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We propose a new inverse probability weighting (IPW) estimator for moment condition models
with missing data. Our estimator is easy to implement and compares favourably with existing IPW
estimators, including augmented IPW estimators, in terms of efficiency, robustness, and higher-order
bias. We illustrate our method with a study of the relationship between early Black–White differences in
cognitive achievement and subsequent differences in adult earnings. In our data set, the early childhood
achievement measure, the main regressor of interest, is missing for many units.
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1. INTRODUCTION

Missing data are ubiquitous in applied econometric research. When data are missing at random
(MAR), or selection is on observables, a simple consistent procedure is to (i) reweight those
units without any missing data by the inverse of the probability of selection or the propensity
score and (ii) apply standard estimation methods to this reweighted subsample (e.g.Wooldridge,
2007). Inverse probability weighting (IPW) is widely used to address attrition in panel data (e.g.
Abowd, Crépon and Kramarz,2001), program evaluation under exogenous treatment assignment
(e.g.Hirano, Imbens and Ridder,2003), and to control biases caused by missing and/or mismea-
sured regressors (e.g.Robins, Rotnitzky and Zhao, 1994).Chen, Hong and Tarozzi(2004) and
Wooldridge(2007) survey additional applications of IPW.

In this paper, we propose a modified version of IPW, which we call inverse probability tilting
(IPT). Our procedure coincides with the IPW estimator of,e.g.Wooldridge(2007), except that
we replace the conditional maximum likelihood estimate (CMLE) of the propensity score with
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an alternative method-of-moments estimate. We show that if the unconditional moments used
to estimate the propensity score parameter are appropriately chosen, our procedure (i) is locally
efficient and (ii) remains consistent even if the propensity score is misspecified. These properties,
local efficiency and double robustness, which we carefully define below, are not shared by the
standard IPW estimator.1

A key appeal of IPW is its conceptual and operational simplicity. IPT preserves this advan-
tage, while offering improvements in terms of estimator efficiency and robustness. However,
other modifications of IPW exist. A leading one, which shares IPT’s local efficiency and double
robustness properties, is the augmented inverse probability weighting (AIPW) estimator intro-
duced byRobins, Rotnitzky and Zhao(1994).2 We characterize theN−1 order asymptotic bias
of IPT and a class of AIPW estimators under conditions where they are first-order equivalent.
We find that IPT has smaller bias than AIPW in this setting. To our knowledge, these are the first
higher-order comparisons in the missing data literature.

In an illustrative empirical application, we revisit the analysis ofJohnson and Neal(1998)
of the Black–White wage gap for young men in the U.S. They find that approximately 60% of
the Black–White gap can be predicted by group differences in cognitive skills acquired prior
to labour market entry at age 18. We study the predictive value of group differences in skills
acquired prior to adolescence (i.e. by age 12). We find that preadolescent skill differences can
account for about 40% of the overall wage gap and two-thirds of pre-market effect found by
Johnson and Neal(1998).

Our analysis is complicated by the fact that a preadolescence test score is available for just
11% of respondents.3 In addition to being few in number, these complete cases are unrepresen-
tative of the sample as a whole. An analysis that ignores these facts may be both inconsistent
and imprecise. The IPT estimate of the wage gap conditional on the preadolescence test score
corrects for the unrepresentativeness of the complete cases. The IPT point estimate is also pre-
cisely determined. Its standard error is, respectively, one-third and one-half, the length of the
corresponding unweighted complete case and IPW ones. Our application provides a concrete
example of the type of efficiency gains IPT can provide. These gains arise despite the fact that
we implement IPW with a heavily overparameterized propensity score model, which theory sug-
gests should lead to a precisely determined point estimate (Hirano, Imbens and Ridder,2003;
Wooldridge, 2007).

The next section formally defines the class of problems to which our IPT procedure applies.
In Section3, we present our estimator and characterize its large-sample properties. Section4
compares the higher-order bias of IPT with that of the class of AIPW estimators introduced
by Robins, Rotnitzky and Zhao(1994). Section5 presents the empirical application. Section6
ends with some suggestions for further research. Selected proofs are collected in the
Appendix, which also includes details on computation. Additional proofs, further details on
the empirical application, and a full set of Monte Carlo experiments can be found in the Sup-
plemental Web Appendix. Software implementing our procedure is available online at
http://elsa.berkeley.edu/∼bgraham/.

1. To be more specific, IPW is locally efficient at a rather peculiar data-generating process (DGP). Unfortunately,
this DGP is difficult to interpret anda priori implausible. We discuss this point below.

2. While perhaps less familiar to econometricians, althoughHirano and Imbens(2001), Imbens(2004), and
Wooldridge(2007) are notable exceptions, AIPW methods are widely studied (and used) by statisticians.Tsiatis(2006)
provides a book length treatment.

3. Given the severity of the missing data problem in our sample, one may reasonably question the plausibility of
the MAR assumption. We emphasize that the goal of our empirical application is illustrative.
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2. A SEMIPARAMETRIC MISSING DATA MODEL

Here we describe a general moment condition model with data MAR. Our set-up is as in
Wooldridge(2007) except that our parameter is the solution to a moment condition, as opposed
to a population optimization, problem. LetZ = (Y′

1,X
′)′ be a random vector,γ0 an unknown

parameter, and assume the following.

Assumption 2.1(Identification). For some known K×1 vector of functionsψ(z,γ ),

E[ψ(Z,γ0)] = 0,

with (i) E[ψ(Z,γ )] 6= 0 for all γ 6= γ0, γ ∈ G ⊂ RK , and G compact withγ0 ∈ int(G), (ii)
|ψ(z,γ )| ≤ b(z) for all z ∈ Z with b(z) a non-negative function onZ andE[b(Z)] <∞, (iii)
ψ(z,γ ) is continuous onG for each z∈ Z and continuously differentiable in a neighbourhood
of γ0, (iv) E[‖ψ(Z,γ0)‖2] <∞, and (v)E[supγ∈G ‖∇γ ψ(Z,γ )‖] <∞.

Assumption2.1provides a standard set of conditions under which the full-sample method-of-
moments estimate ofγ0, the solution to

∑N
i =1ψ(Zi , γ̂ )/N = 0, will be consistent and asymp-

totically normal (cf.Newey and McFadden, 1994, Theorems 2.6 and 3.4). Our interest is in
identification and estimation whenY1 is not observed for all units. LetD be a binary indica-
tor variable. WhenD = 1, we observeY1 and X, while whenD = 0, we observe onlyX. Our
benchmark model is defined by Assumption2.1as well as the following assumptions.

Assumption 2.2 (Random sampling). {Di ,Xi ,Y1i }N
i =1 is an independently and identically

distributed random sequence. We observe D, X, and Y= DY1 for each sampled unit.

Assumption 2.3(Missing at random). Pr(D = 1|X,Y1)= Pr(D = 1|X).

Assumption 2.4(Strong overlap). Let p0(x) = Pr(D = 1 | X = x), then0< κ ≤ p0(x) ≤ 1
for some0< κ < 1 and all x∈ X ⊂ Rdim(X).

Assumption 2.5(Propensity score model). There is a uniqueδ∗0 ∈ int(D∗)withD∗ ⊂Rdim(δ∗)

and compact, known vector r(X) of linearly independent functions of X, and known function
G(∙) such that (i) G(∙) is strictly increasing, continuously differentiable, and maps into the unit
interval with limv→−∞ G(v)= 0 and limv→∞G(v)= 1, (ii) p0(x)= G(r (x)′δ∗0) for all x ∈ X ,
and (iii) 0< κ ≤ G(r (x)′δ∗)≤ 1 for all δ∗ ∈D∗ and x∈ X .

We refer to the model defined by Assumptions2.1–2.5as the semiparametric missing data
model.Chen, Hong and Tarozzi(2008) study this model without maintaining Assumption2.5,
i.e. with the propensity score left non-parametric. As is well known, removing Assumption2.5
from the prior restriction does not affect the asymptotic precision with whichγ0 may be es-
timated (Hahn, 1998). We nevertheless maintain it when deriving our local efficiency result
(Theorem3.1). Doing so is important for establishing regularity of our estimator. We also assess
the properties of IPT when Assumption2.5fails (Theorem3.2).

To get a sense of the range of problems to which our methods may be applied, it is helpful to
consider a few specific examples.

Example 2.1 (Mean of a variable missing at random). Let Y1 be a binary indicator for
an individual’s HIV status, let D= 1 if an individual is tested and zero otherwise; Y1 is logi-
cally observable only when D= 1.We would like to estimate the population prevalence of HIV:
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γ0 = E[Y1]. This corresponds to settingψ(Z,γ )= Y1 −γ . Assumption2.3 says that the testing
decision is independent of HIV status in subpopulations homogenous in X. This may be plau-
sible if X includes measures of risk-taking behaviour and other background characteristics so
that it closely approximates an individual’s own information set regarding their status. Assump-
tion 2.4 requires that at least some individuals in every subpopulation defined in terms of X= x
get tested. Assumption2.5 presumes the availability of a parametric model for the testing deci-
sion. This example is closely related to that of average treatment effect (ATE) estimation under
exogenous treatment assignment (see Section6 below).

Example 2.2(Regression function estimation with missing regressors). Let X1 be a vec-
tor of demographic characteristics, X2 log earnings, Y1 armed forces qualification test (AFQT)
score, and X3 a vector of always observed surrogates or proxies for Y1 (e.g. scores on sub-
components of the test, on earlier tests, etc.). Let D= 1 if a unit’s test score is available and
zero otherwise. Let X= (X′

1,X
′
2,X

′
3)

′, γ = (γ ′
1,γ

′
2)

′ andψ(Z,γ ) = (X′
1,Y

′
1)

′(X2 − X′
1γ1 −

Y′
1γ2). Here γ corresponds to the coefficient vector indexing the linear predictor of log earn-

ings given demographics and AFQT score as inJohnson and Neal(1998). This corresponds
to a linear regression model where the covariate of interest is subject to item non-response.
Assumption2.3 requires that across individuals with identical earnings (X2), demographics
(X1), and test proxies (X3), the probability of observing the AFQT score is independent of
its value.

Other examples of the semiparametric missing data model defined by Assumptions2.1–2.5
include panel data models with attrition, certain forms of censored durations, and M-estimation
under variable probability sampling.Chen, Hong and Tarozzi(2004) andWooldridge(2007)
survey additional examples. See also Section6 below.

