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INVERSE PROBLEM FOR ELECTRICAL NETWORKS VIA TWIST
TERRENCE GEORGE

ABSTRACT. We construct an electrical-network version of the twist map for the positive
Grassmannian, and use it to solve the inverse problem of recovering conductances from the
response matrix. Each conductance is expressed as a biratio of Pfaffians as in the inverse map
of Kenyon and Wilson; however, our Pfaffians are the more canonical B variables instead of
their tripod variables, and are coordinates on the positive orthogonal Grassmannian studied
by Henriques and Speyer.

1. INTRODUCTION

Let G = (V, E) be a planar graph embedded in a disk D with vertices {by,...,b,} on
the boundary labeled in clockwise cyclic order. A function ¢ : E(G) — Ry is called a
conductance, and a pair (G, ¢) is called an electrical network. In this paper, we focus on well
connected electrical networks (defined in Section [3.1).

The Laplacian on G is the linear operator A : RV(@) — RY(®) defined by

ANE) = 3 e@(f(v) — F(u)
e=uv
where the sum is over all edges uv incident to v. A function f : V(G) — R is said to be
harmonic if (A f)(v) = 0 for all internal vertices v of G. Given a function u : {by,...,b,} = R
on the boundary vertices, there is a unique extension of u to a harmonic function f, called
the harmonic extension of u. The linear operator L : Rttt} — R{bL-n} defined by
L(u) = (=Af)| (v} 18 called the response matriz. It is a semidefinite negative symmetric

matrix whose rows and columns sum to 0. The space of response matrices was characterized
by Colin de Verdiere [CdV94] and further studied in [CdAVGVIE, [CMM94, [CTMOIS].

In this paper, we are interested in the wnverse problem of recovering the conductances
from the response matrix. The inverse problem was solved using a recursive procedure by
Curtis, Ingerman and Morrow [CIM98] (see also [CM] [Joh12, [Rus|) and explicit rational
formulas were given by Kenyon and Wilson [KW09, KW17]. The inverse problem has also
been studied in the cylinder [LP12] and the torus [Geol9].

In the formulas in [KW09, [KW17], the conductances are expressed as biratios of certain
variables called tripod variables which are only defined for special networks called standard
networks. On the other hand, there are other more canonical variables associated with the
vertices and faces of G called B wvariables such that the conductance of an edge is a biratio
of B variables of adjacent vertices and faces. The main goal of this paper is to provide a
solution to the inverse problem by computing the B variables from the response matrix.

Our approach is motivated by the construction of the inverse boundary measurement map
for the dimer model in D by Muller and Speyer [MS17] using an automorphism of the positive
Grassmannian called the twist. Let I' = (BUW, E, F) be a bipartite graph in I with vertices
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{dy,...,d,} on the boundary of D (and with strand permutation my,; see Section [2.2).
Associated with I' is the space A of edge weights modulo gauge equivalence. Postnikov
[Pos06] constructed a parameterization of the totally positive Grassmannian Gr.q(k, n) using
amap Measr : Ar — Grog(k,n) called boundary measurement, where k := #W —#B. There
is another space Ar of functions A : F(I') — Ryy. Scott [Sco06] constructed a function

r : Groo(k,n) — Ar/R., assigning to each face of I a certain Pliicker coordinate. The
spaces Ar and AT are the (positive points of the) A and X cluster tori of Fock and Goncharov
[FGQ9], and there is a canonical map pr : Ar — A that assigns to an edge bw incident to
faces f, g the weight m (with some modification for boundary edges). Muller and Speyer,

generalizing earlier work of Marsh and Scott [MS16], construct automorphisms 7 and 7 of
Grso(k,n), called right and left twists, that sit in the following commutative diagram:

Ar/R-g T A

~

@FT’V _ NlMeaSF-
Grso(k,n) =  Grso(k,n)

7

As a consequence, the boundary measurement Measr has inverse pr o ®r o T.

The generalized Temperley’s bijection of Kenyon, Propp and Wilson [KPW00] associates to

each electrical network (G, c) a weighted bipartite graph (G4, [wt,]), giving an embedding

& Rg — Xg,. Lam [Lamlg] studied the composition Measq, oj : Re — Grso(n +
1,2n) and showed that the image of R¢ is a linear slice of Grso(n + 1,2n), which was
subsequently identified with a positive Lagrangian Grassmannian IGgo(n + 1,2n) of points
in Gr.g(n + 1,2n) that are isotropic for a degenerate skew-symmetric bilinear form  in
[BGKT21 ICGS21] (see also [LP15a]). [CGS21, Theorem 1.8] explicitly identifies the space
of response matrices with IGZ;(n + 1,2n).

Therefore, in principle, the inverse problem for electrical networks can be solved using
the inverse boundary measurement. However, in practice, the result of inverting the bound-
ary measurement yields a weight on GG, to which one has to apply a complicated gauge
transformation to obtain the conductances.

Like the space Ar, there is a second space B¢ associated with an electrical network param-
eterized by the B variables. The space B¢ consists of functions B : V(G)UF(G) — Rs, and
there is a canonical map qg : Bg — R¢ defined as follows. Let e = uv be an edge of G and let
f, g denote the faces of G incident to e. Define qg : B — R¢ by c(e) := % (cf. Equation
(56) in [GK13| Section 5.3.1]). The space B¢ arises from the study of the cube recurrence, a
nonlinear recurrence introduced by Propp [Pro01] whose solutions were characterized com-
binatorially by Carroll and Speyer [CS04] (see also [FZ02 [LP15b]). The cube recurrence
was further studied by Henriques and Speyer [HS10], who related it to the orthogonal Grass-
mannian OG(n + 1,2n) of (n + 1)-dimensional subspaces that are coisotropic for a certain
symmetric bilinear form Q. OG(n+ 1,2n) has an embedding in CP?""'~! x CP2""'~! giving
bihomogeneous coordinates on OG(n +1,2n) called Cartan coordinates (which are given by
Certain Pfaffians; see Section ). Henriques and Speyer constructed a homeomorphism

OG>0(n + 1,2n) = Bg assigning to each vertex and face of G a Cartan coordinate,

Where OG(n + 1,2n) is the “affine cone” over OG(n + 1,2n) and OG>0(n + 1,2n) is the
subset where all Cartan coordinates are positive. Our first main result is the followmg.
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Theorem 1.1 (cf. Theorem WU.2)). There is a map Teec, which we call the electrical right
twist, such that the following diagram commutes.

B LS Re
\Ilc;TN NlMeasG+ ojg .
OGoo(n +1,2n) —2 1G2,(n + 1, 2n)

To solve the inverse problem, we need to invert the electrical right twist. Our second main
result is:

Theorem 1.2 (cf. Theorem . There are actions of R on Bg and (/)\é>0(n + 1,2n)
compatible with V¢ such that upon taking quotients, qa and Tee. are invertible. The inverse
Telec 1S called the electrical right twist, and the following diagram commutes:

Bo/RLY = Ra
\I/GTN P NjMeasG+ ojg .
—— «  ~ —
OGo(n +1,2n) /RS 1GZy(n +1,2n)
-~
7i‘elec

Therefore, the composition gg o W 0 Teee Solves the inverse problem. We work out the
inverse map explicitly when n = 3 in Section [6]

We end the Introduction with some open problems. If the graph G is not well connected,
then R¢ parameterizes a smaller electroid cell in IG®(n 4 1, 2n) which is the intersection of
a positroid cell with IG%(n + 1,2n) [Lami8]. Muller and Speyer defined the twist map for
all postroid cells, which suggests the following problem.

Problem 1.3. Construct a stratified space whose strata are parameterized by Bg, where G
varies over the move-equivalence classes of reduced graphs with n vertices on the boundary of
the disk. Define an electrical twist map that homeomorphically maps the strata to electroid
cells in IG®(n + 1,2n).

There is another definition of positive orthogonal Grassmannian introduced in [HWX14]
which was used to parameterize the Ising model by Galashin and Pylyavskyy [GP20]. Simi-
larly, there is a positive Lagrangian Grassmannian associated with the cluster side A of the
Ising model, introduced by Kenyon and Pemantle [KP16, [KP14] in relation to the Kashaev
recurrence [Kas96]. The two definitions of positive orthogonal/Langrangian Grassmannian
do not agree, but instead we expect the relationship to be as in the table below, where the
two spaces in each row are related by twist.

cluster A side cluster X' side
dimer models positive positive
Grassmannian [Sco06] | Grassmannian [Pos06]
electrical networks positive orthogonal positive Lagrangian
Grassmannian [HS10] Grassmannian
[BGKT21,, [CGS21]
Ising models positive Lagrangian positive orthogonal
Grassmannian [KP16] | Grassmannian [GP20)
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Problem 1.4. Define a twist map for the Ising model relating the positive orthogonal
Grassmannian in [GP20] with the positive Lagrangian Grassmannian in [KP14].

