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ABSTRACT

Digital holography (DH) is being increasingly used for its time-resolved three-dimensional (3-D) imaging capabil-
ities. A 3-D volume can be numerically reconstructed from a single 2-D hologram. Applications of DH range from
experimental mechanics, biology, and fluid dynamics. Improvement and characterization of the 3-D reconstruc-
tion algorithms is a current issue. Over the past decade, numerous algorithms for the analysis of holograms have
been proposed. They are mostly based on a common approach to hologram processing: digital reconstruction
based on the simulation of hologram diffraction. They suffer from artifacts intrinsic to holography: twin-image
contamination of the reconstructed images, image distortions for objects located close to the hologram borders.
The analysis of the reconstructed planes is therefore limited by these defects. In contrast to this approach, the
inverse problems perspective does not transform the hologram but performs object detection and location by
matching a model of the hologram. Information is thus extracted from the hologram in an optimal way, leading
to two essential results: an improvement of the axial accuracy and the capability to extend the reconstructed
field beyond the physical limit of the sensor size (out-of-field reconstruction). These improvements come at the
cost of an increase of the computational load compared to (typically non iterative) classical approaches.

Keywords: Digital holography, inverse problems, image reconstruction techniques

1. INTRODUCTION

Digital Holography (DH) is a 3-D imaging technique which has been widely developed during the past few
decades thanks to the enormous advances in digital imaging and computer technology. This technique achieves
3-D reconstruction of objects from a 2D hologram-image and reaches accuracies in the range of — or smaller
than — the wavelength.1–3 As 3-D information coded in a digital hologram can be recorded in one shot, this
technique can be used with high speed cameras to perform time-resolved 3-D reconstructions of high speed
phenomena.

DH is used in two types of applications: (i) the 3-D reconstruction of object surfaces (or optical index);
(ii) the 3-D localization of micro-objects spread throughout a volume. Digital holography applications range
from fluid flow measurement and structural analysis to medical imaging.4–7 Off-axis setups are typically used in
problems of type(i), while on-axis setups are best suited to problems of type (ii). Though the inverse problem
methodology applies to both types of setups, we will focus in this paper on the latter.

Over the past decade, numerous algorithms for the analysis of digital holograms have been proposed (several
journal special issues were published on the subject2,8, 9). These algorithms are mostly based on a common
approach to hologram processing (hereafter denoted as the classical approach): digital reconstruction based on
the simulation of hologram diffraction. We recall in section 3 some artifacts that appear when such an approach
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Figure 1: Illustration of in-line hologram formation model.

is used. To obtain a robust reconstruction method, these distortions must be either corrected a posteriori or are
neglected, leading to sub-optimal techniques.

In contrast to this approach, the Inverse Problems (IP) perspective does not transform the hologram but
rather search for the reconstruction that best models the measured hologram. This technique extracts more
information from the hologram and solves two essential problems in digital holography: the improvement of
the axial localization accuracy of an object and the enlargement of the studied field beyond the physical limit
of the sensor size.10 The drawback of this approach is a computational load heavier than that of the classical
techniques.

We discuss in this paper the use of an IP approach for digital hologram reconstruction. We show that,
depending on the application, different reconstruction algorithms can be derived. Special attention is paid to
the problem of detection and location of micro-objects, a problem which is essential for many applications fields.
Based on statistical estimation theory, we provide resolution bounds.

2. MODEL OF THE HOLOGRAM IMAGE FORMATION

In this section, we present the model of holograms11 that will be used in the reconstruction methods. We consider
an on-axis holography setup where studied objects are illuminated with a collimated laser beam, and the digital
camera records both the object wave — diffracted light — and the reference wave — illuminating light —
(see Figure 1). Considering n small objects of aperture ϑj and 3-D locations (xj , yj , zj), the intensity I at the
coordinate (x, y) on the hologram is given by

I(x, y) = Isrc + Ibg − 2Isrc

n
∑

j=1

ηj ℜ
(

Aj(x, y)
)

