
D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Acta Numerica(2010), pp. 001– c© Cambridge University Press, 2010

DOI: 10.1017/S0962492904 Printed in the United Kingdom

Inverse Problems: A Bayesian Perspective

A.M. Stuart
Mathematics Institute

University of Warwick

Coventry CV4 7AL, UK

CONTENTS

1 Introduction 2
2 The Bayesian Framework 6
3 Examples 26
4 Common Structure 49
5 Algorithms 58
6 Probability 73
References 97



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

2 A.M. STUART

1. Introduction

A significant challenge facing mathematical scientists is the development of a
coherent mathematical and algorithmic framework enablingresearchers to blend
complex mathematical models with the (often vast) data setswhich are now rou-
tinely available in many fields of engineering, science and technology. In this
article we frame a range of inverse problems, mostly arisingfrom the conjunc-
tion of differential equations and data, in the language of Bayesian statistics. In
so doing our aim is twofold: (i) to highlight common mathematical structure aris-
ing from the numerous application areas where signficant progress has been made
by practitioners over the last few decades and thereby facilitate exchange of ideas
between different application domains; (ii) to develop an abstract function space
setting for the problems in order to evaluate the efficiency of existing algorithms,
and to develop new algorithms. Applications are far reaching and include fields
such as the atmospheric sciences, oceanography, hydrology, geophysics, chemistry
and biochemistry, materials science, systems biology, traffic flow, econometrics,
image processing and signal processing.

The guiding principle underpinning the specific development of the subject of
Bayesian inverse problems in this article is toavoid discretization until the last
possible moment. This principle is enormously empowering throughout numerical
analysis. For example, the first order wave equation is not controllable to a given
final state in arbitrarily small time because of finite speed of propagation. Yet every
finite difference spatial discretization of the first order wave equation gives rise to a
linear system of ordinary differential equations which is controllable, in any finite
time, to a given final state; asking the controllability question beforediscretization
is key to understanding (Zuazua 2005). As another example consider the heat
equation. If this is discretized in time by the theta method (with θ ∈ [0, 1] and
θ=0 being explicit Euler,θ = 1 implicit Euler), but left undiscretized in space, the
resulting algorithm on function space is only defined ifθ ∈ [12 , 1]; thus it is possible
to deduce that theremustbe a Courant restriction ifθ ∈ [0, 1

2 ) (Richtmyer and
Morton 1967) before even introducing spatial discretization. Yet another example
may be found in the study of Newton methods: conceptual application of this
algorithm on function space, before discretization, can yield considerable insight
when applying it as an iterative method for boundary value problems in nonlinear
differential equations (Deuflhard 2004). The list of problems where it is beneficial
to defer discretization to the very end of the algorithmic formulation is almost
endless. It is perhaps not suprising, therefore, that the same idea yields insight
in the solution of inverse problems and we substantiate thisidea in the Bayesian
context.

The article is divided into five parts. The next section, 2, isdevoted to a de-
scription of the basic ideas of Bayesian statistics as applied to inverse problems in
the finite dimensional setting. It also includes a pointer tothe common structure
that we will highlight in the remainder of the article when developing the Bayesian
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viewpoint in function space. Section 3 contains a range of inverse problems aris-
ing in differential equations, showing how the Bayesian approach may be applied
to inverse problems for functions; in particular we disuss the problem of recover-
ing a field from noisy pointwise data, recovering the diffusion coefficient from a
boundary value problem, given noisy pointwise observations of the solution, re-
covering the wave speed from noisy observations of solutions of the wave equation
and recovering the initial condition of the heat equation from noisy observation of
the solution at a positive time. We also describe a range of applications, involving
similar but more complex models, arising in weather forecasting, oceanography,
subsurface geophysics and molecular dynamics. In section 4we describe, and ex-
ploit, the common mathematical structure which underliesall of these Bayesian
inverse problems for functions. In that section we prove a form of well-posedness
for these inverse problems, by showing Lipschitz continuity of the posterior mea-
sure with respect to changes in the data; we also prove an approximation theo-
rem which exploits this well-posedness to show that approximation of the forward
problem (by spectral or finite element methods, for example)leads to similar ap-
proximation results for the posterior probability measure. Section 5 is devoted to
a survey of the existing algorithmic tools used to solve the problems highlighted
in the article. In particular Markov chain-Monte Carlo (MCMC) methods, varia-
tional methods and filtering methods are overviewed. When discussing variational
methods we show, in the setting of section 4, that posterior probability maximizers
can be characterized through solution of an optimal controlproblem, and that this
optimal control problem has a minimizer under the same conditions that lead to a
well-posed Bayesian inverse problem. Section 6 contains the background proba-
bility required to read the article; the presentation in this section is necessarily terse
and the reader is encouraged to follow up references in the bibliography for further
detail.

A major theme of the article is thus to confront the infinite dimensional nature
of many inverse problems. This is important because, whilstall computational
algorithms work on finite dimensional approximations, these approximations are
typically in spaces of very high dimension and many significant challenges stem
from this fact. By formulating inverse problems in an infinite dimensional setting
we build these challenges into the fabric of the problem setting. We provide a
clear concept ofthe ideal solution to the inverse problemwhen blending a forward
mathematical model with observational data. This concept can be used to test the
practical algorithms used in applications which, in many cases, use crude approx-
imations for reasons of computational efficiency. Furthermore, it is also possible
that the function space Bayesian setting will also lead to the development of im-
proved algorithms which exploit the underlying mathematical structure common
to a diverse range of applications. In particular the theoryof (Bayesian) well-
posedness which we describe forms the cornerstone of many perturbation theories,
including finite dimensional approximations.

