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Abstract: The article presents a method for solving the inverse problem of a two-dimensional

anomalous diffusion equation with a Riemann–Liouville fractional-order derivative. In the first

part of the present study, the authors present a numerical solution of the direct problem. For this

purpose, a differential scheme was developed based on the alternating direction implicit method.

The presented method was accompanied by examples illustrating its accuracy. The second part of

the study concerned the inverse problem of recreating the model parameters, including the orders

of the fractional derivative, in the anomalous diffusion equation. Equations of this type can be

used to describe, inter alia, the heat conductivity in porous materials. The ant colony optimization

algorithm was used to solve this problem. The authors investigated the impact of the distribution of

measurement points, the use of different mesh sizes, and the input data errors on the obtained results.

Keywords: anomalous diffusion; inverse problem; fractional derivative; parameter identification

1. Introduction

In recent years, derivatives of fractional order have been frequently used. Many
different definitions of such derivatives are available in the literature. In applications, the
Caputo derivative and the Riemann–Liouville derivative are the most often used [1,2].
Fractional calculus is used, inter alia, in mathematical modeling of various problems in
mechanics, physics, and biology [3–6], in control theory [7], in image processing [8], as well
as in modeling the phenomena of heat transport [9–15]. Many mathematical models are
based on differential equations containing fractional derivatives. Hence, the development
of algorithms for solving differential equations with fractional derivatives is extremely
important [16–20]. For example, in [16], the authors presented a solution of fractional
pantograph differential equations. They used the operational matrix of the derivatives of
the generalized Lucas polynomials and then transformed the problem into a system of
equations. The paper also included the derivation of the numerical scheme with examples.

Direct problems for differential equations consist of solving a given equation (deter-
mining the state function) when all input data are known. Solving inverse problems, on the
other hand, involves determining some of the input data on the basis of some information
regarding the state function. In the literature, studies on inverse problems for differential
equations with fractional derivatives are available. The first studies on these issues were
by Murio [21,22]. In these papers, the one-dimensional problem was considered, and the
mollification method was used to solve it. Zheng and Wei [23,24] presented a Fourier
regularization and a convolution methods to recreate the boundary condition (function and
its derivative) of a semi-infinite domain for the time-fractional inverse advection-dispersion
equation. A similar issue is considered in the finite domain in [25], in this case a kernel-
based meshless method was used. Xiong et al. [26] considered a two-dimensional case
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in the infinite domain. Yan and Yang [27] used an efficient Kansa-type method and pre-
sented numerical solution of two-dimensional time-fractional inverse diffusion problems.
For the theoretical results of the stability and the uniqueness of the solution, a backward
problem and inverse source problem for a multi-dimensional time-fractional diffusion
equation were included in [28]. The authors of [29,30] managed the inverse problem for
the two-dimensional time-fractional sideways heat equation in the infinite domain. Inverse
problems for two-dimensional time-fractional diffusion equation were also considered
in [29,31–33]. The study [34] considered the inverse problem for two-dimensional fractional
partial differential equations. The method assumes the knowledge of the state function for
a certain time interval at each point of the domain under consideration. A hybrid method
based on modulating functions was used for the solution. The inverse problem for the heat
equation in the two-dimensional domain with the Atangana–Baleanu fractional derivative
was considered in [35]. In turn, the equation with the Hilfer derivative was considered
in [36].

Research on one-dimensional issues prevails in the literature. Those on two-dimensional
problems mainly regard the Caputo derivative in an infinite domain. There are a few
articles on the inverse problem for the two-dimensional anomalous diffusion equation with
the Riemann–Liouville derivative. Furthermore, the artificial intelligence algorithm was
used in only one study in relation to time-fractional Schrödinger equations. The authors of
this manuscript considered this rarely described case.

One of the main problems with using models with the fractional derivative is deter-
mining the order of the derivative. There are papers in which the authors determined it
based on physical experiments [37]. To determine the order of the derivative, it may be
useful to solve the inverse problem, which the authors present in this paper.

The article presents the consideration of the inverse problem for a two-dimensional
anomalous diffusion equation with the Riemann–Liouville fractional derivative. The in-
verse problem in the study was to recreate the orders of two fractional derivatives and one
of the parameters in the equation. Additional information, in this case, was the solution
values at selected points of the domain. To solve the inverse problem, the direct problem
should be repeatedly solved for the fixed values of the searched parameters. To solve
the direct problem, the alternating direction implicit method was used [38], which allows
for solving of multidimensional problem by the iterative solution of a number of one-
dimensional problems. Using the given values of the solution and the values determined
from the solution of the direct problem, a functional representing the error of the approx-
imate solution was built. The argument for which the functional reached the minimum
value was the sought solution for the inverse problem under consideration. The minimum
of the functional was searched for using the ant colony optimization algorithm [39,40].
This is a probabilistic artificial intelligence algorithm inspired by the behavior of an ant
colony. The authors of the study investigated the impact of the distribution of measurement
points, the use of different mesh sizes, and the value of input data disturbances on the
obtained results.

2. Space Fractional Diffusion Equation

The presented model in this section can be used to describe heat flow in a porous
material with an irregular (fractal, chaotic) structure. In such a case, the heat flow can
be modeled using fractional-order derivatives [10]. We considered a two-dimensional
problem in which the derivative over space was a Riemann–Liouville type. Thus, the study
considered the two-dimensional space fractional diffusion equation with the Riemann–
Liouville derivative:

c̺
∂u(x, y, t)

∂t
=

∂

∂x

(
λx1(x, y)

∂αu(x, y, t)

∂xα
− λx2(x, y)

∂αu(x, y, t)

∂(−x)α

)

+
∂

∂y

(
λy1(x, y)

∂βu(x, y, t)

∂yβ
− λy2(x, y)

∂βu(x, y, t)

∂(−y)β

)
+ f (x, y, t),

(1)
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specified in the following area (x, y, t) ∈ Ω × [0, T], where Ω = [0, Lx] × [0, Ly] and
α, β ∈ (0, 1). Initial-boundary conditions were attached to the above equation:

u(x, y, t)|∂Ω = 0, t ∈ (0, T],

u(x, y, t)|t=0 = ϕ(x, y), (x, y) ∈ Ω.
(2)

It was also assumed that both constants c, ̺ and functions λx1, λx2, λy1, λy2 > 0
are positive for all (x, y) ∈ Ω. Equation (1) describes the phenomenon of anomalous
diffusion, for example the phenomenon of heat conduction in porous materials [9–11]. In
Equation (1), both the right- and left-hand Riemann–Liouville derivatives were used as
fractional derivatives relative to space [1,2]:

∂αu(x, y, t)

∂xα
=

1

Γ(1 − α)

∂

∂x

x∫

0

(x − ξ)−αu(ξ, y, t) dξ,

∂αu(x, y, t)

∂(−x)α
=

−1

Γ(1 − α)

∂

∂x

Lx∫

x

(ξ − x)−αu(ξ, y, t) dξ,

(3)

where α ∈ (0, 1). Similar to the formula (3), we can define the fractional derivatives for a
variable y and order β ∈ (0, 1).

