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INVERSE PROBLEM OF LINEAR OPTIMAL CONTROL*

ANTONY JAMESON anp ELIEZER KREINDLERY

Abstract. Necessary and sufficient conditions are derived such that a multi-input, time-varying,
linear state-feedback system minimizes a quadratic performance index (the inverse linear optimal
control problem). A procedure for determining all such equivalent performance indices that yield the
same feedback matrix is indicated.

1. Introduction. Consider a linear system given by

(1.1) X = Ax + Bu, x(tg) = X,
(1.2) u = Dx,

and a performance index

1 g
(1.3) I= ExT(tl)Fx(tl) + %J (xTQOx + u"Ru)dt,

where x is the n-dimensional state, u the m-dimensional control, ¢, is a fixed
terminal time, and the superscript T denotes matrix transpose. The matrices A, B,
D, Q and R may be time-varying, and are assumed to be uniformly bounded and
continuous on {f,, t,].

The inverse problem of linear optimal control is to find necessary and suffi-
cient conditions on the system matrices 4, B and D so that some performance
index of the type (1.3) is minimized, and to determine all such R, Q and F.

The direct problem and its solution are of course well known. The feedback
matrix D such that the system (1.1), (1.2) minimizes (1.3) is given by

(1.4) D= —-R1BTP,
where P is the solution of the matrix Riccati equation
(1.5) —P=PA+ A"P — PBR'BTP + Q, P(t;)=F.

For the existence of a unique minimizing u it is assumed that R is positive definite
(denoted by R > 0), and as a sufficient condition for the existence of a solution
P(t) of (1.5) it is usually assumed that Q and F are nonnegative definite
(Q = 0,F = 0). The minimal value I, of I is then nonnegative for all x, and ¢,,
and since

(1.6) I, = 3xgP(to)xo,
P is nonnegative definite. The case where t;, — oo is of particular interest when 4

and B are constant, because the performance index

(1.7) I= %f (xTOx + uTRu)dt,
0
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with Q and R constant, results in a constant feedback matrix D. If (1.1) is com-
pletely controllable and Q = C”C is such that [A4, C] is completely observable,
then the matrix P in (1.4) is the asymptotically stable equilibrium point of the
Riccati equation

(1.8) P=PA+ AP — PBR 'B"P + Q, P(0) = P, = P} 20,
i.e., it is the positive definite solution of the matrix equation
(1.9) 0= PA+ ATP — PBR'BTP + Q.

The present paper solves the general time-varying case with the performance
index given by (1.3), as well as the time-invariant case with the performance index
(1.7). The plan of attack is as follows.

In § 2 we determine necessary conditions for the existence of real symmetric
matrices R > 0 and P (also for P = 0 and P > 0), such that (1.4) is satisfied ; the
most restrictive of these is that DB have real eigenvalues. The sufficiency of these
conditions is demonstrated in § 3 by producing general formulas for such R and
P. In §4 we give complete sets of necessary and sufficient conditions for solutions
P = 0and P > 0; in view of (1.6), these conditions are necessary and sufficient
for I, to be nonnegative and positive for all x, and all ¢, < ¢, and they are neces-
sary for construction of @ = 0—hence their importance.

The solutions of (1.4) for R and P are pointwise in time, but P can be con-
structed to be differentiable, so that we have P. Then F = P(t,), and Q is given by

(1.10) Q= —~P— PA— ATP + DTRD.

We remark that Q so determined may not be nonnegative definite even if P is
positive definite; this is true also in the time-invariant case. We now have the
entire class of matrices {R, Q, F, P} that satisfy (1.4) and (1.5), and we show in § 5
that each member of this class of performance indices is actually minimized by
the given control law (1.2), thus solving the inverse problem (Theorem 5.1).

The inverse problem was first posed and partly solved by Kalman [1] who
considered the time-invariant single-input case where R reduces to a scalar. He
showed that the satisfaction of a particular inequality, the sensitivity inequality,
implies that there exists a performance index (1.7) with a nonnegative definite Q
and R = 1 which is minimized. This result was generalized by Anderson [2] to the
multi-input, time-invariant case. Qur approach and results, which do not neces-
sarily produce a nonnegative definite Q, are different. Results for the case where
Q is nonnegative definite, and relations with the Kalman-Anderson results, will
be presented in a sequel to this paper.

The generality of the characterization of R and P (Theorems 3.1-3.4) gives
them independent value; they provide new insight into the already extensively
researched linear optimal control problem and are bound to find many applica-
tions, particularly in the area of equivalent loss functions [3]. We note that the
results of this paper are important for the local treatment of the general nonlinear
inverse problem. The fact that our results do not require Q = 0 is then significant ;
this requirement, usually natural for the direct linear optimal problem, is unduly
restrictive for the nonlinear case (where Q is replaced by H,,, the second partial
of the Hamiltonian).
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We remark in conclusion that the conditions for optimality of (1.1),(1.2)
derived here are in general no longer necessary when a cross-product term u”Sx
is added in the integrand of (1.3) or (1.7). In fact, it is shown in [4] that every system
(1.1), (1.2) minimizes a performance index (1.3) with a cross-product term, and that
there are many ways such a performance index can be constructed. If the per-
formance index is further generalized to include derivatives of the control, dynamic
feedback and feedforward controllers can be included, and thus every linear,
finite-dimensional dynamic feedback system minimizes some sufficiently general
quadratic performance index [4].

