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Inverse parametric linear/quadratic programming problem for

continuous PWA functions defined on polyhedral partitions of polyhedra

N. A. Nguyen1, S. Olaru1, P. Rodriguez-Ayerbe1

Abstract— Constructive solution to inverse parametric lin-
ear/quadratic programming problems has recently been inves-
tigated and shown to be solvable via convex liftings [15], [14].
These results were stated and solved starting from polytopic
partitions of a polytope in the parameter space. Therefore, the
case of polyhedral partitions of unbounded polyhedra, was not
handled by this method and deserves a complete characteri-
zation to address the general inverse optimality problem. This
paper has as main objective to overcome the unboundedness
limitation of the given polyhedral partition and to extend the
constructive solution put forward in [14] for this omitted case.

I. INTRODUCTION

Inverse parametric convex programming was previously

investigated in [1] where it was proved that every continuous

nonlinear function can be obtained via parametric convex

programming without a guideline for the construction of

such convex programming problems. The first constructive

results have recently been presented via different approaches

in [7], [14], [15]. These developments focus on continuous

piecewise affine functions, a particular but important class of

nonlinear functions which receives great attention in control

theory as attested by the references in different topics [3],

[9], [22], [10], [18], [2], [16], [19], [4].

It is well known that optimal solution to a parametric

linear/quadratic programming problem is a piecewise affine

(PWA) function defined over a polyhedral partition. Note

that the continuity of optimal solution to parametric linear

programming problems, is not guaranteed in many cases.

However, it is proved in [17] that a continuous optimal solu-

tion can always be selected. Conversely, inverse parametric

linear/quadratic programming (IPL/QP) aims to recover an

appropriate optimization problem, described by a constraint

set and a cost function, having as the optimal solution a

given continuous PWA function defined over a polyhedral

partition.

This paper completes and generalizes the result in [14],

[15] wherein IPL/QP problems are solved via convex liftings.

In the respective works, this solution covers polytopic par-

titions (i.e. bounded polyhedral partitions) of the parameter

space, since the convex lifting construction is based on con-

tinuity and convexity conditions on vertices of the polytopes

composing the given polytopic partition. Therefore, if the

given polyhedral partition contains unbounded polyhedra,
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this algorithm cannot be directly employed. This paper is

motivated by this limitation to solve IPL/QP problems for

more general class of continuous PWA functions, namely

continuous PWA functions defined over polyhedral partitions

of polyhedra. This result is useful to reduce implementation

complexity of PWA control laws as shown in [12], [6].

II. PROBLEM FORMULATION

A. Generalities and basic notions

Throughout the paper, R,R+,R>0,N,N>0 denote the

field of real numbers, the field of non-negative real numbers,

the set of strictly positive real numbers, the set of non-

negative integers and the positive integer set, respectively.

The following index set is also defined for ease of presen-

tation with respect to a given N ∈ N>0: IN = {i ∈ N>0 |
i ≤ N}.

Given a d ∈ N>0, by 1d, we denote a vector of dimension

d whose elements are equal to 1; i.e. 1d ∈ R
d.

Given a finite set S := {s1, . . . , sL}, then Card(S) denotes

the cardinal number of the set S , i.e. Card(S) = L. conv(S)
denotes the convex hull of S . Moreover, if R is a set of

vectors, by cone(R), we denote the cone which has elements

of R as its extreme rays.

A polyhedron is defined as the intersection of a finite

number of halfspaces. A polytope is defined as a bounded

polyhedron. Given a full dimensional polyhedron S ⊂ R
d,

then V(S) denotes the set of its vertices, and R(S) denotes

the set of its extreme rays. We use k−face to denote a face of

dimension k of S . A 0−face is also called a vertex, an 1−face

is alternatively called an edge, a (d− 1)−face amounts to a

facet. Furthermore, by int(S), we denote the interior of S .

If S is a vector space, and S is an arbitrary set, then Proj
S
S

represents the orthogonal projection of set S onto space S.

Also, we use dim(S) to denote the dimension of the affine

hull of S.
Finally, given two sets P1, P2 ⊂ R

d, by P1⊕P2, we denote

the Minkowski addition defined as follows:

P1⊕P2 =
{
y ∈ R

d | ∃x1 ∈ P1, x2 ∈ P2 s.t. y = x1 + x2

}
.