+ Isrc

n
∑

i=1

n
∑

j=1

ηi Ai(x, y) ηj A
⋆
j (x, y) (1)

where Isrc is the image level due to the laser source, Ibg is the background level, the real factors ηj ∈ [0, 1]
account for possible variation of incident energy seen by an object due to non-uniform laser illumination and Aj

is the term for amplitude diffraction by jth object:

Aj(x, y) =

∫∫

hz(x− u, y − v)ϑj(u, v) du dv (2)

where ϑj is the aperture function of the jth object (a 2-D function — possibly complex-valued — defining the
opacity of the object over a plane parallel to the hologram) and hz is the impulse response function for free space



propagation (e.g. Fresnel function if Fresnel approximation is used) over a distance z ( distance of the jth object
to the hologram). Equation 2 expresses a convolution.

For small objects the second order terms of equation (1) are negligible. The model then simplifies to a linear
model:

I(x, y) = I0 −

n
∑

j=1

αj .mj(x, y), (3)

with mj(x, y) =

∫∫

hzj (x− u, y − v)Oj(u, v) ≡
[

hzj ∗ Oj

]

(x, y),

(Oj stands for the aperture of the jth object)

I0 = Isrc + Ibg,

αj = 2 Isrc ηj .

The digitization of intensity I on an N2 pixels camera leads to a hologram D — or a vector d of N2 grayvalues
in matrix notation — which may be related to the diffraction pattern of each object (FI), or to the opacity
distribution of the objects (FII):

(FI)







D(x1, y1)
...

D(xN , yN )






=







I0 −
∑

j αjmj(x1, y1) + ǫ1
...

I0 −
∑

j αjmj(x1, y1) + ǫN2






↔ d = I0 · 1−M α+ ǫ (4)

(FII)







D(x1, y1)
...

D(xN , yN )






=







I0 −
∑

k [hzk ∗ ϑk] (x1, y1) + ǫ1
...

I0 −
∑

k [hzk ∗ ϑk] (xN , yN ) + ǫN2






↔ d = I0 · 1−Hϑ+ ǫ (5)

Equations (4) and (5) are written in compact form in matrix notation. In words, equation (4) expresses the
recorded hologram d as the sum of a constant offset (I0 · 1), the diffraction patterns of each object (M α) and
a perturbation term accounting for the different sources of noise and for our modeling approximations (ǫ). The
term M α is the product between a N2 × n matrix (M) and a n elements vector (α). Matrix M may be thought
of as a dictionary of the diffraction pattern of each of the n objects (the j-th column of matrix M corresponds to
the N2 graylevels of the diffraction pattern of the j-th object: [mj(x1, y1), · · · ,mj(xN , y1), · · · ,mj(xN , yN )]

t
).

Vector α defines the amplitude of each of the n diffraction patterns. Equation (4) thus corresponds to a
discretization of equation (3).

Equation (5) expresses the hologram d as the sum of an offset (I0 ·1), the diffraction patterns Hϑ created by
the opacity distribution ϑ, and a noise term (ǫ). If the opacity distribution is defined over K planes of L2 pixels,
ϑ is a vector of K · L2 elements corresponding to the stacking of all opacity values. H is then a N2 × K · L2

matrix corresponding to a (discrete) diffraction operator. Each column of H is a discretization of the impulse
response kernel h, i.e., the diffraction pattern on the hologram created by a point-like opaque object at a given
3-D location. Hϑ corresponds to the summation of the convolution of the opacity distribution in each plane z
by the impulse response kernel of distance z.

Matrices M and H are written formally to clarify the proposed models and the derived reconstruction in
the subsequent sections. It is worth noting that, in practice, they are neither stored nor explicitly multiplied to
vectors α and ϑ. Due to (transversal) shift-invariance of models mj and kernels hj , the products M α and Hϑ

can be computed using few fast Fourier transforms.

Pixel integration on the camera can be taken into account in matrices M and H by convolving the diffraction
patterns mj and diffraction kernels hzk (which form the matrix columns) with the pixel’s sensitive area.
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Figure 2: Illustration of classical reconstruction based on hologram diffraction. The z axis is magnified versus x
and y axis. The red rectangle corresponds to the real size of the hologram.