2. Compatibility conditions. First we note that only the symmetric parts of
R, Q and F appear in (1.4) and in the Riccati equation (1.5). Thus, the existence of
symmetric P, R, Q and F satisfying (1.4) and (1.5) is a necessary condition for a
closed-loop system (1.1), (1.2) to be optimal with respect to (1.3).

From (1.4),

2.1) BTP = —RD,

and our objective is to solve this equation for all real, symmetric and positive
definite R, R = RT > 0, and all real and symmetric P. In this section we derive
several necessary conditions for the existence of such solutions; in the next section
we show constructively that these are also sufficient. We recall that B is n x m,

D is m x n, and they do not necessarily have full rank. We have the following
lemma.

LEMMA 2.1. Necessary conditions for (2.1) to have real symmetric solutions P,
and real, symmetric and positive definite solutions R, are:
(i) for any P, R must be such that the compatibility condition holds

(2.2) BTB*"RD = RD,

where Bt is any matrix (e.g., the Penrose generalized inverse BY) such that BB*B = B;
(ii) for P to be symmetric, the symmetry condition must hold .

(2.3) RDB = BTDTR;
(il)) for R to be positive definite, a rank condition on BD must hold :
(2.4) rank BD = rank D.

Proof. (i) Premultiplying (2.1) by B B*" and using the identity B"B*" BT = BT,
we have

BTBY"BTP = BTP = —RD = —B"B''RD.
(i1} Postmultiplying (2.1) by B we have
(2.5) B"PB = — RDB,

whence the symmetry of RDB is necessary for the symmetry of P.
(iii) From (2.1),

PBD = —D'RD.
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We first observe that since R is positive definite,
(2.6) rank DTRD = rank D
because for every p such that DTRDp = 0 we have
p'D"RDp = (Dp)"R(Dp) = 0,
whence Dp must be zero. Thus, by (2.6),
rank BD 2 rank PBD = rank DTRD = rank D.

But since rank BD > rank D is impossible, (2.4) follows. Q.E.D.
That RDB must be symmetric with a real, symmetric and positive definite R,
leads to the next lemma.

LEMMA 2.2. A real R = RT > 0 such that RDB is symmetric exists only if the
m x m matrix DB satisfies the eigenvector condition:

2.7 DB has m linearly independent real eigenvectors.

Proof. Let LT = R > 0 be such that RDB is symmetric. Then (L~ )"RDBL ™!
= LDBL™! is symmetric, and it therefore has m linearly independent real eigen-
vectors. But since DB is similar to LDBL™1, (2.7) follows. Q.E.D.

The conditions (2.4) and (2.7) are necessary for the desired solution of (2.1),
and it is shown constructively by Theorems 3.1, 3.2 and 3.3 in the next section that
they are also sufficient. We can therefore state the following theorem.

THEOREM 2.1. Equation (2.1) has solutions R = RT > 0 and P = PT if and only
if the rank condition (2.4) on BD and the eigenvector condition (2.7) on DB hold.

We now proceed to derive conditions for symmetric P to be nonnegative
definite and positive definite. We have the following lemma.

LemMMA 2.3. For (2.1) with R = RT > 0 to have solutions P = P' = 0 it is
necessary that

(2.8) rank DB = rank D,
and that all eigenvalues A of DB be nonpositive :
(2.9) A0, i=1,2,--,m;
Jor solutions P = PT > 0, it is necessary that
(2.10) rank DB = rank D = rank B.

Proof. From (2.1), since R is nonsingular,

rank D = rank RD = rank BTP = rank PB,
and from (2.5),
rank DB = rank RDB = rank B"PB.

Thus (2.8) is equivalent to
(2.11) rank B"PB = rank PB.

Since P = 0, we may write P = ZTZ, Z real. We observe, as in the proof of (2.6),
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that

rank (ZB)"ZB = rank ZB.
Thus

rank BTPB = rank (ZB)'ZB = rank ZB > rank ZTZB = rank PB.

But since rank B"PB > rank PB is impossible, (2.8) follows. If P = 0 or P > 0,
then from (2.5),

(2.12) RDB < 0.

Writing R = LTL, (L""YTRDBL™! = LDBL™! is also nonpositive definite, real,
and symmetric, and therefore has nonpositive real eigenvalues. Since DB is similar
to LDBL™1, (2.9) is established. If P > 0, then since R is nonsingular, (2.1) shows
that

(2.13) rank D = rank B,

whence (2.10) must hold. Q.ED.

LeEMMA 2.4. The rank condition (2.8) on DB together with the symmetry condi-
tion (2.3) on RDB imply that the compatibility condition (2.2) and the rank condition
(2.4) on BD are satisfied.

Proof. From (2.2), using the symmetry of RDB and the identity BB*B = B, we
have

BTBY"RDB = B"B**BTDTR = B"D'R = RDB,
or
(2.14) (B"TB*"R — R)DB = 0.

