (3. lb).

Let us associate the dual variable rni with the ith constraint in (3.lb). The dual of

LP is the following linear program:

Maximize EieI bii, (3.2a)

subject to

Xi I aij 7ci = cj, for all j E J, (3.2b)

Pi 0, for all i E I. (3.2c)

One form of the linear programming optimality conditions states that the solutions

x and rc are optimal for their respective problems if x is feasible for (3.1), 7i is feasible

for (3.2), and together they satisfy the following condition:

EjJ cj xj = i~ I b i rci. (3.3)

An alternative to (3.3) is the complementary slackness conditions, which state that

if a primal (or, dual) constraint is non-binding, that is, has a positive slack, then the

corresponding dual (or, primal) variable must be zero. Alternatively,

for any i I, if jj aij xj > b i then Pi = 0. (3.4)

Let x ° be a feasible solution of (3.1). We want to make x0 an optimal solution of

(3.1) by perturbing the cost vector c. Recall from Section 3 that we denote by LP(d) the

linear program (3.1) where the cj's have been replaced with dj's. We call d inverse

feasible with respect to x ° if x is an optimal solution of LP(d). We denote by INV(LP, x0 ,

p) the inverse of LP with respect to the solution x0 under the Lp norm. Now notice that
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xO is an optimal solution of LP(d) if and only if there exists a dual solution is that satisfies

(3.2b) and (3.2c) with cj replaced by dj and the pair (x0 , ir) satisfies the complementary

slackness conditions. This observation yields the following property that gives a

characterization of inverse feasible cost vectors.

Property 1. A cost vector d is inverse feasible to LP with respect to the solution x0 if and

only if there exists a dual solution ;r satisfying the following conditions:

C1. The dual solution c satisfies the conditions in (3.2b) and (3.2c) with cj replaced by

dj.

C2. The pair (x0 ) satisfies the optimality conditions.

Let D(LP, x0 ) denote the set of all inverse feasible cost vectors of LP. Property 1

together with (3.3) implies that D(LP, x) consists of all cost vectors d's satisfying the

following conditions:

CI aij 7Ci = dj, for all j E J, (3.5a)

jEjcj j = i I bi i, (3.5b)

PCi > 0, for all i I. (3.5c)

Alternatively, Property 1 together with (3.4) implies that D(LP, x) consists of all d's

satisfying:

iI aij Pri = dj, for all j J, (3.6a)

7i > 0, for all i E I, (3.6b)

for any i E I, if EjEj aij xj > bi then ri = 0. (3.6c)

Let B denote the index set of all binding constraints with respect to the solution

x0 , that is, the set of all i E I which satisfy ZjEJ aij x = b i. The conditions in (3.6c)

imply that ri = O for all i B. Substituting ni = 0 for all i X B in (3.6a) and (3.6b) yields

the following characterization of D(LP, xO):
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1iEB aij Ci = dj, for allj E J, (3.7a)

rCi > 0, for all i E B. (3.7b)

The characterization (3.7) is a more concise characterization of D(LP, x° )

compared to (3.5); we will thus use (3.7) in the rest of the paper. We summarize the

preceding discussion using the following property:

Property 2. The set D(LP, xO) of all inverse feasible cost vectors consists of all d

satisjfying the following constraints:

ZiB aij i = d, for allj J, (3.8a)

ri O, for all i eB, (3.8b)

where B is the index set of binding constraints with respect to the solution xO.

The inverse problem INV(LP, xO, p) is to minimize lid - clip subject to d E D(LP,

x0). Since minimizing [jEJ Idj - cjlP] 1/P is equivalent to minimizing ;jEJ Idj - cjlP ,

INV(LP, x0 , p) can be equivalently stated as follows:

Minimize jEJ Idj - cjl P, (3.9a)

subject to

XiEB aij 7 i = dj, for all j E J, (3.9b)

i > 0, for all i B. (3.9c)

Notice that the constraints of the inverse problem INV(LP, x0) are closely related

to the constraints of the dual of the problem LP; they are simply the constraints obtained

by changing the right-hand side vector from c to d and setting rri = 0 for all i B. It is

well known that the function jEJ Idj - cjlP is a convex function of the cost vector d. We

have therefore shown that the inverse of a linear programming problem is a mathematical

programming problem where the objective function is a convex function and the

constraints are linear.
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We can also impose some additional linear constraints on the cost vector d for

specific situations without changing the structure of the mathematical program. For

example, in some applications it may be required that the costs can only go up but cannot

go down; we can handle this situation by adding constraints of the type dj 2 Ij. In other

applications, we may impose upper bounds on the modified cost vector; we can handle

this situation by adding constraints of the type dj < uj. We can also solve weighted

versions of the inverse problem without changing the structure of the problem, where the

objective function is to minimize j J wjldj - cjlP.