We mention that results relating orthogonal and Lagrangian Grassmannians also appear in
[Wan22, Wan23|, but the connection to the above table is unclear.

Acknowledgments. This project originated from conversations with Sunita Chepuri and
David Speyer. I also thank David for many discussions on his papers [HS10] and [MS17].

2. BACKGROUND ON THE DIMER MODEL AND THE POSITIVE GRASSMANNIAN

In this section, we review background on the positive Grassmannian, dimer models, and
the twist map.

2.1. Grassmannians and Pliicker coordinates. The Grassmannian Gr(k,n) is the space
of k-dimensional subspaces of C". Let eq,...,e, denote the standard basis of C". For
I ={i; <iy < - < i} € ([Z]), let e; := e;; A--- Ae;. Then, the e; form a basis
for N"C". The Plicker embedding is the closed embedding Pl : Gr(k,n) — P(A\"C")
sending a subspace X spanned by vy,..., v, to [vg A -+ Awvg]. The coefficients A;(X) of
er in vy A --- Ay are called Plicker coordinates. Following [Wen2l], we call Gr(k,n) :=
{(X,v) | X € Gr(k,n),v € N° X} the decorated Grassmannian. Given (X,v) € Gr(k,n), we
denote the coefficient of e; in v by A;(X,v). Changing the basis multiplies all the Pliicker
coordinates by a common scalar, so they are well-defined functions on Gr(k,n) but not on
Gr(k,n).

Let Mat®(k,n) denote the space of k x n matrices of rank k. GLy acts on Mat®(k,n) by
left multiplication and we have identifications

(2.1) GL; \ Mat°(k, n) = Gr(k,n) and SL; \ Mat®(k, n) = Gr(k,n)
sending the matrix with rows vy, ..., vy to span(vy, ..., vg) and (span(vy, ..., vg), V1 A+ - - Avg)
respecti\lely.

Let Grso(k,n) denote the positive decorated Grassmannian, the subset of Gr(k,n) where
where all Pliicker coordinates are positive real numbers, and let Gr.((k, n) denote the positive
Grassmannian, the subset of Gr(k,n) where the ratio of any two Pliicker coordinates is a
positive real number.

2.2. Planar bipartite graphs in the disk. Let I' = (BU W, E, F') be a bipartite graph
embedded in a disk D with n vertices on the boundary of D labeled d;, ds, . . ., d,, in clockwise
cyclic order. Let k := #W — #B. A strand (or zig-zag path) is a path in T' that turns
maximally left at the white vertices and maximally right at the black vertices, and either
starts and ends at the boundary or is an internal cycle. We say that I is reduced (or minimal)
if:

(1) Each strand starts and ends on the boundary, i.e., no strand path is an internal cycle.

(2) Each strand path of length greater than two has no self-intersections.

(3) Strands do not form “parallel bigons”, i.e., there is no pair of strands that intersect

twice in the same direction.

Let dr. denote the endpoint of the strand that starts at d; ends. Then 7 : [n] — [n] is
a permutation called the strand permutation of I'. Let my,, : [n] — [n] be the permutation

(k+1,k+2,....,n,1,2,...k—1).
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(a) The spider move. (b) The contraction-uncontraction move.

FIGURE 1. Moves for bipartite graphs.

Remark 2.1. If 7y (i) = 4, then we also have to specify a color for 4, but this does not occur
in Tk,n -

We say that two bipartite graphs I" and I are mowve-equivalent if they are related by the
moves shown in Figure [I] Each move I' ~» I" induces a canonical bijection between F(T)
and F'(I'); we denote the face of I corresponding to the face f of I by f’. Postnikov [Pos06]
and Thurston [Thul7] showed that two reduced bipartite graphs are move-equivalent if and
only if they have the same strand permutation.

2.3. Dimer models and boundary measurement. Let wt : E(I') — R.( be a function
called an edge weight. Two edge weights wt; and wty are said to be gauge equivalent if there
is a function ¢ : B(I') U W(I') — R+ that is equal to 1 on the boundary vertices such that
for every edge e = bw with b € B(T'),w € W(T'), we have wty(e) = g(b)'wt;(e)g(w). Let
Ar = Rfér)/ gauge denote the space of edge weights on I' modulo gauge equivalence. We
denote the gauge equivalence class of wt by [wt]. A pair (', [wt]) with [wt] € AT is called a
dimer model.

For a face f of I' with boundary w; Db Bowy Dby e
let

€2k —2 €2k —1 ek
> Wi > by, — Wy,

Xf — f[ Wt(egi)

i1 Wt(egifl)

denote the alternating product of the edge weights around the boundary of f. The Xj’s
are invariant under gauge equivalence and provide coordinates on AT satisfying the relation

~ #F()—1
[ferm Xr =1, 50 & = R>o( .
A move I' ~ I induces a homeomorphism Xp = X as follows:

(1) Spider move at a face fo: The homeomorphism X — Xy is given by

Xy = o Xy = X (LX) X = X—leva’ =X (L4 Xpy), Xy = X—ﬁl7
0 Xfo 1 2 (1 + X_fo) 3 3 (1 I X_fﬂ)
and Xy = X for f' € F(I")\ {f}, f1. f5. f4, 1}
(2) Contraction-uncontraction move: The homeomorphism Xr = X is X := X for
all f/ e F(IV).
Given a strand permutation 7, let X, := |_|7rF:7r Ar / moves denote the space of dimer

models, where the union is over all reduced bipartite graphs I" with strand permutation 7.
A dimer cover (or almost perfect matching) of I is a subset of E(I") that uses each internal
vertex of I' and a subset of the boundary vertices exactly once. The weight wt(M) of a dimer
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(a) (b)

FIGURE 2. A bipartite graph (a) and its strands (b).

cover M is defined to be []..,, wt(e). For a dimer cover M, let
OM := {i| d; is black and used by M} U {i | d; is white and not used by M} € ([Z]>

For I € ([Z}), define the dimer partition function

Zr = Z wt(M).

M|oM=1
Postnikov [Pos06] defined the boundary measurement map
k
Measr : A — IP’(/\ C")

sending [wt] to [ re(t) Zrer]. Measr is well-defined, since the gauge equivalence multiplies
k

all Z;’s by a scalar. The following theorem is due to Postnikov [Pos06] in a different language
(see also [PSW09] and [Lam16l, Corollary 7.14]).

Theorem 2.2. For a reduced I' with mr = my,,, Measr : A = Gr=o(k,n) is a homeomor-
phism. If T and I'" are related by a move, then the following diagram commutes:
A

move | ~ Grso(k,n) -

~
Measy

Xp

Therefore, the maps Measr glue to a homeomorphism Meas : Xy, = Grso(k,n).

Example 2.3. Let (I', wt) be the weighted bipartite graph shown in Figure 2f(a). The four
strands are shown in Figure (b), from which we obtain the strand matching to be w5 4. The
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(a) Face labels. (b) ®r o pr. (¢) pro®rofF.

FI1GURE 3. Inverting the boundary measurement map for the graph in Figure

2

boundary measurement map sends [wt] to [aeis + (ac+ bd)ejs + beiy + deag + €24 + ceaq),
which is the image under Pl of

b 1 ¢ 0
(2.2) X :=row span [—a 0 d 1] .
2.4. A variables. Let Ar := Riér) denote the space of functions A : F(I') — R>o. A move

I' ~ I'" induces a homeomorphism Ar = Ar as follows:

(1) Spider move at a face fy: The homeomorphism Ar — Ay is given by the cluster
mutation formula

ApAp + Ap Ay,

Ap =
o Afo
and Af/ = Af for f/ € F(F,) \ {fé}
(2) Contraction-uncontraction move: The homeomorphism Ar = A is Ay := Ay for
all f € F(I).
Let A, := |_|7TF:7T Ap/moves.

Remark 2.4. The spaces At and Ar are the positive points of the X and A associated with
[, respectively (see [FG09]), and X, and A, are the positive points of the X and A cluster
varieties respectively. Since the cluster varieties do not appear directly in this paper, we
have chosen to denote the positive points by Ar instead of AT (R), etc.

Definition 2.5. For each face f of T, define the (target) face label
S(f) :={i € [n]| f is on the left of the strand ending at d;}.

