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SUMMARY

Inverse probability weighted estimates are widely used in applications where data are miss-

ing due to nonresponse or censoring and in the estimation of causal effects from observational

studies. The current estimators rely on ignorability assumptions for response indicators or treat-

ment assignment, and outcomes, conditional on observed covariates which are assumed to be

measured without error. However, measurement error is common in variables collected for many

applications. For example, in studies of educational interventions, student achievement as mea-

sured by standardized tests is almost always used as the key covariate for removing hidden bi-

ases but standardized test scores often have substantial measurement errors for many students.

We provide several expressions for a weighting function that can yield a consistent estimator for

population means using incomplete data and covariates measured with error.

Some key words: Missing observations, causal inference, propensity score, measurement errors.

1. INTRODUCTION

Inverse probability weighting (IPW) estimates are widely used in applications where data are

missing due to nonresponse or censoring (Kang & Schafer, 2007; Lunceford & Davidian, 2004;

Scharfstein et al., 1999; Robins & Rotnitzky, 1995; Robins et al., 1995) or in observational

studies of causal effects where the counterfactuals cannot be observed (Schafer & Kang, 2008;

Bang & Robins, 2005; McCaffrey et al., 2004; Robins et al., 2000). This extensive literature

has shown the estimators to be consistent and asymptotically normal under very general condi-

tions, and combining IPW with modeling for the mean function yields “doubly robust” estimates

which are consistent and asymptotically normal if either, but not necessarily both, the model for

the mean or the model for response or treatment is correctly specified (Kang & Schafer, 2007;

Bang & Robins, 2005; Lunceford & Davidian, 2004; van der Laan & Robins, 2003; Scharfstein

et al., 1999; Robins & Rotnitzky, 1995; Robins et al., 1995). Recent studies have considered es-

timation of the response or treatment assignment functions (Harder et al., 2011; Lee et al., 2009;

McCaffrey et al., 2004; Hirano et al., 2003) and have shown nonparametric and boosting type

estimators work well in simulations and applications.

The consistency and asymptotical normality of IPW estimates generally are guaranteed to

hold only with data where response or treatment assignment is independent of the outcomes of

interest conditional on a set of observed covariates. The extensive IPW literature only considers

settings where the covariates are free of measurement error. However, covariates measured with

error are common in applications that might use IPW estimation. For instance, psychological

scales from surveys are imperfect measures of the underlying constructs and it is likely that

outcomes of interest and treatment assignment or response to a survey depend on the individual’s

underlying psychological state, not on the error-prone measure. Similarly, achievement tests for

school students can have very large errors for some students and again it is clear that future
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achievement depends on a student’s true level of achievement and not on the error-prone test

scores. Ignoring the measurement error in the covariates can result in bias in IPW estimates

(Steiner et al., 2011).

Although there are no papers specifically proposing IPW estimators with error-prone covari-

ates, error-free values can be viewed as missing data and there are IPW estimators with missing

regressor data (Robins et al., 1994; Tan, To appear). However, these methods assume that the

outcomes are observed for all units with unobserved covariates, which is not true for the estima-

tion of population means with nonresponding units or causal effects when there is measurement

error in the covariates. These methods also rely on modeling the conditional mean of the out-

comes, which analysts may want to avoid especially in causal inference problems (Rubin, 2001).

D’Agostino & Rubin (2000) develop a method for estimating the propensity scores, which could

serve as weights for IPW estimation, when covariates are incompletely observed but their method

uses pattern-mixture modeling which does not extend to measurement error problems.

In this note, we discuss an IPW estimator that is consistent in the presence of measurement er-

ror in the covariates. In the next section we give our main result and some straightforward exten-

sions. We then discuss methods to apply the estimator and test those via a simulation study.The

note ends with a discussion of future work for applying the estimator in practice.

2. IPW ESTIMATOR WITH ERROR PRONE COVARIATES

Let Yi, i = 1, . . . , n, be the outcome of primary interest obtained from a sample of units from

a population, where interest is in the population mean of Y , μ. IPW commonly is applied to two

scenarios where the outcomes are observed for only a portion of the sample. The first scenario

is missing data due to survey nonresponse, loss-to-follow-up, or censoring in which sampled

units failed to provide requested data. The second scenario involves the estimation of the causal

effect of a treatment or treatments in which only one of the possible potential outcomes for

each study unit is observed, the outcome corresponding to the unit’s assigned treatment, and all

other potential outcomes are unobserved. Let Ri be a “response” indicator, i.e., Ri = 1 if Yi is

observed and Ri = 0 is Yi is unobserved or missing.