The text of Kaipio and Somersalo (Kaipio and Somersalo 2005)provides a good
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introduction to the Bayesian approach to inverse problems,espeically in the con-
text of differential equations. Furthermore, the book of Calvetti and Somersalo
(Calvetti and Somersalo 2007b) provides a useful introduction to the Bayesian per-
spective in scientific computing. Another overview of the subject of inverse prob-
lems in differential equations, including a strong argument for the philosophy taken
in this article, namely to formulate and study inverse problems in function space,
is the book of Tarantola (Tarantola 2005) (see, especially,Chapter 5); however the
mathematics associated with this philosophical standpoint is not developed there
to the same extent that it is in this article, and the focus is primarily on Gaussian
problems. A frequentist viewpoint for inverse problems on function space is con-
tained in the book (Ramsay and Silverman 2005); however we adopt a different,
Bayesian, perspective here, and study more involved differential equation models
than those arising in (Ramsay and Silverman 2005). Nonetheless these books in-
dicate that the development that we undertake here is a natural one, which builds
upon the existing literature.

The subject known asdata assimilationprovides a number of important appli-
cations of the material presented here. Its development hasbeen driven, to a large
extent, by practitioners working in the atmospheric and oceanographic sciences and
in the geosciences. This has resulted in a plethora of algorithmic approaches and a
number of significant algorithmic innovations. A good source for an understanding
of data assimilation in the context of the atmospheric sciences, and weather pre-
diction in particular, is the book of Kalnay (Kalnay 2003). Abook motivated by
applications in oceanography, which simultaneously highlights some of the under-
lying function space structure of data assimilation for linear, Gaussian problems,
is Bennett’s book (Bennett 2002). The book of Evensen (Evensen 2006) provides
a good overview of many computational aspects of the subject, reflecting the au-
thor’s experience in geophysical applications and relatedareas. The recent special
edition of PhysicaD devoted to data assimilation provides agood entry point to
some of the current research in this area (Jones and Ide 2007). Another applica-
tion that fits the mathematical framework developed here is molecular dynamics.
The problems of interest do not arise from Bayesian inverse problems, as such, but
rather from conditioned diffusion processes. However the mathematical structure
has much in common with that arising in Bayesian inverse problems, and so we
include a decription of this problem area.

Throughout the article we use standard notation for Banach and Hilbert space
norm and inner-products:‖ · ‖, 〈·, ·〉; and the following notation for the finite di-
mensional Euclidean norm and inner-product:| · |, 〈·, ·〉. We also use the concept
of weighted inner-products and norms in any Hilbert space. For any self-adjoint
positive operatorA we define

〈·, ·〉A = 〈A− 1
2 ·,A− 1

2 ·〉, ‖ · ‖A = ‖A− 1
2 · ‖
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in the general setting and, in finite dimensions,

| · |A = |A− 1
2 · |.

For anya, b ∈ H, a Hilbert space, we define the operatora ⊗ b by the identity
(

a ⊗ b
)

c = 〈b, c〉a for any c ∈ H. We use∗ to denote the adjoint of a linear
operator between two Hilbert spaces. In particular we may viewa, b ∈ H as linear
operators fromR to H and thena⊗ b = ab∗.

In order to highlight the common structure arising in many ofthe problems in
this book, we will endeavour to use the same notation repeatedly in the different
contexts. A Gaussian measure will be denoted asN (m, C) with m themeanand
C the covariance operator. The mean of the prior Gaussian measure will bem0

and its covariance matrix/operator will beΣ0 or C0 (we will drop the subscript0
on the prior where no confusion arises in doing so). We will use the terminology
precision operatorfor the (densely defined)L := C−1. For inverse problems the
operator mapping the uknown vector/field to the observations will be denoted byG
and termed theobservation operatorand theobservational noisewill be denoted
by η.

We emphasize that in this article we will work for the most part with Gaussian
priors. In terms of the classical theory of regularization this means that we are lim-
iting ourselves to quadratic regularization terms, typically in a Sobolev norm. We
recognize that there are many applications of importance where other regulariza-
tions are natural, especially in image processing (Rudin, Osher and Fatemi 1992,
Scherzer, Grasmair, Grossauer, Haltmeier and Lenzen 2009). A significant chal-
lenge is to take the material in this article and generalize it to these other settings
and there is some recent interesting work in this direction (Lassas, Saksman and
Siltanen 2009).

There are other problem areas which lead to the need for computation of ran-
dom functions. For example there is a large body of work concerned with un-
certainty quantification(DeVolder, Glimm, Grove, Kang, Lee, Pao, Sharp and
Ye 2002, Kennedy and O’Hagan 2001, Mohamed, Christie and Demyanov 2009,
Efendiev, Datta-Gupta, Ma and Mallick 2009). In this field the input data to a
differential equation is viewed as a random variable and theinterest is in com-
puting the resulting variability in the solution, as the input data varies. This is
currently an active area of research in the engineering community (Spanos and
Ghanem 1989, Spanos and Ghanem 2003). The work is thus primarily concerned
with approximating measures which are the push forward, under a nonlinear map,
of a Gaussian measure; in constrast the inverse problem setting which we study
here is concerned with the approximation of non-Gaussian measures whose Radon-
Nikodym derivative with respect to a Gaussian measure is defined through a related
nonlinear map. A rigorous numerical analysis underpinningthe work of (Spanos
and Ghanem 1989, Spanos and Ghanem 2003) is an active area of research, see in
particular (Schwab and Todor 2006, Todor and Schwab 2007) where the problem
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is viewed as an example of Schwab’s more general program of tensor product ap-
proximation for high (infinite) dimensional problems (Gittelson and Schwab 2010).
A different area where tensor products are used to form approximations of func-
tions of many variables is computational quantum mechanicsand approximation
of the Schrödinger equation (Lubich 2008); this work may also be seen in the
more general context of tensor product approximations in linear algebra (Kolda
and Bader 2009). It would be interesting to investigate whether any of these tensor
product ideas can be transferred to the approximation of probability density func-
tions in high dimensional spaces as arise naturally in Bayesian inverse problems.