For each face f, S(f) is a k-element subset of [n]. Let f;,..., f, denote the boundary
faces of I' so that f;” is between d;_ and d;. If mp = 7y, then S(f;7) = {i,i+1,...,i+k—1}
are the cyclically consecutive subsets.

Example 2.6. For the graph in Figure [(a), using the strands shown in Figure [2(b), we
compute the face labels as shown in Figure [3|
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Define the map
CDF : /G\;'>Q(k,n) — AI‘
sending a (X, v) to (AS(f) (X, U))feF(F)'

Theorem 2.7 (Scott, [Sco06, Theorem 4]). For every reduced I' with mr = my,, Pr :
Grso(k,n) = Ar is a homeomorphism. If 'y and Ty are related by a move, then

Ar,
&r, \
Gr>o(k,n) ~move  Ar
(I>[‘2 /
Ar,

commutes, so we obtain a well-defined homeomorphism ® : C/i}>0(k,n) = A, -

2.5. Twist. We introduce the twist map defined by Marsh and Scott [MS16] and generalized
by Muller and Speyer [MS17]. We follow the normalization conventions of [MS17]. Let M
be a k x n matrix whose k x k minors are all nonzero. For any i € [n], let M; denote the ith
column of M. We extend this definition to all i € Z by defining M; := M; where i € [n] is
the reduction of i € Z modulo n. Let (-,-) denote the standard inner product on R*.

Definition 2.8. The right twist of M is the k x n matrix 7(M) whose column 7(M); is
defined by

(F(M);, M;) =1 and (F(M);, M;) = 0 for i < j <i+k—1.
Similarly, the left twist of X is the k x n matrix 7(M) whose column 7(M); is defined by

Theorem 2.9 (Muller and Speyer, [MSI7, Corollary 6.8]). Under the identifications (2.1),

the right and left twists descend to mutually inverse homeomorphisms of Grso(k,n) and
Grao(k,n).

Definition 2.10. We denote the right twist of (X,v) € Grao(k,n) (resp., X € Gro(k,n))
by 7(X,v) (resp., 7(X)), and similarly for the left twist.

1 _d
Example 2.11. The left twist of X in |} is 7(X) = row span [6 ; (l) 1‘3} )
a d

Definition 2.12. Let I' be a reduced bipartite graph with mp = my,. Define the map
pr : Ar — A sending A to [wt] as follows. Let e € E(I") be an edge and let f,g € F(I') be
the two faces incident to e. Define

1

wt(e) := Al

Aff;‘g if e is incident to boundary white vertex d;.

if e is not incident to a boundary white vertex,

where f;” is the boundary face of I' between d;_; and d;.
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Theorem 2.13. [MS17, Theorem 7.1 and Remark 7.2] Let T" be reduced bipartite graph with
Tr = Tk Lhe following diagrams commute.

Ar = Ar Ar/Rs o Ar
(23) ‘ﬁr[w NJMeaSF y <I>FT~ _ NlMeasr .
E;fv1">0(lﬁn) — Gr>0(k,n) Gl‘>0(/f7n) (/5\> Gr>0(k,n)

-

7

In the diagram on the left, the quotient is by the action of R<g on Ar multiplying all the A
variables by a scalar.

Remark 2.14. The map pr is an incarnation of the canonical map between A and X cluster
varieties in Fock and Goncharov [FG09].

Example 2.15. Recall Examples and The Pliicker coordinates of 7(X) are

1 1 1 1 bd 1
A== A= — Apy == Aoz = = Aoy = 1+ = Auy = —.
125 5 A1 T g A1 = s ey = o) B +ac’ 847
The compositions pro®r and pro®ro7 are shown in Figure (b) and Figure (c) respectively.
The weights in Figure [J(a) and Figure [3](c) are easily seen to be gauge equivalent.

Definition 2.16. For t = (t,...,t,) € R, and X € Groo(n+1,2n), let t - X € Groo(n +
1,2n) denote the point obtained as follows. Let M be a k x n matrix such that X is the row
span of M. Then, ¢t - X is the row span of the matrix ¢ - M defined by (¢t - M); := t;M;.

Let T" be a reduced bipartite graph with mp = 7, and let [wt] € Ap. Let RZ, act on Ap
by multiplying the weights of all edges incident to d; by tl if d; is white and ¢; if d; is black.
The following lemma is used in the proof of Theorem [£.2]

Lemma 2.17. The map Measp : X — Groo(k,n) is RY, equivariant.

Proof. We have A;(t- X) = ([, ti)Ar(X). On the other hand,

Measp(t - [wt]) = | > I I t|ze
re(7) \i€lldieB(r) i¢1|d;eW (L)
|y Hti) Zier .
where in the second equality we rescaled by Hiew diew(r) bi- 0

The following two properties of the twist will be required later.

Proposition 2.18 (Muller and Speyer, [MSI7, (9) in the proof of Proposition 6.6 and
Proposition 6.1]). Let X € Groo(k,n).

(1) For any boundary face f;, we have Ag - (7(X)) = W.

(2) Ift = (t1,...,t,) € R, then T(t- X) =t F(X), where t 1 := (..., 1).
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(a) An electrical network (G, c).

(c) (G, [wty]).

FIGURE 4. An electrical network with n = 3 and its associated graphs. The
three medial strands in G* are given different colors.

f2 5

!

e
V3 U1 A < v
€3 €1
Vo
—
el es
f1 €2 f3 fi f3

V2 ,U/2

FIGURE 5. The Y-A move.

3. ELECTRICAL NETWORKS

3.1. Reduced graphs in the disk. Let G = (V, E, F') be a planar graph embedded in the
disk D with n vertices on the boundary labeled by, bs, ..., b,. The medial graph G* of G is
the graph obtained as follows. Place 2n vertices of G* labeled t1, s, ..., t3, on the boundary
of D such that b; is between ty;_; and ty; and a vertex v. in the middle of each edge e of
G. Connect v, and v by an edge if they occur consecutively around a face of G. For each
i € [n], connect ty; 1 (resp., to;) to v, if e is the last (resp., first) edge in clockwise order
incident to b;. By construction, each ¢; has degree 1 and each v, degree 4 in G*. A medial
strand in G* is a maximal sequence of edges that goes straight through every v,.

Example 3.1. Figure [4[b) shows the medial graph of the electrical network in Figure [4a).

The graph G is called reduced if:

(1) Every medial strand starts and ends at a boundary vertex, i.e., no medial strand is
an internal cycle.

(2) Medial strands have no self-intersections.

(3) There is no pair of medial strands that intersect twice.

The medial pairing of G is the matching on [2n] defined by

7¢ = {{4, 7} | there is a medial strand between ¢; and ¢;}.
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Example 3.2. For the electrical network in Figure (a), the medial graph is shown in
Figure [4|(b), from which we see that G is reduced with medial pairing 3.

We say that G and G’ are move-equivalent if they are related by a sequence of Y-A moves
(Figure|5). A Y-A move G ~» G’ induces canonical bijections V(G)UF(G) = V(G")LUF(G")
and E(G) = E(G"). Two graphs G and G’ are move-equivalent if and only if they have the
same medial pairing [CdV94]. In this paper, we only consider reduced graphs G' with medial
pairing 7, := {{l,n + 1},{2,n + 2}, ..., {n,2n}}; such graphs are called well connected.

3.2. The space of electrical networks and the positive Lagrangian Grassmannian.
Let ¢ : E(G) — Ry be a function called conductance, and let R¢g := RféG) be the space of
conductances on G. A pair (G, ¢) with ¢ € R is called an electrical network.

A Y-A move G ~ G’ induces a homeomorphism R — R given by

c(eg)c(es) cer)c(es) cer)c(eq)
c(ey) = T&(%) = T,C(elg) =T
where C':= c(eq)c(ea) + c(e1)c(es) + c(ea)c(es) and the edges are labeled as in Figure[5] Let
R, = |_|TG:T" R / moves denote the space of electrical networks.

We associate a dimer model (G4, [wt;]) to (G, c) as follows. Place a black vertex b, in
the middle of every edge e of G, a white vertex w, at every vertex v of G and a white vertex
wy in the middle of every face of G. If v is a vertex of (G incident to edge e, draw an edge
bew, and assign wt(b.w,) := c(e). If f is a face of G incident to e, draw an edge b.w; and
assign wty (bewy) := 1.

Example 3.3. The weighted bipartite graph associated to the electrical network in Fig-
ure [4f(a) is shown in Figure [4c).

Remark 3.4. The notation G is inspired by the notation G for the Ising graph in [GP20],
since we are replacing each edge of G with a +.

The map (G, c) — (G4, [wty]) defines an inclusion j/ : Re — Xg, .