Considering Equation (1) with the conditions (2) as a model describing the heat
conductivity in porous materials, the following notations can be assumed:

• λx1, λx2, λy1, λy2—heat conductivity coefficients,

• c—specific heat of a medium,
• ̺—density of a medium,
• u—a function describing the temperature distribution in space and time,
• f —an additional heat source.

3. Direct Problem

In this section, we present a way of solving Equation (1) numerically, and then, we
introduce an example illustrating the accuracy of the method. For the discretization of the
equation, the finite difference method supplemented with the appropriate discretization of
Riemann–Liouville was used.

3.1. Numerical Method

Equation (1) can be written as follows:

c̺
∂u(x, y, t)

∂t
=

(
λx1(x, y)

∂α+1u(x, y, t)

∂xα+1
+ λx2(x, y)

∂α+1u(x, y, t)

∂(−x)α+1

)

+

(
∂λx1(x, y)

∂x

∂αu(x, y, t)

∂xα
− ∂λx2(x, y)

∂x

∂αu(x, y, t)

∂(−x)α

)

+

(
λy1(x, y)

∂β+1u(x, y, t)

∂yβ+1
+ λy2(x, y)

∂β+1u(x, y, t)

∂(−y)β+1

)

+

(
∂λy1(x, y)

∂y

∂βu(x, y, t)

∂yβ
− ∂λy2(x, y)

∂y

∂βu(x, y, t)

∂(−y)β

)

+ f (x, y, t).

(4)

We commence with the discretization of the domain [0, Lx]× [0, Ly]× [0, T]. For this

purpose, we introduce the following notations: ∆t = T
N , tk = k∆t, k = 0, 1, . . . N, ∆x = Lx

Mx
,

xi = i∆x, i = 0, 1, . . . , Mx, ∆y =
Ly

My
, yj = j∆y, j = 0, 1, . . . , My, where N, Mx, My ∈ N, and
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tk, xi, yj are the mesh points. Using uk
i,j, f k

i,j, λ
i,j
1x, λ

i,j
2x, λ

i,j
1y, λ

i,j
2y, we denote the function values,

respectively, u, f , λx1, λx2, λy1, and λy2 in points (xi, yj, tk).
We approximate the Riemann–Liouville derivative as follows [41] (the order of ap-

proximation O((∆x)2)):

∂αu(x, y, t)

∂xα

∣∣∣∣
(xi ,yj ,t

k)
≈ 1

(∆x)α

i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk), (5)

∂αu(x, y, t)

∂(−x)α

∣∣∣∣
(xi ,yj ,t

k)
≈ 1

(∆x)α

Mx−i+1

∑
l=0

ωα
l u(xi+l−1, yj, tk), (6)

where:

ωα
0 =

α

2
gα

0 , ωα
l =

α

2
gα

l +
2 − α

2
gα

l−1, l = 1, 2, . . . ,

gα
0 = 1, gα

l =

(
1 − α + 1

l

)
gα

l−1 l = 1, 2, . . .

The formulas for the fractional derivative with respect to the variable y look similar.
The derivative with respect to time is approximated as follows (the order O((∆t)2)):

∂u(x, y, t)

∂t

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )

≈
u(xi, yj, tk+1)− u(xi, yj, tk)

∆t
. (7)

Taking into account the approximations (5)–(7), we can write:

∂αu(x, y, t)

∂xα

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )

≈ 1

2(∆x)α

[
i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk+1) +

i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk)

]
, (8)

∂α+1u(x, y, t)

∂xα+1

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )

≈ 1

2(∆x)α+1

[
i+1

∑
l=0

ωα+1
l u(xi−l+1, yj, tk+1) +

i+1

∑
l=0

ωα+1
l u(xi−l+1, yj, tk)

]
, (9)

∂αu(x, y, t)

∂(−x)α

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )

≈ 1

2(∆x)α

[
Mx−i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk+1) +

Mx−i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk)

]
, (10)

∂α+1u(x, y, t)

∂(−x)α+1

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )

≈ 1

2(∆x)α+1

[
Mx−i+1

∑
l=0

ωα+1
l u(xi−l+1, yj, tk+1)

+
Mx−i+1

∑
l=0

ωα+1
l u(xi−l+1, yj, tk)

]
.

(11)

For simplicity, we introduce the following notation:

δα
x uk

i,j =
1

2(∆x)α

[
λ
′
x i,j
x1

i+1

∑
l=0

ωα
l uk

i−l+1 − λ
′
x i,j
x2

Mx−i+1

∑
l=0

ωα
l uk

i+l−1

]
, (12)

δ
α+1
x uk

i,j =
1

2(∆x)α+1

[
λ

i,j
x1

i+1

∑
l=0

ωα+1
l uk

i−l+1 + λ
i,j
x2

Mx−i+1

∑
l=0

ωα+1
l uk

i+l−1

]
. (13)
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The approximation formulas for the derivative of the variable y are analogous. Then,
the difference scheme of the order O((∆t)2 +(∆x)2 +(∆y)2) for Equation (4) takes the form:

c̺
uk+1

i,j − uk
i,j

∆t
= δ

α+1
x uk+1

i,j + δα
x uk+1

i,j + δ
α+1
x uk

i,j + δα
x uk

i,j

+ δ
β+1
y uk+1

i,j + δ
β
y uk+1

i,j + δ
β+1
y uk

i,j + δ
β
y uk

i,j + f
k+ 1

2
i,j .