More generally speaking this article is concerned with a research area which is at
the interface of applied mathematics and statistics. This is a rich research interface
where there is currently significant effort. Examples include work in compressed
sensing, which blends ideas from statistics, probability,approximation theory and
harmonic analysis (Candes and Wakin 2008, Donoho 2006), andresearch aimed at
efficient sampling of Gaussian random fields combining numerical linear algebra
and statistics (Rue and Held 2005).
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2. The Bayesian Framework

2.1. Overview

This section introduces the Bayesian approach to inverse problems and outlines
the common structure that we will develop in the remainder ofthe article. In
subsection 2.2 we introduce finite dimensional inverse problems and describe the
Bayesian approach to their solution, highlighting the roleof observational noise
which pollutes the data in many problems of practical interest. We show how to
construct a formula for the posterior measure on the unknownof interest, from
the data and from a prior measure incorporating structural knowledge about the
problem which is present prior to the aquisition of the data.In subsection 2.3 we
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study the effect on the posterior of small observational noise, in order to connect
the Bayesian viewpoint with the classical perspective on inverse problems. We first
study problems where the dimensions of the data set and the unknown match; we
show that the prior measure is asymptotically irrelevant and that, in the limit of
zero noise, the posterior measure converges weakly to a Dirac measure centred on
the solution of the noise free equation. We next study the special structure which
arises when the mathematical model and observations are described through linear
operators, and when the prior and the noise are Gaussian; this results in a Gaussian
posterior measure. In this Gaussian setting we first study the limit of vanishing
observational noise in the case where the dimension of the data set is greater than
that of the unknown, showing that the prior is asymptotically irrelevant, and that
the posterior measure approaches a Dirac concentrated on the solution of a natu-
ral least squares problem. We then study the situation wherethe dimension of the
data set is smaller than that of the unknown. We show that, in the limit of small
observational noise, the prior remains important and we characterize this effect
explicitly. Subsection 2.4 completes the introductory material by describing the
common framework which we will illustrate and exploit in theremainder of the
article when developing the Bayesian viewpoint on functionspace.

2.2. Linking the Classical and Bayesian Approaches

In applications it is frequently of interest to solveinverse problems: to find u, an
input to a mathematical model, giveny an observation of (some components of, or
functions of) the solution of the model. We have an equation of the form

y = G(u) (2.2.1)

to solve foru ∈ X, giveny ∈ Y , whereX,Y are Banach spaces. We will refer
to G as theobservation operator1. We refer toy asdata. It is typical of inverse
problems that they areill-posed: there may be no solution, or the solution may not
be unique and may depend sensitively ony. One approach to the problem in this
situation is to replace it by theleast squaresoptimization problem of finding, for
the norm‖ · ‖Y onY ,

argminu∈X

1

2
‖y − G(u)‖2

Y . (2.2.2)

This problem, too, may be difficult to solve as it may possess minimizing sequences
u(n) which do not converge to a limit inX, or it may possess multiple minima and
sensitive dependence on the datay. These issues can be somewhat ameliorated by
solving aregularizedminimization problem of the form, for some Banach space

1 This operator is often denoted with the letterH in the atmospheric sciences community; because
we needH for Hilbert space later on, we use the symbolG.
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(

E, ‖ · ‖E

)

contained inX, and pointm0 ∈ E,

argminu∈E

(1

2
‖y − G(u)‖2

Y +
1

2
‖u−m0‖2

E

)

. (2.2.3)

However the choice of norms‖ · ‖E , ‖ · ‖Y and the pointm0 are somewhat arbi-
trary, without the making further modelling assumptions. We will adopt a statistical
approach to the inverse problems in which these issues can bearticulated and ad-
dressed in an explicit fashion. Roughly speaking the Bayesian approach will lead
to the notion of finding aprobability measureµy on X, containing information
about the relative probability of different statesu, given the datay. For example,
in the case whereX,Y are both finite dimensional, the noise polluting (2.2.1) is
additive and Gaussian, and the prior measure is Gaussian, the posterior measure
will have densityπy given by

πy(u) ∝ exp
(

−1

2
‖y − G(u)‖2

Y − 1

2
‖u−m0‖2

E

)

. (2.2.4)

The properties of a measureµy with such a densityπy are intimately related to
the minimization problem (2.2.3): the density is largest atminimizers. But the
probabilistic approach is far richer. For example, the derivation of the probability
measureµy, will force us to confront various modelling and mathematical issues
which, together, will guide the choice of norms‖ · ‖E , ‖ · ‖Y and the pointm0.
Furthermore the probabilistic approach enables us to answer questions like “what is
the relative probability that the unknown functionu is determined by the different
local minimizers of (2.2.3)”; or “how certain can we be that aprediction made by
a mathematical model will lie in certain specified regimes?”.