For observational studies, each unit in the population has two potential outcomes one that

obtains when assignment to treatment Yi1 and one that obtains when assigned to the control

condition Yi0 Rosenbaum & Rubin (1983). Each study unit also has an observed treatment in-

dicator, Ti, with Ti = 1 if the unit i received the treatment and Ti = 0 if the unit received the

control condition. When estimating the mean of the potential outcomes for treatment, Ri = Ti

and Ri = 1− Ti when estimating the mean of the potential outcomes for control. We will use

generic term response indicator but the results apply to both nonresponse and observational stud-

ies. In observational studies, we only observe Yi1 when Ti = 1 and Yi0 when 1− Ti = 1, and

we let Yi,obs = Yi1Ti + Yi0(1− Ti). We assume that the potential outcomes are well-defined

and unique for each unit (i.e., the stable unit treatment assumption, holds, Rosenbaum & Rubin,

1983). Although this assumption may not hold in some studies, this is a problem with or without

error-prone covariates and so we assume it holds throughout to focus on the issue of weighting

with error-prone data.

For each unit there is a covariate Ui which is unobserved and possibly related to both Yi and

Ri. We observe the covariate Xi = Ui + ξi, as well as Zi, another covariate measured without

error. We make the following assumptions:

ASSUMPTION 1. Measurement errors, ξi, have a known distribution and are independent of
Yi, Ri and Zi, given Ui.
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Weighting with Error-Prone Covariates 3

ASSUMPTION 2. 0 < pr(Ri = 1 | Ui, Zi) < 1 for all sampled units.

ASSUMPTION 3. Yi is independent of Ri conditional on Ui and Zi.

By Assumption 1, X is a surrogate for U and measurement error is nondifferential (Carroll

et al., 2006). Assumptions 2 and 3 are similar to conditions of strong ignorability (Rosenbaum

& Rubin, 1983) which also requires Assumption 2. However in the context of causal effect

estimation for single treatment, strong ignorability requires the conditional joint distribution of

both potential outcomes, (Yi0, Yi1), to be independent of treatment. We require only that each

potential outcome be marginally independent of treatment assignment conditional on Ui and Zi,

the weak unconfoundness of Imbens (2000). More importantly, independence is conditional on

the error-free variable Ui not the observed error-prone covariate Xi.

THEOREM 1. Let p(u, z) = pr(R = 1 | u, z) and let W (x, z) be a function that for any z in
the support of Z satisfies

E(W (X, z) | U = u, Z = z) =
1

p(u, z)
(1)

Let g be any function of Y such that E[g(Y )] = μg and E[Rg(Y )W (X,Z)] are finite. Then
E[Rg(Y )W (X,Z)] = μg.

Proof.

E[Rg(Y ) W (X,Z)] = pr(R = 1)E[g(Y )W (X,Z) | R = 1]

= pr(R = 1)

∫ ∫ ∫ ∫
g(y)w(x, z)f(y, u, z, x | R = 1)dxdzdudy

= pr(R = 1)

∫ ∫ ∫
g(y)

[∫
w(x, z)f(x | y, u, z, R = 1)dx

]
f(y, u, z | R = 1)dzdudy

= pr(R = 1)

∫ ∫ ∫
g(y)

p(u, z)
f(y, u, z | R = 1)dzdudy (2)

= pr(R = 1)

∫ ∫ ∫
g(y)

p(u, z)

pr(R = 1 | y, u, z)f(y, u, z)
pr(R = 1)

dzdudy (3)

=

∫ ∫ ∫
g(y)

p(u, z)
p(u, z)f(y, u, z)dzdudy (4)

=

∫ ∫ ∫
g(y)f(y, u, z)dzdudy

= μg

Equation 2 follows from Assumption 1 and Equation 1. Equation 3 follows from Assumption

2, and Equation 4 follows from Assumption 3.