3. INVERSE PROBABILITY TILTING

Our first result shows that standard IPW, where the propensity score is estimated by CMLE,
is typically inefficient under Assumptions2.1–2.5. This motivates our search for an efficient
variant of IPW. The maximal asymptotic precision with whichγ0 can be estimated under these
assumptions was characterized byRobins, Rotnitzky and Zhao(1994) and is given by the inverse
of

I(γ0)= 0′
03

−1
0 00, (1)

with

00 = E
[
∂ψ(Z,γ0)

∂γ ′

]
, 30 = E

[
6(X;γ0)

p0(X)
+q(X;γ0)q(X;γ0)

′
]

, (2)

where6(x;γ ) = V(ψ(Z,γ )|X = x) andq(X;γ ) = E[ψ(Z,γ )|X = x]. We seek an estimator
that attains this bound.

To describe the textbook IPW estimator, we require some notation. Letri = r (Xi ), ψi (γ )=
ψ(Zi ,γ ), andψi = ψ(Zi ,γ0). Similarly, let Gi (δ

∗) = G(r ′
i δ

∗) and Gi = G(r ′
i δ

∗
0). Denote

a random unit’s contribution to the score of the propensity score log-likelihood evaluated at
δ∗ = δ∗0 by

Sδ∗ =
D − G

G(1− G)
G1r ,
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with Gs(v) = ∂sG(v)/∂vs for s = 1,2.4 Finally, let q(Xi ;γ ) = E[ψ(Zi ,γ )|Xi ] and
qi = q(Xi ;γ0). The inverse probability weighted estimate ofγ0 is given by the solution to

1

N

N∑

i =1

Diψ(Zi , γ̂IPW)

G(r (Xi )′δ̂
∗
ML )

= 0, (3)

with δ̂∗ML the CMLE estimate ofδ∗0. Proposition3.1 summarizes the first-order asymptotic
properties ofγ̂IPW.

Proposition 3.1(Asymptotic sampling distribution of γ̂̂γ̂γ IPW ). Suppose Assumptions2.1–2.5

hold, then (i)
√

N(γ̂IPW −γ0)
D
→N (0,AVar(γ̂IPW)) with

AVar(γ̂IPW)= I(γ0)
−1 (4)

+0−1E
[((

D

G
−1

)
q −5SSδ∗

)((
D

G
−1

)
q −5SSδ∗

)′]
0−1′,

for5S = E
[ D

GψS′
δ∗
]
E
[
Sδ∗ S′

δ∗
]−1

and (ii) k′[AVar(γ̂IPW)−I(γ0)
−1]k ≥ 0 for any vector of con-

stants k.

Proof. See the Supplemental Web Appendix.‖

While the inefficiency of IPW, part (ii) of Proposition3.1, is well known, the asymptotic vari-
ance expression (4) provides new insight into its large-sample properties. Observe that5SSδ∗
equals the best (i.e. mean squared error minimizing) linear predictor of

( D
G −1

)
q given Sδ∗ .5 If

Sδ∗ happens to be a good predictor of
( D

G −1
)
q, then IPW will be nearly efficient. Consider the

case where the propensity score takes a logit form so thatG(v) = exp(v)/[1 + exp(v)]. Some
basic calculations giveSδ∗ =

( D
G −1

)
G ∙ r ; therefore, if it so happens thatq can be written as a

linear function ofG ∙ r , then the asymptotic variance of IPW will coincide with that of an effi-
cient estimator. An interpretation ofHirano, Imbens and Ridder(2003) is that if the dimension
of r is allowed to grow with the sample size, thenq will eventually be arbitrarily well approxi-
mated by a linear function ofG ∙ r, so that this coincidence holds generally (i.e. for all DGPs).
Wooldridge (2007) makes a related point: equation (4) cannot increase if the dimension of
r increases.

In practice, the researcher is only able to fit a finite-dimensional model for the propensity
score. Proposition3.1indicates that, except under very special circumstances, the resulting IPW
estimate ofγ0 is inefficient under Assumptions2.1–2.5. Expression (4) indicates that this inef-
ficiency is most acute when

( D
G − 1

)
q is poorly approximated by a linear combination ofSδ∗ ,

the vector of estimating equations for the propensity score parameterδ∗. This suggests that
changing the estimating equations forδ∗, such that a linear combination of them closely approx-
imates

( D
G −1

)
q, might improve estimator precision. This conjecture turns out to be correct. To

show this result, we begin by positing a working model for the conditional mean ofψ(Z,γ0)
given X.

4. To economize on notation, we often omit an argument of a function when it is being evaluated at the “truth”.
For exampleG1 = G1(r (X)

′δ∗0)= ∂G(r (X)′δ∗0)/∂v.
5. Note that by the conditional mean zero property of the score function and Assumption2.3,

E
[(

D

G
−1

)
qS′
δ∗

]
= E

[
D

G
qS′
δ∗

]
= E

[
D

G
ψS′

δ∗

]
.
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Assumption 3.1 (Moment Conditional Expectation Function (CEF) model). For some
unique matrix5∗

0 and vector of linear independent functions t∗(X) with a constant in the first
row, we have

E[ψ(Z,γ0)|X] =5∗
0t∗(X).

The precise content of Assumption3.1depends on the form ofψ(Z,γ ). If ψ(Z,γ )= Y1−γ,
as in Example2.1, then it is equivalent to assuming that the conditional mean ofY1 is a linear
function oft∗(X). Example2.2provides a more complicated illustration. In that case,

E[ψ(Z,γ0)|X] =

(
X1X2 − X1X′

1γ1 − X1E[Y1|X]′γ2

E[Y1|X]X2 −E[Y1|X]X′
1γ1 −E[Y1Y′

1|X]γ2

)

,

so that selectingt∗(X) requires formulating models for the first and second conditional moments
of Y1.6

Whenψ(Z,γ ) is non-linear inγ choosingt∗(X) such that Assumption3.1 holds is more
difficult. In this case, one can think oft∗(X) as a vector of approximating functions as in the
literature on non-parametric sieve estimation (e.g.Chen,2007; see also Section6 below). We
emphasize that any approach to missing data that involves imputation also requires formulating
a model forE[ψ(Z,γ0)|X] (e.g.Little and Rubin,2002).

Let t (X) denote the union of all linearly independent elements int∗(X) andr (X) (recall that
r (X) are the functions ofX entering the propensity score model in Assumption2.5). Let 1+ M
equal the dimension oft (X); this vector will include a constant andM known functions ofX.
Note thatt (X) = (r (X)′,r ∗(X)′)′, wherer ∗(X) is the relative complement ofr (X) in t∗(X).
Letting δ0 = (δ∗′

0 ,η
′
0)

′, whereη0 = 0, we have under Assumptions2.1 to 2.5 the following
just-identifiedunconditional moment problem:

E
[

D

G(t (X)′δ0)
ψ(Z,γ0)

]
= 0, (5)

E
[(

D

G(t (X)′δ0)
−1

)
t (X)

]
= 0. (6)

Our proposed estimator choosesβ̂IPT = (γ̂ ′
IPT, δ̂

′
IPT)

′ to set the sample analogue of equations (5)
and (6) equal to zero:

1

N

N∑

i =1

Di

G(t (Xi )′δ̂IPT)
ψ(Zi , γ̂IPT)= 0, (7)

1

N

N∑

i =1

(
Di

G(t (Xi )′δ̂IPT)
−1

)
t (Xi )= 0. (8)

Several features of this estimator merit comment. First, as with the standard IPW estimator,
γ̂IPT is the solution to an inverse probability weighted method-of-moments problem (compare
equation (7) with equation (3)). However, the fitted propensity score values used to construct

6. To be explicit, assume thatE[Y1|X] = h1(X)
′π1 and vech(E[Y1Y′

1|X]) = h2(X)
′π2. Let h3(X) consist

of h1(X) and all non-redundant interactions between its elements and those ofX1 and X2, then settingt∗(X) =
(h2(X)

′,h3(X)
′)′ with any redundant entries removed is sufficient for Assumption3.1to hold.
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the weights are not CMLEs. Instead,δ̂IPT is the solution to a method-of-moments problem.7

Importantly, under Assumption3.1, a linear combination of the estimating equations forδ̂IPT
equals

( D
G −1

)
q, which Proposition3.1suggests might be important for efficiency.8

Second, ifr (X) is not contained withint∗(X), then we add moments to the propensity score
estimating equation, replacingt∗(X) with t (X). These additional moments do not improve the
precision ofγ̂IPT, but they do ensure that equation (6) contains a sufficient number of moment
restrictions to pin down the propensity score parameter. Third, in the opposite case wheret∗(X)
is not contained withinr (X), we enrich the propensity score model, replacingr (X)′δ∗0 with
t (X)′δ0 in G(∙). The effect of this replacement is to eliminate any overidentifying restrictions.
To see this note that

t (X)′δ0 = r (X)′δ∗0 + r ∗(X)′η0,

where, by Assumption2.5,η0 = 0. Nevertheless, includingr ∗(X) in the propensity score model
ensures that the combined dimension of equations (5) and (6) coincides with dim(γ0)+dim(δ0)=
K + 1+ M so thatβ0 = (γ ′

0,δ
′
0)

′ is just-identified. This approach to overidentification appears
to be novel.9 Theorem4.1below shows that it results in attractive higher-order properties.

An example helps to fix ideas. Letψ(Z,γ ) = Y1 − γ as in Example2.1 with X scalar. We
assume that Assumption2.5holds withr (X)= (1,X)′ so that the propensity score is,e.g.logit
with an index linear inX. In choosingt∗(X) such that Assumption3.1holds, we are concerned
about possible non-linearities inE[Y1|X = x], therefore we sett∗(X) = (1,X,X2)′. This gives
t (X) = t∗(X) andr ∗(X) = X2. In this case, we fit a propensity score model with an index that
is quadratic inX despite the fact that Assumption2.5 says that a linear one will suffice. We fit
this model not by CMLE but by choosinĝδIPT to solve equation (8). Once we have fitted our
propensity score, we computêγIPT by choosing it to solve (7).