The following definitions are extended in comparison with

their counterparts presented and employed in [15], [14], [12].

Definition 1: A collection of N ∈ N>0 full-dimensional

polyhedra Xi ⊂ R
d is called a polyhedral partition of a

polyhedron X in R
d if:

1) X =
⋃

i∈IN
Xi,

2) int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,

Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2N , i 6= j

and dim(Xi ∩ Xj) = d− 1.



If set X is compact, then this partition is called polytopic

partition.

The definition of a cell complex was presented by

Grünbaum in [5]. For simplicity, a cell complex should be

understood as a polyhedral partition whose facet-to-facet

property is fulfilled; i.e. any pair of neighboring regions share

a common facet.

In the remainder of this paper, a slight abuse of notation

is used: X implies simultaneously a polyhedral partition/cell

complex of a polyhedron and this polyhedron itself. Its

meaning will be clarified from the context.

Definition 2: For a given polyhedral partition X =⋃
i∈IN

Xi ⊆ R
d, a picewise affine lifting is described by

a real-valued function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (1)

and ai ∈ R
d, bi ∈ R, ∀i ∈ IN .

Definition 3: Given a polyhedral partition X =
⋃

i∈IN
Xi

⊆ R
d, a piecewise affine lifting z(x) = aTi x + bi ∀x ∈

Xi, is called convex piecewise affine lifting if the following

conditions hold true:

• z(x) is continuous over X ,

• for each i ∈ IN , z(x) > aTj x + bj for all x ∈ Xi\Xj

and all j 6= i, j ∈ IN .

For ease of presentation, a convex piecewise affine lifting is

called, throughout the rest of this paper, convex lifting. It is

shown in [20], [13] that a polyhedral partition which admits

a convex lifting, is a cell complex. Therefore, a convex lifting

is always defined over a cell complex instead of a polyhedral

partition.

For a given polyhedral partition, some conditions have to

be fulfilled for the existence of a convex lifting. A summary

of these conditions can be found in [20]. We extract here

only the necessary notation in connection with the present

developments. Interested readers can find details in [20],

[15].

Given a polyhedron C and its facet F , we use n(F,C) to

denote the inward unit normal vector at F to C, meaning the

unit vector normal to F at F and inward to C. The definition

of stress is recalled here for completeness.

Definition 4: (Rybnikov [20]) A real-valued function s(·)
defined on the (d − 1)−faces of a cell complex X ⊆ R

d is

called a d−stress if at each internal (d− 2)−face F of X :

∑

F⊂C

s(C)n(F,C) = 0, (2)

where this sum ranges over all (d−1)−faces in the star of F

(the (d− 1)−faces such that F is their common facet). The

quantities s(C) are the coefficients of d−stresses, and are

called tension if the sign is strictly positive, and compression

if the sign is strictly negative.

Such a (d − 2)−face F of cell complex X satisfying (2)

is also called in equilibrium. Note also that a necessary and

sufficient condition for such a cell complex X to be convexly

liftable is the existence of a strictly positive d−stress defined

over all (d− 1)−faces of cell complex X .

B. Problem formulation

The solution to inverse parametric linear/quadratic pro-

gramming problems is shown in [15], [14] via convex lift-

ings. This solution restricts the parameter space to a polytope

and lets aside the important case of unbounded parameter

space. This omission is tackled in this paper and the problem

can be formally stated as follows:

Problem statement: Given a polyhedral partition of a

polyhedron X =
⋃

i∈IN
Xi ⊆ R

dx , we use fpwa(·) to

denote a continuous PWA function: fpwa(x) : X → R
du ,

defined over partition X . The objective is to determine

J(x, z, u), Hx, Hu, Hz,K such that:




fpwa(x) = Proj
Rdu arg min

[z uT ]T
J(x, z, u),

s.t: Hxx+Hzz +Huu ≤ K.
(3)

Some assumptions need to be stated for guaranteeing the

validity of the proposal.

Assumption 1: Polyhedral partition X is a cell complex.

Assumption 2: Polyhedral partition X is convexly liftable.

As discussed before, a polyhedral partition, admitting a

convex lifting, is a cell complex, therefore, if a given partition

satisfies Assumption 2, then it also fulfills Assumption 1.