Theorem 1 guarantees that, when in search of E(g(Y )) = μg, it can be recovered using a

weighted mean of the observed data, even if Yi is unobserved for a portion of the sample (Ri = 0)

and covariates are measured with error, provided the weights W (X, z) derived from the error

prone X satisfy Equation 1. The next corollary provides an estimator for μg.
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COROLLARY 1. A consistent estimator for μ is

μ̂ =

∑n
i=1RiYiW (Xi, Zi)∑n
i=1RiW (Xi, Zi)

. (5)

Proof. Divide by N in the numerator and denominator of Equation 5. By Theorem 1 using

g(Y ) = Y and WLLN, the numerator converges in probability to μ. Similarly using Theorem

1 with g(Y ) = 1, the denominator converges in probability to 1. By Slutsky’s theorem the ratio

converges in probability to μ. �

REMARK 1. Theorem 1 naturally extends to settings with multiple error-prone and error-free
covariates.

In a similar manner, for the estimation of causal effects, Corollary 2 provides a consistent esti-

mator of a treatment effect even in the presence of error-prone covariates.

COROLLARY 2. Let μt = E(Yit), t = 0, 1, where expectation is for the entire population, and
δ = μ1 − μ0 equal the average treatment effect. Let W1(x, z) satisfy the conditions of Theorem
1 with R = T and Yi1 and W0(x, z) satisfy the conditions with R = 1− T and Yi0. Let 0 <
pr(Ti = 1 | Ui, Zi) < 1 for all sampled units and Yit, t = 0, 1, be independent of Ti conditional
on Ui and Zi. Then a consistent estimator of δ is

δ̂ =

∑n
i=1 TiYi,obsW1(Xi, Zi)∑n

i=1 TiW1(Xi, Zi)
−

∑n
i=1(1− Ti)Yi,obsW0(Xi, Zi)∑n

i=1(1− Ti)W0(Xi, Zi)
. (6)

Proof. By definition, when Ti = 1 Yi,obs = Yi1 and when 1− Ti = 1 Yi,obs = Yi0. Hence, by

Corollary 1, the first term on the RHS of Equation 6 converges in probability to μ1 and the second

term converges in probability to μ0. �

REMARK 2. Letting Wodds(x, z) satisfy E(Wodds(X, z) | U = u) = p(u, z)/(1− p(u, z))
for any z in the support of Z, then using an approach analogous to the proof of Theorem 1,
we can show E [(1− T )YWodds(X,Z)] = E(Y0 | T = 1) = μ0|1 which can be estimated con-
sistently by

μ̂0|1 =
∑n

i=1(1− Ti)Yi0Wodds(Xi, Zi)∑n
i=1(1− Ti)Wodds(Xi, Zi)

.

Here μ0|1 is the counterfactual mean of control outcomes for units that receive treatment. The
average effect of treatment on the treated, ATT, (Wooldridge, 2002) can be consistently estimated
by ∑n

i=1 TiYi1∑n
i=1 Ti

− μ̂0|1.

Theorem 1 states the weights need to be unbiased in the sense that the conditional mean equals

the inverse probability weight calculated with the error-free U . However, because the conditional

density function f(y|u, z, x,R = 1) depends only on u and z, if we could reweight the cases so

that the density of u and z for the weighted cases equals f(u, z), the marginal density for the

population, then we could obtain a consistent estimate of the expected value of g(Y ). This can

be formalized with Theorem 2.

THEOREM 2. Let W̃ (x, z) be a function such that for every u and z, it satisfies∫
w̃(x, z)f(u, z | x,R = 1)f(x | R = 1)dx = f(u, z). (7)
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Let W (x, z) = W̃ (x, z)/pr(R = 1). Let g be any function of Y such that E[g(Y )] = μg and
E[Rg(Y )W (X,Z)] are finite. Then E[Rg(Y )W (X,Z)] = μg.

Proof. E[Rg(Y )W (X,Z)] = pr(R = 1)E[g(Y )W (X,Z) | R = 1]

E[g(Y ) W (X,Z) | R = 1] =

∫ ∫ ∫ ∫
g(y)w(x, z)f(y, x, z, u | R = 1)dxdzdudy

=

∫ ∫ ∫ ∫
g(y)w(x, z)f(y | x, z, u,R = 1)f(u, z | x,R = 1)f(x | R = 1)dxdzdudy

=

∫ ∫
g(y)f(y | u, z)

[∫
w̃(x, z)

pr(R = 1)
f(u, z | x,R = 1)f(x | R = 1)dx

]
dzdudy (8)

=

∫ ∫
g(y)f(y | u, z) f(u, z)

pr(R = 1)
dzdudy (9)

=
μg

pr(R = 1)

Equation 8 follows from Assumption 3 and Equation 9 follows from Equation 7.