Now consider the case where the analyst believes that the propensity score might vary sharply
with X so that Assumption2.5 requiresr (X) = (1,X,X2)′ but thatE[Y1|X = x] is linear in X
so that Assumption3.1 requires onlyt∗(X) = (1,X)′. In this case,t (X) = r (X) and r ∗(X)
is empty. Here the added moment serves only to tie down the propensity score parameter; it
does not increase the precision ofγ̂IPT. There is no need to overfit the propensity score in
this case.

The main difference between IPW and IPT is that the latter approach (i) overfits the propen-
sity score if Assumption3.1requires us to do so and (ii) we do not use CMLE to fit the propensity
score. In Appendix A, we show that the first step of our procedure requires solving a globally
concave programming problem with unrestricted domain. In theory, this is no harder than com-
puting the CMLE associated with a binary choice logit model, and in practice, we have found
this step to be straightforward. The second step of our procedure, as with the standard IPW one,
can be completed by any M-estimation program that is able to accept user-specified weights.

The next two theorems characterize the first-order asymptotic properties ofγ̂IPT. The first
result shows that when Assumptions2.1–2.5andAssumption3.1hold, the asymptotic variance
of γ̂IPT equalsI(γ0)

−1. More precisely,γ̂IPT is locally efficient forγ0 in the semiparametric
model defined by Assumptions2.1–2.5at DGPs which also satisfy Assumption3.1.

7. Consequently,̂δIPT is an inefficient estimate ofδ0 = (δ∗′
0 ,0

′)′.
8. An earlier version of this paper derived equation (6) as the solution to an optimal instrumental variable problem

based on the conditional moment formulation of the semiparametric missing data model studied byGraham(2011). For
brevity, this derivation is omitted here.

9. It is similar in spirit to the introduction of “tilting” parameters in the context of generalized empirical likelihood
(GEL) estimation of overidentified moment condition models (e.g.Imbens,1997). This observation is the source of IPT’s
name.
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Equation (1) is the information bound forγ0 without imposing the additional auxiliary As-
sumption3.1. This assumption imposes restrictions on the joint distribution of the data not im-
plied by the baseline model. If these restrictions are added to the prior used to calculate the
efficiency bound, then it is generally possible to estimateγ0 more precisely. We emphasize that
our estimator is not efficient with respect to this augmented model. Rather it attains the bound
defined by equation (1) if Assumption3.1 happens to be truein the population being sampled
from but is not part of the prior restrictionused to calculate the bound.Newey(1990, p. 114),
Robins, Rotnitzky and Zhao(1994, pp. 852–853), andTsiatis(2006) discuss the concept of lo-
cal efficiency in detail. In what follows, we will, for brevity, say thatγ̂IPT is locally efficient at
Assumption3.1.

Theorem 3.1(Local semiparametric efficiency ofγ̂̂γ̂γ IPW ). Consider the semiparametric miss-
ing data model defined by Assumptions2.1–2.5, then forγ̂IPT the solution to equation (7), (i)

γ̂IPT is regular and (ii) locally efficient at Assumption3.1 with
√

N(γ̂IPT−γ0)
D
→N (0,I(γ0)

−1).

Proof. See Appendix A. ‖

Theorem3.1 indicates thatγ̂IPT has good efficiency properties. By choosing the estimat-
ing equation for the propensity score with the properties ofE[ψ(Z,γ0)|X] in mind, efficiency
improvements over the standard IPW estimator are possible.10

Our next theorem shows that IPW has a double robustness property (cf.Bang and Robins,
2005;Tsiatis,2006;Wooldridge, 2007). Restrictions (5) and (6) were derived under the baseline
missing data model defined by Assumptions2.1–2.5. Consequently,regardlessof whether As-
sumption3.1also holds,γ̂IPT will be consistent forγ0 and asymptotically normal.11 This is the
first part of double robustness.

Now consider a DGP where Assumptions2.1–2.4and3.1, but not2.5, hold. That is, a situ-
ation where the propensity score is misspecified but the implicit moment CEF model is not. In
this case,̂δ

p
→ δ∗, whereδ∗ is the pseudo-true value which solves equation (6). This pseudo-true

value has an interesting property. Rearranging equation (6), we get

E
[

D

G(t (X)′δ∗)
t (X)

]
= E[t (X)]. (9)

The inverse probability weighted mean oft (X) in the D = 1 subpopulationcoincides with its
full population mean,E[t (X)]. This property holdsregardlessof whether the true propensity
score is of the formG(t (X)′δ) for someδ = δ0.

In the sample, rearranging equation (8), we get

N∑

i =1

π̂IPT,i t (Xi )=
1

N

N∑

i =1

t (Xi ), π̂IPT,i =
1

N

Di

G(t (Xi )′δ̂IPT)
, (10)

10. We comment that the standard IPW estimator is also locally efficient. However, this occurs not at DGPs which
satisfy Assumption3.1, but rather at ones whereE[ψ(Z,γ0)|X] is linear in r (X) ∙ G(r (X)′δ∗0). We find this condition
a bit awkward from a modelling standpoint, however it does help to explain why IPW is often nearly efficient in Monte
Carlo experiments where the outcome equation is a direct function of the propensity score (e.g.Busso, DiNardo and
McCrary, 2009). If the data are missing completely at random (MCAR) such thatp0(x) = Pr(D = 1)= Q0 for all
x ∈X , then IPW and IPT will be locally efficient at the same DGPs as long asr (X)= t∗(X).

11. Its asymptotic variance, however, will lie aboveI(γ0)
−1, in the matrix sense, unless Assumption3.1 also

holds.
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so that the inverse probability weighted mean oft (X) in the D = 1 complete casesubsample
coincides with its full-sample mean. By choosing the propensity score parameter to solve equa-
tion (8), we ensure that the estimated inverse probability weights satisfy anexact balancing
property. For example, ift (Xi ) = (1,X,X2)′ with X scalar, then, after reweighting the com-
plete case sample witĥπIPT,i , the mean and variance ofX will coincide with their full-sample
counterparts. Since the first element oft (Xi ) is a constant, thêπIPT,i weights will also sum
to 1.12

Let F(x, y1) be the joint distribution ofX, Y1, then

F̂IPT(x, y1)=
N∑

i =1

π̂IPT,i 1(Xi ≤ x)1(Y1i ≤ y1), (11)

is the estimate for the joint distribution ofX and Y1 implied by the IPT estimator (cf.Back
and Brown,1993;Imbens,1997). By equation (10), this distribution function satisfies the exact
balancing condition ∫

t (x)dF̂IPT(x, y1)=
∫

t (x)d FN(x), (12)

whereFN(x) is the full-sample empirical distribution function ofX. SinceFN(x) is an efficient
estimate of the distribution ofX, it is reassuring that̂FIPT(x, y1) satisfies equation (12). We
discuss the properties of̂FIPT(x, y1) further in Section4.

The exact balancing property of̂FIPT(x, y1) implies thatγ̂IPT may be consistent forγ0, even
if the maintained propensity score model is incorrect. Let50 = (5∗

0,0), under Assumption3.1
we have50E[t (X)] = E[5∗

0t∗(X)] = E[ψ(Z,γ0)]. Using this equality, Assumption2.3, and
exact balancing (9), we get

E
[

Dψ(Z,γ )

G(t (X)′δ∗)

]
= E

[
p0(X)ψ(Z,γ )

G(t (X)′δ∗)

]
−E[ψ(Z,γ0)]

= E
[

p0(X)ψ(Z,γ )

G(t (X)′δ∗)

]
−50E[t (X)]

= E
[

p0(X)

G(t (X)′δ∗)
ψ(Z,γ )

]
−50E

[
p0(X)

G(t (X)′δ∗)
t (X)

]

= E
[

p0(X)

G(t (X)′δ∗)
{E[ψ(Z,γ )|X] −E[ψ(Z,γ0)|X]}

]
= 0. (13)

Therefore,γ = γ0 is a solution to the inverse probability weighted population moment even if
there is noδ0 such thatG(t (x)′δ0) = p0(x) for all x ∈ X . This is the second part of double
robustness.

If ψ(Z,γ ) is linear inγ, as in Examples2.1 and2.2 above, thenγ = γ0 uniquely solves
equation (13). In the general non-linear case, ensuring uniqueness of the solution to equation (13)
may require the imposition of additional conditions, depending on the form ofψ(Z,γ ). As such
conditions are model specific, we do not formulate them here, but note that doing so is facilitated
by the fact that Assumption2.4 and part (iv) of Assumption2.5 ensure thatp0(x)/G(t (x)′δ∗)

12. Equation (10) highlights that the existence ofδ̂IPT requires that
∑N

i =1 t (Xi )/N lie within the convex hull of
the complete case subsample (a condition that is easy to check). Under Assumption2.4, this will be true in large enough
samples but may not be in small samples, particularly when overlap is poor.
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is bounded below by some positive constant.13 Proceeding under the assumption thatγ = γ0
uniquely solves equation (13), we get our second result.

Theorem 3.2(Double robustness of̂γ̂γ̂γ IPW ). Suppose Assumptions2.1–2.4, either Assumption

2.5 or 3.1, andγ = γ0 uniquely solve equation (13), then
√

N(γ̂IPT − γ0)
D
→N (0,90), where

the form of90 depends on whether Assumption2.5 or 3.1 holds (see Appendix A).

Proof. See Appendix A. ‖

Our formulation of the IPT estimator was undertaken with efficiency considerations at the
forefront. This led to an approach where the propensity score was parameterized with two con-
cerns in mind. First, the parametric propensity score family needs to be rich enough to con-
tain the true score. Second, it needs to be rich enough to balance those functions ofX which
enter the CEF ofψ(Z,γ0). Theorem3.2 shows that the dividend to this approach extends be-
yond local efficiency. Even if the propensity score is misspecified, IPT will remain consistent
if E[ψ(Z,γ0)|X] is linear in t (X). More heuristically, Theorem3.2 suggests that IPT will per-
form well for moderately rich forms oft (X) wheneither the propensity score or the conditional
expectation ofψ(Z,γ0) is smooth inX. Researchers should chooset (X) to be rich enough so
that it accurately approximates whichever function, eitherp0(x) or q0(x)=E[ψ(Z,γ0)|X = x],
is believed to be the least smooth. The double robustness properties of IPT are illustrated via a
series of Monte Carlo experiments, summarized in the Supplemental Web Appendix.