3. DIGITAL HOLOGRAM RECONSTRUCTION
BASED ON HOLOGRAM DIFFRACTION

The large majority of methods for reconstructing digital holograms are based on the simulation of an opti-
cal reconstruction, followed by a 3-D analysis of the reconstructed volume. In all-optical holography, after a
hologram has been recorded and the holographic plate has been processed, the plate is re-illuminated with the
reference wave. Hologram diffraction creates a virtual (i.e., defocused) and a real (i.e., focused) image. In digital
holography, the holographic plate is replaced by a digital camera whose sensor size and definition is worse by
several orders of magnitude. The simulation of hologram diffraction, though straightforward to implement (and
fast), lead to sub-optimal reconstructions with distortions due to boundary effects and the presence of the virtual
(twin) image.

In this section, we summarize hologram-diffraction based approaches used in DH and their limitations. We
then present, in more details, some of their drawbacks and point out some of the works in the literature that
describe them.

3.1 Classical reconstruction of digital holograms

The classical 3-D reconstruction of digital holograms is performed in two steps. The first step is based on a nu-
merical simulation of the optical reconstruction. A 3-D image volume Vrec is obtained by computing the diffracted
field in planes located at increasing distances from the hologram (see Figure 2). Different techniques to simulate
diffraction have been proposed (Fresnel transform,5 fractional Fourier transform,12,13 wavelets transform14,15).
Using a convolution-based diffraction model, Vrec is given by:

Vrec (xp, yq, zr) = [D ∗ hzr ] (xp, yq) ↔ v = H
t
d (6)

Unfortunately, hologram diffraction does not invert hologram recording: operator Ht
H is far from the identity

(i.e., the impulse response of the system “hologram recording” + “linear reconstruction” is a spatially variant
halo with large spread along the axial direction z).

The second step consists of localizing and sizing each object in the obtained 3-D image. The best focusing
plane for each object has to be detected. Various criteria are suggested in the literature. Some are based on
the local analysis of the sampled reconstructed volume. For example, one searches for the minimum of the
gray level on the z-axis crossing the object center16 or computes the barycenter of the labeled object image
after thresholding of the 3-D reconstructed image.17 Some authors use the imaginary part of the reconstructed
field.18 Other approaches are based on an analysis of the object’s 3-D image. Liebling uses the criterion of the



sparsity of wavelets coefficients19 and Dubois uses the minimization of the integrated reconstructed amplitude.20

Hologram-diffraction based approaches suffer from various limitations:

• the lateral field of view is limited and, in practice, must be restricted to the center of the reconstructed
images to reduce the border effects;

• under-sampled holograms can lead to artifacts (e.g. ghost images);

• spurious twin-images of the objects get reconstructed;

• multiple focusing can occur around the actual depth location of each object;21

3.2 Limits of classical reconstruction

This section is aimed at detailing the first two limitations of classical reconstruction listed above. The next
section explains how the IP approach push back these limits.

Due to technological constraints, digital holography suffers from the bad resolution of digital cameras (about
50 times worse than holographic plates). For a correct sampling of the digital hologram, the maximal spatial
frequency in the image is imposed by the Nyquist criterion and thus by the pixel sampling (p). When Nyquist
criterion is not fulfilled (signal frequency higher than Nyquist frequency) an aliasing phenomenon appears and
produces artifacts or ghost images in the reconstructed images.22–25 These artifacts can lead to false object
detections. Some solutions have been proposed to overcome this problem. Onural and Stern23,25 suggest a
filtering of these ghost images in the reconstructed planes (in the case of known location of the true object).
Jacquot22 presents an over-sampling of the hologram and Coupland24 suggests removing ghost images by using
an irregular sampling of the signal, which involves a decrease of the amplitude of these images compared to the
real ones. Let us notice that these last two methods require some heavier experimental setups.