But since rank DB = rank D, if M is a nonzero matrix such that MDB = 0, then
also MD = 0. Thus, (2.14) implies (2.2). From (2.3),

(2.15) RDBD = BTDTRD.

Let p be any vector such that Dp # 0. Then in view of (2.6), DTRDp # 0, and by
(2.8), BTDTRDp # 0, whence by (2.15), RDBDp # 0. Thus BDp # 0 if Dp # 0,
implying (2.4). Q.E.D.

From Lemmas 2.2, 2.3 and 2.4 we see that conditions (2.7), (2.8) and (2.9)
emerge as the major ones necessary for P = 0, and in §4 we show that they are
indeed sufficient. We can therefore state the following theorem.

THEOREM 2.2. Equation (2.1) has solutions R = RT > 0 and P = PT = 0 if and
only if DB has m linearly independent real eigenvectors, its rank equals that of D,
and its eigenvalues are all nonpositive (conditions (2.7), (2.8) and (2.9), respectively);
for P = PT > 0, the rank of DB must also be equal to that of B (condition (2.10)).

We close this section with the remark that the rank condition rank BD
= rank D can be seen as a direct consequence of optimality. There is no loss of
generality (see Appendix) in assuming that B is in canonical form and u is parti-
tioned accordingly :

N R
@ 1o 1) "= u, |
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Since u; does not affect x(t), it must minimize at all times the quadratic form u” Ru:
et ] |:R“ R1z:| |:u1:| = ulRyqu; + 2u]Rypuy + u3 Ry,
R, Ry 1lu,
whence the minimizing u, is given by
u; = ~ Ry Ryyus,
i.e., u, is proportional to u,. Thus, if we partition D as D* = [DT D}], then D,
must satisfy
(2.17) D, = KD,,
or, rank D = rank D,. But

o)1
BD - = N
0 I11LD, D,
whence rank BD = rank D, = rank D.

3. General representations of R and P. We first construct R = R” > 0so that
RDB is symmetric. By Lemma 2.2 we must assume that the eigenvectors of DB,
and hence of BTDT, are real and linearly independent. Thus the matrix V whose
columns are the eigenvectors v of BTD7 is real and nonsingular. We may write the
set of equations BTD v, = Aw,, i = 1,2, ---, m, as

(3.1) BTDTV = VA,

where A is the diagonal matrix of eigenvalues A of B'DT. Then for any real, non-
singular matrix IT that commutes with A we have

(3.2) BTDTVII = VAII= VIIA,

whence the columns of VII are seen as a new, linearly independent set of real
eigenvectors; in fact, all such sets of eigenvectors are generated by all such TI1.
(If all eigenvalues A are distinct, then I must be diagonal and it simply scales the
eigenvectors v; if 4; = ;, then any linear combination of v; and v; is also an eigen-
vector and all such combinations are generated by the now permissible off-diagonal
elements n;; and m;; of I1.) We have the following theorem.

THEOREM 3.1. Let the necessary eigenvector condition (2.7) hold. Then every
given real R = RT > 0 such that RDB is symmetric, is necessarily given by

(3.3) R=VVT,

where the columns v of V are suitably chosen eigenvectors of BYD™. Let V be any
such given matrix, and let T be a real matrix such that

(3.4) F=T7>0 and TA = AT,

where A is defined by (3.1). Then all real R = RT > 0 such that RDB is symmetric
are generated by all real T in

3.5 R=VIVT,
where I satisfies (3.4).
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Proof. Let R = MMT. Then, since BTD'R is symmetric,
M~ BTDTRYM ™Y = M~ 'BTDTM

is a symmetric matrix whose eigenvalues are those of BTD”. There exists therefore
an orthogonal matrix H such that

H"M'B"D"MH = A, HHT =1,

whence the columns of MH are seen to be eigenvectors of BTDT. If we define
V = MH, then

VVT = MHH"M" = MM" = R,
as claimed in (3.3). Conversely, for any V in (3.3), RDB is symmetric:
VVTDB = VAVT = BIDTY VT,

Recalling the comment that follows (3.2), we let TITTT = I', whence (3.5) follows

from (3.3). Q.ED.
Not every R = R” > 0 that satisfies the symmetry condition (2.3) auto-
matically satisfies also the compatibility condition (2.2). For example, let

B:l:O Oil, D:[l 0]’ R=|:r11 7’12].
0 1 1 0 P12 Ftaz
BD = 9 DB = H
1 0 0 0

whence rank BD = rank D and RDB is symmetric for any R. But since

ri + 7, 0 N 0 0
RD:[“ 12 0] and BTB} RD:[ ]

rig + Fas Fio+ 1 O

Then

the compatibility condition holds only if r; + r{; = 0. Nevertheless, the following
theorem holds.

THEOREM 3.2. If the rank condition (2.4) on BD and the eigenvector condition
(2.7) hold, there exist R = RT > 0 such that both the compatibility condition (2.2)
and the symmetry condition (2.3) on RDB are satisfied, and all such R can be con-
structed by suitably choosing T in (3.5).