(14)

After transforming the above equation, we can write:

(1 − ∆t

c̺
δ

α+1
x − ∆t

c̺
δα

x −
∆t

c̺
δ

β+1
y − ∆t

c̺
δ

β
y )u

k+1
i,j

= (1 +
∆t

c̺
δ

α+1
x +

∆t

c̺
δα

x +
∆t

c̺
δ

β+1
y +

∆t

c̺
δ

β
y )u

k
i,j +

∆t

c̺
f

k+ 1
2

i,j ,

(15)

for i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1 and k = 0, 1, . . . , N − 1.
We write the above difference scheme in matrix form. For this purpose, we define

two matrices:
Rx(l) = (rx

i,j(l))(Mx−1)×(Mx−1), l = 1, 2, . . . , My − 1,

Ry(l) = (r
y
i,j(l))(My−1)×(My−1), l = 1, 2, . . . , Mx − 1.

where:

rx
i,j(l) =





−∆t
2c̺(∆x)α+1 λi,l

x1ωα+1
i−j+1 +

−∆t
2c̺(∆x)α λ

′
x i,l
x1 ωα

i−j+l , j < i − 1,

−∆t
2c̺(∆x)α+1

(
λi,l

x1ωα+1
2 + λi,l

x2ωα+1
0

)
+ −∆t

2c̺(∆x)α

(
λ
′
x i,l
x1 ωα

2 − λ
′
x i,l
x2 ωα

0

)
, j = i − 1,

−∆t
2c̺(∆x)α+1

(
λi,l

x1ωα+1
1 + λi,l

x2ωα+1
1

)
+ −∆t

2c̺(∆x)α

(
λ
′
x i,l
x1 ωα

1 − λ
′
x i,l
x2 ωα

1

)
, j = i,

−∆t
2c̺(∆x)α+1

(
λi,l

x1ωα+1
0 + λi,l

x2ωα+1
2

)
+ −∆t

2c̺(∆x)α

(
λ
′
x i,l
x1 ωα

0 − λ
′
x i,l
x2 ωα

2

)
, j = i + 1,

−∆t
2c̺(∆x)α+1 λi,l

x2ωα+1
j−i+1 − −∆t

2c̺(∆x)α λ
′
x i,l
x2 ωα

j−i+l , j > i + 1.

(16)

r
y
i,j(l) =





−∆t
2c̺(∆y)β+1 λl,i

y1ω
β+1
i−j+1 +

−∆t
2c̺(∆y)α λ

′
y i,l

y1 ω
β
i−j+l , j < i − 1,

−∆t
2c̺(∆y)β+1

(
λl,i

y1ω
β+1
2 + λl,i

y2ω
β+1
0

)
+ −∆t

2c̺(∆y)β

(
λ
′
y l,i

y1 ω
β
2 − λ

′
y l,i

y2 ω
β
0

)
, j = i − 1,

−∆t
2c̺(∆y)β+1

(
λl,i

y1ω
β+1
1 + λl,i

y2ω
β+1
1

)
+ −∆t

2c̺(∆y)β

(
λ
′
y l,i

y1 ω
β
1 − λ

′
y l,i

y2 ω
β
1

)
, j = i,

−∆t
2c̺(∆y)β+1

(
λl,i

y1ω
β+1
0 + λl,i

y2ω
β+1
2

)
+ −∆t

2c̺(∆y)β

(
λ
′
y l,i

y1 ω
β
0 − λ

′
y l,i

y2 ω
β
2

)
, j = i + 1,

−∆t
2c̺(∆y)β+1 λl,i

y2ω
β+1
j−i+1 − −∆t

2c̺(∆y)β λ
′
y i,l

y2 ω
β
j−i+l , j > i + 1.

(17)

The next step is to define block matrices S and H. We start with the matrix S (di-
mension

[
(My − 1) · (Mx − 1)

]
×

[
(My − 1) · (Mx − 1)

]
), which is a diagonal block matrix,

i.e., it contains matrices Rx(l), l = 1, 2, . . . , My − 1 on the main diagonal and zeros in
other places.




Rx(1) 0 . . . 0
0 Rx(2) . . . 0
...

...
. . .

...
0 0 . . . Rx(My − 1)


 (18)

Below is the form of matrix H (matrix H has the same dimension as matrix S). Matrix H
is a block matrix where each block is a diagonal matrix of dimension (Mx − 1)× (Mx − 1).
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


r
y
1,1(1) . . . 0 r

y
1,My−1(1) . . . 0

...
. . .

... . . .
...

. . .
...

0 . . . r
y
1,1(Mx − 1) 0 . . . r

y
1,My−1(Mx − 1)

...
. . . . . .

r
y
My−1,1(1) . . . 0 r

y
My−1,My−1(1) . . . 0

...
. . .

... . . .
...

. . .
...

0 . . . r
y
My−1,1(Mx − 1) 0 . . . r

y
My−1,My−1(Mx − 1)




(19)

We can write the difference scheme (15) in matrix form as follows:

(I + S + H)uk+1 = (I − S − H)uk +
∆t

c̺
f k+ 1

2 , k = 0, 1, . . . (20)

where:
uk = [uk

1,1, uk
2,1, . . . , uk

Mx−1,1, . . . , uk
1,My−1, uk

2,My−1, . . . uMx−1,My−1]
T ,

f k+ 1
2 = [ f

k+ 1
2

1,1 , f
k+ 1

2
2,1 , . . . , f

k+ 1
2

Mx−1,1, . . . , f
k+ 1

2
1,My−1, f

k+ 1
2

2,My−1, . . . , f
k+ 1

2
Mx−1,My−1]

T .

The matrices appearing in the difference scheme (20) are quite large; as a consequence,
the resulting system of equations will be time consuming to solve, which is shown in
Section 3.2. Hence, we applied the alternating direction implicit method (ADIM) to the
difference scheme (15), which significantly reduces the computation time. This will be
an important issue in the case of solving the inverse problem, in which direct problem
should be solved repeatedly. We write the scheme (15) in the form of the directional
separation product:

(1 − ∆

c̺
δ

α+1
x − ∆

c̺
δα

x)(1 −
∆

c̺
δ

β+1
y − ∆

c̺
δ

β
y )u

k+1
i,j

= (1 +
∆

c̺
δ

α+1
x +

∆

c̺
δα

x)(1 +
∆

c̺
δ

β+1
y +

∆

c̺
δ

β
y )u

k
i,j +

∆t

c̺
f

k+ 1
2

i,j ,

i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1, k = 0, 1, . . . .