In the rest of the paper, we will focus on the following objective functions for the

inverse problem, all of which may be linearized:

L1 norm: minimize j =Jldj - cjl,

Weighted L1 norm: minimize XjeJ wjldj - cj,

Loo norm: minimize max{Idj - cjl :j E J},

Weighted Loo norm: minimize max{wjldj - cjl: j E J}.

4. SOLVING THE INVERSE LINEAR PROGRAMMING PROBLEM UNDER THE L 1 NORM

In this section, we will consider inverse linear programming problems under the

L1 and the weighted L1 norms. Consider the linear program LP given by (3.1) and we

wish to solve the inverse problem INV(LP, xO, p) under the L 1 norm. We have shown in

the previous section that INV(LP, x °, p) reduces to solving minimize -j eJldj - cjl, subject

to (3.9b) and (3.9c). This is not a linear programming problem in its current form, but

can be easily converted to one using a standard transformation. It is well known that

minimizing Idj - cjl is equivalent to minimizing ccj + Pj, subject to dj - cj = aj - Pj, cj > 0

and j 0. Using this transformation, the inverse linear programming problem can be

stated as follows:

Minimize j J Cj + Ej J Pj,

or, equivalently,

Maximize -EJ cj - j J j, (4.la)
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subject to

Si B aij i - aj + Žj = cj, for all j E J,

7 i > 0 for all i E B; j 2> 0 and j > 0 for allj J.

(4. lb)

(4.1c)

We will now simplify (4.1). We first note that in an optimal solution of (4.1) both

of aj and j cannot take positive values, since otherwise we can reduce both of them by a

small amount 6 without violating any constraint and strictly improving the objective

function value. We can restate (4.1) as

-aj + = C , for all j J, (4.2)

where cJ = cj - XiEB aij i. There are three cases to consider.

Case 1. c > 0. The non-negativity of aj and [3j and the fact that only one of them can

be positive implies that aj = 0 and 3j = = . Further, dj = cj + aj - j = cj - I 1.J J J ' Jhe, ; c

Case 2. c < O0. In this case, j = 0 and cj = - c = I c I. Further, dj = cj + caj - j=cj+

I cJ I

Case 3. c = 0. In this case, aj = j = 0, and dj = cj.

This case analysis allows us to reformulate (4.1) as

Maximize -jEJ cj 1,

subject to

ri > 0 for all i E B,

(4.3a)

(4.3b)

where c = cj - 1ieB aij ti . In other words, the inverse problem is to find r i 0 for all i

E B so that the sum of the magnitudes of the reduced costs is minimum. We refer to the

formulation (4.1) or (4.3) as the primal inverse problem. The preceding case analysis
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also implies that if ri denotes the optimal solution of (4.1) or (4.3), then the optimal cost

vector d* is given by

[cj - IC I if C7 > 0,

dJ = cj + IC I if C' < 0, (4.4)

cj if cj = o.

Notice that if some c > 0, then we lower the cost of the variable Xj by I cj I units,

which makes its modified reduced cost zero. Similarly, if some cj < 0, then we increase

the cost of the variable xj by I cj I units, which again makes its modified reduced cost

zero. Finally, if cj = 0, then we do not change the cost of the variable xj since its

reduced cost is already zero. Hence, when costs of the variables are modified using (4.4),
the modified reduced costs of all variables become zero. These observations allow us to

pose the inverse problem as: find t 2> 0 so that the modified reduced costs of all variables

become zero and the sum of the modifications in reduced costs is minimum. We can

summarize the preceding discussion in the form of the following theorem:

Theorem 1. Let LP = minimize Zjcj. j, subject to ;edJaj xj 2 bifor all i E I Let x0 be

a feasible solution of LP and B c I denote the index set of constraints that are binding

with respect to x O. Then the primal inverse problem under the L1 norm is to find rzi 0

for all i E B such that Zj I cj is minimum, where cJ = cj- ZieB aij zi. The optimal

cost vector d* is given by (4. 4).

In the formulation (4.3) we assumed that all constraints in (3.1) are of the form

"2" and this lead to the non-negativity restrictions on the variables . In case, (3.1b) has

constraint i in "<" form, then the corresponding variable ni will be non-positive; and if

(3.1b) has some constraint in "=" form, then the corresponding variable i will be

unrestricted.

We have shown that we can solve the inverse problem by solving (4.1) or (4.3),

and the optimal values of ir can be used to obtain the optimal cost vector using (4.4).

14



Instead of solving (4.1) or (4.3), we can alternatively solve the dual of (4.1) which turns

out to be a variation of the original problem (3.1). The dual variables of the dual of (4.1)

will be the primal variables rc and they can be used to define the optimal cost vector d*.