To avoid ghost images occurrence in the hologram, Nyquist criterion should be respected. For an object
located on the optical axis at a distance z from the hologram, the following relation must be satisfied5 z > Lp

λ
,

where L is the width of the sensor and λ is the laser wavelength. To verify this condition, either a high resolution
sensor has to be used (small ∆ξ) or the object has to be at a minimum distance zmin = Lp

λ
, where L stand for

the width of the sensor considered squared. The camera cannot therefore be laid-out too close from the objects.
This limits the contrast of the interference fringes (the contrast decreases when the distance camera-objects z
increases) and limit the numerical aperture, and thus the resolution.

An other drawback which can prove embarrassing within the framework of metrology is the appearance of
some artifacts in the reconstructed 3-D image due to hologram truncation. This problem is all the more important
since digital camera sensors are small compared to holographic plates (their surface is hundred times less). The
loss of the fringes outside of the sensor is at the origin of artifacts named “border effects”. This phenomenon
distorts the reconstructed object and generates errors in the 3-D location and size estimation. This phenomenon
is illustrated on figure 3. The figure shows the distortions of a particle located on the border of an experimental
hologram of water droplets on several consecutive reconstructed planes.

Hologram-diffraction based techniques require an expansion of the hologram outside its boundaries. The
hologram can either be zero-padded, implicitly periodized by use of discrete Fourier transform. In each case, the
fringes recorded are completed by erroneous values outside the hologram, which leads to distorted low-contrast 3-
D images (and possibly ghost objects). The contrast of these reconstructed images is very faint and the artifacts
are very strong (figure 3). These artifacts, generating a loss of accuracy in the 3-D reconstruction, restrict
the usability of these reconstruction approaches to the area located at the hologram center (where interference
patterns truncation is weak). Several methods have been proposed to reduce the border effects. Dubois suggested
a technique which extrapolates the hologram.26 Cuche proposed a method based on a weighting of the image
border by a cubic spline therefore reducing border effects at the cost of a loss of contrast close to the hologram
borders.27 We show next section that using an inverse problem approach not only solves these border effects,
but also makes it possible to reconstruct out-of-field objects.
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Figure 3: Illustration of classical reconstruction compared with the criterion map : (a) experimental in-line
hologram of droplets (b) classical reconstruction based on hologram diffraction at different depths z. Artefacts
appear during the numerical reconstruction due to the truncation of diffraction rings on the hologram boundary.
(c) Criterion computation based on IP at different depths z ( see eq. 21). The images represented in (b) and
(c) correspond to the square area drawn on the hologram (a).z0 = 0.273m corresponds to the in-focus distance,
∆z = 6mm.



4. OPTIMAL HOLOGRAM PROCESSING: THE INVERSE PROBLEM APPROACH

We described in section 2 two linear models of a hologram: equations (4) and (5). The amplitude of the objects
α or the opacity distribution ϑ can be estimated by inverting the hologram formation models, using a suitable
regularization: this corresponds to the inverse problem approach.

The noise term ǫ in the hologram models can be considered Gaussian, with an inverse covariance matrix W .
Data are then distributed following a distribution of the form:

(FI) p(d|α) ∝ exp
[

−(I0 · 1−M α− d)tW (I0 · 1−M α− d)
]

(7)

(FII) p(d|ϑ) ∝ exp
[

−(I0 · 1−Hϑ− d)tW (I0 · 1−Hϑ− d)
]

(8)

Noise is generally considered white, so that W is diagonal: W = diag(w). Non uniform w can account for a
signal-dependant variance or can be used to restrict the support to the hologram boundaries (i.e., wk = 0 for
pixels k that are outside the hologram support).

To simplify the expressions in the following derivations, we define the scalar product <u,v>W and the
induced norm ‖u‖2W as follows:

<u,v>W =
u
t
Wv

1t
W1

(=

∑

k wkukvk
∑

k wk

for a diagonal W ) (9)

‖u‖2W = <u,u>W =
u
t
Wu

1t
W1

(=

∑

k wku
2
k

∑

k wk

for a diagonal W ) (10)

The negative log-likelihood is given, up to an additive and a multiplicative constant, by:

(FI) − log p(d|α) = ‖I0 · 1−M α− d‖2W (11)

(FII) − log p(d|ϑ) = ‖I0 · 1−Hϑ− d‖2W (12)