Weights solving Equation 7 of Theorem 2 also solve Equation 1 of Theorem 1 and vice versa.

Thus, generating a weighting function can be solved by finding weights which are unbiased for

the correct weights or weights to reweight the conditional density given R = 1 to match the

marginal density.

REMARK 3. A weight function W̃ (u, z) satisfies Equation 7 if and only if W (x, z) =
W̃ (x, z)/pr(R = 1) satisfies Equation 1. Suppose W̃ (u, z) satisfies Equation 7 and W (x, z) =
W̃ (x, z)/pr(R = 1), then

f(u, z) =

∫
w̃(x, z)f(u, z | x,R = 1)f(x | R = 1)dx

=

∫
w̃(x, z)f(x | u, z, R = 1)f(u, z | R = 1)dx

=

∫
w̃(x, z)f(x | u, z)dxf(u, z | R = 1)

= E(W̃ (X, z) | u, z)f(u, z | R = 1)

= E(W̃ (X, z) | u, z)pr(R = 1 | u, z)f(u, z)
pr(R = 1)

= E(W (X, z) | u, z)p(u, z)f(u, z).
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Alternatively, suppose W (x, z) satisfies Equation 1 and let W̃ (u, z) = W (x, z)pr(R = 1), then
∫

w̃(x, z)f(u, z | x,R = 1)f(x | R = 1)dx = pr(R = 1)

∫
w(x, z)f(x | u, z, R = 1)f(u, z | R = 1)dx

= pr(R = 1)

∫
w(x, z)f(x | u, z)dxf(u, z | R = 1)

= pr(R = 1)E(W (X, z) | u, z)f(u, z | R = 1)

=
pr(R = 1)

pr(R = 1 | u, z)f(u, z | R = 1)

=
pr(R = 1)

pr(R = 1 | u, z)
pr(R = 1 | u, z)f(u, z)

pr(R = 1)

= f(u, z).

3. ESTIMATION

3·1. Estimators
Corollaries 1 and 2 provide consistent estimators in the presence of error-prone covariates,

but they treat the propensity scores and weighting functions, p(u, z) and W (x, z), as known. In

practice they will need to be estimated from the observed data. One approach is to first estimate

p(u, z) using available techniques for consistent estimation of models with error-prone covari-

ates. For example, if a logistic regression model is used for p(u, z), then the conditional score

approach (Carroll et al., 2006) could be used without any assumptions on the distribution of U .

If the distribution of U is known or can be well-approximated, then likelihood or Bayesian meth-

ods could be used with various parametric models for p(u, z), or gradient boosting corrected for

measurement error could be used for nonparametric modeling (Sexton & Laake, 2008).

The next step is to calculate W (x, z) using the estimated p̂(u, z) for the unknown propensity

score function. Fourier transforms provide a way to estimate W (x, z) through its inverse proper-

ties. Assuming l(u, z) = 1/p(u, z) is an integrable function, then φl(t, z) =
∫∞
−∞ e−itul(u, z)du

is its Fourier transform for a given value of z. The Fourier transform is related to the character-

istic function for a random variable ξ with density function fξ; the characteristic function of ξ
is E(eitξ) = φfξ(−t). Fourier inversion (Diggle & Hall, 1993) allows for the recovery of l(u, z)

with l(u, z) = (2π)−1
∫∞
−∞ eituφ(t, z)dt. It is straightforward to show that a weight function

W (x, z) =
1

2π

∫
eitx

φl(t)

φfξ(−t)
dt,

satisfies E(W (X, z) | U = u, Z = z) = 1/p(u, z), thus potentially providing a way of estimat-

ing μg via Corollary 1 by plugging in p̂(u, z) for p(u, z) and calculating φl(t, z) by numerical

integration.