4. OTHER ALTERNATIVES TO IPW AND HIGHER-ORDER COMPARISONS

Theorems3.1 and3.2 provide one argument for routine use of IPT: it is (i) more robust than
either standard IPW or parametric imputation and (ii) locally efficient at Assumption3.1. Com-
putationally, it is no harder than standard IPW (see Appendix A). Finally, the exact balancing
property is likely to be attractive to applied researchers. It is consistent with the intuition that
reweighting makes the complete case subsample more like the full sample. Tables that assess
balance after IPW are commonly featured in applied work (e.g.Hirano and Imbens, 2001; see
also Table 14 in the Supplemental Web Appendix).

While the argument privileging IPT over IPW appears to be straightforward, other alterna-
tives to IPW exist. One such alternative is the class of AIPW estimators introduced byRobins,
Rotnitzky and Zhao(1994). Like IPT, AIPW is locally efficient at Assumption3.1. It is also dou-
bly robust. In this section we present two theoretical arguments for privileging our IPT method
over AIPW ones. First, we show that the implicit estimate of the joint distribution ofX andY1
associated with IPT is attractive relative to the ones associated with AIPW. Second, we compare
the higher-order bias of the two types of estimators.

4.1. A class of iterated AIPW estimators

Several versions of AIPW are now available (seeTan, 2010, for a recent survey). Here we
describe a general set-up which captures many of them. Letωi (δ) = ω(Xi ,δ) and νi (δ) =
ν(Di ,Xi ,δ) be known, scalar-valued, non-negative weight functions. We require thatν(Di ,Xi ,δ)
is such thatE[ν(Di ,Xi ,δ)|X] = 1. Our family of AIPW estimators will be indexed by these

13. Wooldridge(2001, pp. 458–459) develops conditions for consistency of unweighted M-estimators when the
underlying sample is a stratified random one. His argument could be adapted to the current setting for cases where
E[ψ(Z,γ0)] = 0 corresponds to the first-order condition of a population optimization problem.
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TABLE 1
Weight functions for different AIPW estimators

AIPW estimator ωi (δ) νi (δ) Locally efficient? Doubly robust?

Robins, Rotnitzky and Zhao(1994) Gi (δ)
Di

Gi (δ)
Yes Yes

Newey(1994) 1 1 Yes No

Cao, Tsiatis and Davidian(2009) 1−Gi (δ)
Gi (δ)

Di
Gi (δ)

Yes Yes

Hirano and Imbens(2001)/Wooldridge(2007) 1 Di
Gi (δ)

Yes Yes

two weight functions. Letγ̂(ν,ω) be an AIPW estimate in the family, which is defined as the
solution to

1

N

N∑

i =1

{
Di

Gi (δ̂ML )
ψ(Zi , γ̂(ν,ω))−

q̂(υ,ω)(Xi ; γ̂(ν,ω))

Gi (δ̂ML )
(Di − Gi (δ̂ML ))

}
= 0, (14)

with δ̂ML the CMLE of the propensity score parameter and

q̂(υ,ω)(x;γ )=

[
1

N

N∑

i =1

Di

Ĝi
ω̂iψi (γ )t

′
i

]

×

[
1

N

N∑

i =1

ν̂i ω̂i ti t
′
i

]−1

t (x),

with Ĝi = Gi (δ̂ML ), ν̂i = νi (δ̂ML ), andω̂i = ωi (δ̂ML ). Note thatq̂(υ,ω)(x;γ ) is the fitted value
associated with a weighted least squares fit ofψi (γ ) ontoti .

Settingνi (δ)= Di /Gi (δ) andωi (δ)= Gi (δ), we get the original AIPW estimator ofRobins,
Rotnitzky and Zhao(1994);νi (δ)= 1 andωi (δ)= 1 yieldNewey’s(1994, Section 5.3) estimator,
while νi (δ) = Di /Gi (δ) andωi (δ) = (1− Gi (δ))/Gi (δ) give the estimator suggested byCao,
Tsiatis and Davidian(2009) (see Table1).14

Hirano and Imbens(2001) andWooldridge(2007) propose a doubly robust estimator for the
ATE under exogenous treatment assignment.15 It turns out that settingνi (δ) = Di /Gi (δ) and
ωi (δ)= 1 gives their estimator. In the general moment model case, their approach choosesγ̂HIW
to solve

1

N

N∑

i =1

q̂HIW(Xi ; γ̂HIW)= 0, (15)

whereq̂HIW(x;γ ) is the weighted least squares fit

q̂HIW(x;γ )=

[
1

N

N∑

i =1

Di

Ĝi
ψi (γ )t

′
i

]

×

[
1

N

N∑

i =1

Di

Ĝi
ti t

′
i

]−1

t (x). (16)

The following Proposition shows that equation (15) is also a member of our class of AIPW
estimators.

14. Many of the estimators listed in Table1 were originally proposed in the context of a specific form forψ(Z,γ ).
We adapt to the general case as necessary.Newey(1994) derives the large sample properties of his estimator where the
dimension oft (X) grows withN. Here we consider his estimator with the dimension oft (X) held fixed.

15. Wooldridge’s(2007) estimator is actually slightly more general than the one described here in thatq̂HIW(x;γ )
need not correspond to a least squares fit.
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Proposition 4.1. The solution to equation (15) is numerically identical tôγ(ν,ω) with νi (δ) =
Di /Gi (δ) andωi (δ)= 1.

Proof. Since the first element ofti is a constant, we have, by the first-order condition asso-
ciated with (16),

1

N

N∑

i =1

Di

Ĝi
{ψ(Zi , γ̂ )− q̂HIW(x;γ )} = 0. (17)

Adding the left-hand side of equation (17) to equation (15) and rearranging give the result.‖

4.2. Implicit distribution function estimates

A useful way to understand the properties of first-order equivalent estimators is in terms of
their implicit distribution function estimates. After some simple algebra, we can show that the
solution to (14) coincides with that to

N∑

i =1

π̂(υ,ω),iψ(Zi , γ̂(υ,ω))= 0,

where

π̂(υ,ω),i =
1

N

Di

Ĝi
ζ̂(υ,ω),i (18)

with

ζ̂(υ,ω),i =





1−

[
1

N

N∑

i =1

(
Di

Ĝi
−1

)
t ′i

]

×

[
1

N

N∑

i =1

ν̂i ω̂i ti t
′
i

]−1

× ω̂i ti





, (19)

for i = 1, . . . ,N. This implies that the estimate of the joint distribution associated withγ̂(υ,ω) is

F̂(υ,ω)(x, y1)=
N∑

i =1

π̂(υ,ω),i 1(Xi ≤ x)1(Y1i ≤ y1) (20)

(seeBack and Brown,1993, Proposition 1).
This distribution function has several interesting properties. First, ifνi = Di /Gi (δ), which

is true for all the estimators listed in Table1 exceptNewey’s(1994), then
∫

t (x)dF̂(υ,ω)(x, y1)=
∫

t (x)d FN(x).

The re-weighted meant (X) in the complete case (D = 1) subsample coincides with its un-
weighted full-sample mean. Since the unweighted full-sample mean oft (X) is an efficient es-
timate of its population analogue, then so is the re-weighted complete case sample mean. In
this sense, thêF(υ,ω)(x, y1) inherits some of the efficiency properties ofFN(x). Since the first
element oft (Xi ) is 1, the AIPW distribution function estimate also integrates to 1

(
i.e.

∫
dF̂(υ,ω)

(x, y1)= 1
)
.

As noted in the previous section, the IPT distribution function estimate (11) also exactly
balances the mean oft (Xi ) and integrates to 1. However, it differs from̂F(υ,ω)(x, y1) in that
it is guaranteed to be non-decreasing, whereasF̂(υ,ω)(x, y1) may be decreasing inx and/ory1
over some ranges. Put differently, some of theπ̂(υ,ω),i weights may be negative, while theπ̂IPT,i
weights are positive by construction.
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To gain further insight into this problem, consider the distribution function estimator
associated with standard IPW (e.g.Imbens,2004):

F̂IPW(x, y1)=
N∑

i =1

π̂IPW,i 1(Xi ≤ x)1(Y1i ≤ y1), π̂IPW,i =
1

N

Di

Ĝi
. (21)

Now consider a random sample where

1

N

N∑

i =1

(
Di

Ĝi
−1

)
t (Xi ) > 0 →

N∑

i =1

π̂IPW,i t (Xi ) >
1

N

N∑

i =1

t (Xi ). (22)

In this case, the IPW estimate of the mean oft (Xi ) exceeds its unweighted full-sample coun-
terpart. The fact that the latter mean is efficient implies that the former is not. The AIPW
distribution function estimator corrects this inefficiency by adjusting the IPW weights as
follows:

π̂(υ,ω),i = π̂IPW,i × ζ̂(υ,ω),i ,

with ζ̂(υ,ω),i as defined in equation (19). Under equation (22), large realizations oft (X) are
“too frequent” in the complete case subsample (even after re-weighting by the inverse of the
estimated propensity score). In such a situation,ζ̂(υ,ω),i will be less than one forD = 1 units
with large values oft (X) and greater than one for units with small values. In extreme cases,
the resultingπ̂(υ,ω),i may be negative or exceed one. Condition (22) is especially likely to occur
when the propensity score model is misspecified. In that case,Ĝi corresponds to a quasi-MLE
propensity score estimate, and hence,1

N

∑N
i =1(Di /Ĝi − 1)t (Xi ) may differ from zero even in

large samples.
In practice, the IPW and AIPW distribution functions can generate non-sensical estimates.

Letψ(Z,γ )= Y1 −γ. Neitherγ̂IPW nor γ̂(υ,ω) is guaranteed to lie within the convex hull of the
data. IfY1 ∈ {0,1}, e.g.this means it is possible for̂γIPW andγ̂(υ,ω) to exceed one. In contrast,
γ̂IPT will lie in the convex hull of the data by construction. In our view, an estimator that sets a
weighted mean ofψ(Z,γ ) equal to zero, where these weights need not lie on the unit interval,
is a priori unattractive (cf.Robinset al., 2007;Tan, 2010).

4.3. Higher-order bias

Another way IPT and AIPW can be compared is in terms of their higher-order bias. In this
section, we present higher-order bias expressions for both IPT and AIPW when Assumptions
2.1–2.5and3.1 hold. Bias comparisons are interesting in this case because IPT and AIPW are
first-order equivalent. Theorem4.1, which is based on an application of Lemma A.4 ofNewey
and Smith(2004), gives the result.