We now outline a probabilistic framework which will includethe specific prob-
ability measure with density given by (2.2.4) as a special case. This framework
starts from the observation that a deeper understanding of the source of data of-
ten reveals that the observationsy are subject to noise and that a more appropriate
model equation is often of the form

y = G(u) + η (2.2.5)

whereη is a mean-zero random variable, whose statistical properties we might
know, but whose actual value is unknown to us; we refer toη as theobservational
noise. In this context it is natural to adopt aBayesianapproach to the problem of
determiningu from y: see section 6.6. We describe our prior beliefs aboutu, in
terms of a probability measureµ0, and use Bayes formula (see (6.6.4)) to calculate
the posterior probability measureµy, for u giveny.

To be concrete, in the remainder of this subsection and in thenext subsection we
consider the case whereu ∈ Rn, y ∈ Rq and we letπ0 andπy denote the pdfs (see
section 6.1) of measuresµ0 andµy. We assume thatη ∈ Rq is a random variable
with densityρ. Then the probability ofy givenu has density

ρ(y|u) := ρ(y − G(u));
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this is often refered to as thedata likelihood. By Bayes formula (6.6.4) we obtain

πy(u) =
ρ(y − G(u))π0(u)

∫

Rn ρ(y − G(u))π0(u)du
. (2.2.6)

Thus

πy(u) ∝ ρ(y − G(u))π0(u) (2.2.7)

with constant of proportionality depending only ony. Abstractly (2.2.7) expresses
the fact that the posterior measureµy (with densityπy) and prior measureµ0 (with
densityπ0) are related through the Radon-Nikodym derivative (see Theorem 6.2)

dµy

dµ0
(u) ∝ ρ(y − G(u)). (2.2.8)

Sinceρ is a density and thus non-negative, without loss of generality we may write
the right-hand side as the exponential of the negative of a potentialΦ(u; y) to obtain

dµy

dµ0
(u) ∝ exp

(

−Φ(u; y)
)

. (2.2.9)

It is this form which generalizes naturally to situations whereX, and possiblyY ,
is infinite dimensional. We show in section 3 that many inverse problems can be
formulated in a Bayesian fashion and that the posterior measure takes this form.

In general it is hard to obtain information from a probability measure in high
dimensions. One useful approach to extracting informationis to find amaximum
a posteriori estimator, or MAP estimator: a pointu which maximizes the poste-
rior pdf πy; suchvariational methods are overviewed in subsection 5.3. Another
commonly used method for interrogating a probability measure in high dimensions
is sampling: generating a set of points{un}N

n=1 distributed (perhaps only approxi-
mately) according toπy(u). In this context formula (2.2.7) (or (2.2.9) in the general
setting), in which the posterior density is known only up to aconstant, is useful be-
causeMCMC methodsmay be used to sample from it: MCMC methods have the
advantage of sampling from a probability measure only knownupto a normalizing
constant; we overview these methods in subsection 5.2. Time-dependent problems,
where the data is acquired sequentially, also provide a class of problems where use-
ful approximations can be developed – thesefiltering methods are overviewed in
subsection 5.4.

We will often be interested in problems where priorµ0 and observational noise
η are Gaussian. Ifη ∼ N (0, B) andµ0 = N (m0,Σ0) then we obtain from (2.2.7)
the formula2

πy(u) ∝ exp
(

−1

2

∣

∣

∣
B− 1

2
(

y − G(u)
)

∣

∣

∣

2
− 1

2

∣

∣

∣
Σ
− 1

2
0

(

u−m0

)

∣

∣

∣

2)

= exp
(

−1

2

∣

∣

∣

(

y − G(u)
)

∣

∣

∣

2

B
− 1

2

∣

∣

∣

(

u−m0

)

∣

∣

∣

2

Σ0

)

. (2.2.10)

2 The notation for the weighted norms and inner-products is defined at the end of section 1.
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In terms of measures this is the statement that
dµy

dµ0
(u) ∝ exp

(

−1

2

∣

∣

∣

(

y − G(u)
)

∣

∣

∣

2

B

)

. (2.2.11)

Themaximum a posteriori estimator, or MAP estimatoris then

argminu∈Rn

(1

2
|y − G(u)|2B +

1

2
|u−m0|2Σ0

)

. (2.2.12)

This is a specific instance of the regularized minimization problem (2.2.3). Note
that in the Bayesian framework the norms‖ · ‖Y , ‖ · ‖E and the pointm0 all have a
clear interpretation in terms of the statistics of the observational noise and the prior
measure. In contrast these norms and point are somewhat arbitrary in the classical
approach.

In general the posterior probability measure (2.2.10) is not itself Gaussian. How-
ever, ifG is linear then the posteriorµy is also Gaussian. Identifying the mean and
covariance (or precision) matrix can be achieved bycompleting the squareas for-
malized in Theorem 6.20 and Lemma 6.21 (see also Examples 6.22 and 6.23).
The following simple examples illustrate this. They also show further connections
between the Bayesian and classical approaches to inverse problems, a subject we
develop further in the following subsection.