(21)

Then, the above scheme can be broken in two parts and solved, respectively, first in
direction x and, afterwards, in direction y. As a consequence, the resulting matrices for
the system of equations will have significantly lower dimensions than in the case of the
scheme (15). The solution algorithm consists of two successive steps:

• for each fixed yj, we solve the scheme in the direction x. As a result, we obtain a

temporary solution ũk+1
i,j :

(1 − ∆
c̺ δ

α+1
x − ∆

c̺ δα
x)ũ

k+1
i,j = (1 + ∆

c̺ δ
α+1
x + ∆

c̺ δα
x)(1 +

∆
c̺ δ

β+1
y + ∆

c̺ δ
β
y )u

k
i,j +

∆t
c̺ f

k+ 1
2

i,j , (22)

• then, for each fixed xi, we solve the scheme in direction y:

(1 − ∆

c̺
δ

β+1
y − ∆

c̺
δ

β
y )u

k+1
i,j = ũk+1

i,j . (23)

We can represent this process symbolically by means of Figure 1. For the boundary
nodes and the initial condition, we assumed:

uk+1
0,j = uk+1

Mx ,j = uk+1
i,0 = uk+1

i,My
= 0,

u0
i,j = ϕ(i∆x, j∆y) = ϕi,j.
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Figure 1. Numerical solution in the horizontal direction (for a fixed node yj) (a) and the vertical

direction (for a fixed node xi) (b).

Furthermore, for the ADIM method, we write the appropriate matrix equations. First,
for each l = 1, 2, . . . , Mx − 1, we define auxiliary vectors u∗

l :

(I − Ry(l))u
k
l = u∗

l , (24)

where uk
l = [uk

l,1, uk
l,2, . . . , uk

l,My−1]
T , u∗

l = [u∗k
l,1, u∗k

l,2, . . . u∗k
l,My−1]

T . Hence, we obtain an

auxiliary matrix U∗k = (u∗k
i,j ) of dimension (Mx − 1)× (My − 1). Then, the scheme (22)

can be written in the following matrix form (for p = 1, 2, . . . , My − 1):

(I + Rx(p))ũk
p = (I − Rx(p))u∗∗

p +
∆t

c̺
f k+1
p , (25)

where the temporary solution takes the form ũk
p = [ũk

1,p, ũk
2,p, . . . , ũk

Mx−1,p]
T , and u∗∗

p =

[u∗k
1,p, u∗k

2,p, . . . , u∗k
Mx−1,p]

T , f
k+ 1

2
p = [ f

k+ 1
2

1,p , f
k+ 1

2
2,p , . . . f

k+ 1
2

Mx−1,p]
T . In this step, we solved My − 1

systems of equations, each of (Mx − 1)× (Mx − 1) dimension. Afterwards, we present the
scheme (23) in direction y in matrix form (for l = 1, 2, . . . , Mx − 1):

(I + Ry(l))u
k+1
l = (I − Ry(l))ũ

∗k
l , (26)

where uk+1
l = [uk+1

l,1 , uk+1
l,2 , . . . , uk+1

l,My−1]
T and ũ∗k

l = [ũk
l,1, ũk

l,2, . . . , ũk
l,My−1]

T . From this step

of the algorithm, we solved Mx − 1 systems of equations with dimensions (My − 1)×
(My − 1) each. The Bi-CGSTAB [42,43] method was used to solve the equation systems,
which also influenced the computation time. A comparison with the Gauss algorithm is
presented in the next section. The proof of the convergence of the above difference schemes
can be found in [38].

3.2. Numerical Results

In this section, we present the results of the numerical solution of the problem (1) and (2).
The example assumes the following data:

λx1 = λx2 = λy1 = λy2 = 240, c = 900, ̺ = 2100,

α = 0.8, β = 0.6, ϕ(x, y) = u(x, y, 0) = 0,
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f (x, y, t) =
3000000

1309

(
82467(x − 2)2x2(y − 1)2y3 cos

(
t

100

)

−1904 5
√

x
(
25x2 − 55x + 22

)
(y − 1)2y3 sin

(
t

100

)

Γ
(

1
5

)

−1904 5
√

2 − x
(
25x2 − 45x + 12

)
(y − 1)2y3 sin

(
t

100

)

Γ
(

1
5

)

−220(x − 2)2x2
(
125y2 − 170y + 51

)
y7/5 sin

(
t

100

)

Γ
(

2
5

)

−44(x − 2)2x2(1 − y)2/5
(
625y3 − 600y2 + 90y + 4

)
sin

(
t

100

)

Γ
(

2
5

)
)

.

(27)

For the data defined above, the exact solution (1) and (2) is the function:

u(x, y, t) = 10, 000(2 − x)2x2(1 − y)2y3 sin

(
t

100

)
,

where the domain under consideration is as follows: x ∈ [0, 2], y ∈ [0, 1], t ∈ [0, 200].
Errors are marked as follows:

∆max = max(|uk
i,j − uek

i,j|),

∆avg =

∑
k

∑
i

∑
j
|uk

i,j − uek
i,j|

(Mx + 1)(My + 1)(N + 1)
,

where i = 0, 1, . . . , Mx, j = 0, 1, . . . , My, k = 0, 1, . . . , N, and uek
i,j denotes exact values of

the function u at the mesh points. First of all, we compared the results obtained with and
without the ADIM for different meshes. We also provided computation times. As can be
seen in Table 1, the results obtained with or without ADIM were similar; the differences
were slight. However, the difference in the computation time was of considerable size;
for example, for the mesh 100 × 100 × 100, in the case of the ADIM, this time was about
9 s, while for the method without ADIM, this time was about 453 s. The difference was
enormous, and considering that in the inverse problem, it is necessary to solve the direct
problem repeatedly, the use of ADIM was essential.

Table 1. Comparison of the results and the times of the algorithm computation depending on the use of ADIM.

Mesh ∆max ∆max ∆avg ∆avg CPU Time (ms) CPU Time (ms)

Mx × My × N ADIM without ADIM ADIM without ADIM ADIM without ADIM
20 × 20 × 20 1.50453 1.50458 0.17421 0.17476 32 183
40 × 40 × 40 0.59740 0.59752 0.05186 0.05202 348 3929
80 × 80 × 80 0.18129 0.18131 0.01449 0.01453 4161 7266

100 × 100 × 100 0.12042 0.12043 0.00954 0.00956 9143 453,438

Another important issue influencing the computation time was the appropriate se-
lection of the method to solve the system of equations. In the presented algorithm, the
Bi-CGSTAB method [42,43] was used to solve a system of linear equations. We compared
the computation times of the algorithm in the case of using Bi-CGSTAB and the Gaussian
elimination method (Table 2). In the case of mesh 200× 200× 200, the use of the Bi-CGSTAB
caused the computation to be performed approximately 5.3 times faster than using the
Gaussian elimination method.
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Table 2. Comparison of the algorithm computation times depending on the method used to solve the

system of equations.