Theorem 4.1(Higher-order bias). Suppose Assumptions2.1–2.5, Assumption3.1, and addi-
tional regularity conditions hold, then as N→ ∞

γ̂(υ,ω) = γ0 +
CO

N
+

CV (υ,ω)

N
+ O(N−2), (23)

γ̂IPT = γ0 +
CO

N
+ O(N−2), (24)
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where

CO = −
1

2

K∑

k=1

0−1E
[
∂2ψ

∂γk∂γ ′

]
I(γ0)

−1ek

+0−1E
[
∂ψ

∂γ ′0
−1 1

p
{ψ−q}

]
+

1

N
0−1E

[
∂ψ

∂γ ′0
−1q

]
,

CV (υ,ω)= −0−1E
[

D

p2
6(X)3−15SSδ

]

+0−1E
[{

D

p

(
2ω−

1

p

)
−ωv

}
qq′3−15SSδ

]

+0−1E
[
ω

(
D

p
−ν

)(
D

p
−1

)
qt′F−1

0 t

]
,

with ek denoting a K×1 vector with a1 in the kth row and zeros elsewhere, p= G(t (X)′δ0),
and F0 = E

[1−p
p tt ′

]
.

Proof. See Appendix A and the Supplemental Web Appendix.‖

To understand Theorem4.1, it is helpful to consider the asymptotic properties of an infea-
sible “oracle” estimator. This estimator choosesγ̂ to set the optimal (i.e. asymptotic variance
minimizing) linear combination of the sample mean of

ψ I(Z,γ0)=

{ D
p0(X)

ψ(Z,γ0)

( D
p0(X)

−1)q0(X)

}

(25)

equal to zero. This estimator is infeasible because (i)p0(X) andq0(X) are unknown and (ii) the
optimal linear combination is also unknown. An implication ofGraham(2011, Theorem3.1) is
that the efficient Generalized Method of Moments (GMM) estimator based on equation (25) is
also semiparametrically efficient for the missing data problem defined by Assumptions2.1–2.5.

A direct application of Theorem 4.1 ofNewey and Smith(2004) to equation (25) gives
an asymptotic bias for this estimator ofCO. This bias coincides with that of̂γIPT, despite the
fact that the oracle estimator is based on the true propensity score,p0(X), conditional mean
moment vector,q0(X), and optimal GMM weight matrix. In contrast, the bias expression for
the AIPW estimateγ̂(υ,ω) contains additional terms. The additional terms arise from AIPW’s
separation of the tasks of propensity score estimation and imposition of the optimal set of bal-
ancing restrictions implied by Assumption3.1. The first task generates no gains in terms of
asymptotic precision, while at the same time introducing sampling error into the vector of es-
timating equations for̂γ(υ,ω). The second task results in an overidentified system of moment
equations. The finite sample properties ofγ̂(υ,ω) may degrade as a result. It is straightforward to
construct stylized examples where the bias ofγ̂(υ,ω) increases withM , the dimension oft (X),
while that of γ̂IPT does not. This will be especially true if the distribution oft (X) is skewed
and/or that ofψ(Z,γ0) is heteroscedastic (see the Supplemental Web Appendix for Monte Carlo
examples).

The contrast between the higher-order bias ofγ̂IPT and γ̂(υ,ω) in some ways parallels that
between empirical likelihood (EL) and two-step GMM for general moment condition models
(Newey and Smith, 2004). The EL estimator transforms an overidentified moment condition
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problem into a just-identified one by introducing a vector of tilting parameters (cf.Imbens,
1997). Our approach to overidentification, in contrast, involves overparameterizing the propen-
sity score. The idea of overfitting a nuisance function to eliminate overidentification appears to
be novel.

An alternative to IPT would be to apply GEL directly to the set of moment conditions
underlying the AIPW estimator (cf.Qin, Zhang and Leung, 2009). LetLr = dim(r (X)) and
Lt∗ = dim(t∗(X)). Such an approach would apply GEL to theK + Lt∗ + Lr system of moments

E








D
G(r (X)′δ∗0)

ψ(Z,γ0)
( D

G(r (X)′δ∗0)
−1

)
t∗(X)

( D−G(r (X)′δ∗0)
G(r (X)′δ∗0)[1−G(r (X)′δ∗0)]

)
G1(r (X)′δ∗0)r (X)








= 0.

Computation ofγ̂GEL would involve solving a saddle point problem with 2(K + Lr )+ Lt∗ pa-
rameters (Newey and Smith,2004, Section 3). In contrast, computingγ̂IPT requires solving a
1+ M ≤ Lt∗ + Lr dimensional globally concave problem and a just-identified moment condi-
tion problem withK parameters. Our approach involves a smaller parameter and sidesteps the
need to solve a saddle point problem.

5. BASIC SKILLS AND THE BLACK–WHITE WAGE GAP

In an important pair of papers,Neal and Johnson(1996) andJohnson and Neal(1998) document
that Black–White skill differences presentprior to labour market entry (i.e. by age 18) can
account for a substantial portion of the corresponding gap in adult hourly earnings. In particular,
they find that three-fifths of the raw 28% Black–White gap in average hourly earnings can be
predicted by differences in AFQT scores, a measure of basic skills used by the military.

Here we repeat the analysis ofJohnson and Neal(1998) after replacing AFQT scores with
measures of cognitive skills acquiredprior to adolescence. The idea is to measure how much of
Black–White differences in hourly earnings can be accounted for by differences in skills across
the two groups already manifest prior to adolescence. If a substantial portion of the wage gap
can be so accounted for, then educational interventions which aim to ameliorate racial inequality
might be more appropriately targeted towards younger children.16

We reconstruct the National Longitudinal Survey of Youth 1979 (NLSY79) extract analysed
by Johnson and Neal(1998). This sample is a stratified random sample of young men from the
U.S. born between 1962 and 1964. Measurements of average hourly wages over the 1990–1993
period, race, as well as AFQT scores are available for each individual. The NLSY79 also col-
lected data from respondents’ school records. In some cases, these records included (nationally
normed) percentile scores on IQ tests taken at various ages. We use those scores corresponding
to tests taken between the ages of 7 and 12 as measures of cognitive skills acquired prior to ado-
lescence. Unfortunately, these scores are missing for almost 90% of individuals. An unweighted
analysis based on those individuals with complete information would be problematic for two
reasons: (i) there are few complete cases making precise inference difficult and (ii) the complete
cases are not representative of the full sample in terms of always-observed characteristics. Our
IPT estimator is designed to address both of these problems.

16. Interpreting any predictive relationship between early childhood test scores and subsequent labour market
earnings causally involves a number of subtleties. As our purposes are primarily illustrative, we do not dwell on this
issue here. SeeNeal and Johnson(1996) for a discussion of some of the issues involved.
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TABLE 2
Replication of Table 14-1 ofJohnson and Neal(1998) and unweighted complete case analysis with preadolescent

test score

(1) (2) (3) (4)
OLS OLS CC-OLS CC-OLS

YEAROFBIRTH −0∙0458 −0∙0466 −0∙0947 −0∙0940
(0∙0151)∗∗ (0∙0147)∗∗ (0∙0464)∗ (0∙0470)∗

BLACK −0∙2776 −0∙1079 −0∙2708 −0∙1606
(0∙0261)∗∗ (0∙0284)∗∗ (0∙0833)∗∗ (0∙0900)+

AFQT — 0∙1645 — —
(0∙0146)∗∗

EARLY TEST — — — 0∙1011
(0∙0540)+

R2 0∙062 0∙183 0∙068 0∙11
N 1371 1371 144 144

Notes:Estimation samples are as described in the main text. The 1979 baseline sampling weights are used in place of
the empirical measure when computing all estimates. “∗∗”, “ ∗” and “+” denote that a point estimate is significantly
different from zero at the 1%, 5%, and 10% levels. Standard errors (in parentheses) allow for arbitrary patterns of
heteroscedasticity and dependence across units residing in the same household at baseline.

Columns 1 and 2 of Table2 replicate Columns 1 and 2 of Table 14-1 inJohnson and Neal
(1998, p. 483) (with the exception that we exclude Hispanics from our analysis).17 The first
column reports the least squares fit of LOGWAGE onto a constant, YEAROFBIRTH, and BLACK.
The estimated wage gap between Blacks and Whites of the same age is 28%. Column 2 adds
AQFT to the set of explanatory variables. The wage gap between Blacks and Whites of the
same age with the same pre-market AFQT score is only 11%. Seventeen percentage points of
the unconditional Black–White hourly wage gap can be accounted for by average differences in
pre-market AFQT scores across the two groups. That a substantial portion of racial differences
in hourly wages can be accounted for by differences in skills acquired prior to entry into the
labour market is the central result ofNeal and Johnson(1996).

Columns 3 and 4 of Table2 replicate Columns 1 and 2 after replacing AFQT with our pread-
olescence test score (EARLY TEST). This is an unweighted analysis based on the 144 complete
cases. Conditioning on age alone, racial wage gaps in the complete case subsample are very
similar to those computed using the full sample (Column 3). The wage gap conditional on the
preadolescent test score is substantially lower (Column 4). Unfortunately, these wage gap esti-
mates are very imprecise; their standard errors are almost four times those of their Columns 1
and 2 counterparts. A second problem with this analysis is that those individuals with early test
scores differ systematically from those without them (See Table 11 in the Supplemental Web
Appendix).

To address bias due to non-randomness in the missingness process as well as to improve
precision, we re-estimated the Table2, Column 4 model using our IPT procedure. To appro-
priately use IPT, we require that EARLY TEST is MAR (Assumption2.3). That is, conditional
on YEAROFBIRTH, BLACK, LOGWAGE, and AFQT, we require that the probability of observ-
ing EARLY TEST is independent of its value. Given the severity of missingness in our data set,
this assumption is potentially problematic. We nevertheless maintain it in order to illustrate the
practical application of IPT.