Example 2.1 Let q = 1 andG be linear so that

y = 〈g, u〉 + η

for someg ∈ Rn. Assume further thatη ∼ N (0, γ2) and that we place a prior
Gaussian measureN (0,Σ0) onu. Then

πy(u) ∝ exp
(

− 1

2γ2
|y − 〈g, u〉|2 − 1

2
〈u,Σ−1

0 u〉
)

. (2.2.13)

As the exponential of a quadratic form, this is the density ofa Gaussian measure.
From Theorem 6.20 we find that the posterior mean and covariance are given by

m =
(Σ0g)y

γ2 + 〈g,Σ0g〉

Σ = Σ0 −
(Σ0g)(Σ0g)

∗

γ2 + 〈g,Σ0g〉
If we consider the case where observational noise disappears from the system then
we find that

m+ := lim
γ→0

m =
(Σ0g)y

〈g,Σ0g〉
, Σ+ := lim

γ→0
Σ = Σ0 −

(Σ0g)(Σ0g)
∗

〈g,Σ0g〉
.

Notice thatΣ+g = 0 and 〈m+, g〉 = y. This states the intuitively reasonable
fact that, as the observational noise decreases, knowledgeof u in the direction
of g becomes certain. In directions not aligned withg uncertainty remains, with
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magnitude determined by an interaction between propertiesof the prior and of the
observation operator. Thus the prior plays a central role, even as observational
noise disappears, in this example where the solution is underdetermined.

Example 2.2 Assume thatq > 2 andn = 1 and letG be nonlinear with the form

y = g(u + βu3) + η

whereg ∈ Rq\{0}, β ∈ R andη ∼ N (0, γ2I). Assume further that we place a
Gaussian measureN (0, 1) as a prior onu. Then

πy(u) ∝ exp
(

− 1

2γ2
|y − g(u+ βu3)|2 − 1

2
u2

)

.

This measure is not Gaussian unlessβ = 0.
Consider the linear case whereβ = 0. The posterior measure is then Gaussian:

πy(u) ∝ exp
(

− 1

2γ2
|y − gu|2 − 1

2
|u|2

)

.

By Theorem 6.20, using the identity
(

γ2I + gg∗
)−1

g =
(

γ2 + |g|2
)−1

g,

we deduce that the posterior mean and covariance are given by

m =
〈g, y〉

γ2 + |g|2

σ2 =
γ2

γ2 + |g|2 .

In the limit where observational noise disappears we find that

m+ = lim
γ→0

m =
〈g, y〉
|g|2 ,

(

σ+
)2

= lim
γ→0

σ2 = 0.

The pointm+ is the least squares solution of the overdetermined linear equation
y = gu found from the minimization problem

argminu∈R|y − gu|2.
This is a minimization problem of the form (2.2.2). In this case, where the system
is overdetermined, the prior plays no role in the limit of zero observational noise.

2.3. Small Noise Limits of the Posterior Measure

We have shown that the Bayesian and classical perspectives are linked through the
relationship between the posterior probability density given by (2.2.10) and the
MAP estimator (2.2.12). This directly connects minimization of a regularized least
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squares problem with the Bayesian perspective. Our aim now is to further the link
between the Bayesian and classical approaches by considering the limit of small
observational noise.

The small observational noise limit is illustrated in the two examples conclud-
ing the previous subsection. In the first, where the underlying noise-free problem
is underdetermined, the prior provides information about the posterior mean, and
uncertainty remains in the posterior, even as observational noise disappears; fur-
thermore, that uncertainty is related to the choice of prior. In the second example,
where the underlying noise-free problem is overdetermined, uncertainty disappears
and the posterior converges to a Dirac measure centred on theleast squares solu-
tion of the limiting deterministic equation. The intuitionobtained from these two
examples, concerning the behaviour of the posterior measure in the small noise
limit, is important. The first example suggests that in the underdetermined case
the prior measure plays a role in determining the posterior measure, even as the
observational noise disappears; in contrast the second example suggests that, in
the overdetermined case, the prior plays no role in the smallnoise limit. Many
of the inverse problems for functions that we study later in this paper are under-
determined. For these problemsthe prior measure plays an important role in the
solution, even when observational noise is small. A significant advantage of the
Bayesian framework over classical approaches is that it makes the modelling as-
sumptions which underly the prior both clear and explicit.

In the remainder of this subsection we demonstrate that the intuition obtained
from the two examples can be substantiated on a broad class offinite dimensional
inverse problems. We first concentrate on the general case which lies between
these two examples, whereq = n and, furthermore, equation (2.2.1) has a unique
solution. We then restrict our attention to Gaussian problems, studying the over
and underdetermined cases in turn. We state the results first, and provide proofs at
the end of the subsection. The results are stated in terms of weak convergence of
probability measures, denoted by⇒; see the end of subsection 6.1 for background
on this concept.

We start with the caseq = n and assume that equation (2.2.1) has a unique
solution

u = F(y) (2.3.1)

for everyy ∈ Rn. Intuitively this unique solution should dominate the Bayesian so-
lution to the problem (which is a probability distribution on Rn, not a single point).
We show that this is indeed the case: the probability distribution concentrates on
the single point given by (2.3.1) as observational noise disappears.