Proposition 3.5 (Goncharov and Kenyon, |[GK13, Lemma 5.11]). If G and G’ are related
by a Y-A move, then there is a sequence of moves relating G and G', making the following

diagram commoute.
i&
RG — XG+

Y-A move] ~ ~ l mowves -

-+
J
R — Xe,

Therefore, the inclusions j¢; glue to an inclusion j* : R, — S

Let © : R?" x R — R be the degenerate skew symmetric bilinear form

n n—1

(31) Qz,y) = 2(132@;13/22‘ — T9iY2i—1) + Z(x2i+1y2i — ToY2it1) + (—=1)"(T1Y2n — T2ny1)-

i=1 i=1
We say that X € Gr(n + 1,2n) is isotropic for Q if Q(z,y) = 0 for any z,y € X. Let
IG%(n + 1,2n) be the Lagrangian Grassmannian of isotropic subspaces inside Gr(n + 1,2n)
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and 1G%(n +1,2n) := IG*(n + 1,2n) N Grso(n + 1,2n) the positive Lagrangian Grassman-
nian. The following result was independently proved by Bychkov, Gorbounov, Kazakov and
Talalaev [BGKT21] and Chepuri, George and Speyer [CGS21], following earlier results of
Lam [Lam1§].

Theorem 3.6. The composition Measg, oji i Ra = IGgO(n +1,2n) is a homeomorphism.

Therefore, we have a commuting diagram

RG € i XG

MeasGJr ojér jN NlMeaSG+

+

IG%)(n + 1,2n) —— Grsg(n + 1,2n)

3.3. A bit of representation theory of the spin group. In this section, we give a brief
background on the spin group, mostly following [FH91 Chapter 20] and [HS10, Section 5],
and prove Proposition [3.8| relating Cartan and Pliicker coordinates. Consider the nondegen-
erate symmetric bilinear form Q : C?* x C** — C defined by
1 — o
Qz,y) = B} Z(_l) N iYnyi + Tngithi)-
i=1

We first make a change of basis so that ) becomes the standard nondegenerate symmetric
bilinear form. Let W denote the Lagrangian subspace span(ey,es, ..., e,). Then, Q) defines
an isomorphism

Wt - wY
(3.2) ensi — (—1) e},

2

where W denotes the dual vector space of W and e}’ is basis vector dual to e;, i.e., €/(e;) =
d;;. Therefore, we have an isomorphism C*" = W & WY such that the inner product Q
becomes

(33) Q). ") = 5" () + 9" (@) where (x,2"), (1.5") € W & WY,

Note that our form @ differs from the standard form in [FH91] by a factor of 5. Let C1(Q) :=
B, (C*)®* /(x @ x — Q(x, z)) denote the Clifford algebra. Since the ideal (z @z — Q(z, )
is generated by elements of even degree, the Clifford algebra has a Z/27Z grading: Cl(Q) =

Cl(Q)even D Cl(Q)Odd.
The Clifford group

ClI*(Q) := {zx € CI(Q) | there exists y € Cl(Q) such that z @y =y @z = 1}

is the multiplicative group of units inside C1(Q). Its Lie algebra cl*(Q) is C1(Q) with the
Lie bracket [z,y] := 2 ® y — y ® x, and we have the exponential map exp : ¢[*(Q)) — CI"(Q)
defined by

o

(3.4) exp(x) =Y

n>0

n!
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The Clifford algebra has an anti-involution u +— u* called conjugation defined by (z1®- - -®
z.)* = (—=1)"z, ® - - - @ x1. The involution « : C1(Q) — Cl(Q) defined by a(z1 ® -+ - ®x,) :=
(=1)"(x1 ® - -+ ® x,.) is called the main involution. The pin and spin groups are defined as

Pin(Q) :={r € CI"(Q) : 2 ® 2* = 1 and a(z) ® C*" @ 2* C C*"},

Spin(Q) = {r € CI*"(Q) N CHQ)*™ : x @ 2* = 1 and a(r) ® C*" ® z* C C*"}.
The map p : Pin(Q) — O(Q) (resp., p : Spin(Q) — SO(Q)) defined by = + p(z) where
p(z) : C* — C?" is the endomorphism v — a(r) ® v ® z* makes Pin(Q) (resp., Spin(Q)) a

double cover of O(Q) (resp., SO(Q)).
The Lie algebra of SO(Q) is

50(Q) := {X € End(C*™) | Q(X(v),w) + Q(v, X(w)) = 0 for all v,w € C*"}.
The map ¢ : \°C?" — s50(Q) sending a A b to pan given by
(3.5) Garn(v) = 2Q(b,v)a — Q(a, )b)

is an isomorphism of Lie algebras. On the other hand, the map ¥ : /\2 C?" — cl*(Q) sending
aANbtoa®b— Q(a,b)is a map of Lie algebras.

Lemma 3.7. [FHI1, Lemma 20.7 and Exercise 20.33] The composition 1 o o' : 50(Q) —
Cl(Q)e¥™ is an embedding of Lie algebras. The embedded image is the Lie algebra spin(Q)

of Spin(Q).
Let S := A\"W. Define the C1(Q) representation I' : C1(Q) — End(S) by
Co(wi A Awg) :i=x A (wy A+ Awy,) for u € W,
Cov(wi A Awg) =2 2(wy A+ Awy,) for ¥ € WY,

This is an isomorphism C1(Q) = End(S). Let S; := A™" W and S_ := A°* W. Restricting
I', we obtain an isomorphism

I': CIQ)™™ = End(S,) ® End(S_).

The embedding Spin(Q) C Cl(Q)®* makes St into Spin(Q)) representations, called half-
spin representations.
For j € [n], let ¢;(t) == 3(te; ® epyj + t Tent; @¢j), and for ¢ = (t1,...,t,) € (C), let

(3.6) c(t) = ch(t]).

The image of ¢ is the mazimal torus inside Spin(Q)) and under the covering p : Spin(Q) —
SO(Q), we get p(c(t)) = diag(t?,...,t2,t7%,... t.2).

1 (resp., e1) is a highest weight vector of S} (resp. S_) with weight (—1,—1,...,—1)
(resp., (1,—1,...,—1)). For I,IY C [n] such that #I + #IY = n+ 1, let e; ;v denote wedge
product indexed by T UTY: If [ = {iy <iy < -+ <idgtand IV = {j1 < jo <+ < Jnt1i-k}s
then ey v = ey A= ANey Nef Ao A eJVnH_k. Since /\n+1 C? is an irreducible Spin(Q)
representation with highest weight vector egq} [, with weight (0,-2,...,-2), /\"Jrl C?>™ is a
direct summand of S, ® S_. Let p: /\”Jrl C* — S, ® S_ denote the morphism of Spin(Q)
representations, sending ey ) to (=1)2enU V1 @ ey, Let o(I) be 1 if #I = 2 modulo 4 and
1 otherwise.
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Proposition 3.8. Suppose 1,1V C [n]| are such that #I + #1Y =n+1 and I N1V = {l}.
Then,

(_1)ZjGJV(j*1)p<€I’IV) = g([)o’([ \ {l})€1 (%) en{i} Zf #I 1S even, and
(3.7) (1) 25U p(e; v) = o(Da(I\ {1} engy @ er if #I is odd.

Proof. We will use the action of Spin(Q) to send e; ) to er,;v and use Spin((Q)) equivariance
of p. The main difficulty will be in keeping track of the signs.

We start by defining the required elements of Spin(Q). By the Cartan—Dieudonné theorem
[ILM89, Theorem 2.7], any element of O(Q) can be written as a product of reflections, so we
look for appropriate reflections. If w € V' with Q(w,w) = —1 and R,, is the reflection in the
hyperplane orthogonal to w, then w € Pin(Q) and p(w) = R,,. Let uj;, := \/Lé(ej—ek—i-ejv—eZ)
and vj = \/ii(ej —ex—ej +ef) so that Q(ujk, ujr) = Q(vjk, vjx) = —1. A computation shows
that the composition R,,, o R, , is in SO(Q) and is the transformation e; <— ey, ] +— ¢},
Let w; 1= e; — e}, so that Q(wj,w;) = —1. The composition R,,; o R,, € SO(Q) is the
transformation e; <— eJV, er, «— €. The transformations Rvjk o Rujk and R, o R,, have
lifts vj @ ujx and w; @ wy, to Spin(Q)) respectively.