Mesh Time (ms) Bi-CGSTAB Time (ms) Gaussian Elimination

20 × 20 × 20 32 33
40 × 40 × 40 348 440
80 × 80 × 80 4161 9046

100 × 100 × 100 9143 25,005
200 × 200 × 200 154,650 822,644

4. Inverse Problem

In this section, we present a solution of the inverse problem involving the reconstruc-
tion of the selected parameters of the model described by Equation (1). The considered
inverse problem consisted of selecting the unknown input parameters of the model in such
a way that the model output (function u from Equation (1)) had predetermined values at se-
lected points of the domain. A lack of information regarding the searched input parameters
was compensated by the values of the function u at selected points of the domain. Due to
the fact that the inverse problems are ill-conditioned, they are classified as quite difficult issues.

4.1. Formulation of the Problem

We considered the following equation:

c̺
∂u(x, y, t)

∂t
=

∂

∂x

(
λ(x, y)

∂αu(x, y, t)

∂xα
− λ(x, y)

∂αu(x, y, t)

∂(−x)α

)

+
∂

∂y

(
λ(x, y)

∂βu(x, y, t)

∂yβ
− λ(x, y)

∂βu(x, y, t)

∂(−y)β

)
+ f (x, y, t),

where:
λ = 240, ̺ = 2100, ϕ(x, y) = u(x, y, 0) = 0,

and function f (x, y, t) is given by the formula (27). We considered the differential equation
in the domain (x, y, t) ∈ Ω × [0, 200], where Ω = [0, 2]× [0, 1]. The unknown parameters
of the model that should be determined were c, α, β. However, the values of the function u
at selected points of the domain were known. In order to test the stability of the algorithm,
we considered:

• two different locations of the measuring points (see Figure 2):

{P1(0.2, 0.9), P2(0.2, 0.5), P3(0.2, 0.1), P4(0.5, 0.9), P5(0.5, 0.5), P6(0.5, 0.1);

P7(1.5, 0.9), P8(1.5, 0.5), P9(1.5, 0.1), P10(1.8, 0.9), P11(1.8, 0.5), P12(1.8, 0.1)};

{K1(0.4, 0.8), K2(0.4, 0.5), K3(0.4, 0.2), K4(1.0, 0.5);

K5(1.6, 0.8), K6(1.6, 0.5), K7(1.6, 0.2)};

• three types of meshes (Mx × My × N): 160× 160× 250, 100× 100× 200, and 80× 80× 100;
• different types of measurement data disturbances (errors with a normal distribution):

0%, 2%, 5%, 10%.
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Figure 2. Two different arrangements of the measuring points.

In order to reconstruct the unknown parameters c, α, β, we developed a functional
comparing the values of the numerical solution uk

i,j(c, α, β) depending on the parameters

sought with the measurement data
m
u

k

i,j:

J(c, α, β) =
N1

∑
i,j

N2

∑
k

(
uk

i,j(c, α, β)− m
u

k

i,j

)2

, (28)

where N1 is the number of measurement points, and N2 is the number of measurements.
The values uk

i,j(c, α, β) are obtained from the solution of the direct problem for fixed param-

eter values c, α, β.

4.2. Objective Function Minimization

In order to find minimum of the objective function (28), and then solve inverse
problem, the Ant Colony Optimization (ACO) algorithm was used [39,40]. The ACO
algorithm is inspired by behavior of an ant colony in nature. In the considered version of the
algorithm, solutions, which in our case were vectors, are treated as the so-called pheromone
spots. In the initial phase of the algorithm, these spots are randomly distributed in the
considered domain. Then, they are sorted by quality, and each solution (pheromone spot)
is assigned a probability of choice. The better the solution is, the higher the probability is.
The probability is determined on the basis of the quality of the solution and the q parameter
of the algorithm, which we can control. In the case of a low q, the best solution is preferred,
and as q increases, the probability of choosing any solution becomes similar. As a result, we
obtained an ordered set of solutions. Then, the iterative phase of the algorithm begins, in
which each ant (which are M) selects a spot according to its probability and then transforms
it to sample the neighborhood. In the considered algorithm, to transform the solution, we
used the Gaussian distribution density function. As a result of the transformation, we
obtained M new solutions (pheromone spots). Next, the solution set must be updated with
new pheromone spots (solutions) by sorting all solutions according to quality, and then, M
the worst solutions are deleted. We repeated the iterative process I times. Finally, we chose
the best solution. The algorithm was adapted to parallel computations. A more detailed
description of the algorithm can be found in [9].

5. Results

In the considered inverse problem, we determined the parameters α, β, c. The exact
values of these parameters were respectively 0.8, 0.6, 900. As we mentioned earlier, to test
the stability of the algorithm, we assumed different arrangements of the measurement
points, mesh sizes, and input data disturbances. For example, in Figure 3, we can see a
comparison of the input data not disturbed by the error and disturbed by the 10% error
from the measurement point K4.
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Figure 3. Disturbed (red dots) and exact (black dots) values of the function u at measuring point K4

(disturbed with the error 10%).

The following parameter values were adopted in the ant algorithm:

M = 32, L = 18, I = 30, α ∈ (0, 0.99), β ∈ (0, 0.99), c ∈ [500, 1500].

Due to the probabilistic nature of the ant algorithm, we assumed five runs for the
given settings, and then, the best one was selected from the obtained results. For this
reason, in the tables with the results, the value of the standard deviation for the obtained
values of the objective function was added. As can be seen, they were inconsiderable,
which proved that the algorithm gave very similar results each time.

Table 3 shows the results of reconstructing the searched parameters for various meshes
and the values of input data disturbances in the case of twelve measurement points. In
each case, the errors of the results obtained were low and did not exceed 1%. For the
input data without error, the results were the best. Even with 10% disturbance of the input
data, the obtained results were satisfying, which proved the stability of the model and
algorithm. Table 4 contains analogous data for the case of seven measuring points. As can
be seen, the change in the arrangement of measurement points, as well as their number
influenced the obtained results. In a few cases (for example, for the 100 × 100 × 200 mesh
and 10% disturbance), the errors in recreating selected parameters exceeded 1%, which did
not happen in the case of twelve measuring points. It can therefore be concluded that the
arrangement of the measuring points and their number had a significant impact on the
results. At the same time, it should be noted that also in this case, the obtained errors of
the reconstruction coefficient were at a satisfactory level. Only in five cases, the recreating
error exceeded 1%.