Note that Assumption 2 is not restrictive, since, as shown

in [15], any polyhedral partition can be subdivided into a

convexly liftable cell complex such that the internal bound-

aries are maintained. This inclusion can be easily extended

to unbounded polyhedral partitions by following the same

methodology of the proof (Theorem IV.2 in [15]).

III. CONSTRUCTIVE SOLUTION

It is shown in [15], [14] that constructive solution to such

an inverse parametric linear/quadratic programming problem

can be built upon convex lifting principle. However, the algo-

rithm to construct convex liftings of the given cell complex

put forward therein, is only applicable for cell complexes of

polytopes. Therefore, for the cell complexes of polyhedra,

this algorithm cannot be directly applicable. To adapt to

unbounded parameter space, two intuitive approaches can be

proposed:

• either to modify this algorithm subject to cell complexes

of polyhedra,

• or to adjust the given cell complex of polyhedra in such

a manner that this algorithm can be directly of use.

The latter approach will be of interest via a simply interme-

diate step in the sequel. More precisely, we restrict the given

parameter space partition to an appropriate bounded region

such that the convex liftability of this new partition and the

initial one is treated in a similar manner. Accordingly, we

propose here the use of a hyperbox large enough to contain

in its interior all vertices of the initial partition. The existence

of such a hyperbox is guaranteed by the fact that a polyhedral

partition is the collection of a finite number of polyhedra, as

a consequence the number of vertices is finite. By Bdx
(ǫ),

we denote a hyperbox for a given scalar ǫ ∈ R>0, defined

as

Bdx
(ǫ) :=

{
x ∈ R

dx | ‖x‖∞ ≤ ǫ
}
.



The hyperbox used for our purpose needs to meet the

following assumption:

Assumption 3: Given a polyhedral partition X =⋃
i∈IN

Xi ⊆ R
dx , the scalar ǫ is restricted to the values

that ensure x ∈ int(Bdx
(ǫ)) for every x ∈

⋃
i∈IN

V(Xi).

The following observation guarantees the correspondence of

their convex liftability property.

Proposition 1: If a given partition X of a polyhedron

satisfies Assumption 1, then partition X is convexly liftable

if and only if there exists a hyperbox Bdx
(ǫ), satisfying As-

sumption 3 such that the partition X ∩Bdx
(ǫ) =

⋃
i∈IN

(Xi∩
Bdx

(ǫ)) is convexly liftable.

Proof: −→ It is already known ([20], [15]) that the

convex liftability of partition X leads to the existence of a

strictly positive function s(·) defined over the (dx−1)−faces

of partition X such that every internal (dx − 2)−face is in

equilibrium. Consider an internal (dx− 2)−face of partition

X denoted by F , we write Fdx−1(F ) to denote the set of

(dx − 1)−faces of partition X , sharing a common facet F ,

then the following inclusion holds true:

∑

Ci∈Fdx−1(F )

s(Ci)n(F,Ci) = 0.

By the construction of Bdx
(ǫ), if F is an internal (dx −

2)−face of partition X , then F ∩Bdx
(ǫ) is also an internal

(dx − 2)−face of partition X ∩ Bdx
(ǫ). Furthermore, F ∩

Bdx
(ǫ) also satisfies the following property:

∑

Ci∈Fdx−1(F )

s(Ci)n(F ∩Bdx
(ǫ), Ci ∩Bdx

(ǫ)) = 0,

due to the fact that n(F ∩Bdx
(ǫ), Ci ∩Bdx

(ǫ)) = n(F,Ci).
Therefore any internal face F ∩Bdx

(ǫ) is in equilibrium with

strictly positive dx−stress: s(Ci ∩ Bdx
(ǫ)) = s(Ci) > 0,

meaning the cell complex X ∩Bdx
(ǫ) is convexly liftable.

←− The sufficient condition can be similarly proved.

The goal is to present a construction of convex liftings for

the given cell complex X of a polyhedron, based on an

intermediate polytopic partition X ∩ Bdx
(ǫ). The following

observation shows this close relation.