We assume that there is a positive constantC such that, for ally, δ ∈ Rn,
∣

∣

∣
y − G

(

F(y) + δ
)

∣

∣

∣

2
> Cmin{1, |δ|2}. (2.3.2)

This condition implies that the derivativeDG(u) is invertible atu = F(y), so that
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the implicit function theorem holds; the condition also excludes the possibility of
attaining the minimum0 of 1

2 |y − G(u)|2 along a sequenceun → ∞. We then
have:

Theorem 2.3 Assume thatk = n, thatG ∈ C2(Rn,Rn) and that equation (2.2.1)
has a unique solution given by (2.3.1), for everyy ∈ Rn. We place a Gaussian
prior µ0 = N (m0,Σ0) on u and assume that the observational noiseη in (2.2.5)
is distributed asN (0, γ2I). Then the posterior measureµy, with density given by
(2.2.10) andB = γ2I, satisfiesµy ⇒ δF(y) asγ → 0.

The preceding theorem concerns problems where the underlying equation (2.2.1)
relating data to model is uniquely solvable. This situationrarely arises in practice,
but is of course important for building links between the Bayesian and classical
perspectives.

We now turn to problems which are either over or underdetermined and, for sim-
plicity, confine our attention to purely Gaussian problems.We again work in arbi-
trary finite dimensions and study the small observational noise limit and its relation
to the the underlying noise-free problem (2.2.1). In Theorem 2.4 we show that the
posterior measure converges to a Dirac measure concentrated on minimizers of the
least squares problem (2.2.2). Of course when (2.2.1) is uniquely solvable this will
lead to a Dirac on its solution, as in Theorem 2.3; but more generally there may be
no solution to (2.2.1) and least squares minimizers providea natural generalized
solution concept. In Theorem 2.5 we study the Gaussian problem in the undeter-
mined case, showing that the posterior measure converges toa Gaussian measure
whose support lies on a hyperplane embedded in the space where the unknownu
lies. The structure of this Gaussian measure is determined by an interplay between
the prior, the forward model and the data. In particularprior information remains
in the small noise limit. This illustrates the important idea that for (frequently
occuring) underdetermined problems the prior plays a significant role, even when
noise is small, and should therefore be treated very carefully from the perspective
of mathematical modelling.

If the observational noiseη is Gaussian, if the priorµ0 is Gaussian and ifG is a
linear map, then the posterior measureµy is also Gaussian. This follows immedi-
ately from the fact that the logarithm ofπy given by (2.2.6) is quadratic inu under
these assumptions. We now study the properties of this Gaussian posterior.

We assume that

η ∼ N (0, B), µ0 = N (m0,Σ0), G(u) = Au

and thatB andΣ0 are both invertible.
Then, sincey|u ∼ N (Au,B), Theorem 6.20 shows that the posterior measure

µy is GaussianN (m,Σ) with

m = m0 + Σ0A
∗(B +AΣ0A

∗)−1(y −Am0) (2.3.3a)
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Σ = Σ0 − Σ0A
∗(B +AΣ0A

∗)−1AΣ0. (2.3.3b)

In the case wherek = n andA,Σ0 are invertible we see that, asB → 0,

m→ A−1y, Σ → 0.

From Lemma 6.5 we know that convergence of all characteristic functions implies
weak convergence. Furthermore, the characteristic function of a Gaussian is deter-
ined by the mean and covariance – Theorem 6.4. Hence for a finite dimensional
family of Gaussians convergence of the mean and covariance to a limit implies
weak convergence to the Gaussian with that limiting mean andcovariance. For
this family of measures the limiting covariance is zero and thus theB → 0 limit
recovers a Dirac measure on the solution of the equationAu = y, in accordance
with Theorem 2.3. It is natural to ask what happens in the limit of vanishing noise,
more generally. The following two theorems provide an answer to this question.

Theorem 2.4 Assume thatB andΣ0 are both invertible. The posterior mean and
covariance can be rewritten as

m = (A∗B−1A+ Σ−1
0 )−1(A∗B−1y + Σ−1

0 m0) (2.3.4a)

Σ = (A∗B−1A+ Σ−1
0 )−1. (2.3.4b)

If Null (A) = {0} andB = γ2B0 then, in the limitγ2 → 0, µy ⇒ δm+ wherem+

is the solution of the least squares problem

m+ = argminu∈Rn |B− 1
2

0 (y −Au)|2.

The preceding theorem shows that, in the overdetermined case whereA∗BA
is invertible, the small observational noise limit leads toa posterior which is a
Dirac, centred on the solution of a least squares problem determined by the obser-
vation operator and the relative weights on the observational noise. Uncertainty
disappears, and the prior plays no role in this limit. Example 2.2 illustrates this
situation.

We now assume thaty ∈ Rq andu ∈ Rn with q < n, so that the problem is
underdetermined. We assume thatrank(A) = q so that we may write

A = (A0 0)Q∗ (2.3.5)

with Q ∈ Rn×n an orthogonal matrix so thatQ∗Q = I, A0 ∈ Rq×q an invertible
matrix and0 ∈ Rq×(n−q) a zero matrix. We also letL0 = Σ−1

0 , the precision
matrix for the prior, and write

Q∗L0Q =

(

L11 L12

L∗
12 L22

)

. (2.3.6)
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HereL11 ∈ Rq×q, L12 ∈ Rq×(n−q) andL22 ∈ R(n−q)×(n−q); bothL11 andL22

are positive definite symmetric, becauseΣ0 is.
If we write

Q = (Q1 Q2) (2.3.7)

with Q1 ∈ Rn×q andQ2 ∈ Rn×(n−q) thenQ∗
1 projects onto aq−dimensional

subspaceO andQ∗
2 projects onto an(n − q)−dimensional subspaceO⊥; hereO

andO⊥ are orthogonal.
Assume thaty = Au for someu ∈ Rn. This identity is at the heart of the

inverse problem in the smallγ limit. If we definez ∈ Rq to be the unique solution
of the system of equationsA0z = y thenz = Q∗

1u. On the other handQ∗
2u is

not determined by the identityy = Au. Thus intuitively we expect to determine
z without uncertainty, in the limit of small noise, but for uncertainty to remain in
other directions. With this in mind we definew ∈ Rq andw′ ∈ Rn−q via the
equation

Σ−1
0 m0 = Q

(

w
w′

)

(2.3.8)

and then set

z′ = −L−1
22 L

∗
12z + L−1

22 w
′ ∈ Rn−q.