Alternatively, one can directly estimate an approximation to W (x, z) using simulated data

and the estimated p̂(u, z). For example, one could generate a grid of uj j = 1, . . . , J values and

simulate ξb b = 1, .., B error terms from the density of ξ and set Xjb = uj + ξb. If we assume

that for a given z, W (x, z) =
∑K

k=1 βzkηk(x) for a set of basis functions ηk(x), then we can ap-

proximate E(W (x, z) | U = uj , Z = z) by B−1
∑B

b=1

∑K
k=1 βzkηk(xjb)=

∑K
k=1 βzkη̄kj where

η̄kj = B−1
∑B

b=1 ηk(xjb). We can estimate the β coefficients by fitting a linear regression of

1/p̂(uj , z) on η̄kj , k = 1, . . . ,K.
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3·2. Simulation Study
We conducted a simulation study to test the feasibility of such a two-step approach using the

estimator of Corollary 2 for estimating treatment effects. We used maximum likelihood to esti-

mate the parameters of the propensity score function and the function-approximation, simulation

approach to obtain solutions to Equation 1.

For each of 100 Monte Carlo iterations, we generated a sample of 1000 independent draws

(U,Z1) from a bivariate normal distribution in which both U and Z1 are mean zero, vari-

ance one and their correlation is 0.3. For each unit in the sample we also drew a Bernoulli

random variable Z2 with mean 0.5, independent of (U,Z1) and across units, and a Bernoulli

treatment indicator T with propensity score p(u, z1, z2) = pr(T = 1 | U = u, Z1 = z1, Z2 =
z2) = G(0.5 + 1.2u+ 0.5z1 − 1.0z2 + 0.7uz2), where G is the cumulative distribution func-

tion (CDF) of Cauchy random variable. We use the Cauchy CDF for the inverse link function

rather than the traditional logistic or probit functions to reduce the extreme values among the

reciprocals of the p(u, z1, z2) and 1− p(u, z1, z2) (Ridgeway & McCaffrey, 2007). We also gen-

erated error-prone variables X = U + ξ, where ξ are iid N(0, .09) so that the reliability of X
is roughly 0.92, similar to the reliability of student achievement test scores used for school ac-

countability (Pennsylvania Department of Education, 2010), for instance.

For each iteration, we estimated the coefficients of p(u, z1, z2) by maximizing the likelihood

via SAS�Proc NLMIXED using the correctly-specified functional form for the propensity score,

and the measurement model for X (Rabe-Hesketh et al., 2003), which included that U was

normally distributed with unknown variance, estimated from the data, and that X given U = u
was N(u, 0.09).

After obtaining an estimate of p̂(u, z1, z2), for each observation within an iteration, we approx-

imated W (x, z1, z2) by generating a sequence of 800 equally-spaced pseudo-u values between

-5 and 5, and for each u we generated 500 random N(0, 0.09) measurement errors and error-

prone pseudo-X values. We approximated W by cubic B-spline basis functions with 31 knots

and its expectation by the average of the basis functions evaluated at the pseudo-X values, and

solved for the unknown parameters of the function approximation by linear regression as de-

scribed above. We then used the resulting function evaluated at X , Z1 and Z2 as the weight for

the observation in the estimator given by Equation 6. We refer to this as the “weighting function

estimator.” The settings for approximating were chosen via exploratory analysis which indicated

that the approximation error with these settings was small and did not improve appreciably with

larger samples of Us or Xs in the computationally feasible range, or with additional knots in the

spline.

For comparison, we also consider three other estimators. The first, which we call the “ideal

estimator,” is the standard IPW estimator with the unknown propensity scores estimated using

the correct functional form and the error-free U . Obviously, this estimator would not be avail-

able in applications and is included as benchmark for assessing the cost of measurement error,

as this would be the standard estimator had U been observed. The second alternative estimator

we consider is standard IPW estimator with the unknown propensity scores estimated using the

correct functional form and the error-prone X . We call this the “naı̈ve estimator” and include it

because this estimator is commonly used in practice even though it will in general be biased and

the estimated coefficients for the propensity score are inconsistent for the true values. The final

estimator we consider, which we call the “BLUP estimator,” is another IPW estimator with the

coefficients of the propensity scores estimated by maximizing the likelihood for treatment and

the measurement model for X (i.e., the same coefficient estimates used in deriving the weight-

ing functions) and the propensity scores estimated by evaluating the estimated function at the
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observed values of Z1 and Z2 and the best linear unbiased predictor (BLUP) or the conditional

mean of U estimated from the model. The BLUP estimator acknowledges the measurement er-

ror in X and attempts to correct for it in the estimation of the propensity scores and using a

prediction of the error-free variable.