Proposition 2: Given a cell complex X of a polyhedron

satisfying Assumption 2 and a hyperbox Bdx
(ǫ) satisfying

Assumption 3, if f : X ∩Bdx
(ǫ)→ R i.e.

f(x) = aix+ bi for x ∈ Xi ∩Bdx
(ǫ),

is a convex lifting of the cell complex X ∩Bdx
(ǫ), then the

function g : X → R, defined as follows:

g(x) = aix+ bi for x ∈ Xi,

is also a convex lifting of partition X .

Proof: First, we observe that due to Assumption 3, the

constraints characterized by Bdx
(ǫ) do not contribute to the

division of the partition X ∩Bdx
(ǫ).

From the hypothesis, f(x) is a convex lifting of partition

X ∩ Bdx
(ǫ), then it can be deduced from two neighboring

regions (Xi ∩Bdx
(ǫ),Xj ∩Bdx

(ǫ)) that:

aix+ bi = ajx+ bj ∀x ∈ Xi ∩ Xj ∩Bdx
(ǫ),

aix+ bi > ajx+ bj ∀x ∈ (Xi ∩Bdx
(ǫ))\(Xj ∩Bdx

(ǫ)).

Note also that the constraint

aix+ bi = ajx+ bj

describes the set of points which lie on the hyperplane

separating Xi∩Bdx
(ǫ) and Xj∩Bdx

(ǫ), then it also separates

Xi and Xj . Therefore, the following inclusions hold true:

aix+ bi = ajx+ bj ∀x ∈ Xi ∩ Xj ,

aix+ bi > ajx+ bj ∀x ∈ Xi\Xj .

The same argument holds true for all pairs of neighboring

regions in partition X ∩Bdx
(ǫ), leading to:

g(x) = aix+ bi > ajx+ bj , ∀x ∈ Xi\Xj , ∀j 6= i.

In other words, as per Definition 3, g(x) is a convex lifting

of the cell complex X .

The above results are meaningful to construct a convex lifting

for the cell complex X of a polyhedron, based on a bounded

one X ∩ Bdx
(ǫ). The structure of the latter partition is

compatible with the algorithms presented in [15].

As previously shown, the construction of a convex lifting

for partition X of a polyhedron can be carried out via

the restriction of X into a large enough hyperbox in the

same dimensional space. A natural question arises how this

hyperbox can be chosen. This choice must clearly satisfy

Assumption 3, and can be found through Algorithm 1.

Algorithm 1 Computation of a hyperbox Bdx
(ǫ)

Input: A cell complex X of a polyhedron in R
dx and a scalar

a > 0.
Output: ǫ.

1: V =
⋃

i∈IN
V(Xi).

2: Solve the following problem

min
ǫ

ǫ

s.t. ǫ ≥ 0, −(ǫ− a)1dx
≤ x ≤ (ǫ− a)1dx

, ∀x ∈ V.
(4)

Note that such a constant a > 0 needs to be inserted in

the set of constraints for guaranteeing Assumption 3 i.e. all

vertices v ∈
⋃

i∈IN
V(Xi) lie in the interior of Bdx

(ǫ). This

constant can be freely chosen as long as it is strictly positive.

Based on these results, to state a solution to inverse

parametric linear/quadratic programming problem via convex

liftings for unbounded partition, we need to define some

supplementary notation.

First, given a cell complex of a polyhedron X =⋃
i∈IN

Xi ⊆ R
dx satisfying Assumption 2, a continuous

PWA function fpwa(·) : X → R
du is defined as

fpwa(x) = fix+ gi for x ∈ Xi. (5)



By ℓ(x), we denote a convex lifting of the cell complex X
i.e. ℓ(x) = aix+bi for x ∈ Xi. Based on the above elements,

the following sets are also defined:

Vx =
⋃

i∈IN

V(Xi), Rx =
⋃

i∈IN

R(Xi),

V[xT z uT ]T =
{[

xT ℓ(x) fT
pwa(x)

]T
| x ∈ Vx

}
,

R[xT z uT ]T =








r

ℓ̂(r)

f̂(r)



∣∣∣∣∣

r ∈ Rx,

ℓ̂(r) = air

f̂(r) = fir
if r ∈ R(Xi)





,

Πv = conv(V[xT z uT ]T ),Πr = cone(R[xT z uT ]T ),

Π = Πv ⊕Πr.