We associate the variable yj with the jth constraint in (4.1) and then take its dual. We get

the following linear programming problem:

Minimize ZjJ cjyj, (4.5a)

subject to

ZjEJ aij j 0, for all i E B, (4.5b)

-1 < yj < 1, for allj E J. (4.5c)

Observe that the condition (4.5c) can be restated as follows:

IYjl < 1, for all j E J. (4.5c')

We can formulate the inverse linear programming problem in an alternate manner

that may be more convenient to work with compared to the formulation in (4.5).

Substituting yj = xj -x0 for each j J in (4.5) gives us the following equivalent

formulation that is more similar to the original formulation of LP:

Minimize Ej cjX - jej Cj xj (4.6a)

subject to

Y'.EJ aij xj - jj aij xj2> 0, for all i B, (4.6b)

-l<x- x0 < 1, for allj e J. (4.6c)

Using the facts that is a constant, and that for each i E B aiUsing the facts that Ej,= J Ci xj is a constant, and that for each i B, Ej'.jj aij xj 

b i, (4.5) can be restated as

Minimize Zj J cjxj (4.7a)

subject to

Yj J aij xj b i, for all i E B, (4.7b)
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x 0 -1I < xj < +1, for all j E J. (4.7c)

The formulations (4.5) and (4.7) of the dual of the inverse linear programming

problem are equivalent to one-another. The two formulations have different primal

optimal solutions and are related using the formula x = x - y. But they have the same

optimal dual solution x from which we may determine the optimal cost vector d*.

We refer to the formulations (4.5) and (4.7) as the dual inverse problems since

they are the dual of the inverse linear programming problem (4.1). We refer to the

formulation (4.5) as the O-centered dual inverse problem, and to the formulation (4.7) as

the x 0-centered dual inverse problem. In the remaining discussion in this section,- we

shall assume that the dual inverse problem is x0 -centered but the results will also apply to

O-centered dual inverse problems in a straightforward manner.

In the formulation of the problem LP, we have assumed that all inequalities are of

the form ">". In case we have some "<" inequalities, such as FjeJ aij xj < bi, for some i

E I, then we can transform it to -jEJ aij xj > -b i. If this constraint is a binding constraint

with respect to the solution x ° , then the x0 -centered dual inverse problem will have the

constraint -jEJ aijxj -bi, or equivalently, YjEJ aij xj b i will be present in the

formulation of the x0 -centered dual inverse problem. Hence, we need not transform a

"<" inequality in our original formulation; the dual inverse problem will have the same

inequality if it is a binding constraint. Now consider the case of an equality constraint in

LP, such as, EjJ aij x = b i. We may replace this constraint by the two constraints, EjEJ

aij xj b i and -jEJ aij xj -b i. Since x0 is a feasible solution of LP (that is, satisfies YjEJ

aij xj = bi), both the preceding inequalities will be binding, which is equivalent to the

constraint ZjEj aij xj = b i in the dual inverse problem. Consequently, if we have an

equation in LP, the same equation will always be present in the x0 -centered dual inverse

problem. We summarize our discussion in this section in the form of the following

theorem:
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Theorem 2. Let LP = minimize cy subject to {< x bi for all i E Let

x ° be a feasible solution of LP and B c I denote the index set of constraints that are

binding with respect to xO. Then the inverse linear programming problem under the L 1

norm is the dual of the following problems:

O-centered dual inverse problem: minimize Ej2 cyj, subject to 2 aj ayj{ } O0 for all

i eB, and -1 _yj l]forallj e J.

x°-centered dual inverse problem: minimize ejJ cj, subject to jj a x {-} b i for

all i E B, and x -1 < x +foralljE J

Let c denote the optimal dual variables associated with the binding constraints. Then the

optimal cost vector d* is given by (4.4).

Weighted Inverse Problems

We now consider the inverse linear programming problem under the weighted L1

norm, that is, where the objective function is Yjejwj Idj - cjl, with wj's being specified

constants. We can use the same approach as for the unit weight case to formulate inverse

problems. The primal inverse problem for the weighted case will be the same as (4.3)

except that the objective function (4.3a) is replaced by the following objective: Minimize

jEJ wj I j . The O-centered dual inverse problem for the weighted case will be the

same as (4.5) except that (4.5c) is replaced by -wj < yj < wj, and the x0 -centered dual

inverse problem for the weighted case will be the same as (4.7) except that (4.7c) is

replaced by x - wj < xj < Xj + Wj.