Now, we proceed by induction on m := #I. When m = 1, we have I = {l} and IV = [n]
for some [ € [n]. Suppose [ # 1. We have

vy @ Uy - €1 = Ry, © Ry, (€1,m)
=eNe NeaN--Nely Nel Nefiy A+ Ne,
= —€n],

where the —1 arises when we reorder the alternating tensor. On the other hand,
1
vy @uy - 1=y - E(ﬁ —e)
1
= 5(61 N—erN—els+eJ)(er —ep)

= —il,

and

?

vy @ Uy ep = vy - (1—e; Neq)

S

= —iel.
Therefore, v;; ®uy; - (1®e;) = —1®e¢;. By Spin(Q) equivariance of p, for all I € [n], we have

plem) = p(—vu ® Uy - €q,n])
= —vy @ uy - pleq,m])
=~y @ uy - (1) 2y @uy -1 ey
— (~)Senl 1 g,

Since o(1 \ {l}) = 0(@) =1 and o(I) = o({I}) = 1, we get (3.7).
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Now suppose m = #I > 1. Let k be the largest element of I\ {l} and let I := I\ {k}.
We compute

Ry, @ Ry (ery1y) = (—1)(k71)+m€1,1v,

W @ wy - erp\{1y = €k N €1 N\ e\ (1}
_ (_1)m—1+#{j610\j<l}617 and

wy Q@ wy - €1, = €k VAN €€y,
_ (_1)m—2+#{jelo\j<l}

E1\{1}-
Assume #1 is even so #1j is odd. By the induction hypothesis,

(=)= per, i) = oo (fo \ {IDerny ® ex,.
By Spin(Q) equivariance of p,

(1) U p((=1)ED4me, 1) = —a (L) (I \ {I})er ® engy-

S (—=1)%ervU=D Note

Since Iy = I\ {k}, IV = I U {k}. Therefore, (—l)zf“g(j*l)ﬂ
that
{0,2} if m is odd, and

{1,3} if m is even.

{#1o modulo 4, #(I U {l}) modulo 4} = {

Therefore, o(Io)o(IU{l}) = (—1)™*!, using which we get (—1)%ier”U=Yp(e; 1) = o(I)o (1
{I})er ® enqy- The case when #1 is odd is identical. O

3.4. The decorated positive orthogonal Grassmannian. In this section, we define the
orthogonal Grassmannian and its Cartan embedding; for further background, see [Che97,
BHH21, HST0].

For a subspace U of V, let U+ := {x € V | Q(x,y) = 0for every y € U} denote
its orthogonal complement. A subspace U is said to be isotropic (resp., coisotropic) for
Q if U C Ut (resp.,, Ut C U). Let OG(n,2n) denote the orthogonal Grassmannian
of isotropic n dimensional subspaces. Then OG(n,2n) = OG,(n,2n) U OG_(n,2n) has
two irreducible components, where OG, (n,2n) (resp., OG_(n,2n)) is the Spin(Q) orbit of
span(eni1,...,e€2,) (resp., span(ey, €42, €ni3, ..., €2,)). We have Spin(Q) equivariant em-

beddings Cay : OG4(n,2n) < P(S), called Cartan embeddings, defined by
span(e,i1,...,es,) — 1 and span(ey, €,i9,€n13,.-.,€2,) > 1.

Let OG(n+1,2n) denote the orthogonal Grassmannian of coisotropic (n+ 1)-dimensional
subspaces. Given X € OG(n + 1,2n), there are two maximal isotropic subspaces Xy €
OG4(n,2n) contained in X. The composition

Cay x Ca_

OG(n+1,2n) —— 0G4 (n,2n) x OG_(n,2n) ———— P(S;) x P(5_)
w w w

X (X4, X_) —————— (Ca,(X,),Ca_(X_))

defines a Spin(Q) equivariant embedding Ca : OG(n + 1,2n) — P(S;) x P(S_). Let

OG(n+1,2n) :={(X,sy,5_) | X € OG(n+1,2n),s; € Ca(Xy)}
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denote the decorated orthogonal Grassmannian. Then, we have an embedding OG(n +
1,2n) — Sy x S_ sending (X, sy,5-) to (s4,s-).

Recall that o(I) is defined to be —1 if #I = 2 modulo 4 and 1 otherwise. The coefficients
Y (X,s4,5-) of o(I)er in (s4,s-) are called Cartan coordinates. Consider the bihomoge-
neous equations

(3.8) LIUG SOk = BIDI0LGkRT T 2T kFS 100 T D10k} 2104}
for j <k <.

Theorem 3.9 (Henriques and Speyer, [HS10, Theorem 5.3]). The image of E)\(/}(n +1,2n)
in Sy x S_ s the subvariety cut out by all the equations (@

Consider the Spin(Q) equivariant map 7 : ()\(/}(n +1,2n) — (E‘(n + 1,2n) defined by
(span(er,ey,...,e;), 1, e1) — (span(er,ey,....e)), €1 )

Remark 3.10. The maps 1 : OG(n + 1,2n) — Gr(n +1,2n) and S, x S_ — S, ® S_ are
not embeddings, but they become embeddings upon projectivization.

Let T € (1), let
(3.9) J:=INn]and JV :={i—nlielNn+1,2n]}.

Under the change of basis 1’ e; becomes (—l)ziGJV U= 7.7v. The following proposition
relates Pliicker and Cartan coordinates.

Proposition 3.11. Let (X,s,,s_) € OG(n+1,2n), let (X,v) = n(X, s4,s_), and let J, J"
be defined as in (3.9). If #(J N JV) =1, then

AI()(7 U) = EJ(*Xva S+, S—)E[n}\JV <X7 S+, S—)'

Proof. Consider the following commutative diagram

OG(n +1,2n) « S, x S_

|

é}(n + 172n> [N /\n+1 (CQH L) S+ ® Si

Let (X,s4,5-) € OG(n +1,2n) and let (X,v) = n(X sy, s_). The coefficient of o(J)o([n] \
JV)es ® eppgv in sy @ s is Xy(X, sy, 52 )8pp0v (X, s4,s-). Using Proposition , and
commutativity of the diagram, we get that this coefficient is also equal to A(X,v).

]

Definition 3.12. Let 6§>0(n+1, 2n) denote the subset of 6@(71—}—1, 2n) where all the Cartan
coordinates are positive, which we call the decorated positive orthogonal Grassmannian. Let
OG~o(n+1,2n) denote the positive orthogonal Grassmannian, the image of OG~q(n+1,2n)

under the projection OG(n + 1,2n) — OG(n + 1, 2n), or equivalently, the subset of OG(n +
1,2n) where the ratio of any two Cartan coordinates of the same parity is positive.

Example 3.13. Given (X,s,,s_) € OG>0(n + 1,2n), Proposition lets us write down
a matrix whose row span is X. For example, let n = 3 and let (X, s,,s_) € OG+((4,6) be
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such that (EJ(X, Sy, S_))Jg[g] = (ZJ)JQB]. Then,

DI DIPHI Yz 0 00
0 zu Z 100
Ez EZ
X =r1ow span 0 _ 12X _ X12393+%1233 01 0]
TSI AR e
2213+21233 21333
0 SN SN 0 0 1
YpX123+31323+X1233

where Yy = Y

3.5. Pfaffian formulas for Cartan coordinates. The main result of this section is Propo-
sition [3.15| expressing each Cartan coordinate as the Pfaffian of a certain matrix. Let
A = (a;;) be a 2n x 2n skew symmetric matrix. Let wys := 21<i<j<2n a;;e; N e; denote
the associated alternating form. The pfaffian pf(A) of A is defined by the formula

1
sz =pf(A)e; A+ A egy.

For I C [n], let Al denote the principal submatrix of A with rows and columns indexed by
1.

Lemma 3.14 ([Pro06, Chapter 5, Equation (3.6.3)]). We have
exp(wa) = Z pf(ADe; = Z pf(ADe;.
IC([n]

IC[n]|#I even

Recall from Section that the orthogonal Grassmannian OG(n,2n) = OGy(n,2n) U
OG_(n,2n) is the union of two components. If X, € OGi(n,2n) and Apqq,00(X5) #
0, then in the coordinates , X, is the row span of a matrix of the form [M+ In],
where M, is a skew symmetric n X n matrix. Similarly, if X_ € OG_(n,2n) is such that
1,n+2,n+3,...,2n and a matrix M_ in columns 2,3,...,n + 1 such that the matrix
M_ obtained from M_ by cyclically rotating the columns by one step to the right is skew
symmetric. For J C [n], let JA{1} denote the symmetric difference, i.e.,

any ifre ;s
JAlL) = {Ju{l} if1¢.J.