Proof. This is shown in the Appendix, where B is first transformed to canonical
form (2.16). For a set of eigenvectors of BTDT, all " in (3.5) are found such that the
compatibility condition is satisfied.

Remark 3.1. The rule for structuring R in (3.3), or (3.5), so as to satisfy the
compatibility condition (see (A.12}+A.15) in the Appendix) rarely need be invoked
because the compatibility condition always holds in the most common case when
rank B = m (see § 6). The compatibility condition also always holds if rank DB
= rank D, as needed for the usual case P = 0 (see Lemmas 2.3 and 2.4). Thus,
in most cases of interest, the formula (3.5) for R provides all the requisite matrices
R of the inverse problem.
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Given areal R = R” > 0 satisfying the compatibility condition (2.2) and the
symmetry condition (2.3) on RDB, we next solve (2.1) for a real symmetric P. Let
U be any real n x m matrix such that

(3.6) BTUTRD = RD;

in view of (2.2), one such matrix is U = B*. By inspection of (3.6), —UTRD is a
solution of (2.1) for P, which, however, is not necessarily symmetric. To obtain a
symmetric solution set

(3.7 Py = —~UT'RD — DTRU + UTRDBU.
Now by (3.6) and the symmetry of RDB,

BTP, = —RD — B'TDTRU + RDBU = —RD.
Further, if P is any real symmetric solution of (2.1), then

B(P — Py) =0,

whence the general solution of (2.1) for a real symmetric P is
(3.8) P= —U'RD — D'RU + UTRDBU + Y,
where Y is any real matrix such that
(3.9) BTY=0, Y=yYT

In summary, we have the following theorem.

THEOREM 3.3. Let R be a real, symmetric and positive definite matrix satisfying
the compatibility condition (2.2) and the symmetry condition (2.3). Then a real
symmetric P satisfying (2.1) exists, and all such P are represented by (3.8), where U
is any real matrix satisfying (3.6) and Y is any real matrix satisfying (3.9).

Theorems 3.1, 3.2 and 3.3 provide the sufficiency part of Theorem 2.1.

Under the rank condition (2.8) on DB, additional representations of P are
available. Furthermore, by Lemma 2.4, the compatibility condition (2.2) is then
redundant. We then have the following.

THEOREM 3.4. Let R be a real, symmetric and positive definite matrix such that
RDB is symmetric. If

(3.10) rank DB = rank D,

then all real symmetric P satisfying (2.1) are represented in terms of the given R by
(3.11) P = —DTR(RDB)'RD + Y,

where ' denotes the Penrose generalized inverse; in terms of the eigenvectors of
BTDY, P is given by

(3.12) P=—DIVIAYVTD + ¥,

where Y are all real matrices that satisfy (3.9), V and A are defined by (3.1), and T’
is defined by (3.4).
Proof. Consider (3.6) and (3.7), and let

(3.13) U = (RDB)'RD.
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If DB is nonsingular, this U satisfies (3.6). Consider the case where DB is singular.
By the identity XXX = X,

(3.14) [BTDTR(RDB)'R — RIDB = 0.
We note that (3.10) implies that MDB = 0 only if MD = 0. Hence (3.14) gives
BTDTR(RDB)'RD = RD.

Thus U given by (3.13) is seen to satisfy (3.6). Substituting U into the last term of
(3.7), we have

UTRDBU = DTR(RDB)'RDB(RDB)'RD
= DTR(RDB)'RD = DRU,

so that (3.8) yields (3.11). To prove (3.12), we note that A" is a diagonal matrix
with elements 1/4;if 4; # 0, and 0 if 4; = 0. Thus AT = A'I", and (3.12) is seen to
be symmetric. Also, (3.10) implies that all eigenvectors v of BTDT that correspond
to zero eigenvalues are such that DTv = 0. Considering all such eigenvectors we
have that

DTV = DTVATA,
whence P given by (3.12) is seen to satisfy (2.1):

BTP = —BT'DTVITA'YVTD = —VATA'V'D = —VIVTD = —RD.
Q.E.D.
The rank condition (3.10) is, by Lemma 2.3, necessary for P = 0 and P > 0.
Formulas (3.11) and (3.12) are therefore useful for, but by no means restricted to,
these cases. A general representation of P, equivalent to (3.8), or under the rank
condition (3.10) equivalent to (3.12), and based on transformation of B to canonical
form (2.16), is given in the Appendix (see (A.17)~«(A.19)).
Remark 3.2. We used the generalized inverse in the sense of Moore-Penrose
because it is unique and perhaps best known of the various pscudoinverses.
However, of the identities

XXX =X, X'xxt=Xx' (xXxHh'=xx', (X'X)7=Xx'X,

defining the Penrose inverse, we need only the first two. We may define X* by
XX*X =X and X*XX* = X*, a pseudoinverse that is no longer unique.
Let (RDB)* be

(3.15) (RDB)* = (VTAVTY* & YT IA#*D -1y~ 1,

this is a symmetric matrix that satisfies the two identities for *. Then, replacing
in (3.11) by #, using (3.15), and A* = A" and A'T = T'AY, (3.11) reduces to (3.12).
We remark that in passing from one general representation for P to another, the
matrix Y in the second representation, while still satisfying BTY = 0, may not be
the same as in the first representation.