We next verified the errors of the recreating function u in the measuring points for the
recreated parameters α, β, c. In all cases, these errors were at a low level. A tendency can be
seen that as input data noise increased, the recreating errors of the function u increased,
although this was not always the case. A similar tendency applied to the mesh density; in
general, the lowest reconstruction errors were obtained for the 160 × 160 × 250 mesh and
the highest for the 80 × 80 × 100 mesh. Importantly, the average errors of the recreating
function u turned out to be greater for the second arrangement of measurement points
(seven measurement points) in ten of twelve cases (see Tables 5 and 6).
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Table 3. Results of the calculations in the case of twelve measurements points Pi (i = 1, 2, . . . , 12): αi—

reconstructed value of x-directional order derivative α, βi—reconstructed value of y-directional order

derivative β, c—reconstructed value of parameter c, δ—relative error of reconstruction, J—value of

the objective function, σ—standard deviation of the objective function.

Mesh Size Noise α δα (%) β δβ (%) c δc(%) J σJ

160 × 160 × 250

0% 0.80011 0.015 0.60011 0.018 899.98 0.002 0.00093 0.0047
2% 0.79871 0.162 0.59952 0.079 899.67 0.035 441.96 0.0021
5% 0.80171 0.213 0.60118 0.196 900.53 0.059 2840.82 0.0018

10% 0.80107 0.134 0.60099 0.166 900.71 0.079 9988.16 0.0018

100 × 100 × 200

0% 0.80024 0.031 0.60026 0.044 899.96 0.004 0.00502 0.0126
2% 0.80049 0.061 0.60104 0.174 900.35 0.039 360.43 0.0216
5% 0.79768 0.289 0.59811 0.313 898.69 0.145 2204.71 0.0025

10% 0.79216 0.979 0.59967 0.053 898.11 0.209 8451.98 0.0007

80 × 80 × 100

0% 0.80035 0.044 0.60038 0.064 899.96 0.004 0.00869 0.0003
2% 0.80237 0.296 0.60115 0.191 900.78 0.087 196.75 0.0003
5% 0.79833 0.207 0.60053 0.089 900.07 0.008 1177.09 0.0003

10% 0.80066 0.083 0.60127 0.212 901.32 0.147 1109.12 0.0002

Table 4. Results of calculations in the case of seven measurements points Ki (i = 1, 2, . . . , 7): αi—

reconstructed value of x-directional order derivative α, βi—reconstructed value of y-directional order

derivative β, c—reconstructed value of parameter c, δ—relative error of reconstruction, J—value of

the objective function, σ—standard deviation of the objective function.

Mesh Size Noise α δα (%) β δβ (%) c δc(%) J σJ

160 × 160 × 250

0% 0.80005 0.007 0.60006 0.011 899.99 0.001 0.00547 0.1445
2% 0.80159 0.198 0.59922 0.128 900.32 0.036 1013.49 0.0207
5% 0.79495 0.631 0.59595 0.673 902.61 0.288 5350.01 0.2056

10% 0.78547 1.815 0.60141 0.234 900.41 0.045 23,672.65 0.1913

100 × 100 × 200

0% 0.80021 0.026 0.60021 0.035 900.01 0.001 0.03699 0.1074
2% 0.79795 0.255 0.60029 0.049 900.15 0.017 724.43 0.0241
5% 0.77951 2.561 0.60181 0.302 900.21 0.024 4993.79 0.0071

10% 0.76984 3.769 0.60046 0.077 897.53 0.274 19,397.31 0.0315

80 × 80 × 100

0% 0.79957 0.053 0.60042 0.071 899.98 0.002 0.02526 0.0249
2% 0.80634 0.792 0.60042 0.071 900.28 0.031 400.94 0.0131
5% 0.81852 2.315 0.59791 0.349 899.80 0.022 3072.09 0.0204

10% 0.80758 0.948 0.59324 1.126 901.03 0.115 2152.77 0.0118

Table 5. Errors of reconstruction function u in measurement points for twelve measurement points

(∆avg—average absolute error, ∆max—maximum absolute error, δavg—average relative error, δmax—

maximum relative error).

160 × 160 × 250

0% 2% 5% 10%

∆avg(K) 4.45 × 10−4 1.62 × 10−2 2.64 × 10−2 2.79 × 10−2

∆max(K) 1.54 × 10−3 1.04 × 10−1 1.84 × 10−1 1.89 × 10−1

100 × 100 × 200

0% 2% 5% 10%

∆avg(K) 1.16 × 10−3 2.03 × 10−2 5.77 × 10−2 7.42 × 10−2

∆max(K) 3.08 × 10−3 1.28 × 10−1 3.86 × 10−1 3.86 × 10−1

80 × 80 × 100

0% 2% 5% 10%

∆avg(K) 2.11 × 10−3 2.81 × 10−2 1.21 × 10−2 4.83 × 10−2

∆max(K) 6.94 × 10−3 2.01 × 10−1 8.89 × 10−2 2.84 × 10−1
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Table 6. Errors of reconstruction function u in measurement points for seven measurement points

(∆avg—average absolute error, ∆max—maximum absolute error, δavg—average relative error, δmax—

maximum relative error).

160 × 160 × 250

0% 2% 5% 10%

∆avg(K) 1.25 × 10−3 1.77 × 10−2 1.41 × 10−1 6.78 × 10−2

∆max(K) 4.71 × 10−3 5.71 × 10−2 3.67 × 10−1 2.89 × 10−1

100 × 100 × 200

0% 2% 5% 10%

∆avg(K) 3.52 × 10−3 1.29 × 10−2 8.67 × 10−2 2.16 × 10−1

∆max(K) 1.36 × 10−2 3.92 × 10−2 5.31 × 10−1 1.74

80 × 80 × 100

0% 2% 5% 10%

∆avg(K) 4.45 × 10−3 3.19 × 10−2 9.21 × 10−2 1.29 × 10−1

∆max(K) 1.53 × 10−2 3.37 × 10−1 3.33 × 10−1 5.96 × 10−1

Figures 4 and 5 show the distribution of the reconstruction errors of the function u
at selected points of the domain (K4, K6 and P5, P11) for the 100 × 100 × 200 mesh. The
greater the noise on the input data was, the greater these errors were. For exact data, the
reconstruction errors were at a stable, low level. In the case of point K6, it can be seen that
the reconstruction error for input data disturbed with a 5% noise error at the end of the
process was greater than the corresponding error for a noise of 10%.
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Figure 4. Errors in measurement points K4 (a) and K6 (b) in the case of a 100 × 100 × 200 mesh size.
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Figure 5. Errors in measurement points P5 (a) and P11 (b) in the case of a 100 × 100 × 200 mesh size.