5. INVERSE BOUNDED VARIABLE LINEAR PROGRAMMING PROBLEMS UNDER L 1 NORM

In the linear programming problem (3.1) studied by us, each constraint was an

inequality constraint but we did not have any additional lower or upper bound restrictions

on variables. Rather, we assumed that any such restrictions would be treated as regular

constraints. We will now drop this assumption and will consider the lower and upper
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bound restrictions on variables explicitly. We will consider the following linear

programming problem:

Minimize YjEJ cjxj, (5.1a)

subject to

]j J aij xj bi, for all i I, (5.lb)

xj > 0, for allj E L, (5.1c)

-xj > -uj, for allj U, (5.1d)

where 0 and uj, respectively, denote lower and upper bounds on the values of the variable

xj. We refer to (5.1) as the bounded variable linear programming problem. Let x0 be a

given feasible solution of (5.1) which we wish to make optimal by perturbing the cost

coefficients of the variables. Let B denote the index set of binding constraints in (5.lb)

with respect to x0 , L denote the index set of binding constraints in (5.1c) (that is, L = {j E

J: x = 0}), and U denote the index set of binding constraints in (5.1) (that is, U = {j E J:

xj = uj}). Let F = {j E J: 0 < xj < uj}. Notice that the sets F, L, and U are mutually

exclusive and exhaustive. As earlier, we associate the dual variable ni 0 for the ith

constraint in (5.lb). Further, we associate the dual variable .j 2 0 for the jth constraint in

(5.1 c) and (pj 0 with the jth constraint in (5.1 d). In this case, it follows from discussion

in Section 3 that the inverse of (5.1) is the following linear program:

Maximize -J cj (- -j J j,

or, equivalently,

minimize ZjeJ c(j + XjeJ Pj, (5.2a)

subject to

-iEB aij i - j + j + j = cj, for all j E L, (5.2b)

]ieB aij i - ccj + j - pj = cj, for all j E U, (5.2c)

]ieB aij i - cj + j = cj, for allj F, (5.2d)

n i > 0 for all i E B; cj 0 and j > 0 for allj E J, (5.2e)

j > 0 for allj E L; and j > 0 for allj E U. (5.2f)
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We will now simplify (5.2). As earlier, both of aj and j cannot take positive

values. We can restate (5.2b), (5.2c) and (5.2d) as

-aj + j = -c j,

-aj + j = C + j,

-a(j + j = CJ ,

for all j e L,

for all j U,

for all j E F,

where cJ = cj - iEB aij 7ri. There are three cases to consider.

> 0. The non-negativity of aj and 3j and the fact that we wish to minimize

aj + Pj implies that (i) ifj E L then j = cj = I c 1, aj = j = O and dj = cj; and (ii) ifj E

FuU then aj = pj = 0, and j = c = I c .- Further, dj = cj - I cj .

Case 2. c < O0. In this case, (i) ifj U then qj = -cfj = I c 1, aj = j = O and dj = cj; and

(ii) ifj E FuL then Pj = j = O0 and aj = -c = I c 1. Further, dj = cj + I c 1.

Case 3. c = 0. In this case, aj = j = j = (pj = 0, and dj = cj.

This case analysis allows us to reformulate (5.2) as

Minimize XjEL max{0, -c ) + jEF I Cj I+ EjU max{, c },

subject to

7ci20 foralli E B,

(5.4a)

(5.4b)

where cJ = cj - ZiEB aij rti. The preceding case analysis also implies that ifr denotes the

optimal solution of (5.2), then the optimal cost vector d* is given by
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[cj-IcJ if c >Oand x >0,

dj = cj +j I if c <0 and x < uij, (5.5)

cj otherwise.

We next obtain the formulation of the x-centered dual inverse linear

programming problem for the bounded variable case. Notice that for each j E L, xj 0 is

a binding constraint, and for each j E U, xj < uj is a binding constraint. Applying

Theorem 2 gives the following linear programming problem:

Minimize ]jeJ cjxj, (5.6a)

subject to

Zjej aij xj > b i, for all i E B, (5.6b)

0 < xj < 1, for allj L, (5.6c)

uj -1 < xj < u, for all j U, (5.6d)

xj - I <xji<xj +, for allj eF. (5.6e)

0-1 Linear Programming Problem

We will now consider a special case of the bounded variable linear programming

problem where each upper bound equals one, and there always exists an integer optimal
solution. We refer to such a linear programming problem as a 0-1 linear programming

problem. Several combinatorial optimization problems, such as, the single-source single-
sink shortest path problem, the assignment problem, and the minimum cut problem, can

be formulated as 0-1 linear programming problems. Let x ° be a 0-1 feasible solution of a
0-1 linear programming problem which we wish to make optimal by perturbing the cost
vector c to d. Let B denote the index set of constraints binding with respect to the

solution x °. Since x0 is a 0-1 solution, each index j E J either belongs to L or U, and in

both the cases, (5.6c) or case (5.6d), reduces to 0 < xj < 1. We thus get the following x0 -

centered dual inverse problem:

Minimize j eJ cjxj (5.7a)

subject to
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]jsJ aij xj > bi , for all i E B, (5.7b)