Since the symmetry of RDB and the compatibility condition (2.2) are necessary,
R given by Theorems 3.1 and 3.2 is the general, real, symmetric, positive definite
solution of (2.1). Given R, Theorem 3.3 provides the general, real, symmetric
solution P. We thus have all solutions R = R > 0 and P = PT of (2.1); in
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the next section we obtain all such solutions where in addition P is nonnegative
definite and positive definite.

4. Conditions for P = 0 and for P > 0. In view of (1.6), conditions for
P = 0 (for P > 0) are necessary and sufficient for I, to be nonnegative (positive)
for all x, and all ¢, < t,. They are important also for the solution of the inverse
problem with positiveness conditions on Q in (1.3), as will be discussed in the
sequel to this paper.

Recalling Lemma 2.3, we use the representations (3.11) and (3.12) for P, and
seek conditions on Y for P to be nonnegative definite and positive definite. We have
the following theorem.

THEOREM 4.1. A real symmetric P given by (3.11) or (3.12) satisfies (2.1) with
R = R” > 0 and is nonnegative definite if and only if the following conditions hold:

4.1 rank DB = rank D,

the eigenvalues A of DB (which by (2.7) must be real) are nonpositive :

4.2) A0, i=1,2--,m,
and in (3.11) and (3.12),
(4.3) Y=7Y"20;

P is positive definite if and only if

4.4) rank DB = rank D = rank B,
(4.2) holds, and Y is of the form

4.5) Y=WWT,

where W has n — rg linearly independent columns (rg = rank B) and
4.6) BTW = 0.

Proof. The necessity of (4.1), (4.2) and (4.4) is established in Lemma 2.3 and

we now show the necessity of the conditions on Y. Consider formula (3.11) for
P. Let

@.7) x = (I — B(RDB)'RD)y,

where # is any nonzero vector. Then

. xTPx = —yT(I — DTR(RDB)'BT)DTR(RDB)'RD(I — B(RDB)'RD)y
+n"Yn =n"Yy,

whence (4.3) is seen to be necessary. To prove the necessity of (4.5), assume that
the columns of W donot span B*, the (n — rg)-dimensional orthogonal complement
of the range space of B. There is then a nonzero » in B* such that 7Yy = 0, and x
given by (4.7) is nonzero (being the sum of a vector in B* and a vector in the range
space of B). Then (4.8) shows that xTPx = 0, x # 0, proving the necessity of (4.5).
To establish sufficiency, we first note that as in the proof of Lemma 2.3, (4.2)
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implies that RDB < 0; whence (RDB)' <0 (since RDB is symmetric, RDB
= HQHY HH" = I, and (RDB)! = HQ'H”, where Q = diag (w;)and w, are eigen-
values of RDB). Thus the first term in (3.11) is nonnegative and P = 0 under (4.3).

For the case P > 0, let x = n + Bp, where 5 is in the orthogonal complement B+
of the range space of B. Then

xTPx = —x"DTR(RDB)'RDx + nTWWT™y,

where the first term is nonnegative and the second is, under (4.5), positive for all

nonzero 1. Thus xTPx > 0 for  # 0. If y = 0, then x = Bp, and for x = Bp # 0
we have

xTPx = —p"B"DTR(RDB)'RDBp = —p"RDBp.

Since —RDB is nonnegative, —RDB = ZTZ for some real Z and then DBp
= —R'Z"Zp. But since Bp # 0, then under (4.4), DBp # 0 and Z7Zp # 0.
Thus x"Px = —p"RDBp = p"Z"Zp > 0. Hence P > 0. For the representation
(3.12) of P we can proceed in a similar manner, or simply note that (3.12) follows
from (3.11) if we replace the Penrose inverse T by the pseudoinverse * defined in
Remark 3.2. Q.E.D.
Theorem 4.1 together with the theorems of § 3 establish the sufficiency part
of Theorem 2.2. The equivalent of Theorem 4.1, for a partitioned P that results
when B is in canonical form (2.16), is given in the Appendix (see (A.21)—(A.25)).
Since (3.10) is necessary for P = 0, it is clear that (3.11) or (3.12), together with
the conditions (4.3) and (4.5) on Y, are the general, real, symmetric solutions P = 0

and P > 0 of (2.1). We thus have all the desired solutions R and P of (2.1), needed
for solving the inverse problem.

5. The inverse problem. If matrices B and D of (1.1), (1.2) satisfy the condi-
tions of Theorem 2.1, we can construct an R = RT > 0 as in Theorems 3.1 and
3.2,anda P = PTasin Theorem 3.3, so that (1.4) is satisfied. To construct a bounded
Q from (1.10) we require that P be differentiable. We therefore make the following
assumption.

AssuUMPTION 5.1. In (1.1), (1.2}, B(t) and D(t) are differentiable on [¢,, t{] and
are of constant rank.

The latter part prevents an apparent discontinuity in P due to a change in the
rank of Y = WWT, mandated by Theorem 4.1 for P > 0, at the instant B changes
rank. However, since the direct problem does not require Assumption 5.1, and
our representations for P are general, it is clear that the assumption is for con-
venience only.