Proposition 3.15. Let (X,s,,s_) € 6@>0(n+ 1,2n) and let (X4, X_) denote the maximal
1sotropic subspaces in X. Let M., M_ be as above. Then,

Yi(X, 50,8 ) = Eg(ﬁ’JSﬁL’S—)pf((M-F)j) R of #J 1s even;
R — 1 . ,
(=155 S (X, s4,5-) DE((M)700))  if #J is odd

Proof. We use Spin(()) equivariance of the Cartan map and the following commutative dia-

gram of exponential maps:
-1

50(Q) % spin(Q)

expl jeXp 9
SO(Q) —— Spin(Q)
where the exp on the left is the matrix exponential map and on the right is (3.4)).
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Consider the element m.. := 0 M, In _M+] €

0 0 0o I,
SO(Q), so that we have [0 I,,] (exp (my))" = [My I,]. On the other hand, under the iso-
morphism ¢op~! : 50(Q) = spin(Q), my goes to — >, ;i (My )ije; @e;. Exponentiating,
and using Lemma along with Spin(Q)) equivariance of the Cartan map, we get

} € s0(Q). Exponentiating m, we get [

(3.10) 5] = lexp(m.) - 1] = [Z pf((—Mﬂ;)eJ] .

J even
Since ¥ ;(X, s1,s_) is the coefficient of o(J)e; in s;, we get
ZJ(‘XV7 S+ S—)
Yu(X, s4,82)
where we used pf((—M*)7) = (=1)% pf((M*)]) and (1) = o ().
The orthogonal transformation R, for w = e; — e} is given by e; < e,.1, and it inter-

changes the two connected components OG4(n,2n) and also interchanges M_ and M. Its
lift w to Pin(Q) acts on S by

W — —CJA{1} ifl1eJ;
ey = .
GJA{l} if 1 ¢ J.

= o(J) pt((—M")7) = pt((MT)7),

Using (3.10)), we get

- Z Y(X, 84,8 )esaqy + Z Yi(X,sp,5 )esaqy| = pr((—M_)jﬂﬁ)eJA{l}

J odd|1eJ] J odd|1¢J J odd

Now, we have to check two cases. If 1 € J, then
ZJ(X7S+7S*) _ #J-1
E{l}(Xa S+, S—)

A
pE((M_)1A0),
and if 1 ¢ J, then

ZJ(X, $+, S_) #I41 JA{l} s
= (-1 E(M_ _(—1
Yy(X,s4,50) (=17 pE((M_)japy) = (1)

pE((M_)JAth).

O

Example 3.16. Recall Example [3.13] After making the change of basis (3.2)), the two
maximal isotropic subspaces X, and X_ are the row spans of

12 X3 Py 3

by = om Moo s g 000

-2 0 2 010 and |0 0 —52 —52 1 0| respectively.
_ 213 _ X3 2123 _Z3
S S 0O 001 0 o 0 N 0 1
Therefore,
12 X3 Py} X3
g Yo Zo 02 > 5
| 212 23 N Y} _ 2923
M, = S 0 S and M_ = = 0 SR
_ i3 _ X3 _ X3 Xia3 0

Yo Yo 3 ¥
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using which we verify Proposition [3.15] For example,

0 pE]
Yo pf((M,)13) = Xg pf [_h 20@ = Y19 when J = {1, 2},
Yo
1-1 12 0 Py}
(—1)2 3y pf((M_)13) = X1 pf [_& 201} = Yy when J = {2}, and
31
2-1 ()
(—1>?21 pf((M,)gg) = —21 pf [M E(:)l :| = 2123 when J = {1,2,3}
31
3.6. B variables. Consider the space Bg := RZ(()G)HF(G) of functions B : V(G) U F(G) —

R.o. We call a pair (G, B) a B-network. Since there is a bijection V(G) U F(G) = W(G.),
we will sometimes write By, instead of B, for u € V(G) LU F(G).
A Y-A move G ~ G’ induces a homeomorphism Bg = Be given by the cube recurrence

Bv1Bf1 + szsz + BUBBfS

By,
and B, := B, for all other v € V(G’) and By := By for all other f € F(G’), where vertices
and faces are labeled as in Figure , and let B, :=| |

Bfé =

Bg / moves.

TG=T,
Each face g of G, has degree 4 and is incident to two white vertices w, and wy, where
v e V(G) and f € F(G). Define the inclusion i}, : Bg < Ag, by A, := B,B;.

Proposition 3.17 (Goncharov and Kenyon, |[GK13, Lemma 5.11]). If G and G’ are related
by a Y-A move, then there is a sequence of moves relating G and G'_ such that the following
diagram commutes.

iG
BG A .AG+

Y-A moveJN Nlmoves

i+

G/
Ber —— AG’+
Therefore, the inclusions i¢, glue to an inclusion i : B, — A,

Definition 3.18. Given G a reduced graph with 7o = 7,, we assign to each vertex and face
of G a subset of [n] as follows. For i € [n], let §; denote the strand in G from t,,; to t;. If
u € V(G)U F(G), define

J(u) :={j € [n] | uis to the left of 3;}.
Lemma 3.19. Let g be a face of G incident to white vertices w,,w; where v € V(G) and

feF(G). If I:=S(g), then {J,[n]\ JV} = {J(v), J(f)}, where J and J¥ are as in (3.9).

Proof. Let «; denote the strand in G, ending at d;. By construction of G, the strand o
(resp., a,4;) is parallel (resp., antiparallel) to f3;. Faces of G are in bijection with edges of
G*. Let | € [n] be such that ; is the strand containing the edge of G* corresponding to g.
Without loss of generality, assume that v is to the left and f to the right of ;. Then,

J()=J(f)u{l}and S(g) ={l,n+1}U{i|ie J(f)}u{n+i|i¢ J(v)}.
Therefore, J = S(g) N [n] = J(f)U{l} = J(v) and JY = ([n] \ J(v)) U{l} = [n]\ J(f). O
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123

(a) (b)

FIGURE 6. (a) Labeling the vertices and faces of the electrical network from
Figure (a) and (b) the face labels of G .

Example 3.20. Figures[f[a) and (b) show the labels J and S for G and G from Figure [d

Define the map -
Ve : OGog(n +1,2n) — Bg
sending (X, s;,5-) to (X (X, 54,5-))uev(@ur(@)-
zlieorem 3.21 (Henriques and Speyer, [HS10]). For every reduced G with ¢ = 1,, Vg :
OGso(n+1,2n) = Bg is a homeomorphism.

Suppose G and G’ are related by a Y-A move with vertices and faces labeled as in Figure 5]
Then, up to cyclic rotation of the tuple (vy, f1, va, fa,vs, f3) and swapping v and f, we have

J(UO) =IU {j?l}7 J(Ul) = I) J(UQ) =1IU {.]7 k}v J(”S) =I1U {k7l}7
J(fo) =TU{k},  J(f))=1U{jk 1}, J(f) =1U{l}, J(f3) =TU{j}.
for some I C [n] and j < k < [. By Theorem [3.9 the following diagram commutes

B
\ el \
6\é>0 (n + 1, 27),) ~|Y-A move Bn s
- ~ /
Bgl

so we obtain a well-defined homeomorphism W : 6é>0(n +1,2n) = B,.

Proposition 3.22. The following diagram commutes.

i+
B < A,
(3.11) \pc,.% ~|#a.

6é>0(n +1,2n) —— a}>0(n +1,2n)
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Proof. Let g be a face of G incident to white vertices w,, wy where v € V(G) and f € F(G).
Using Lemma and Proposition |3.11} we get

(3'12) AS(Q)(Xa U) = ZJ(v) (X’ S+, S—)EJ(f)(Xa S+, S—)'7
which implies that (3.11)) commutes. O

4. THE ELECTRICAL RIGHT TWIST

In this section, we define the electrical right twist and prove Theorem Let e = uv be
an edge of G and let f, g denote the faces of G incident to e. Following equation (56) in
[GK13, Section 5.3.1], define q¢ : Bo — Rg by c(e) := B“B“ If G and G’ are related by a

Y-A move, then the following diagram commutes
Be —“— Rg
Ber —€ Re

and therefore, the g5 glue to a map ¢ : B, — R,.
Recall the action (2.16]) of R? on Grso(n + 1,2n) by rescaling columns.

Definition 4.1. Let (X, s,,s_) € OGso(n+1,2n), and let ¢; E}(d )g)((ij:S for i € [2n].

The electrical right twist of (X, s,,s_), denoted Teee(X, Sy, s ,), is defined to be t - 7(X) €
Groo(n +1,2n).