17. See also Columns 1 and 3 of Table 1 inNeal and Johnson(1996, p. 875).
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The joint support of YEAROFBIRTH and BLACK contains 3× 2 = 6 points. We included
in t (X) five non-redundant dummy variables for YEAROFBIRTH-by-BLACK cell (Whites born
in 1962 are the excluded group). This resulted in full distributional balance for the discretely
valued components ofX. We also balanced the means, variances, and covariance of AFQT and
LOGWAGE conditional on race alone, and age alone, but not their interaction.18 That is,t (X)
also included AFQT, LOGWAGE, AFQT2, LOGWAGE2, and AFQT×LOGWAGE as well as
the interactions of these variables with BLACK and the 2 years of birth dummies (1962 being the
excluded cohort). This led to a specification oft (X) with 26 elements.

Our choice oft (X) was informed by two considerations. First, we wantedt (X) to be rich
enough to allow for complex forms of selection into missingness (see Assumption2.5) as well
as for the conditional mean and variance of EARLY TEST(see Assumption3.1and Example2.2).
Second, we wanted to re-weight the 144 complete cases such that an analyst with access to these
data alone wouldnumerically exactly reproducethe results ofJohnson and Neal(1998) (i.e.the
point estimates in Columns 1 and 2 of Table2).19

Column 2 of Table3 reports IPT estimates of the best linear predictor of LOGWAGE given,
YEAROFBIRTH, BLACK , and EARLY TEST. For comparison, the unweighted complete case es-
timates are reproduced in Column 1 of the table, while the standard inverse probability weighted
(IPW) estimates are given in Column 3. Relative to the unweighted complete case one, the
IPT estimate of the Black–White wage gap, conditional on skills acquired prior to adolescence
(EARLY TEST), is larger in absolute value with a standard error almost two-thirds smaller. Recall
that the wage gap conditional on age alone was 28% (Table2, Column 1). Conditioning on skills
acquired prior to adolescence, this gap falls to 18%. This is larger than the 11% gap present after
conditioning on the later AFQT score but substantially smaller than the unconditional gap. Put
differently, roughly 40% of the raw Black–White wage gap can be accounted for by differences
in average skill levels across the two groups manifest prior to adolescence. This represents about
two-thirds of the pre-market effect found byNeal and Johnson(1996).

Column 3 of Table3 reports IPW estimates of the same model. The IPW estimate of the
Black–White wage gap is imprecisely determined with a standard error over twice as large as
the IPT one. This provides a concrete example of the efficiency gains IPT can provide relative
to IPW (see Proposition3.1 and Theorem3.1). Columns 4 through 7 report estimates based
on the four implementations of AIPW described in Section4. The AIPW point estimates, with
the exception ofNewey’s(1994), are very similar to their IPT counterpart, albeit with standard
errors about 10% larger.20

6. SUMMARY AND EXTENSIONS

The IPT procedure proposed in this paper is a promising alternative to standard IPW- and AIPW-
based approaches to missing data. We end by outlining some possible extensions to IPT that
might merit further research.

18. Given the near-normal distribution of AFQT and LOGWAGE in our sample focusing on the first two moments
of these variables seemed appropriate.

19. Our choice oft (X) ensures that all those moments used to compute the full-sample least squares fit of LOG-
WAGE onto a constant, YEAROFBIRTH, BLACK, and AFQT are exactly balanced. Consequently, the corresponding
IPT-weighted least squares fit based on the 144 complete cases alone will be numerically identical to the unweighted
full-sample fit.

20. In this particular example, the implicit AIPW distribution function estimates are reasonably similar to the IPT
one; AIPW does not give inordinate weight to any particular respondent and negative weight is attached to only a handful
of units. The exception isNewey’s(1994) variant of AIPW. Theorem4.1 suggests that this variant of AIPW is more
biased than the others, consistent with our empirical results.
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6.1. Program evaluation and related problems

Thus far we have focused on problems whereZ is completely observed ifD = 1. Now consider
the case whereZ = (X′,Y′

0,Y
′
1)

′ with D, X, andY = (1− D)Y0 + DY1 observed. That is we
observeY0 if D = 0 andY1 if D = 1. Let the moment function take the separable form

ψ(z,γ )= ψ1(y1,x,γ )−ψ0(y0,x,γ ).

Many problems fall into this basic set-up.

Example 6.1(Average treatment effects (ATEs)). Let D= 1 and D= 0, respectively, denote
assignment to an active and control program or intervention and Y1 and Y0 the corresponding
potential outcomes. The ATE is

γ0 = E[Y1 −Y0],

which corresponds to settingψ1(Y1,X,γ )= Y1 andψ0(Y0,X,γ )= Y0+γ . Since each unit can
only be exposed to one intervention, either Y1 or Y0 is missing for all units.Graham, Pinto and
Egel(2011) discuss the application of IPT to this problem in detail and outline an implementa-
tion in STATA.

Example 6.2 (Two-sample instrumental variables (TSIV) estimation with compatible
samples). Assume thatdim(X) ≥ dim(Y0) and consider the following instrumental variables
model

Y1 = Y′
0γ0 +U, E[U X] = 0.

This suggests a moment function withψ1(Y1,X,γ ) = XY1 andψ0(Y0,X,γ ) = XY′
0γ. Two in-

dependent random samples of size N1 and N0 from the same population are available. In the
first sample, N1 values of Y1 and X are recorded, while in the second N0 values of Y0 and X are
recorded. For asymptotic analysis, we assume thatlimN1,N0→∞ N1/(N1 + N0)= Q0 > 0. This
is the TSIV model analysed byAngrist and Krueger(1992).Ridder and Moffitt(2007) provide a
technical and historical overview. This model is equivalent to a special case of the semiparamet-
ric missing data model, an observation that is apparently new. Assume that N units are randomly
drawn from some target population. With probability Q0, the ith unit’s values for Y1 and X are
recorded, while with probability1− Q0 its values of Y0 and X are recorded. The indicator vari-
able D denotes which set of variables are measured. The only difference between this sampling
scheme and that ofAngrist and Krueger(1992) is that in the latter N1 and N0 are fixed by the
researcher, while in the missing data formulation they are random variables. An adaptation of
the argument given byImbens and Lancaster(1996, Sections 2.1–2.2) shows that this difference
does not affect inference.

To apply IPT to these problems, we find theδ̂0
IPT, δ̂1

IPT, andγ̂IPT which solve

1

N

N∑

i =1

{
Diψ1(Y1i ,Xi , γ̂IPT)

G(t (Xi )′δ̂
1
IPT)

−
(1− Di )ψ0(Y0i ,Xi , γ̂IPT)

1− G(t (Xi )′δ̂
0
IPT)

}

= 0,

1

N

N∑

i =1

(
1− Di

1− G(t (Xi )′δ̂
0
IPT)

−1

)

t (Xi )= 0,

1

N

N∑

i =1

(
Di

G(t (Xi )′δ̂
1
IPT)

−1

)

t (Xi )= 0.
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Note that this involves computing two propensity score parameter estimates. One which bal-
ances the mean oft (X) in the D = 1 subsample with its full-sample mean (δ̂1

IPT) and one
which balances the mean oft (X) in the D = 0 subsample with its full-sample mean (δ̂0

IPT).
Each of these propensity score estimates may be computed using the algorithm described in
Appendix A. The second step of estimation involves solving a just-identified moment condition
problem.

It is straightforward to extend the arguments given above to show that the above estimator is
locally efficient and doubly robust. As beforet (X) should be rich enough to adequately model
the propensity score. Local efficiency requires thatE[ψ0(Y0,X,γ )|X] andE[ψ1(Y1,X,γ )|X]
be linear int (X) (this is also the condition for double robustness). As in the examples outlined
above, the form oft (X) is often suggested by the structure of the problem. Consider efficient
estimation of the ATE by IPT. This requires choosingt (X) such that the true propensity score is
contained in the parametric familyG(t (X)′δ) and the true potential outcome CEFs are linear in
t (X). Consistency requires only one of these two restrictions to be true.

6.2. E[ψ(Z,γ0)|X] non-linear

If there is not (X) such thatE[ψ(Z,γ0)|X] is linear in t (X), then neither our local efficiency
nor double robustness result can exactly hold (although our procedure, like IPW, will still be
consistent if the propensity score is correctly specified). Although, in practice,E[ψ(Z,γ0)|X]
may be well approximated by a function linear int (X), it is of interest to allowE[ψ(Z,γ0)|X] to
be intrinsically non-linear. As a concrete example, assume that we seek to estimate the marginal
mean of the binary-valuedY1. We posit the working model Pr(Y1 = 1|X)= F(X′η) and choose
η̂ to maximize the log-likelihood

N∑

i =1

Di {Y1i logF(X′
i η)+ (1−Y1i ) log(1− F(X′

i η))}.

Note that we use only the complete cases (D = 1 units) for this computation.
Observe that ift (X) includedF(X′η0) as an element, then Assumption3.1 would hold by

construction. We approximate this ideal by including the estimateF(X′η̂) as an element oft (X)
(along with the elements ofr (X) and possibly other known functions ofX). Denotet (X), so
defined, byt (X; η̂M L). Using this vector of balancing functions, we estimate the propensity
score parameter by solving

1

N

N∑

i =1

(
Di

G(t (Xi ; η̂ML )′δ̂IPT)
−1

)
t (Xi ; η̂ML )= 0.

The IPT estimate ofγ0 is solved for as before. The main difference between the IPT procedure
introduced in Section3 and the one sketched above is the inclusion of a generated regressor in
the propensity score model. It is possible that sampling error inη̂ML could affect the asymp-
totic properties of̂γIPT. We conjecture that, appropriately restated, Theorems3.1and3.2would
remain valid but that our higher-order bias calculations would be affected.

6.3. Data dependent choice of t(X) whenE[ψ(Z,γ0)|X] is non-parametric

Assume that the propensity score is known but that prior knowledge on the form of
E[ψ(Z,γ0)|X] is unavailable (i.e. it is non-parametric). If the first element oft (X) is
G−1(p0(X)), thenγ̂IPT will be consistent. The choice of what other functions ofX to include
in t (X) has implications for efficiency alone (and perhaps finite-sample bias). In this special
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case, the problem of choosingt (X) is closely related to that of moment selection in conditional
moment problems (e.g.Donald, Imbens and Newey, 2008).Hirano, Imbens and Ridder(2003)
also suggest incorporating a known propensity score in a similar fashion but do not make the
connection between overparameterization of the propensity score and moment selection. This
connection is made, by construction, explicit in the IPT setting. When the propensity score is
also non-parametric, choosingt (X) is no longer analogous to a pure moment selection prob-
lem sincet (X) also determines the quality with which the propensity score is approximated. It
would be interesting to explore automated, data-dependent procedures for choosing the compo-
nents and dimension oft (X) in the above settings.