(6)

With these notation, the following theorem presents a solu-

tion to IPL/QP problems via convex liftings for polyhedral

partitions of a polyhedron.

Theorem 3.1: Given any continuous PWA function

fpwa(x) (5) defined over a cell complex of a polyhedron

satisfying Assumption 2 and the sets defined in (6), then

fpwa(x) is the image via the orthogonal projection of the

optimal solution to the following optimization problem:

min
[z uT ]T

z s.t.
[
xT z uT

]T
∈ Π. (7)

Proof: Consider x ∈ Xi, for a region Xi of the given

partition X , according to the Minkowski-Weyl theorem for

polyhedra (Corollary 7.1b in [21]), x can be described as

follows:

x =
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r,

where α(v), β(r) ∈ R+ and
∑

v∈V(Xi)
α(v) = 1. As

a consequence, the convex lifting at x, i.e. ℓ(x) can be

described by:

ℓ(x) = aix+ bi = ai(
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r) + bi,

=
∑

v∈V(Xi)

α(v)(aiv + bi) +
∑

r∈R(Xi)

β(r)(air).

Similarly,

fpwa(x) = fix+ gi

= fi(
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r) + gi,

=
∑

v∈V(Xi)

α(v)(fiv + gi) +
∑

r∈R(Xi)

β(r)(fir).

It can be observed that if r is an extreme ray of Xi, then[
rT air

]T
is also an extreme ray of the affinely equivalent

polyhedron Π[xT z]T of cell complex X defined as follows:

Π[xT z]T = conv(V[xT z]T )⊕ cone(R[xT z]T ),

where

V[xT z]T =

{[
x

ℓ(x)

]
| x ∈ Vx

}
,

R[xT z]T =

{[
r

ℓ̂(r)

]
|
r ∈ Rx,

ℓ̂(r) = air if r ∈ R(Xi)

}
.

According to the definition of an affinely equivalent polyhe-

dron, the optimal solution to the following problem:

min
z

z s.t.
[
xT z

]T
∈ Π[xT z]T

falls in the lower facets of Π[xT z]T described by the convex

lifting ℓ(x) of partition X . Now, consider a region Xi, by

F
(i)

[xT z]T
we denote the lower facet of Π[xT z]T such that

ProjRdx F
(i)

[xT z]T
= Xi. According to Proposition 5.1 in

[14], every augmented point in V[xT z uT ]T corresponds to

the vertices of Πv after lifting onto R
dx+du+1. Therefore, by

preserving lifting onto R
dx+du+1, we guarantee the existence

of a dx−face of Π, denoted by F
(i)

[xT z uT ]T
such that:

ProjRdx+1F
(i)

[xT z uT ]T
= F

(i)

[xT z]T
. Note that such a dx−face

is defined as follows:

F
(i)

[xT z uT ]T
= F

(i)
1 ⊕ F

(i)
2

F
(i)
1 = conv

{[
vT ℓ(v) fT

pwa(v)
]T
| v ∈ V(Xi)

}

F
(i)
2 = cone








r

ℓ̂(r)

f̂(r)



∣∣∣∣∣r ∈ R(Xi),

ℓ̂(r) = air

f̂(r) = fir



 .

It can be observed that at a point x ∈ Xi, the mini-

mal value of z can be obtained when
[
xT z uT

]T
lies in

F
(i)

[xT z uT ]T
since ProjRdx+1F

(i)

[xT z uT ]T
= F

(i)

[xT z]T
and the

optimal solution to:

min
z

z s.t.
[
xT z

]T
∈ Π[xT z]T ,

falls at the point
[
xT ℓ(x)

]T
∈ F

(i)

[xT z]T
. Therefore, optimal

solution to (7) at x can be described by:



x

z∗(x)
u∗(x)


 =

∑

v∈V(Xi)

α(v)




v

aiv + bi
fiv + gi


+

∑

r∈R(Xi)

β(r)




r

air

fir


 ,

where α(v), β(r) ∈ R+ and
∑

v∈V(Xi)
α(v) = 1. It is clear

that
[
z∗(x)
u∗(x)

]
=

[
aix+ bi
fix+ gi

]
=

[
ℓ(x)

fpwa(x)

]
, for x ∈ Xi.