Now, we present a way of achieving the solution by the ACO algorithm. Figures 6 and 7
show the values of the objective function in successive iterations of the algorithm for the
case of the 100 × 100 × 200 mesh, seven measurement points, and various input data noise
values. The values of the objective function for the first few iterations were relatively high;
therefore, due to the scale, they are not marked in the figures. It can be seen that around 15
iterations, these values stabilized, and in the last iterations, the algorithm slightly improved
the searched minimum. The selection of the parameters for the ant algorithm is quite
important and was obtained based on the experience of the authors [40,44].
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Figure 6. Values of the objective function in the case of 0% (a) and 2% (b) perturbation of the

input data.
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Figure 7. Values of the objective function in the case of 5% (a) and 10% (b) perturbation of the

input data.

Finally, we present the influence of the recreated parameters on the values of the func-
tion u at the measuring point K4. For this purpose, we calculated the values of the function
u at the point K4 for different values of the parameters α, β, c. Firstly, we determined the val-
ues of the parameters β, c, and we changed the values of the parameter α = 0.2, 0.4, 0.6, 0.8.
Then, we similarly executed with the parameter β at fixed values of the α, c. Finally, we
set the α, β parameters, and the parameter c took the values 500, 700, . . . , 1500. As can be
seen in Figures 8–10, a change in the value of the β parameter had a greater impact on
the obtained values of the function u at point K4 than in the case of the α derivative order.
Furthermore, introducing a change in the value of the parameter c had a significant impact
on the function, especially in the case of lower values of the parameter c. It can also be
observed that changing the α derivative parameter affected the u function to a lesser extent
than the other parameters.
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Figure 8. Values of the function u at point K4 for different values of the parameter α (β = 0.6, c = 900).
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Figure 9. Values of the function u at point K4 for different values of the parameter β (α = 0.8, c = 900).
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Figure 10. Values of the function u at point K4 for different values of the parameter c (β = 0.6, α = 0.8).

6. Conclusions

The paper presented a numerical solution of a two-dimensional differential equation
with a fractional derivative with respect to a space of the Riemann–Liouville type. This type
of equation can describe the phenomenon of heat conduction in porous media, which the
authors will also consider in further research. The presented numerical solution was also
used to solve the inverse problem consisting of recreating the orders of the derivatives α, β
and the parameter c. The presented results of the numerical experiment seemed satisfactory,
and the algorithm was stable even for input data burdened with noise (measurement error).

The presented algorithm was characterized by faster calculations in relation to the
classic differential scheme, resistance to falling into local minima compared to other min-
imization methods, low requirements for the objective function (it was not necessary to
require continuity, differentiability, or convexity), and the stability against input data errors.
The above-described properties can be treated as its advantages. The only downside was
the computation time of the ACO algorithm.

In the further part of the research, the authors plan the following:

• continued tests of the proposed algorithm (reconstructing of more parameters);
• application of the model described in the study (differential equation) to model the

heat flow process in porous materials;
• development of the algorithm to shorten the computation time;
• investigation of the influence of initial conditions (due to the fact that fractional

derivatives contain the memory of past events), and thus the development of the
model with the Caputo derivative to the time variable.



Energies 2021, 14, 3082 16 of 17

Author Contributions: Conceptualization, R.B. and D.S.; methodology, R.B.; software, R.B.; valida-

tion, R.B., D.S., and A.W.; formal analysis, D.S.; investigation, R.B., D.S., and A.W.; writing—original

draft preparation, R.B., D.S., and A.W.; writing—review and editing, R.B., D.S., and A.W.; visu-

alization, R.B.; funding acquisition, D.S. All authors read and agreed to the published version of

the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De Oliveira, E.C.; Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014.

[CrossRef]

2. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.

3. Carpinteri, A.; Mainardi, F. Fractal and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997.

4. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing: Singapore, 2000.

5. Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in

science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]

6. Sowa, M.; Majka, Ł. Ferromagnetic core coil hysteresis modeling using fractional derivatives. Nonlinear Dyn. 2020, 101, 775–793.

[CrossRef]

7. Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of

fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [CrossRef]

8. Jindal, N.; Singh, K. Applicability of fractional transforms in image processing—Review, technical challenges and future trends.

Multimed. Tools Appl. 2019, 78, 10673–10700. [CrossRef]
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11. Sierociuk, D.; Dzieliński, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T. Modelling heat transfer in heterogeneous media

using fractional calculus. Philos. Trans. R. Soc. 2013, 371, 20120146. [CrossRef]

12. Zhuag, Q.; Yu, B.; Jiang, X. An inverse problem of parameter estimation for time-fractional heat conduction in a composite

medium using carbon–carbon experimental data. Physica 2015, 456, 9–15. [CrossRef]

13. Błasik M. A Numerical Method for the Solution of the Two-Phase Fractional Lamé-Clapeyron-Stefan Problem. Mathematics 2020,

8, 2157. [CrossRef]

14. Mozafarifard, M.; Toghraie, D.; Sobhani, H. Numerical study of fast transient non-diffusive heat conduction in a porous

medium composed of solid-glass spheres and air using fractional Cattaneo subdiffusion model. Int. Commun. Heat Mass Transf.

2021, 122, 105192. [CrossRef]

15. Anderson, J.; Moradi, S.; Rafiq, T. Non-Linear Langevin and Fractional Fokker–Planck Equations for Anomalous Diffusion by

Lévy Stable Processes. Entropy 2018, 20, 760. [CrossRef] [PubMed]

16. Youssri, Y.H.; Abd-Elhameed, W.M.; Mohamed, A.S.; Sayed, S.M. Generalized Lucas Polynomial Sequence Treatment of Fractional

Pantograph Differential Equation. Int. J. Appl. Comput. Math. 2021, 7, 27. [CrossRef]

17. Abd-Elhameed, W.M.; Tenreiro Machado, J.A.; Youssri, Y.H. Hypergeometric fractional derivatives formula of shifted Chebyshev

polynomials: Tau algorithm for a type of fractional delay differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2021.

[CrossRef]

18. Atta, A.G.; Moatimid, G.M.; Youssri, Y.H. Generalized Fibonacci Operational tau Algorithm for Fractional Bagley-Torvik Equation.

Prog. Fract. Differ. Appl. 2020, 6, 215–224.

19. Abd-Elhameed, W.M.; Youssri, Y.H. Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations.

Comput. Appl. Math. 2018, 37, 2897–2921. [CrossRef]

20. Abd-Elhameed, W.M.; Youssri, Y.H. Generalized Lucas polynomial sequence approach for fractional differential equations.