6.4. Estimation of overidentified moment condition models

If dim(ψ(Z,γ )) > dim(γ ), the procedure outlined above is not directly applicable. One ap-
proach to overidentification would be to estimate the inverse probability tilt as described above.
In Step 2, the analyst could then apply two-step GMM (or GEL) using the IPT re-weighted
data. We conjecture that this procedure would be locally efficient and doubly robust. It would be
interesting to construct a one-step estimator for overidentified models.

APPENDIX A

This appendix outlines the proofs of the results given in the main text. Throughout the Appendix we assume thatt (X)=
t∗(X)= r (X) so that50 =5∗

0 andδ0 = δ∗0. This is done only to simplify the notation and is without loss of generality.
We also drop “0” subscripts, used to denote (true) population values, when doing so causes no confusion. A Supplemental
Web Appendix, available athttp://elsa.berkeley.edu/∼bgraham/, contains additional proofs, Monte Carlo results, and
empirical application details.

Local efficiency and double robustness ofγ̂IPT (Theorems3.2and3.1)

Consistency and double robustness.When Assumptions2.1–2.5hold, consistency follows from arguments
analogous to those ofWooldridge(2007) for IPW. If Assumptions2.1–2.4and3.1 hold, but not2.5 (we do assume
that theG(∙) function satisfies the stated regularity conditions; in particular thatG(t (x)′δ) > 0 for all x ∈ X andδ ∈

D), we haveδ̂
p

→ δ∗, whereδ∗ is the pseudo-true value which solvesE[(D/G(t (X)′δ∗)− 1)t (X)] = 0. This gives
E[ p0(X)t (X)/G(t (X)′δ∗)] = E[t (X)] so that under Assumptions2.3and3.1, we have equation (13) of the main text.
Therefore,γ = γ0 is a solution to the IPW population moment. Ifψ(Z,γ ) is linear inγ , then this solution is also unique.
Otherwise uniqueness follows by hypothesis.

Asymptotic normality. Asymptotic normality ofγ̂IPT follows from Theorem 6.1 ofNewey and McFadden
(1994). Letβ = (γ ′,δ′)′. The K +1+ M ×1 moment vector and derivative matrix equal

mi (β)=




Di

Gi (δ)
ψi (γ )

( Di
Gi (δ)

−1
)
ti



 , Mi (β)=




Di

Gi (δ)
∂ψi (γ )
∂γ ′ − Di

Gi (δ)
G1i (δ)
Gi (δ)

ψi (γ )t
′
i

0 − Di
Gi (δ)

G1i (δ)
Gi (δ)

ti t
′
i



 . (A.1)

First consider the case where Assumptions2.1–2.5 hold. Let M = E[Mi (β0)] and � = E[mi (β0)mi (β0)
′],

then
√

N(γ̂ −γ0)
D
→N (0,90) for90 = {(M ′�−1M)−1}1:K ,1:K (whereA1:K ,1:K is the upper left-handK × K block

of A). The covariance ofmi = mi (β0) equals

�=

(
E[ ψψ

′

G ] E0
E′

0 F0

)

, (A.2)

with

E0 = E
[

1− G

G
ψ t ′

]
, F0 = E

[
1− G

G
tt ′
]
. (A.3)

Then the population mean ofMi = Mi (β0) equals

M =

(
0 −E

[G1
G ψ t ′

]

0 −E
[G1

G tt ′
]

)

. (A.4)
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Using equations (A.2) and (A.4), we get a limiting sampling variance for
√

N(β̂−β0) equal to

M−1�M−1′=





0−1(E

[ψψ ′

G

]
− E0F−1

0 E′
0

)
0−1′ +0−1E

[G1
G tt ′

]−1
1′

0F010E
[G1

G tt ′
]−1
0−1′

−E
[G1

G tt ′
]−1F0

{
E0F−1

0 −E
[G1

G ψ t ′
]
E
[G1

G tt ′
]−1}′

0−1′
(A.5)

−0−1{E0F−1
0 −E

[G1
G ψ t ′

]
E
[G1

G tt ′
]−1}F0E

[G1
G tt ′

]−1

VM M (δ)




 ,

where

10 = E
[

D

G
(ψ− E0F−1

0 t)S′
δ

]
, VM M (δ0)= E

[
G1

G
tt ′
]−1

F0E
[

G1

G
tt ′
]−1

. (A.6)

Now consider the case where Assumptions2.1–2.4and 3.1 hold, but not2.5. Letβ∗ = (γ ′
0,δ

′
∗)

′, with δ∗ the
pseudo-true propensity score parameter. LetG∗ = G(t (X)′δ∗), etc. Under this set of assumptions, we have

�∗ =






E
[ p0(X)

G2
∗
ψψ ′] E

[ p0(X)
G∗

( 1−G∗
G∗

)
ψ t ′

]

E
[ p0(X)

G∗

( 1−G∗
G∗

)
tψ ′] E

[( p0(X)
G2

∗
−2 p0(X)

G∗
+1

)
t t ′
]




 ,

and

M∗ =





E
[ p0(X)

G∗
∂ψ
∂γ ′

]
−E

[ p0(X)
G∗

G1∗
G∗

ψ t ′
]

0 −E
[ p0(X)

G∗
G1∗
G∗

t t ′
]




 ,

so that90 = {(M ′
∗�

−1
∗ M∗)

−1}1:K ,1:K .

Local efficiency. If Assumption3.1also holds, we haveE[ψ |X] =50t = q so thatE0F−1
0 =50 and hence

E0F−1
0 E′

0 = E
[

1− G

G
50t t ′5′

0

]
= E

[
1− G

G
qq′

]
, (A.7)

which gives the equality0−1(E
[ψψ ′

G

]
− E0F−1

0 E′
0

)
0−1′ = I(γ0)

−1. In that case, we also have10 = 0 since

E[ψ |D,X] = E0F−1
0 t. Under these conditions, equation (A.5) simplifies to

M−1�M−1′ = diag(I(γ0)
−1,VM M (δ0)). (A.8)

Local efficiency at Assumption3.1 follows if we can show that IPT is regular under Assumptions2.1–2.5. The
score function for a parametric submodel of the semiparametric missing data model is (e.g.Chen, Hong and Tarozzi,
2008)

sη(y,x,d;η)= dsη(y1|x;η)

+
d − G(t (x)′δ)

G(t (x)′δ)[1− G(t (x)′δ)]
G1(t (x)

′δ)t (x)×
(
∂δ

∂η

)
+ rη(x;η).

Under Assumption2.1, we have, differentiating under the integral and using iterated expectations,

∂γ (η0)

∂η
= −0−1E

[
ψ(Z,γ0)

∂ log f (Y1,X;η0)

∂η

]

= −0−1{E[ψ(Z,γ0)sη(Y1|X;η0)] +E[q(X;γ )rη(X;η0)]}.

Under Assumptions2.1–2.5, standard calculations yield an asymptotically linear representation ofγ̂ equal to

γ̂ = γ0 −
1

N

N∑

i =1

0−1
{

Diψ(Zi ,γ0)

G(t (Xi )
′δ0)

− M12M−1
22

(
Di

G(t (Xi )
′δ0)

−1

)
t (Xi )

}
+op(N

−1/2),
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where−0−1 times the term in{∙} is the influence function andM12 andM22 denote the upper right-handK × 1+ M
and lower right-hand 1+ M ×1+ M blocks ofM as given in equation (A.4) above. Letφ denote this influence function;
by Theorem 2.2 ofNewey(1990), regularity ofγ̂ follows if

∂γ (η0)

∂η
= E[φsη(Y,X|η0)] = −0−1{E[ψ(Z,γ0)sη(Y1|X;η0)] +E[q(X;γ0)rη(X;η0)]}.

We have, using the conditional mean zero property of scores, the MAR assumption, and the fact thatp0(X)= G(t (X)′δ0)

E[φsη(Y,X|η0)] = −0−1E





{ Diψ(Z,γ0)
G(t (X)′δ0)

− M12M−1
22

( Di
G(t (X)′δ0)

−1
)
t (Xi )

}

×{sη(Y1|X;η0) + rη(X;η0)}





= −0−1E
[

Diψ(Z,γ0)

G(t (X)′δ0)
{sη(Y1|X;η0) + rη(X;η0)}

]

= −0−1E[ψ(Z,γ0){sη(Y1|X;η0) + rη(X;η0)}]

= −0−1{E[ψ(Z,γ0)sη(Y1|X;η0)] + E[q(X;γ0)rη(X;η0)]},

as required.

Consistent variance–covariance matrix estimation

If Assumptions2.1–2.4and either2.5or 3.1or both hold (as well as additional regularity conditions), then the asymptotic
variance ofγ̂ may be consistently estimated by

9̂ = {(M̂ ′�̂−1M̂)−1}1:K ,1:K , (A.9)

with M̂ =
∑N

i =1 Mi (β̂)/N and�̂=
∑N

i =1mi (β̂)mi (β̂)
′/N.

Derivation of the higher-order bias of IPT (Theorem 4.1). Here we outline the derivation of theO(N−1) bias
expressions for̂γIPT (i.e. equation (24) in the main text). The derivation of the corresponding bias expression for the
class of AIPW estimators discussed in the main text can be found in the supplement.Newey and Smith(2004, Lemma
A.4, pp. 241–242) provide a general formula for theO(N−1) bias of M-estimators. As IPT and AIPW have M-estimator
representations, we use their general result in our calculations. We maintain Assumption3.1throughout in what follows
(in addition to Assumptions2.1–2.5).

Let θ̂ be the solution to theT = dim(θ) equations

b(θ̂)=
N∑

i =1

bi (θ̂)= 0. (A.10)

Under regularity conditions (see below),Newey and Smith(2004, Lemma A.4) show that the asymptotic bias ofθ̂ is
given by

Bias(θ̂)=
−B−1

N



E
[
Ai φi

]
+

1

2
E




T∑

q=1

φq,i Bqφi







 , (A.11)

whereeq is aT ×1 column vector with a one in theq-th row and zeros elsewhere and

B = E
[
∂bi (θ)

∂θ ′

]
, φi = −B−1bi (θ), Ai =

∂bi (θ)

∂θ ′ − B, Bq = E

[
∂2bi (θ)

∂θq∂θ ′

]

. (A.12)

The IPT estimator ofθ = (γ ′,δ′)′ is given by the solution to equation (A.10) with

bi (θ)=




Di

Gi (δ)
ψi (γ )

( Di
Gi (δ)

−1
)
ti



 .