To complete the proof, we now need to show that the

optimal solution to (7) is unique. In fact, at a point x ∈
Xi, suppose there exist two different dx−faces denoted

by F1, F2 to which optimal solutions to (7) belong. Let[
xT z1(x) u

T
1 (x)

]T
∈ F1 and

[
xT z2(x) u

T
2 (x)

]T
∈ F2,

then it can be observed that z1(x) = z2(x), leading to

ProjRdx+1F1 = ProjRdx+1F2 = F
(i)

[xT z]T
.

If u1(x) 6= u2(x), then F1, F2 lie in a hyperplane of

dimension dx + 1 which is orthogonal to the space of



[
xT z

]T
. In this case, either fpwa(v) or f̂(r) or both are

not uniquely defined for some vertices v ∈ V(Xi), some

extreme rays r ∈ R(Xi). This contradicts the construction

in (6). Therefore, F1 = F2 leading to the uniqueness of the

optimal solution to (7).

Based on the above result, Algorithm 2 summarizes a

procedure to solve the inverse optimality problem to recover

a continuous PWA function defined over a convexly liftable

cell complex of a polyhedron.

Algorithm 2 Solution to IPL/QP problem via convex lifting.

Input: A continuous PWA function fpwa(x) (5).

Output: Hx, Hu, Hz,K, J(x, z, u).

1: Call Algorithm 1 to find an appropriate Bdx
(ǫ).

2: Construct a convex lifting denoted as ℓ(x) of the cell

complex X ∩Bdx
(ǫ).1

3: Compute ℓ(x) for the cell complex X .
4: Construct constraint set Π as in (6).

5: Solve the following optimization problem:
[
z∗

u∗

]
= arg min

[z uT ]T
z s.t.

[
xT z uT

]T
∈ Π.

6: Project the optimal solution onto R
du i.e.

u∗ = ProjRdu

[
z∗

u∗

]
.

Note that this result can be trivially extended for removal

of redundant constraints as shown in [12]. Similarly, exten-

sions of inverse optimality with quadratic cost functions and

discontinuous PWA functions are referred to [11].

IV. NUMERICAL EXAMPLES

This section considers some numerical examples to illus-

trate the above results. All numerical examples in this paper

are carried out in the environment of MPT 3.0 [8].

Example 1

This subsection considers a continuous PWA function

defined over the whole space R, as shown in Fig.1. This

partition is the union of several segments:

X1 = {x ∈ R | x ≤ −0.5} ,

Xi = {x ∈ R | 0.1(i− 7) ≤ x ≤ 0.1(i− 6)} , i = 2...11,

X12 = {x ∈ R | x ≥ 0.5} .

A convex lifting of this partition is presented in Fig.2. A

set of constraints for the formulation of inverse optimality

problem, is shown in Fig.3 as the shaded pink polyhedron.

It is shown therein that the line along the x−axis, represents

the given partition X , while the green curve represents the

given PWA function associated with this partition. It can be

observed that the solid pink line depicts the optimal solution

to (7) whose image via the orthogonal projection onto R
du

coincides with the given PWA function.

1An algorithm to construct a convex lifting of a bounded cell complex is
presented in [15].

Example 2

The present subsection aims to illustrate the constructive

solution with another continuous PWA function defined over

a convexly liftable partition covering the whole space R
2 as

seen in Fig.4. This continuous PWA function is depicted in

Fig.5. A convex lifting of the given partition can be found

in Fig.6. Finally, the recovered PWA function is shown in

Fig.7, and can be seen to be similar to the original one.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1

1.5

x

fpwa(x)

Fig. 1. Given PWA function defined over a partition of R.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

ℓ(x)

Fig. 2. A convex lifting of the partition in Fig.1.

Fig. 3. An illustration of the constructive solution to inverse optimality
problem in R3.

V. CONCLUSIONS

The present paper shows a procedure to recover a con-

tinuous PWA function defined over a polyhedral partition of



Fig. 4. A partition covering the whole space R2.

Fig. 5. A continuous PWA function associated with the partition in Fig.4.

Fig. 6. A convex lifting of the partition in Fig.4.

Fig. 7. The recovered PWA function.

unbounded polyhedra. This solution is a simple extension of

the constructive solution based on convex liftings put forward

in previous results. Two numerical examples are presented

to illustrate the constructive procedure proposed above.
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