0 <xj< l, for allj EJ, (5.7c)

which is the same as the original problem except that the non-binding constraints with

respect to x have been eliminated. In the additional case when all constraints are

binding (for example, when each constraint in (5.7b) is an equality constraint), B = I and

its x0-centered dual inverse problem is the same as the original problem. In the case of

the 0-1 linear programming problem, we can restate the expression for computing the

optimal cost vector d*. Let x* be an optimal solution of (5.7) and rr denote the optimal

dual variables associated with the constraints in (5.7b). It follows from the linear

programming theory that (i) cj < 0 if and only if xj* = uj, and (ii) cj > 0 if and only if

xj = 0. Using these results in (5.5) yields the following optimal cost vector:

[cj - I for all j satisfying xj= l and x* = 0,

dj =cj + Ic I forallj satisfying x= 0 and x = 1, (5.8)

1cj for all j satisfying x. = xj 

6. SOLVING THE INVERSE LINEAR PROGRAMMING PROBLEM UNDER THE LO, NORM

In this section, we study the inverse of the linear programming problem LP under

the Loo norm, called the minimax inverse linear programming problem. In this problem,

we wish to obtain an inverse feasible cost vector d that minimizes max{ldj - cjl: j J}.

It follows from (3.9) that the minimax inverse linear programming problem can be

formulated as the following mathematical programming problem:

Minimize max {Idj - cjl} (6.1 a)J eJ

subject to

XiGB aij rci = dj, for all j E J, (6.lb)

7ri > 0, for all i E B. (6.1c)
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This mathematical program is not a linear program since it contains absolute signs

on terms in the objective function and a maximization of terms instead of summation of

terms; however, it can be converted to a linear programming problem by using well

known transformations. To eliminate the absolute signs in the objective function, we

replace Idj - cjl by acj + j, subject to dj - c j - j, aj > 0 and j 0. Further, to

eliminate the maximization of the terms, we introduce a variable 0 and add the

constraints j + j < 0 for each j E J to ensure that each term is less than or equal to 0.

We also convert the minimization form of the objective function into the maximization

form. This gives us the following linear programming problem:

Maximize -0 (6.2a)
subject to

iEB aij Ci - aj + Pj = cj, for all j E J, (6.2b)

aj + j - 0 < 0, for all j E J, (6.2c)

7ri > 0 for all i E B; cj > 0 and j > 0 for allj E J. (6.2d)

We will now simplify (6.2). We first note that there exists an optimal solution in

which for every j both of aj and j cannot take positive values, since otherwise we can

reduce one of them to zero without violating any constraint and without worsening the

objective function value. We can restate (6.2) as

-cj + 3j = c , for all j E J, (6.3)

where c = cj - ZiEB ailj ri. There are three cases to consider.

Case 1. c > 0. The non-negativity of aj and j and the fact that only one of them can

be positive imply that j = 0 and ij = cj = ICj . In this case, the constraint (6.2c)

becomes J < 0. Further, dj = cj + aj- Pj = cj - I .

Case 2. c < 0. In this case, j = 0 and aj = - c = Ic c. In this case, the constraint

(6.2c) becomes Cj 2 -0. Further, dj = c + aj- j = cj + cj 1.
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Case 3. c = 0. In this case, caj = [j = 0, and dj = cj. In this case, the constraint (6.2c) is

satisfied.

The preceding analysis allows us to formulate (6.2) as the following linear program:

Maximize - 0, (6.4a)

subject to

-0 < cj <0 for allj E J. (6.4b)

or, alternatively,

j I < 0, for all j E J. (6.4b')

In other words, the minimax inverse problem reduces to finding the smallest value

of 0 such that the largest magnitude of any reduced cost is at most 0. We refer to the

formulation (6.4) as the primal minimax inverse problem. If the optimal objective

function of (6.4) is zero, then it implies that x0 is an optimal solution of (3.1) and hence

d* = c. If not, then costs must be changed. The previous case analysis also implies that

the optimal cost vector dj = cj + ctj - j is given by

[Cj - IC I if CJ > 0,

d = cj + IclI if c <0, (6.5)

cj if CJ = 0,

which is the same as in the case of L1 norm; however the optimal value of xc will

typically be different. As in the case of the L1 norm, the cost coefficients are modified so

that the reduced cost of each variable becomes zero. We can summarize the preceding

discussion in the form of the following theorem:

Theorem 4. Let LP = minimize ZEj CjXj, subject to ZEj aijj X> bifor all i I. Let x0 be

a feasible solution of LP and B c I denote the index set of constraints that are binding

with respect to xO. Then the primal minimax inverse linear programming problem under
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the Lo norm is to find ;ni Ž O for all i E B such that maxI cJ I: j J} is minimum, where

cy = cj - Z i eB ayij ri The optimal cost vector d* is given by (6.5).