Maximum likelihood estimation of the offset: The offset that maximizes the likelihood is:

(FI) I†0 = <1,M α+ d>W (13)

(FII) I†0 = <1,Hϑ+ d>W (14)

The neg-log-likelihood L can then be re-written in the simplified form:

(FI) LI(d,α) = − log p(d|α) = ‖M̄ α− d̄‖2W (15)

(FII) LII(d,ϑ) = − log p(d|ϑ) = ‖H̄ ϑ− d‖2W (16)

with the centered variables:

d̄ = d− 1<1,d>W (=







d1 −
∑

k wkdk/
∑

k wk

...
dN2 −

∑

k wkdk/
∑

k wk






for a diagonal W )

M̄ = [m̄1, . . . , m̄n]

∀j, m̄j = 1<1,mj>W −mj (=







∑

k wkmk/
∑

k wk −m1

...
∑

k wkmk/
∑

k wk −mN2






for a diagonal W )

H̄ = [h̄z1 , . . . , h̄zK ]

∀k, h̄k = 1<1,hk>W − hk (=







∑

k wkhk/
∑

k wk − h1

...
∑

k wkhk/
∑

k wk − hN2






for a diagonal W )



When the objects can be parameterized (e.g., disks), the objects can be detected and localized by using form
(FI), as detailed in section 4.1. More complex objects require the reconstruction of the opacity distribution using
form (FII), see section 4.2.

4.1 Detection and location of parameterized objects

When studying objects that can be parameterized with few parameters (3-D location and shape), a dictionary
M of diffraction patterns can be considered to model the hologram (form FI). Since the 3-D location of an object
is continuous, the dictionary M should also be continuous (i.e., with infinitely many elements). The approach
proposed in28,29 solves the problem in two steps:

• a global detection step, which finds the best-matching element in a discrete dictionaryM(i.e., the diffraction
pattern for a given 3-D location and shape),

• a local optimization step, which fits the selected diffraction pattern to the data for sub-pixel estimation.

The objects are detected one after the other, and each time an object has been detected and located (with
sub-pixel accuracy) its contribution on the hologram is subtracted. The procedure is then repeated on the
residuals. This approach for hologram reconstruction corresponds to the class of greedy algorithms30 known in
signal processing as Matching Pursuit,31 or in radio-astronomy as CLEAN algorithm.32

Global object detection: In the first step, the best matching diffraction pattern of dictionary M is re-
searched. The element that leads to the largest decrease of the neg-log-likelihood LI is identified as the most
probable (i.e., detected):

argmin
α≥0

m̄∈{m̄1,...,m̄n}

‖α m̄− d̄‖2W (17)

The optimal amplitude α† for a given diffraction pattern m̄ is:

α†(m̄) =
<m̄, d̄>W

‖m̄‖2W
if <m̄, d̄>W ≥ 0, otherwise α† = 0. (18)

By replacing α by its optimal value in equation (17), the diffraction pattern m̄
† that minimizes LI is given by:

m̄
† = argmin

m̄∈{m̄1,...,m̄n}

C (m̄) subject to <m̄, d̄>W ≥ 0 (19)

= argmin
m̄∈{m̄1,...,m̄n}

‖m̄‖2W · α†(m̄)2 (20)

with C (m̄) = −
<m̄, d̄>W

2

‖m̄‖2W
(21)

The object detected is the one whose diffraction pattern is the most correlated with the data: α† corresponds to
a normalized correlation between a model and the hologram. Since the diffraction patterns are shift-invariant, it
can be shown that the correlations in equations (18) and (19) can be computed using fast Fourier transforms.29

Note that this global detection compared with the classical reconstruction is less sensitive to ghost images.10

Furthermore, ”Border effects” which classically lead to measurement bias, are removed by taking into account the
boundaries of the sensor by means of W . Figure 3.c shows the values of the criterion C (m̄) on several consecutive
reconstructed planes. Unlike for classical reconstruction, the minimum criterion value in these planes is on the
in-focus plane.

Local optimization: Once a diffraction pattern has been selected, its parameters (3-D location and shape)
can be fitted to lead to sub-pixel accuracy.