Nonlinear Dyn. 2017, 89, 1341–1355. [CrossRef]

21. Murio, D.A. Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 2007, 53,

1492–1501. [CrossRef]

22. Murio, D.A. Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 2008, 56, 2371–2381. [CrossRef]

23. Zheng, G.H.; Wei, T. A new regularization method for the time fractional inverse advection-dispersion problem. Siam J. Numer.

Anal. 2011, 49, 1972–1990. [CrossRef]

24. Zheng, G.H.; Wei, T. A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl.

2011, 378, 418–431. [CrossRef]

http://doi.org/10.1155/2014/238459
http://dx.doi.org/10.1016/j.cnsns.2018.04.019
http://dx.doi.org/10.1007/s11071-020-05811-3
http://dx.doi.org/10.1155/2010/639801
http://dx.doi.org/10.1007/s11042-018-6594-0
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118440
http://dx.doi.org/10.1098/rsta.2012.0146
http://dx.doi.org/10.1016/j.physb.2014.08.011
http://dx.doi.org/10.3390/math8122157
http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105192
http://dx.doi.org/10.3390/e20100760
http://www.ncbi.nlm.nih.gov/pubmed/33265849
http://dx.doi.org/10.1007/s40819-021-00958-y
http://dx.doi.org/10.1515/ijnsns-2020-0124
http://dx.doi.org/10.1007/s40314-017-0488-z
http://dx.doi.org/10.1007/s11071-017-3519-9
http://dx.doi.org/10.1016/j.camwa.2006.05.027
http://dx.doi.org/10.1016/j.camwa.2008.05.015
http://dx.doi.org/10.1137/100783042
http://dx.doi.org/10.1016/j.jmaa.2011.01.067


Energies 2021, 14, 3082 17 of 17

25. Dou, F.F.; Hon, Y.C. Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound.

Elem. 2012, 36, 1344–1352. [CrossRef]

26. Xiong, X.; Zhoua, Q.; Honb, Y.C. An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis

and regularization. J. Math. Anal. Appl. 2012, 393, 185–199. [CrossRef]

27. Yan, L.; Yang, F. Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems. Comput. Math. Appl. 2014, 67,

1507–1520. [CrossRef]

28. Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to

some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [CrossRef]

29. Wang, C.; Ling, L.; Xiong, X.; Li, M. Regularization for 2-D Fractional Sideways Heat Equations. Numer. Heat Transf. Part Fundam.

2015, 68, 418–433. [CrossRef]

30. Liu, S.; Feng, L. An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation. Math. Probl. Eng. 2020,

2020, 5865971. [CrossRef]

31. Kirane, M.; Malik, S.A.; Al-Gwaiz, M.A. An inverse source problem for a two dimensional time fractional diffusion equation with

nonlocal boundary conditions. Math. Methods Appl. Sci. 2013, 36, 1056–1069. [CrossRef]

32. Shivanian, E.; Jafarabadi, A. The numerical solution for the time-fractional inverse problem of diffusion equation. Eng. Anal.

Bound. Elem. 2018, 91, 50–59. [CrossRef]

33. Song, X.; Zheng, G.H.; Jiang, L. Identification of the reaction coefficient in time fractional diffusion equations. J. Comput. Appl.

Math. 2019, 345, 295–309. [CrossRef]

34. Aldoghaither, A.; Laleg-Kirati, T.M. Parameter and differentiation order estimation for a two dimensional fractional partial

differential equation. J. Comput. Appl. Math. 2020, 369, 112570. [CrossRef]

35. Djennadi, S.; Shawagfeh, N.; Arqub, O.A. Well-posedness of the inverse problem of time fractional heat equation in the sense of

the Atangana–Baleanu fractional approach. Alex. Eng. J. 2020, 59, 2261–2268. [CrossRef]

36. Salman, A.; Malik, S.A. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary

conditions. Comput. Math. Appl. 2017, 73, 2548–2560.

37. Moradi, S.; Anderson, J.; Romanelli, M.; Kim, H.-T. Global scaling of the heat transport in fusion plasmas. Phys. Rev. Res. 2020,

2, 013027. [CrossRef]

38. Yang, S.; Liu, F.; Feng, L.; Turner, I.W. Efficient numerical methods for the nonlinear two-sided space-fractional diffusion equation

with variable coefficients. Appl. Numer. Math. 2020, 157, 55–68. [CrossRef]

39. Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [CrossRef]

40. Brociek, R.; Chmielowska, A.; Słota, D. Comparison of the probabilistic ant colony optimization algorithm and some iteration

method in application for solving the inverse problem on model with the Caputo type fractional derivative. Entropy 2020, 22, 555.

[CrossRef]

41. Tian, W.Y.; Zhou, H.; Deng, W.H. A class of second order difference approximations for solving space fractional diffusion

equations. Math. Comput. 2015, 84, 1703–1727. [CrossRef]

42. Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; der Vorst, H.V. Templates

for the Solution of Linear System: Building Blocks for Iterative Methods; SIAM: Philadelphia, PA, USA, 1994.

43. Der Vorst, H.V. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems.

Siam J. Sci. Stat. Comput. 1992, 13, 631–644. [CrossRef]

44. Brociek, R.; Słota, D. A method for solving the time fractional heat conduction inverse problem based on ant colony optimization

and artificial bee colony algorithms. Commun. Comput. Inf. Sci. 2017, 756, 351–361. [CrossRef]

http://dx.doi.org/10.1016/j.enganabound.2012.03.003
http://dx.doi.org/10.1016/j.jmaa.2012.03.013
http://dx.doi.org/10.1016/j.camwa.2014.02.008
http://dx.doi.org/10.1016/j.jmaa.2011.04.058
http://dx.doi.org/10.1080/10407790.2015.1036629
http://dx.doi.org/10.1155/2020/5865971
http://dx.doi.org/10.1002/mma.2661
http://dx.doi.org/10.1016/j.enganabound.2018.03.006
http://dx.doi.org/10.1016/j.cam.2018.06.047
http://dx.doi.org/10.1016/j.cam.2019.112570
http://dx.doi.org/10.1016/j.aej.2020.02.010
http://dx.doi.org/10.1103/PhysRevResearch.2.013027
http://dx.doi.org/10.1016/j.apnum.2020.05.016
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.3390/e22050555
http://dx.doi.org/10.1090/S0025-5718-2015-02917-2
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1007/978-3-319-67642-5_29

	Introduction
	Space Fractional Diffusion Equation
	Direct Problem
	Numerical Method
	Numerical Results

	Inverse Problem
	Formulation of the Problem
	Objective Function Minimization

	Results
	Conclusions
	References