By taking the dual of (6.4), we can obtain an equivalent formulation of the

minimax inverse problem. We associate the variable yj with the constraint -0 < cj = cj

- LiEB aij 7i , and the variable yj with the constraint cj = cj - 7iEB aij ri cj < 0. The

dual of (6.4) is the following linear programming problem:

Minimize EjEJ Cj (yj - yj ), (6.6a)

subject to

YjEJ aij ( - j) > 0, for all i E B, (6.6b)

5jEJ (yj + y- 1. (6.6c)

By letting yj = (yJ + y), we can reformulate (6.6) as follows:

Minimize Zj J cjyj, (6.7a)

subject to

XjEJ aij yj > 0, for all i E B, (6.7b)

jEJ yjl < 1. (6.7c)

If 7r denotes the optimal dual variables associated with (6.6b) or (6.7b), then the

optimal cost vector d* can be computed using (6.5). Notice that the formulation (6.7) has

a close resemblance with the formulation for the inverse problem under the L 1 norm: in

place of the constraints yjl < 1 for all j E J, we have just one constraint ZjJ IYjl < 1. We

refer to the formulation (6.7) as the O-centered minimax dual inverse problem. We can

obtain the x 0-centered minimax dual inverse problem by substituting yj = xj - xj for each

j E J in (6.7). This gives us the following equivalent formulation of the minimax inverse

problem:
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subject to

ZjJ aij xj > b i, for all i E B, (6.8b)

ZjEJ IXj - Xj I< 1. (6.8c)

We have assumed so far in this section that all the constraints in (3.1) are of the

">" form. A similar analysis will work for the "<" or for the "=" type of constraints. We

summarize our discussion in the form of the following theorem:

Theorem 4. Let LP =minimize EJeCrj, subjectto 4Eaij {} bi orall i i. Let

xO be a feasible solution of LP and B c I denote the index set of constraints that are

binding with respect to x. Then the inverse problem under the L, norm is the dual of the

following problems.

O-centered minimax dual inverse problem: minimize EZ ,J cjyj, subject to 2EJ aij yj

{4o for all iE B and )EJ yi •1.

x-centered minimax dual inverse problem: minimize Z EJ cj, subject to Z 3 ej aij xj

4 b i for all i e B, and jej Ixj -x <1.

Let ;r denote the optimal dual variables associated with the binding constraints. Then the

optimal cost vector d* is given by (6.5).

Bounded Variable Linear Programming Problem

We next consider the minimax inverse versions of the bounded variable linear

programming problem (5.1). We can consider this case by specializing Theorem 4, as we

did in Section 5. We will omit the details and state only the final result. It can be shown

that the primal minimax inverse problem in the bounded variable is the following linear

programming problem:
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Maximize - 0, (6.9a)

subject to

cJ < 0 for allj E J\L. (6.9b)

-0 < Cj for allj E J\U, (6.9b)

and the optimal cost vector d* is given by

[cj -ICJI if C' > 0 and x > 0,
0

dj = j +ICJ I if c < 0 and xj < uij, (6.10)

lcj otherwise.

which is the same as in the case of the L1 norm. As before, one would expect the optimal

value of it to be different.

Weighted Minimax Inverse Linear Programming Problem

In our preceding analysis, we have considered the unit weight minimax inverse

linear programming problem. In the weighted minimax inverse linear programming

problem, the objective function is to minimize max{wjldj - cjl: j E J}, where wj > 0 for

each j E J. The formulations of the weighted minimax inverse linear programming

problem are exactly the same as the formulations for the unit weight case except the

following changes: (i) in the formulation (6.4), the constraint - 0 5 cJ < 0 is replaced by

the constraint -0 < wj c < 0; (ii) in the formulation (6.7), the EjeJ yj < 1 is replaced by

the constraint {jEJ:wj0O} IyjI/wj < 1 and yj = O if wj = 0; and (iii) in the formulation (6.8),

the constraint jEJ IXj- Xj I < 1 is replaced by the constraint Z{jeJ:wj0O}IXj - j I/wj < 1,

and x x ifwj = 0.

7. THE GENERAL INVERSE OPTIMIZATION PROBLEM

In this section, we consider the general inverse optimization problem and show

that (under reasonable regularity conditions) that if the problem P is polynomially
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solvable, then its inverse versions under L 1 and Lo, norms are also polynomially solvable.

This result makes use of the ellipsoid algorithm, and we refer the reader to the books by

Schrijver [1986] and Grotschel, Lovasz, and Schrijver [1986].

Recall from Section 1 that we denote by S the set of feasible solutions, and P =

min{cx : x S}. We denote by Qn, the set of all rational numbers in the n dimensional

space. Suppose that a polyhedron D c Qn is defined by rational linear inequalities in

terms of the rationals of size at most (p. On the polyhedron D, the separation problem,

and optimization problem, can be defined as follows.