We now show that a performance index (1.3) with the weighting matrices
R, Q and F = P(t,) constructed in §§ 3 and 4 is minimized by the control (1.2).

LeMMA 5.1. Consider a closed-loop linear system (1.1),(1.2). Let R > 0, Q, P,
and F = P(t,) be arbitrary uniformly bounded symmetric matrices satisfying (1.4)
and the Riccati equation (1.5). Then the performance index (1.3) attains its absolute
minimum I, given by (1.6), over all square-integrable controls, for alt x, and all
to < t; £ 0. The optimal control is uniquely given by (1.2).

Proof. Substituting (1.4) into (1.5) we have

(5.1) —P =PA+ AP — DTRD + Q.
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Multiplying both sides by x and using Ax = X — Bu, we have
(5.2) —%(XTPx) = —(u — Dx)"R(u — Dx) + x"Qx + u"Ru.
By integrating (5.2), setting P(t,) = F, and multiplying by }, we have

1 1
Eng(tO)xo + Ef (4 — Dx)TR(u — Dx)dt
to

(5.3)

ty

= %x(tl)TFx(tl) + % (xT0x + uTRu) dt.
to
The right side of (5.3) is the performance index I of (1.3). Since R > 0, the integral
on the left side is nonnegative. Thus I attains its absolute minimum if and only if
u = Dx, as stated. Q.E.D.

When t; = oo in (1.3), the lemma is valid even if the closed-loop system
(1.1), (1.2) is not asymptotically stable, since the integral on the left side of (5.3)
must approach + oo if it is not finite. The time-invariant case, however, must be
treated distinctly. We then arrive at (5.3) by starting with the constant quadratic
matrix equation (1.9) rather than with the matrix Riccati equation (1.5), and since
the performance index (1.7) does not have the terminal term $x7(¢)Fx(t,), (5.3) is,
for u = Dx, replaced by

IxT(O)P0)x(0) — $xT(c0)P(c0)x(c0) = 1.

The term 1xT(00)P(o0)x{o0) can be positive and finite, raising the possibility,
pointed out to us by B. P. Molinari, of an optimal control law that is unstable.
Thus, to draw conclusions from (5.3), we restrict consideration to stabilizing
controls, i.e., such that x(t,) » 0 as t; » co. We have the following lemma.

LemwMA 5.2. Consider a time-invariant asymptotically stable system (1.1), (1.2),
and symmetric constant matrices R > 0, P, and Q satisfying (1.4) and the quadratic
matrix equation (1.9). Then the performance index (1.7) attains its absolute minimum
over all square-integrable stabilizing controls for all x,, (1.2) is the unique minimizing
control, and P, is the unique asymptotically stable equilibrium point of the Riccati
equation (1.8).

Proof. Only the last assertion remains to be proved. To prove it, we shift
the origin of the Riccati equation (1.8) to P, by considering

(5.4) P(t) = Pty — P,,.

We find that

(5.5) P=PA,+ ATP — PBR 'BTP,
where

(5.6) A, = A+ BD.

Since Re {4,} < 0 for any eigenvalue 4; of 4, we have

(5.7) Re {4 + 4;) <0, allij.
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By (5.7), the linear part of (5.5) is asymptotically stable and hence, by Lyapunov’s
first method, P, = 0 is a locally asymptotically stable equilibrium point of (5.5);
the same holds for P, with respect to the Riccati equation (1.8). It remains to show
that P, is the only asymptotically stable equilibrium point of (1.8). First we
rewrite (1.9) as

(5.8) PA, + ATP = —D'RD — Q.

For given A4, B, D, R and (, this is a linear matrix equation in P, and it has a unique
solution P, because by (5.7), 4; + 4; # 0 for all i, j. Thus any other solution of
(1.9), say P, , must yield D':

D'= —~R'B"P,, # D= —R'B"P,.

Now suppose P’ is an asymptotically stable equilibrium point of (1.8). Then, by
reversing the previous arguments,

A=A+ BD

is asymptotically stable, and u = D’x provides the minimizing control for. I.
Hence

1.7 _ 1. Tpr
I, = 3x0Pyxo = x5 P x0. all xq,

whence P, = P, and D' = D.

Remark 5.1. Lemma 5.2 extends, to the case where Q is not necessarily non-
negative definite, the well-known facts (for Q = 0) (i) that there is a one-to-one
relation between the stability of the Riccati equation and that of the corresponding
closed-loop optimal system, and (ii) that the Riccati equation (1.8) has at most one
asymptotically stable equilibrium point. In contrast with the case Q = 0, however,
the equilibrium point P, may not be positive definite and its domain of attraction
is not generally known. See also recent results in [6] and [7].

We now have all the elements needed for solution of the inverse problem.
Theorems 2.1, 2.2, 3.1, 3.2, 3.4, 3.5 and 4.1, and Lemmas 5.1 and 5.2, together imply
the next theorem.

THEOREM 5.1. Consider a closed-loop linear system (1.1), (1.2) satisfying
Assumption 5.1. It is possible to construct a performance index (1.3) with

(5.9) F=FT, Q =0T, R=R">0,

that attains its absolute minimum I, over all square-integrable controls, for all x,
and all ty < t; £ oo, if and onlyif for all t,t, < t S t,, the following conditions hold :

(5.10) DB has m linearly independent real eigenvectors
and
(5.11) rank BD = rank D.