Theorem 4.2. Let G be a reduced graph with 7¢ = T,. The image of Teee 1S contained in
IGgo(n +1,2n), and the following diagrams commute:

qG q
BG RG Bn Rn
\I/Gpv NlMeasG+ ojg , \IITN NlMeasoj‘" .

OGso(n +1,2n) 5 162 (n+1,2n)  OGsg(n+1,2n) —2= 1G2,(n + 1,2n)

Proof. We will show commutativity of the left diagram by showing that Meas&i OTelec =
J& 0 qg o Vg. The right diagram is then obtained by gluing.

Define B := Ug(X, sy,s_). Let e = uv be an edge of G and let f, g denote the faces of G
incident to e. From definitions, if [wt] := jg o q¢(B), then

Bqu 1
wt(bew,) = {ffBg if x € {u,v}

itz €{f, g}
We define a gauge transformation g by g(b.) := ﬁ and for each internal white vertex

Wo, §(w,) := B2. We have the following cases for edges b.w, in G..

(1) x = u. Let h and A’ be the two faces of G incident to b.w,, where h is between u
and f and A’ is between u and g.

(a) w, is an internal vertex of G,. Then, MeasG OTelec aSSigns weight ——— Ah/ =

to bew,. Applying the gauge transformation g, we get
1 B, B,

BuB,———B = .
B2B;B, " BB,

B2BfB
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dy
LT T T T T LT T T T TS //’/_O‘\\\
A y Y9 Y 1 N
’// \\ ’// \\ ’// PP PP \\
b2 %bl El +—\,22 d3 ¢ Bote Bote (‘)dl
\ // \ Eg /I \ 1 /I
S ~ \\~_()_—////
dz
(a) An electrical network (G, c). (b) ¥e(X, s4,5-). (€) G oqao¥a(X, sy, 5-).

Ficure 7. Commutativity of the diagram in Theorem when n =2 .

: — — . . By - foi
(b) w, is a boundary vertex dy;_1 of G. MeaLsGl+ OTalec aSSigNs weight #ﬁ -
i

Bleg to b.w,. Applying the gauge transformation g, we get %.

(2) z = f. Let h and A’ be the two faces of G incident to b.wy, where h is between u

and f and A’ is between f and v.
(a) If wy is an internal vertex of G4, then Measéi OTelec assigns weight ﬁA}/ —

ﬁ to bewy. Applying the gauge transformation g, we get
€ f v
BuBy—— B2~ 1
“UB.BIB, 7
A _
(b) If wy is the boundary vertex dy;, then Meas&l+ OTwlec ASSIgNS weight %ﬁ -

_Bule to bewy. Applying the gauge transformation g, we get 1.

O

Corollary 4.3. The electrical right twist Teec : (f)\(/}>g(n +1,2n) — 1GZ,(n + 1,2n) is
surjective.

Proof. [KW17, Proposition 4] shows that g¢ is surjective. By Theorem , Telec 1S SUTjeCtive.
O

Example 4.4. Let n = 2 and let (X, s;,s_) € OGo(3,4) be such that (3,(X, s, s_))ycp =
(X7)ucy- Then, X is the row span of the matrix

% Su% 00 soas; sz 00
Py —
8 22_11{22 (1) (1) , 80 we compute Tojec(X, 51,5 ) = 20 0 é—‘f 22122 ,
Ll 1%
Bo%h n o 005
whose Plicker coordinates are
1 1 1 1
4.1 Ay = ——— Ay = ——— Aygy = ——— Agyy = .
(4.1) 123 S 124 SIS 134 S 234 I
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Consider the electrical network in Figure [f[(a). Using Figure [7](c), we compute

DN ¥
! 26124‘1‘6134+ 12

Measg, 0jt 0qga o Va(X,s4,5_) = |ejas +
G+ %Jg ° 4a G( + ) 123 SIS SIS

€234 | ;
which agrees with (4.1]) upon multiplying by ;.

5. THE ELECTRICAL LEFT TWIST

In this section, we define the electrical left twist and prove Theorem[I.2] By Theorem [2.9]
the right twist is a homeomorphism 7 : (fi}>0(n +1,2n)/Rsg = Grao(n+1,2n) = Grsg(n+
1,2n) whose inverse is the left twist. We look for a similar statement for the electrical
right twist. The dimension of OGso(n + 1,2n) is ("1') + 1 [HS10, Lemma 5.7], whereas
the dimension of IG®(n + 1,2n) is (%) (since this is the number of edges in G, hence the
dimension of R¢), so

dim 6\é>0(n +1,2n) — dimIG¢,(n +1,2n) = n + 1.

We will see that there is an action of R%l on 6\é>g(n + 1,2n) preserving Tejec-
Consider the action of R.y x RZ, on Bg defined as follows. For s € Ry and t =
(tl, - ,tn) € Rgm

HiEJ(v) t’)
5.1 s,1)-B)y =5 | =X@ ) g
(5.1) ((s,2) - B) (Hi¢J(v) tl-

Under W, this action has the following description.

(1) Rsg acts on OGso(n +1,2n) by s+ (X, s,,s_) := (X, 55, 85_).

(2) Recall from the maximal torus (C*)™ inside Spin(()) which has the parameteri-
zation ¢ : (C*)™ — Spin(Q). Restricting to RZ, C (C*)", we get a copy of RZ, inside
Spin(Q) parameterized by ¢ : RZ; — Spin(@)). We have the action ¢t - (X, s;,5_) =
(Xp(c(t)T, c(t)sy, c(t)s_), where p(c(t)) € SO(Q) is diag(t?, ..., 12,172, ...,t.2).

Y Vn? y n
Lemma 5.1. The map qg s invariant under the action .

Proof. Let e = uv be an edge of G with incident faces f,g. The map ¢g assigns to e
the conductance £«B:. The four labels (J(u), J(f), J(v), J(g)) are some cyclic rotation of

ByBg*
(1, 1U{j}, T1U{j, k}, IU{k}), so the factors coming from the action of (s,¢) in the numerator
and denominator cancel. O

By Theorem and Lemma [5.1] ¢¢ and 7o descend to the quotients to yield the com-
muting diagram

Be /RS = Ra
‘I/GTN NJMeaSG+ ojg y
OGo(n +1,2n) /R 2, 1G2 (0 + 1, 2n)

where each of the spaces has dimension (g) We will show in Theorem [5.6[ that the two
horizontal maps are also homeomorphisms.

Let «; denote the strand in G, from d,; 1 to d;. Let [wt](cy;) denote the alternating
product of edge weights along «;, where the weights of edges oriented from black to white
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in a; appear in the numerator and the weights of edges oriented from white to black in the
denominator.

A (X)
Lemma 5.2. If [wt] = qg(B) and X = Measr([wt]), then [wi](a;) = —5 ==lie =
S )
Ba;Ba,, ., '
Ba;_1Bdyii_y

Proof. If A = ®¢, o7(X), then by Theorem m, [wt] = pa, (A). Let dyyi1 = w1 — by =

e e €2k—2 €2k —1 e .
Wo — by — - - > Wi > br, == Wiy = d; denote the sequence of vertices and edges

in a;. For each edge e;, let g; (resp. g;7) denote the face of G on the right (resp., left) of
e;. Notice that g5; | = go; for j € [k] and g3; = g5, for j € [k — 1]. Moreover, g = f,

and g, = f; . Therefore,

At A 1 A* A Ay Ay
) — g1~ g1 93~ "g3 I i — n+1i
(5.2) [wt](cv;) (A B > (A;;Ag_g) ( 1 ) (A—i— A- ) A

fn+i71 92k~ " 92k fn+i71

Astrp™

As<f;+i>(X)

Using Proposition [2.18(1), we get [wt](a;) =

.
K3 —

al )fn-s-z‘ _ By
iE(B)ff _ Ba,iin

Let [wt'] := pg+ o i&(B). Using (5.2) for [wt'], we get [wt'](cay) =

n—+1
By definition of the electrical right twist and Proposition [2.18(2), we have [wt] = ¢ - [wt/],
P4 for all j € [2n]. Therefore, wt(e;) = t,4;,—1wt'(e1) and

Ba,_,
By, By
Ba, ,Ba

where t € R¥ is given by ¢; =

n—+1i

wt(ear) = tiwt/(ear), so [wt](ay) = —i—[wt/](cy) = -

tnti—1

O
Asir, 0

Astrpi

Lemma 5.3. Given X € IGgO(n +1,2n), let t € R¥Y be such that tit,; =
Then, t-7(X) € OGso(n + 1,2n).