Separation Problem: Given a polyhedron D c- Rn and a vector d E Rn, the separation

problem is to:

(a) either decide that d' e D; or (7. la)

(b) find a vector y E Qn such that dy < d' for all d E D. (7. Ib)

Optimization Problem: Given a polyhedron D Rn and a vector r e Qn, conclude with

one of the following:

(a) give a vector d* E D with rd* = min{rd . d E D};

there exists a vector d E D with unbounded objective function value;

(b) assert that D is empty,

It is well known in the case that D is specified by a set of linear constraints, then

to solve the separation problem it is sufficient to check whether the given solution d'

satisfies all the constraints. If yes, then d' E D, satisfying (7.1a); otherwise, a violated

constraint gives a "separator vector" y satisfying (7.1b). We also use the following well

known result:

Theorem 5 (Grotschel, Lovasz, and Schrijver [1986]). The optimization problem can be

solved in time polynomially bounded by n, , the size of c, and the running time of the

separation problem.

We will show that for inverse P under the L1 or Lo norms, the separation problem

reduces to solving a single instance of P. Therefore, if P can be solved in polynomial
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time, Theorem 5 implies that inverse P under the L1 or Loo norms can also be solved in

polynomial time. We will first consider inverse P under the L1 norm, which can be

formulated as:

Minimize jJ Idj - cj l, (7.2a)

subject to

dx0 < dx for all x E S. (7.2b)

The mathematical program (7.2) is not a linear programming problem, but can be

transformed to one by introducing some additional variables and constraints. The

resulting linear programming problem is to

Minimize j jz (7.3a)

subject to

dx0 < dx for all x S, (7.3b)

dj - cj < zj for all j E J, (7.3c)

cj - dj < zj for all j E J. (7.3d)

It is easy to see that (7.3) is equivalent to (7.2). The constraints in (7.3c) and

(7.3d) imply that zj > Idj - cjl. Further, since we minimize jeJ Zj , each zj will equal

Idj - cjl in an optimum solution. We will show how can we solve the separation problem

for the set of constraints in (7.3) in polynomial time. Let D denote the polyhedron

defined by the feasible solutions of (7.3). We assume that all data in (7.3) is rational and

the largest number in the data is p. Given a proposed solution (d', z') , we can easily

check in linear time whether the solution (d', z') belongs to D by checking whether it

satisfies (7.3c) and (7.3d). To check whether the solution d' satisfies (7.3b), we solve the

problem P with d' as the cost vector. Let x' denote the resulting optimal solution. If d'x °

= d'x', then d' satisfies (7.3); otherwise we have found a violated inequality d'xO > d'x'.

Thus we can solve the separation problem for (7.3) by solving a single instance of P.

This result in view of Theorem 5 implies that inverse P under the L1 norm is

polynomially solvable.
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We now consider inverse P under the Loo norm. In this case, we wish to minimize

max{ldj - cjl: j J}, subject to dx0 < dx, for all x E S. This mathematical program can

be formulated as the following linear programming problem:

Minimize z (7.4a)

subject to

dx 0 < dx for all x E S, (7.4b)

dj - cj < z for all j E J, (7.4c)

cj - dj < z for all j E J. (7.4d)

Using the same technique as in the case of the L1 norm, it can be shown that we

can solve the separation problem for (7.4) by solving a single instance of problem P. We

summarize the preceding discussion as the following theorem:

Theorem 6. If a problem P is polynomially solvable for each linear cost function, then

inverse P as well as minimax inverse P are polynomially solvable.

This result establishes the polynomial solvability of large classes of inverse

optimization problems; however, the ellipsoid algorithm is not yet practical for large

problems. Moreover, for many specific classes of problems, such as network flow

problems, one may obtain improved polynomial time algorithms.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support from the Office of Naval Research under

contract ONR N00014-96-1-0051 as well as a grant from the United Parcel Service. We

also acknowledge the help of Don Wagner who raised some perceptive and fundamental

questions that led to the pursuit of the research reported in this paper.

29



REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications, Prentice Hall, NJ.

Ahuja, R. K., and J. B. Orlin. 1997. Solving the convex ordered set problem with

applications to isotonic regression. Working Paper, Sloan School of Management,

MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998a. A fast algorithm for the bipartite node weighted

matching problem on path graphs with application to the inverse spanning tree

problem. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998b. Inverse optimization, Part 2: Network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998c. Combinatorial algorithms for inverse network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Barlow, R. E., D. J. Bartholomew, D. J. Bremner, and H. D. Brunk. 1972. Statistical

Inference under Order Restrictions. Wiley, New York.

Best, M. J., and N. Chakravarti. 1990. Active set algorithms for isotonic regression: A

unifying framework. Mathematical Programming 47, 425-439.

Burton, D., B. Pulleyblank, and Ph. L. Toint. 1997. The inverse shortest paths problem

with upper bounds on shortest paths costs. In Network Optimization, edited by P.

Pardalos, D. W. Hearn, and W. H. Hager, Lecture Notes in Economics and

Mathematical Systems, Volume 450, pp. 156-171.

Burton, D., and Ph. L. Toint. 1992. On an instance of the inverse shortest paths problem.

Mathematical Programming 53, 45-61.