The minimal value I, can be negative. An index (1.3) such that 1,, =z 0 for all x, and
all ty < t; £ o0 can be constructed if and only if in addition to (5.10), for all t,
o St 8y

(5.12) all eigenvalues of DB are nonpositive,
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and (5.11) is strengthened to
(5.13) rank DB = rank D.

An index (1.3), such that 1, > 0 for all xy and all t, < t, < o0, can be constructed
if and only if, in addition to (5.10) and (5.12), the rank condition (5.13) is strengthened to

(5.14) rank DB = rank D = rank B.

If the system (1.1), (1.2) is constant and asymptotically stable, then it is possible to
construct a performance index (1.7) with constant symmetric Q and R > 0, that
attains its absolute minimum I, over all square-integrable stabilizing controls, for
all x,, if and only if the above conditions hold. All performance indices corresponding
to these conditions can be constructed by the general formulas of § 3.

We observe that all conditions for the inverse problem are on the system
matrices B and D, while A is arbitrary (aside from stability in the constant case).
This is so because the inverse problem obviates the stability and existence problems
of the direct problem. Conditions on A, as well as on B and D emerge when
Q = 0 is desired (see [1], [2], and the sequel to this paper); the conditions on B,
D, BD, and DB discovered here remain of course necessary properties of a linear
optimal system.

6. Consequences of B having full rank. Normally the n x m system matrix B
has full rank and m < n; in particular, this is so in a single-input system. It is
therefore of interest to record the resulting simplifications in our previous results.

Case 1. rank B = m, m < n. We observe that the rank condition (5.11) always
holds, because by Sylvester’s inequality,

rank BD = rank B + rank D — m = rank D,

which implies (5.11). Further, the compatibility condition (2.2), which somewhat
complicates the construction of R (see Theorem 3.2 and Remark 3.1), is always
satisfied because now a B* such that BTB'" = I always exists (e.g., B* = B!
= (BTB)"!'BY).

If DB is nonsingular, then formula (3.11) for P reduces to
6.1) P = —DYBTDT)"'RD + Y,

the rank conditions (5.13) and (5.14) always hold, and the eigenvalue condition
(5.12) becomes simply

(6.2) DB < 0.

Case 2. rank B = m = 1. Here R reduces to a scalar » > 0, B to a column
vector b, and D to a row vector dT. All the conditions of Lemma 2.1 are now
satisfied and P can always be represented by (3.8), where now U is a row vector, say,
U = b" = bT/b"h. In particular, if b is in canonical form, then since

0 - [0 d [y, o0
o A H R SR R

we find that (3.8) becomes

_ Yll _rdl
6.3) P= [—rdf _rdz].
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For any b, rank DB = rank D reduces to

6.4 d™h # 0;

then (6.1) becomes

(6.5) P= —(r/d"h)dd" + Y,
and (6.2) reduces to

(6.6) d™h < 0.

Since r can be any positive scalar and P can always be constructed as in (3.8)
or (6.3), we have a corollary.

COROLLARY 6.1. Every single-input linear feedback system (1.1), (1.2), such
that Assumption 5.1 holds, minimizes a performance index of the type (1.3). A
performance index (1.3) such that 1, > 0 for all x and all t, < t exists if and only
ifforallt,tg <t <t,,d"b < 0 holds.

Case 3. rank B = m = n. The case where B is nonsingular is rather trivial:

P is simply —B" 'RD and rank conditions (2.4) and (2.8) are automatically
satisfied.

The case of m > n is unusual, but will be discussed for completeness.

Case 4. rank B = n < m. In contrast with the case of m < n, the compatibility
condition is not automatically satisfied, nor is the rank condition (5.11). However,
(5.11) is implied by the symmetry condition

RDB = B"D'R

because, since BB” is now nonsingular, it yields

(BBY"'BRDBD = D"RD,
whence, by (2.6),

rank BD = rank (BB")"'BRDBD = rank D"RD = rank D,

which implies (5.11). Also in contrast with the case m < n, the rank condition
(5.13) is now automatically satisfied as can be verified by Sylvester’s inequality.
Finally, (2.1) is now readily solvable for P, yielding

(6.7) P = —(BB")"'BRD,

which by postmultiplying by BBT(BB”) ™! is seen to be symmetric under the sym-
metry of RDB,

P = —(BBT)"'BRD = (BB")"'B(RDB)B"(BB") " !.
Appendix: Proof of Theorem 3.2. We first reduce B to canonical form by

means of an equivalence transformation

Al B=nu=|" "
A1) - =10 1|

where N and M are suitable nonsingular matrices and ry is the rank of B. If we
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define
A2) R = MTRM, P=(N"YHYPN!, D=M"'DN™!,

we find that (2.1)~(2.7) remain valid in terms of the new matrices. We may therefore
assume with no loss of generality that B is initially in canonical form.