We evaluated the performance of the four estimators by assessing means and standard devi-

ations of the differences in the weighted means of U , Z1, and Z2 for the treatment and control

groups. Unbiased estimators will have mean zero. We use bias and variance in the group dif-

ferences in the covariates to assess the estimators because bias and variance in treatment effects

for outcomes interest will generally correspond to group differences in the covariates and by

focusing on the covariates we do not need to chose an arbitrary function for the outcomes.

Figure 1 presents the results of the simulation study. As expected, the ideal estimator has

small bias for all three covariates. Also, as expected the naı̈ve estimator has substantial bias for

U of 0.11 (recall U has variance 1). It has very small bias for Z1 or Z2. The BLUP estimator

is similar, with notable bias for U and negligible bias for Z1 and Z2. The weighting function

estimator has small bias for all three covariates as would be expected by Corollary 2 if the

weighting functions were known, and which appears to hold when they are approximated using

the function-approximation, simulation method with estimated propensity scores. The weighting

function estimator is about as efficient as the ideal estimator but both are somewhat less efficient

than the naı̈ve and BLUP estimators (about 84 and 92 percent respectively). The weighting func-

tion estimator (MSE) has slightly smaller mean square error than the ideal estimator for U and

Z1 but somewhat larger for Z2. It has much smaller MSE than the naı̈ve or BLUP estimators

(less than one fourth or one third as large) for U but somewhat larger values for Z1 and Z2 (20

or 14 percent larger) because it is somewhat less efficient.
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Fig. 1. Box plots of the differences in the weighted means
of U , Z1, and Z2 for four weighted estimators.

4. DISCUSSION

IPW estimators are increasingly being used in causal model applications and have been shown

to work well in simulation studies (Lee et al., 2009). However, these methods can be biased when

the covariates are measured with errors, as can other methods that rely on propensity scores such

as matching or subclassification (Steiner et al., 2011). Although there are studies of the bias in

IPW estimators with error-prone covariates, the literature did not contain any consistent estima-
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tors, not even if the distribution of the measurement errors is known. This could be a serious

limitation of IPW estimation in applied social science and policy analysis because measurement

error is very common in such applications.

We show that such an estimator exists and that the weights are derived by evaluating a weight-

ing function at the observed data, provided the weighting function is unbiased for the true weight

conditional on the error-free covariate. We also show that the estimator can be applied to data

using a consistent estimator of the propensity score function and simulation-based approxima-

tion for the weighting function. The estimator performed nearly as well as the infeasible IPW

estimator based on unobservable error-free data and substantially better than a naı̈ve estimator

that ignores measurement error and an estimator that attempts to correct for measurement error

using the linear predictor of the unobserved error-free covariate.

Our simulation study clearly demonstrates that the results of this paper yield a feasible es-

timator which can perform well in applications. The conditions of our study are moderately

challenging, involving multiple covariates and interactions between the error-prone variable and

other covariates in the propensity score model. Future research will need to explore methods for

tuning the simulation in the approximation of the weighting function and to develop methods for

modeling building for the propensity score function when the functional form is unknown. Com-

mon approaches use differences between treatment and control in the distributions of covariates

to select variables, terms and the functional form of the propensity score function (Dehejia &

Wahba, 1999). However, it is not clear if the distribution of the error prone covariates can proxy

for those of the error-free variables.

An additional area of future research is the application of the weighting function estimator in

the presence of heteroskedastic measurement error; e.g. if Xi = Ui + ξi where ξi ∼ N(0, σ2
i ). In

education applications, for example, individual test scores have measurement error variance that

is larger for achievement scores in the extremes of the distribution than for those near the middle

of the distribution. Theorem 1 and its corollaries extend naturally to this setting by allowing the

weighting function to depend on i. However, this case introduces additional practical challenges

for both steps of our two-step estimation procedure: heteroskedastic measurement error poten-

tially can degrade the finite-sample performance of consistent estimators of p(u, z) and accept-

able approximation of the weighting function may require tailoring to individual observations

depending on the size of σ2
i . Additional research is necessary to determine what combinations of

approaches to both problems produce the estimators with the best properties.
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