To apply equation (A.11) to IPT, we require that the parameter space ofθ is compact withθ0 in its interior, continuity of
bi (θ) in θ and continuous differentiability in a neighbourhood ofθ0, and rank(B)= dim(θ). These conditions are implied
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by Assumptions2.1 and2.5. Additionally, we require a Lipschitz continuity condition on the third derivative ofbi (θ)

and the existence of certain higher-order moments. Specifically, we assume that (i) for somed(Z) with E[d(Z)] <∞,
∥
∥
∥
∥
∥
∂3bi (θ)

∂θ j ∂θk∂θl
−

∂3bi (θ0)

∂θ j ∂θk∂θl

∥
∥
∥
∥
∥

≤ d(Zi )‖θ − θ0‖

and (ii)E[‖bi (θ0)‖
6], E

[
‖ ∂bi (θ0)

∂θ ′

∥
∥6]

, E
[∥∥ ∂

2bi (θ0)
∂θ j ∂θ

′

∥
∥6]

, andE
[∥∥ ∂3bi (θ0)
∂θ j ∂θk∂θl

∥
∥2] are finite for j,k, l = 1, . . . ,K + 1+ M

(seeNewey, 2002). These conditions will hold ifG(∙) andψ(z,γ ) are both three times continuously differentiable with
bounded derivatives and enough moments oft (X) exist (e.g.if a component oft (X) is a Cauchy random variable, then
(A.11) will not hold).

Objects,∂bi (θ0)
∂θ ′

, B, andAi of equation (A.12) above specialize to

∂bi (θ0)

∂θ ′ =




Di
Gi

∂ψi
∂γ ′ − Di

Gi

G1i
Gi
ψi t

′
i

0 − Di
Gi

G1i
Gi

ti t
′
i



 , B =




0 −E

[G1
G ψ t ′

]

0 −E
[G1

G tt ′
]





Ai =




Di
Gi

∂ψi
∂γ ′ −0 − Di

Gi

G1i
Gi
ψi t

′
i +E

[G1
G ψ t ′

]

0 − Di
Gi

G1i
Gi

ti t
′
i +E

[G1
G tt ′

]



 .

Using the partitioned inverse formula, we have

B−1 =




0−1 −0−1E

[G1
G ψ t ′

]
E
[G1

G tt ′
]−1

0 −E
[G1

G tt ′
]−1



 . (A.13)

Combining the above expressions then gives

E[ Ai φi ] = −

[

E
[
∂ψ

∂γ ′ 0
−1 1

G
ψ

]
−E

[
1− G

G

∂ψ

∂γ ′ 0
−1E

[
G1

G
ψ t ′

]
E
[

G1

G
tt ′
]−1

t

]

+ E

[
1− G

G

G1

G
ψ t ′E

[
G1

G
tt ′
]−1

t

]

E

[
1− G

G

G1

G
tt ′E

[
G1

G
tt ′
]−1

t

]]

. (A.14)

Let5∗
def
≡ E

[G1
G ψ t ′

]
E
[G1

G tt ′
]−1; using equation (A.14), we have the firstK rows of−B−1E[ Ai φi ] equal to

0−1E
[
∂ψ

∂γ ′ 0
−1 1

G
{ψ−5∗t}

]
+0−1E

[
∂ψ

∂γ ′ 0
−15∗t

]
(A.15)

+ 0−1E

[
1− G

G

G1

G
{ψ−5∗t}t ′E

[
G1

G
tt ′
]−1

t

]

.

Assumption3.1givesq =50t so that5∗ =50; therefore, applying the law of iterated expectations gives the last term
in the expression above identically equal to zero.

Now consider the second component of the bias expression (A.11). EvaluatingE[φi φ
′
i ] yields

E[φi φ
′
i ] =

[
I(γ0)

−1 0
0 VM M (δ)

]
. (A.16)

Forq = 1, . . . ,K , using the expression for∂bi (θ0)/∂θ
′, we have

Bq = E

[
∂2ψ
∂γq∂γ ′ − G1

G
∂ψ
∂γq

t ′

0 0

]

, (A.17)

for Bq as defined in equation (A.12) above. Forq = K +1, . . . ,K +1+ M (=T), we have instead

Bq = E






− G1
G tq−K

∂ψ
∂γ ′

( 2G2
1

G2 − G2
G

)
tq−Kψ t ′

0
( 2G2

1
G2 − G2

G

)
tq−K tt ′




 . (A.18)
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Using equations (A.16), (A.17), and (A.18), the firstK rows of −B−1

2N E
[∑T

q=1φq,i Bqφi
]

can be shown to equal





−B−1

2N
E




T∑

q=1

φq,i Bqφi









1:K ,:

= −
1

2N

K∑

k=1

0−1E

[
∂2ψ

∂γk∂γ
′

]

I(γ0)
−1ek. (A.19)

Combining equations (A.15) and (A.19) yieldsCO as given in the statement of the theorem.

Computation

Computation ofγ̂IPT consists of two steps. In the first step, which is non-standard and detailed here,δ̂ is computed as the
solution to equation (8). Here we outline an approach to solving equation (8) which we have found to be computationally
convenient and very reliable in practice. This involves definingδ̂ to be the solution to a globally concave programming
problem with unrestricted domain. In the second,γ̂ is computed as the solution to equation (7).21

Consider the following function:

ϕ(v)=
v

G(v)
+
∫ a

1/G(v)
G−1

(
1

t

)
dt, (A.20)

with G(∙) as defined in Assumption2.5. When the propensity score takes the logitG(v) = (1+ exp(−v))−1 form,
equation (A.20) exists in closed form (see below). We implement the logit specification in the empirical application and
expect that most users will do likewise. If a different propensity score model is assumed, then equation (A.20) can be
evaluated numerically.

The first and second derivatives ofϕ(v) are

ϕ1(v)=
1

G(v)
, ϕ2(v)= −

G1(v)

G(v)2
, (A.21)

so that equation (A.20) is strictly concave.
We computêδ by solving the following optimization problem:

max
δ

l N (δ), l N (δ)=
1

N

N∑

i =1

Di ϕ(t (Xi )
′δ)−

1

N

N∑

i =1

t (Xi )
′δ. (A.22)

Differentiatingl N (δ) with respect toδ gives an 1+ M ×1 gradient vector of

∇δ l N (δ)
1+M×1

=
1

N

N∑

i =1

Di ϕ1(t (Xi )
′δ)t (Xi )−

1

N

N∑

i =1

t (Xi ), (A.23)

which coincides with equation (8) as required. The 1+ M ×1+ M Hessian matrix is

∇δδ l N (δ)
1+M×1+M

=
1

N

N∑

i =1

Di ϕ2(t (Xi )
′δ)t (Xi )t (Xi )

′. (A.24)

This is a negative definite function ofδ; the problem (A.22) is consequently concave with a unique solution (if one
exists). Existence of a solution requires that

∑N
i =1 t (Xi )/N lie within the convex hull of the complete case subsample

(this will be true in large samples under Assumption2.4but should nevertheless be checked prior to computation).22

In practice, equation (A.23) will have an “exploding denominator” whent (Xi )
′δ is a large negative number. This

can lead to numerical instabilities by causing the Hessian to be ill-conditioned. We address this problem by noting that
at a valid solution

∑N
i =1 Di /G(t (Xi )

′δ̂)/N = 1. Since Assumption2.5 implies thatG(v) is bounded below by zero,
this means thatDi /G(t (Xi )

′δ̂) < N for all i = 1, . . . ,N. Lettingvi = t (Xi )
′δ, this inequality corresponds to requiring

that
G−1(Di /N) < vi , i = 1, . . . ,N, (A.25)

21. The second step is identical to that associated with standard IPW. As the second step is both application specific
and typically straightforward to compute using standard software (that accepts user-specified weights), we do not detail
it here.

22. Convex hull conditions also arise in research on EL (e.g.Owen,2001, pp. 85–87).
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atδ= δ̂. Letv∗N = G−1(1/N); note thatv∗N → −∞ asN → ∞ suggesting that equation (A.25) will be satisfied for most
values ofδ in large enough samples. In small samples, equation (A.25) may be violated for somei at some iterations of
the maximization procedure (although not at a valid solution). Our approach to estimation involves replacingϕ(v) with a
quadratic function whenv ≤ v∗N ; this ensures that the denominator in equation (A.23) is bounded. This will improve the
condition of the Hessian with respect toδ without changing the solution.Owen(2001, Chapter 12) proposes a similar
procedure in the context of EL estimation of moment condition models.

Specifically, we replaceϕ(v) in equations (A.22), (A.23), and (A.24) with

ϕ◦
N (v)=

{
ϕ(v), v > v∗

N ,

aN +bNv
∗
N + cN

2 (v
∗
N )

2, v ≤ v∗N ,
(A.26)

whereaN , bN , andcN are the solutions to

cN = ϕ2(v
∗
N ),

bN +cNv
∗
N = ϕ1(v

∗
N ),

aN +bNv
∗
N +

cN

2
(v∗N )

2 = ϕ0(v
∗
N ).

This choice of coefficients ensures thatϕ◦
N (v) equalsϕ(v), as well as equality of first and second derivatives,at v = v∗N .

When G(v) is logit, our algorithm is particularly simple to implement. ForG(v) = exp(v)/[1 + exp(v)],
we have

ϕ(v)∝ v−exp(−v).

Differentiating with respect tov then givesϕ1(v)= 1+exp(−v) andϕ2(v)= −exp(−v).

We also havev∗N = G−1(1/N)= ln
( 1/N

1−1/N

)
= ln

( 1
N−1

)
so that solving foraN , bN , andcN yields

aN =− (N −1)

[

1+ ln

(
1

N −1

)
+

1

2

[
ln

(
1

N −1

)]2
]

,

bN =N + (N −1)ln

(
1

N −1

)
, cN = −(N −1).
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