Figure 4: Iterative algorithm to estimate the parameters of objects distributed in a volume (Soulez et al.29).

Figure 4 and 5 illustrate an application of this algorithm to detect spherical opaque particles. Matrix W

accounts for the hologram support and makes it possible to detect particles even when located far outside of the
field of view (Fig. 5).

Accurate 3-D location of spherical objects by model fitting on the hologram as been applied to water droplets
with diameters about 100µm by Soulez et al.28,29 and to colloidal spherical particles about 1µm using DH
microscopy by Grier et al.33,34

4.2 Reconstruction of 3-D transmittance distributions

When the objects are too complex to be parameterized by few parameters, or when the purpose is to reconstruct
unknown objects, form (FII) is considered: a 3-D transmittance distribution is reconstructed from the hologram.
Due to the ill-posed nature of this inversion problem, it is mandatory to regularize the problem. The reconstructed
3-D distribution ϑ is then given by the maximum a posteriori estimate (MAP):

ϑ
(MAP) = argmin

ϑ

‖H̄ϑ− d̄‖2W + β Φreg(ϑ) (22)

Several regularizations Φreg have been proposed to reconstruct holograms. When extend objects are considered,
an edge-preserving smoothness prior like total variation (the sum of the spatial gradient norm) is generally
chosen:35–38

ϑ
(MAP) = argmin

ϑ

‖H̄ϑ− d̄‖2W + β TV(ϑ), with TV(ϑ) =
∑

k

√

(Dx ϑ)2k + (Dy ϑ)2k (23)

where Dx and Dy are the finite difference operators along x and y (i.e., tranversal) axes.

It has been shown39 that enforcing a sparsity constraint through an ℓ1 norm is sufficient to reconstruct
holograms of diluted volumes:

ϑ
(MAP) = argmin

ϑ

‖H̄ϑ− d̄‖2W + β ‖ϑ‖1, with ‖ϑ‖1 =
∑

k

|ϑk| (24)



(a) (b)
Figure 5: Illustration of droplets detection located out-of-field (from Soulez et al.29): (a) superimposition of
one hologram of the serie and the model of this hologram calculated from 16 detected particles (including 12
out-of-field); (b) represents 3D jet obtained by the detection of all particles located in a field corresponding to
more than 16 times the hologram surface. The corresponding surface of the sensor is represented in blue. The
droplets detection is realized without significant bias even for particles located far away from the sensor.

Figure 6: Reconstruction of an experimental Gabor hologram of target: hologram (left); classical linear re-
construction (center); MAP estimate with sparsity enducing prior of equation (24) and positivity constraint39

(right). Regularized reconstruction of holograms makes it possible to extend the field the view and suppresses
twin-image artifacts.



A positivity constraint and spatially-variant regularization weights Φreg(ϑ) =
∑

k βk|ϑk| improve the reconstruc-
tion and makes it possible to extend the field of view, as illustrated in Figure 6.

Note that the ℓ1 norm minimization can also be applied to the object detection problem described in previous
paragraph. Joint detection of all objects is more robust, in the case of many objects, than iterative detection of
one object at a time. Intermediate procedures have been proposed in the compressed sensing literature40 that
detect several objects at a time, in a greedy fashion, and which can be adapted to include the local optimization
step used to model a continuous dictionary.

5. ESTIMATION OF THE ACCURACY

The estimation and the improvement of the accuracy are key issues of DH.41–44 As the accuracy depends on
several experimental parameters (e.g., sensor definition, fill factor, and recording distance) experimenters are in
need of methodologies to tune the experimental setup and to select the reconstruction that will provide the best
achievable accuracy. The commonly used approach for accuracy estimation is to evaluate the Rayleigh resolution
by estimating the width of the point spread function of the digital holographic system in the reconstructed
planes.41,43–45 We suggested recently46 a methodology based on parametric estimation theory (see Kay47) to
estimate the single point resolution48(i.e., the standard deviation on the 3-D coordinates of a point source) in
on-axis DH. This methodology can be applied to many DH configurations by adapting the hologram formation
model, and possibly changing the noise model.