According to the hypotheses of Theorem 3.2, the rank condition (2.4) and
the eigenvector condition (2.7) hold. We have

[ ’
O 1"31![21 LZZ\ 1‘21 [22|

(A3) D= |:KD21 KD22:|

for some matrix K. Now
BTDT — 0 o|[p},K" DI, _ 0 0
0 I,,||D5,K" D, DL,K" D3|
Thus the eigenvector equation BTD"v = iv has m — ry solutions

Uy
= A=0
v h——KTvl]’ ’

where the m — rg vectors v, are any set of linearly independent real (m — rg)-
vectors. The remaining ry solutions are

=1

where the v, are eigenvectors of DI,, and by the eigenvector condition (2.7) they
are real and linearly independent. Thus in (3.1),

V; 0 0 0
(A.4) V= W , A= ,
—K'Vi, V,, 0 A,
where V|, is any nonsingular real matrix, and V,,, which is given by
(A.5) Dngzz = Va2A,,

is nonsingular and real. By Theorem 3.1, all R given by

(A6) R = Vll 0 1—‘11 IﬂlZ V{l _V{lK
' _KTVll V22 F’{Z Iﬂ22 0 VgZ

satisfy the symmetry condition on RDB and we only have to satisfy the com-
patibility condition (2.2) by choice of I'. Expanding (A.6) gives
Ry = V11F11VT1, Ry, = —R K + V11F12V§2,

(A7)
R22 = KTRllK + V22F22V§2 - VZZF’{ZVIIK - KTVIIFIZVZ‘Z'



INVERSE PROBLEM OF LINEAR OPTIMAL CONTROL 17

0 0
R
o=

and using (A.3), (2.2) yields the conditions

Letting B* be the m x n matrix:

(A8) (R K + Ry,)D;y =0, (R11K + Ry,)D,, = 0.

From the expression for R,, in (A7), R\ 1K + Ry, = V1 [1,V3,, and (A.8)
becomes

(A-9) Vnrle%'zDu =0, V11F12V§v2D22 = 0.

In view of (A.5) and the nonsingularity of V;,; and V,,, these conditions reduce to

(A.10) F12V£2D21 =0
and
(A.11) r,A, =0,

both of which are satisfied by the choice I';, = 0.

Thus, all R = R" > 0 such that both the symmetry and compatibility conditions
hold, are given by all T in (A.6) such that T =TT > 0, TA = AT and T, satisfies
(A.10) and (A11). One such Ty, is Ty, = 0 which is also necessary when D,, (or
equivalently A,) is nonsingular.

This proves Theorem 3.2. The rule for T" can be broken down further:
I';, is any real ry X rp matrix such that

(A.12) r,, =%, >0, A, = AT,
[, = '}, is any real (m — rp) x ry matrix such that

(A.13) FLVI,D, =0, TA, =0;
[',, is any real (m — rg) x (m — rp) matrix such that

(A.14) Iy, =TT, >T [T

Analysis of (A.13) shows that

(A.15) rank I';, < rank B — rank D.

We conclude this Appendix by deriving a general formula for P when B is in
canonical form (A.1). Using B given by (A.1), D given by (A.3), and U = B',
(3.7) yields

0 DY (K'R,, + R
(A.16) P, = _[ . 2T1( 12 22)}’
(R12K + Ry)Dy1 (R12K + Ry)Ds,

and (3.9) yields

Y, 0
(A.17) Y:[O 0],



18 ANTONY JAMESON AND ELIEZER KREINDLER

where Y|, is any real symmetric matrix. From the expression for R, in (A.7),
K = "Rﬁlez + R(11V11F12V2T2.

Postmultiplying K by D, and D,,, and using (A.9) gives

KD,y = =Ri{Ry,D;,, KD,; = Ri{'R;Dy;.
Thus (A.16) becomes
b [ 0 DY\(Ryz — RTZR;BRM)]
° (Ro; = RLR{{R12)Dyy (Ry; — RLGR{{R 5D,
By defining R,, as

(A.18) Ry = Ry; — R;R{ Ry,
the general solution P = P, + Y, with Y given by (A.17), is
P —DIR
(A.19) P = |: 11 21 0:|’
'—ROD21 _RODZZ

where P, is any real symmetric matrix. The term — RyD,, in (A.19) is symmetric
(as expected), because we find that

(A.ZO) Ro = sz(rzz - F{zrﬁlrlz)ng,
whence, using (A.13), we have
RyD,, = V22F22V§2D22 = V22F22A2V2T2.

The conditions for P = 0 and P > 0 can be obtained in terms of the par-
titioned blocks of P, from Theorem 4.1 or directly from (A.19) by the results in {5].
Corresponding to conditions (4.1), (4.2) and (4.3), we find that P given by (A.19)
is nonnegative definite if and only if

(A.21) rank [D,; D,,] = rank D,,,
(A.22) all eigenvalues of D,, are nonpositive,
and

(A.23) Py 2 — D3R DY, D,y

where D%, is any matrix such that D,,D},D,, = D,, and D%,D,,D¥, = D¥,.
For P > 0 it is necessary and sufficient that:

(A.24) all eigenvalues of D,, are negative,

and

(A.25) P, > —DJiRyD;,'D,,.
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