Proof. By Corollary , there exists (Y, s+,i € 6é>0(n+1, 2n) such that Toec (Y, s1,5_) =

By, Ba ..
X. If B:=Ug(Y,s,,s_), then by Lemma , titnii = %. Therefore, there exists
7 n—+1i
By, _ By,
A € R%} such that t; = A ;:_1 and \j, = /\i Let u € R%y be given by pu; := % By

definition, Taec(Y, s4,5-) = p -ZF(Y), so by Proposition M(Q) and Theorem , we have
t-Ff(X)=t-F(u-7V))=t-p - FFEY)) =Y.

Since Y € OG~o(n + 1,2n) and A preserves @, A-Y € OGso(n + 1,2n). O

Example 5.4. Consider the electrical network (G, ¢) in Figure [fj(a). We compute

Measg, 0 () = [e123 + ce124 + €134 + ceaza] € IGZ(3,4),

01 0 -1
which is P1(X), where X =rowspan [1 0 0 ¢ |. We have
00 -1 —c

S(f) =123,5(f7) =234, S(f;) = 134 and S(f;) = 124,
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so we need to choose t € R? such that

Az (X 1 Aqos(X
t1t3 = —134( ) = — and t2t4 = —124( ) =C,
A234(X) C A134(X)
so t; = % and ty = i Then, we compute
1 c
P
t-7(X)=rowspan |7z O 0 %
0 —L —t3 0

To check that t - 7(X) € OG+(3,4), we compute the orthogonal complement (¢ - 7(X))* =
(L = ?—43,1>, and check that Q(v,v) = L. %5 — £ .1 =

span(v), where v = ( -, 2 Gt ta 12

A~ (X)
Definition 5.5. Given X € IGgO(n +1,2n), let t € R¥Y be such that t;t,; = ASU"—“)(X)
Sy
and t,41 =1, and let Y :=¢-7(X). By Lemma[5.3| Y € OG.o(n+1,2n). Let (Y,s4,s_) be
the lift of Y to OG>0(n+ 1,2n) such that ¥5(Y, sy, 5-) = Xg13(Y, 54,5-) = 1. The electrical

left twist Talee : IG>0(n+ 1,2n) — OG>0(n~|—1 27’L)/IR"Jr1 is defined as Tejee(X) 1= (Y, $4,5-).

Theorem 5.6. The electrical left twist is well-defined in the sense that it is independent of the
choice oft € R%y. The electrical right and left twists are mutually inverse homeomorphisms

between OG>0(n +1,2n) /R and 1GL (n + 1,2n) sitting in the commuting diagram

Be /RS = Ra
\I/Gp\' Fotee NJMeaSG+ Ojg y
0Go(n + 1,2n) /R ) 1G2(n + 1,2n)
- 0~
7?clcc
gluing which we get
B, /RIS = R
\IITN ol NJMeasoj+ .
—

OG-o(n +1,2n) /R IG%)(n + 1,2n)
\_/

~

Telec

Proof. If t' € Rzﬁ) is another choice, then there exists \ € Ri’}) such that \y = A\, 11 = 1 and
t; =t; A foralli € 2n]. Let Y/ := ¢ -7(X) = X-Y and let (Y’,s',,s") denote its lift to
OGso(n + 1,2n) such that X5 (Y, s ,s" ) = Xy(Y', s, s ) = 1. Then,

1 ILies vV . .
S (Y, s, 8 ) = NoYEDW H;j\ﬁzJ(Y sy,s_) if J is even, and
»C4y C— -

SOy, (Ysys) if J s odd.

Since t, 11 =t ., = 1, we have \; = A\,41 = 1. Under the action of R”“ on 6\é>0(n—|—1, 2n),

(VA2 A, (1, \/_2,.. AA)) (Y, sy, s2) = (Y, 8, s"). Therefore, Telec(X) is well-defined.
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Given (Y,s,,s_) € 6\G/>0(n+1, 2n), we can use the action of R%{! to make ¥ (Y, s,,5_) =

24, Ysy,s- . .

Zotdimp o5 ) to define the electrical left twist, then
(ay) (Yos4,5-)

Telec © Telee (Y, 54, 5 ) = (Y, 54,5_), SO Teee is injective with left inverse Tee.. By Corollary ,

Telec 1S also surjective, so Tep. is the two-sided inverse.

Yy (Y, sy, s-) = 1. If we choose t; :=

0
Example 5.7. Recall Example [5.4] and set t3 = 1. Using row operations, we can write
1 i 0 0
Y :=t-7(X)=rowspan [0 # 10
0 —% 0 1

Letting X5(Y, s4,5-) = 1(Y, s4,s_) = 1 and comparing with the matrix in Example [4.4]
we see that Xo(Y, sy, s-) = £ and Zpp(Y, s4,5-) = i Therefore, gz o Vo (Y, sy, s_) assigns
to the edge the conductance

El(K S+, 5—)22(Y7 S+, 5—) _ L i

Z@(K S+7S—)212(Y7 S+7S—) 1.+

verifying commutativity of the diagram in Theorem [5.6]

6. AN EXAMPLE OF THE INVERSE MAP

In this section, we work out in detail the inverse map when n = 3. For background on
electrical networks, the Laplacian and the response matrix, see [Kenl2]. Let (G,c) denote
the electrical network in Figure [f{a). The Laplacian is

b1 bg bg u

a 0 0 —a b1
A — 0O b 0 —b by
0 0 ¢ —c bs ’

—a —b —c a+b+cl u

from which the response matrix is obtained as the Schur complement
(6.1)

__a(bt+o) ab ac

a 0 0 —a 1 a+b+c a+b+-c a+b+c
L=—10 b 0|+ |=b|[a+b+¢] [-a —b —c] = a+“b”+c _Z(f:z:fi aflerc
0 0 ¢ —C ac be __clatb)
a+b+c a+b+c a+b+c
By [CGS21], Theorem 1.8], the point X := P1™! o Measg, 0jd(c) € IGZ,(4,6) is
01 O -1 0 1
0 0 L12 0 _L12 - L13
FOWSPA g 0 =1 —Liyy— Ly 0 Lis
00 O Lo 1 L3

Using the face labels that have been computed in Figure [6[b), to define the electrical left
twist, we need to choose t € RS such that
Augse(X)  Los - Aggse(X) Lo Aygse(X)  Lis

ity = — L = =2 oty = —— L = T ety = —— L= " and t, =1,
T Apuse(X) T Lis” 77T Ause(X) T Lost U0 T Apse(X) T Ly !
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—pf
P LipLas 0 ]

0
f
P [—Lm

FIGURE 8. UYgo0 Felec(X)7 where L1og := Lyolq3 + Lis Loz + Ly3Los.

so let us take tl = é—?g,tg = L127t3 = ng,t4 = ]_,t5 = Lng and t6 = %12 We compute
LioLyg+LiaLog+Liglog __1
1 %13 1 L(;2 8 8 01 L113
23 — =
Y :=t-7(X) = row span Lis L1z LiaLas
(X) P -1 1 —Lyz 0 0
1 1
0 0 Lo I Ios 0

The skew symmetric matrices M, and M_ as in Section [3.5] are

0 Lo3 Lo L3 + LigLos + Li3Lo3
M, = —Los 0 LioLq3 and
| —(LaaLas + LigLos + LizLog) —LiaLys 0
[0 1 L3
M_=1 -1 0 —L19Los
| —Li13 LiaLos 0

27



28 TERRENCE GEORGE

Using the labels in Figure [6[a) and Proposition [3.15 we get that U o Feec(X) is as shown
in Figure [8] so gg 0 UG 0 Teec(X) is given by

o [ 0 LioLy3 + LygLas + L13L23} of { 0 LyoLy3
(uby) = — —(Li2Lys + LigLog + Ly3Los) 0 —Lialy3 0
pf{ 0 L13:| pf{ 0 —L12L23]
—Li3 0 Lo L3 0
_ LioLy3 + LiaLos + LyzLos
B Los ’
of [ 0 LioLy3 + LigLog + L13L23}
c(uby) = —(L12L1s + L1aLag + LigLos) 0
5
—Li3 0
~ LioLlyz + LiaLos + Lyzlos
B L3 ’
pf [ 0 Lo L3 + LiaLos + L13L23} of [ 0 L23}
c(ubs) = — —(L12L1s + LiaLog + LigLos) 0 —Loy3 0
of [ 0 —L12L23]
LyaLo3 0
~ LiaLlyz + LiaLos + Lyzlog
N Lyp .
Fri)m 1’ we have Ly = ﬁ,ng = oo Los = Jﬁ? s0 LigLys + LisLos + LysLog =

e Plugging in these formulas, we get c(uby) = a, c(ubz) = b, c(ubs) = c.
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