5.1 Cramér-Rao lower bound

According to Cramér-Rao inequality, the covariance matrix of any unbiased estimator θ̂ = {θ̂i}i=1:np
of the

unknown vector parameter θ∗ is bounded from below by the inverse of the so-called Fisher information matrix:

var
(

θ̂i

)

≥
[

I
−1 (θ∗)

]

i,i
(25)

where I (θ∗) is the np × np Fisher information matrix.

Fisher information matrix is defined from the gradients of the log-likelihood function log p(d;θ):47

[I (θ)]i,j
def
= E

[

∂ log p(d;θ)

∂θi

∂ log p(d;θ)

∂θj

]

. (26)

where θ stands for the parameters vector of the object.

In the case of additive white Gaussian noise model (see section 4.1), Fisher information matrix can be
computed using gradients of the model m(θ):46

[I(θ)]i,j = α2

〈

∂m(θ)

∂θi
,
∂m(θ)

∂θj

〉

W

(27)

Note that W accounts for the finite size of the sensor. The CRLB is asymptotically (for large samples) reached
by maximum likelihood estimators. In digital holography, where the signal is distributed on the whole sensor,
estimation is performed using a large set of independent identically distributed measurements (typically more
than one million). The maximum likelihood estimator then approaches the Cramér Rao Lower Bound. Note
that if the optimization technique used for maximization of the likelihood fails to reach the global minimum or
if the noise level is too high, the resulting estimation error will exceed CRLB.

5.2 Single point resolution maps

A previous study46 about single point resolution estimation lead to closed-form expressions of resolutions. It
showed that:

• the CRLB predicted resolution behaves on optical axis as the classical Rayleigh resolution predicts;

• the resolution depends on the lateral coordinate of the point source;

• estimated parameters are correlated (an error on one parameter influences the estimation of the others) ;

Examples of standard deviation maps calculated using the described methodology are presented in Figure 7.



(a) (b)

(c) (d)
Figure 7: Single point resolution in a transversal plane (from Fournier et al.46): (a) x-resolution map normalized
by the value of x-resolution on the optical axis; (b) normalized z-resolution map; (c) x-resolution for ȳ = 0; (d)
z-resolution for ȳ = 0 ; for z = 100mm, λ = 0.532µm, Ω = 8.6.10−3 and SNR = 10. The squares in the center
of figures (a) and (b) represent the sensor boundaries.

6. CONCLUSION

Digital hologram reconstruction is an inversion problem. Classical approaches based on hologram diffraction are
not satisfactory because of the artefacts that corrupt the 3-D reconstructions. Hologram reconstruction should
not be considered as an inverse wave propagation problem, but rather as a 3-D transmittance reconstruction
problem. We described two families of approaches for hologram inversion. Depending on the application, one
may either choose to detect iteratively the objects, for simple parametric shapes (typically, spherical objects),
or globally reconstruct a 3-D distribution, with a regularizing prior, for more complex and general objects.

Digital camera sensors have a (very) limited size compared to holographic plates. It is therefore crucial
in the modeling to consider the finite support of the hologram to prevent from strong border effects in the
reconstructions. With a correct handling of the hologram support, accurate reconstructions are possible and
can even be extended beyond the field of view. It is also possible to model dead or satured pixels, and signal-
dependant noise.

Most existing 3-D reconstruction techniques consider a linear hologram formation model and reconstruct real-
valued distributions. Sotthivirat and Fessler35 considered in their pioneering work the inversion of a non-linear
model, with a Poisson noise model, and performed the reconstruction of the complex transmittance distribution.
Further works should be done in that direction to evaluate the improvement that non-linear models bring in
practice compared to easier to handle linear models.

Inverse problems approaches offer the possibility of optimal hologram processing, which is essential to appli-
cations in metrology and to high resolution imaging. The computation of the Cramér Rao lower bounds provide
an estimate of the achievable resolution in the reconstructions. The use of non-linear iterative reconstruction
techniques however makes it difficult to characterize the actual resolution (since it depends on the object itself).
Resolution bounds could yet provide a general methodology to choose the parameters of the optical setup.
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