Theorem 2.5 Assume thatB andΣ0 are both invertible and letB = γ2B0. Then,
in the limit γ2 → 0, µy ⇒ N (m+,Σ+) where

m+ = Q

(

z
z′

)

(2.3.9a)

Σ+ = Q2L
−1
22 Q

∗
2. (2.3.9b)

We now interpret this theorem. SinceQ∗
2Q1 = 0 the limiting measure may be

viewed as a Dirac measure, centred atz in O, and a Gaussian measureN (z′, L−1
22 )

in O⊥. These measures are independent so that the theorem states that

µy ⇒ δz ⊗N (z′, L−1
22 )

viewed as a measure onO ⊕O⊥. Thus, in the small observational noise limit, we
determine the solution without uncertainty inO whilst inO⊥ uncertainty remains.
Furthermore the prior plays a role in the posterior measure in the limit of zero
observational noise; specifically it enters the formulae for z′ andL22.

We finish this subsection by providing proofs of the preceding three results.

Proof of Theorem 2.3Defineδ := u−F(y) and let

f(δ) = − 1

2γ2
|y − G(F(y) + δ)|2 − 1

2
|Σ− 1

2
0 (F(y) + δ −m0)|2.
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Fix ℓ ∈ Rn. Then, withE denoting expectation underµy,

E exp
(

i〈ℓ, u〉
)

=
1

Z
exp

(

i〈ℓ,F(y)〉
)

∫

Rn

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ

where

Z =

∫

Rn

exp(f(δ))dδ.

Thus, by Lemma 6.5, it suffices to prove that, asγ → 0,

1

Z

∫

Rn

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ → 1.

Define

I(ℓ) =

∫

Rn

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ,

noting thatZ = I(0). Then, fora ∈ (2/3, 1), we splitI(ℓ) into I(ℓ) = I1(ℓ) +
I2(ℓ) where

I1(ℓ) =

∫

|δ|6γa

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ

I2(ℓ) =

∫

|δ|>γa

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ.

We considerI1(ℓ) first so that|δ| 6 γa. By Taylor expandingf(δ) aroundδ = 0
we obtain

f(δ) = − 1

2γ2
|Bδ|2 − 1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) + δ −m0

)
∣

∣

∣

2
+ O

( δ3

γ2

)

whereB = DG(F(y)). Thus, forb = a ∧ (3a− 2) = 3a− 2,

i〈ℓ, δ〉 + f(δ) = −1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) −m0

)∣

∣

∣

2
− 1

2γ2
|Bδ|2 + O(γb).

Thus

I1(ℓ) = exp
(

−1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) −m0

)
∣

∣

∣

2)
∫

|δ|6γa

exp
(

− 1

2γ2
|Bδ|2 + O(γb)

)

dδ.

It follows that

I1(ℓ) = exp
(

−1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) −m0

)
∣

∣

∣

2)
∫

|δ|6γa

exp
(

− 1

2γ2
|Bδ|2

)

×
(

1 + O(γb)
)

dδ

= γn exp
(

−1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) −m0

)
∣

∣

∣

2)
∫

|z|6γa−1

exp
(

−1

2
|Bz|2

)

×
(

1 + O(γb)
)

dz.

We now estimateI2(ℓ) and show that it is asymptotically negligible compared
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with I1(ℓ). Note that, by (2.3.2),

f(δ) 6 −Cmin{1, |δ|2}
2γ2

− 1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) + δ −m0

)
∣

∣

∣

2

6 −Cmin{1, |δ|2}
2γ2

.

Thus

|I2(ℓ)| 6

∫

1>|δ|>γa

exp
(

−Cδ
2

γ2

)

dδ

+

∫

|δ|>1
exp

(

− C

γ2

)

exp
(

−1

2

∣

∣

∣
Σ
− 1

2
0

(

F(y) + δ −m0

)
∣

∣

∣

2)

dδ.

Sincea < 1 it follows thatI2(ℓ) is exponentially small inγ → 0. As I1(ℓ) is, to
leading order,O(γn) and independent ofℓ, we deduce that

1

Z

∫

Rn

exp
(

i〈ℓ, δ〉 + f(δ)
)

dδ =
I(ℓ)

I(0)
→ 1

asγ → 0 and the result follows.

Proof of Theorem 2.4We first note the identity

A∗B−1(B +AΣ0A
∗) = (A∗B−1A+ Σ−1

0 )Σ0A
∗

which follows sinceΣ0 andB are both positive definite. SinceA∗B−1A + Σ−1
0

andB +AΣ0A
∗ are also positive definite we deduce that

(A∗B−1A+ Σ−1
0 )−1A∗B−1 = Σ0A

∗(B +AΣ0A
∗)−1.