Burton, D., and Ph. L. Toint. 1994. On the use of an inverse shortest paths algorithm for

recovering linearly correlated costs. Mathematical Programming 63, 1-22.

30



Cai, M., and Y. Li. 1995. Inverse matroid intersection problem. Research Report,

Institute of System Science, Academia Sinica, Beijing, China. To appear in ZOR-

Mathematical Methods of Operations Research.

Cai, M., X. Yang, and Y. Li. 1996. Inverse polymatroidal flow problem. Research

Report, Institute of System Science, Academia Sinica, Beijing, China.

Cai, M. and X. Yang. 1994. Inverse shortest path problems. Technical Report, Institute

of Systems Sciences, Academia Sinica, Beijing, China.

Dial, B. 1997. Minimum-revenue congestion pricing, Part 1: A fast algorithm for the

single-origin case. Technical Report, The Volpe National Transportation Systems

Center, Kendall Square, Cambridge, MA 02142.

Greenberg, H. J. 1997. An annotated bibliography for post-solution analysis in mixed

integer programming and combinatorial optimization. Advances in Computational

and Stochastic Optimization, Logic Programming, and Heuristic Search, Edited

by D. L. Woodruff, Kluwer Academic Publishers.

Grotschel, M., L. Lovasz, and A. Schrijver. 1986. The Ellipsoid Method and

Combinatorial Optimization. Springer, Heidelberg.

Hu, Z., and Z. Liu. 1995. A strongly polynomial algorithm for the inverse shortest

arborescence problem. Working Paper, Institute of Systems science, Academia

Sinica, Beijing, China.

Huang, S., and Z. Liu. 1995a. On the inverse problem of k-matching of bipartite graph.

Working Paper, Department of Management, School of Business and

Management, Hong Kong University of Science and Technology, Hong Kong.

Huang, S., and Z. Liu. 1995b. On the inverse version of the minimum cost flow

problem. Working Paper, Dept. of ISMT, School of Business and Management,

Hong Kong University of Science and Technology, Hong Kong.

Ma, Z., S. Xu, and J. Zhang. 1996. Algorithms for inverse minimum spanning tree

problem, Working Paper, Department of Mathematics, City Polytechnic of Hong

Kong, Hong Kong.

31



Neumann-Denzau, G., and J. Behrens. 1984. Inversion of seismic data using

tomographical reconstruction techniques for investigations of laterally

inhomogeneous media. Geophysical Journal of the Royal Astronomical Society

79, 305-315.

Nolet. G. 1987. Seismic Tomography. Reidel, Dordrecht.

Robertson, T., F. T. Wright, and R. L. Dykstra. 1988. Order Restricted Statistical

Inference. John Wiley & Sons, New York.

Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons.

Sheffi, Y. 1985. Urban Transportation Networks. MIT Press, Cambridge, MA.

Sokkalingam, P.T. 1996. The Minimum Cost Flow Problem : Primal Algorithms and

Cost Perturbations. Unpublished Dissertation, Department of Mathematics,

Indian Institute of Technology, Kanpur, INDIA.

Sokkalingam, P.T., R. K. Ahuja, and J. B. Orlin. 1996. Solving the inverse spanning tree

problems through network flow techniques. Working Paper, Sloan School of

Management, MIT, Cambridge, MA. To appear in Operations Research.

Sotskov, Y. N., V. K. Leontev, and E. N. Gordeev. 1995. Some concepts of stability

analysis in combinatorial optimization. Discrete Applied Mathematics 58, 169-

190.

Sotskov, Y. N., V. S. Tanaev, and F. Werner. 1997. Stability radius of an optimal

schedule: A survey and recent developments. In Industrial Applications of

Combinatorial Optimization, Edited by G. Yu, Kluwer Academic Press, Boston.

Tarantola, A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model

Parameter Estimation. Elsevier, Amsterdam.

Woodhouse, J. H., and A. M. Dziewonski. 1984. Mapping the upper mantle: Three

dimensional modeling of Earth structure by inversion of seismic waveforms.

Journal of Geophysical Research 89 (B7), 5953-5986.

32



Xu, S., and J. Zhang. 1995. An inverse problem of the weighted shortest path problem.

Japanese Journal of Industrial and Applied Mathematics 12, 47-59.

Yang, C., and J. Zhang. 1996. Inverse maximum capacity path with upper bound

contraints. To appear in OR Spektrum.

Yang, C., J. Zhang, and Z. Ma. 1997. Inverse maximum flow and minimum cut problem.

Optimization 40, 147-170.

Zhang, J., Z. Ma, and C. Yang. 1995. A column generation method for inverse shortest

path problems, ZOR-Mathematical Methods for Operations Research 41, 347-

358.

Zhang, J., and and M. C. Cai. 1998. Inverse problem of minimum cuts. Mathematical

Methods of Operations Research 47, No. 1.

33