Thus the posterior mean may be written as

m = m0 + (A∗B−1A+ Σ−1
0 )−1A∗B−1(y −Am0)

= (A∗B−1A+ Σ−1
0 )−1(A∗B−1y +A∗B−1Am0 + Σ−1

0 m0 −A∗B−1Am0)

= (A∗B−1A+ Σ−1
0 )−1(A∗B−1y + Σ−1

0 m0)

as required. A similar calculation establishes the desiredproperty of the posterior
covariance.

If B = γ2B0 then we deduce that

m = (A∗B−1
0 A+ γ2Σ−1

0 )−1(A∗B−1
0 y + γ2Σ−1

0 m0)

Σ = γ2(A∗B−1
0 A+ γ2Σ−1

0 )−1.

Since Null(A) = {0} we deduce that there isα > 0 such that

〈ξ,A∗B−1
0 Aξ〉 = |B− 1

2
0 Aξ|2 > α|ξ|2 ∀ξ ∈ Rn.

ThusA∗B−1
0 A is invertible and it follows that, asγ → 0, the posterior mean
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converges to

m+ = (A∗B−1
0 A)−1A∗B−1

0 y

and the posterior covariance converges to zero. By Lemma 6.5we deduce the
desired weak convergence ofµy to δm+ . It remains to characterizem+.

Since the null-space ofA is empty, minimizers of

φ(u) :=
1

2
‖B− 1

2
0 (y −Au)‖2

are unique and satisfy the normal equations

A∗B−1
0 Au = A∗B−1

0 y.

Hencem+ solves the desired least squares problem and the proof is complete.

Proof of Theorem 2.5By Lemma 6.5 we see that it suffices to prove that the mean
m and covarianceΣ given by the formulae in Theorem 2.4 converge tom+ and
Σ+ given by (2.3.9). We start by studying the covariance matrixwhich, by Theo-
rem 2.4, is given by

Σ =
( 1

γ2
A∗B−1

0 A+ L0

)−1
.

Using the definition (2.3.5) ofA we see that

A∗B−1
0 A = Q

(

A∗
0B

−1
0 A0 0
0 0

)

Q∗

then by (2.3.6) we have

Σ−1 = Q

( 1
γ2A

∗
0B

−1
0 A0 + L11 L12

L∗
12 L22

)

Q∗.

Applying the Schur complement formula for the inverse of a matrix as in Lemma
6.5 we deduce that

Σ = Q

(

γ2(A∗
0B

−1
0 A0)

−1 0
−γ2L−1

22 L
∗
12(A

∗
0B

−1
0 A0)

−1 L−1
22

)

Q∗ + ∆ (2.3.10)

where
1

γ2

(

|∆11| + |∆21|
)

→ 0

asγ → 0 and there is a constantC > 0 such that

|∆12| + |∆22| 6 Cγ2

for all γ sufficiently small. From this it follows that, asγ → 0,

Σ → Q

(

0 0

0 L−1
22

)

Q∗ := Σ+.

Writing Q as in (2.3.7). We see thatΣ+ = Q2L
−1
22 Q

∗
2 as required.
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We now return to the mean. By Theorem 2.4 this is given by the formula

m = Σ
(

A∗B−1y + Σ−1
0 m0

)

.

Using the expressionA = (A0 0)Q∗ we deduce that

m→ Σ
( 1

γ2
Q

(

A∗
0B

−1
0

0

)

y + Σ−1
0 m0

)

.

By definition ofw,w′ we deduce that

m = ΣQ

( 1
γ2A

∗
0B

−1
0 y + w

w′

)

.

Using equation (2.3.10) we find that

m = Q

(

z

−L−1
22 L

∗
12z + L−1

22 w
′

)

= Q

(

z
z′

)

:= m+.

This completes the proof.

2.4. Common Structure

In the previous subsection we showed that, for finite dimensional problems, Bayes
rule gives the relationship (2.2.6) between the prior and posterior pdfsπ0 andπy

respectively. Expressed in terms of the measuresµy andµ0 corresponding to these
densities the formula may be written as in (2.2.9):

dµy

dµ0
(u) =

1

Z(y)
exp

(

−Φ(u; y)
)

. (2.4.1)

The normalization constantZ(y) is chosen so thatµy is a probability measure:

Z(y) =

∫

X
exp

(

−Φ(u; y)
)

dµ0(u). (2.4.2)

It is this form which generalizes readily to the setting on function space where there
are no densitiesπy andπ0 with respect to Lebesgue measure, but whereµy has a
Radon-Nikodym derivative (see Theorem 6.2) with respect toµ0.

In section 3 we will describe a range of inverse problems which can be formu-
lated in terms of finding, and characterizing the propertiesof, a probability mea-
sureµy on a separable Banach space

(

X, ‖ · ‖X

)

, specified via its Radon-Nikodym
derivative with respect to a reference measureµ0 as in (2.4.1),(2.4.2). In this sub-
section we highlight the common framework into which many ofthese problems
can be placed by studying conditions onΦ which arise naturally in a wide range
of applications. This framework will then be used to developa general theory for
inverse problems in section 4. It is important to note that, when studying inverse
problems, the properties ofΦ that we highlight in this section are typically deter-
mined by theforward PDE problemwhich maps the unknown functionu to the
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datay. In particular probability theory does not play a direct role in verifying these
properties ofΦ. Probability becomes relevant when choosing the prior measure so
that it charges the Banach spaceX, on which the desired properties ofΦ hold, with
full measure. We illustrate how to make such choices of priorin section 3.

We assume that the datay is in a separable Banach space
(

Y, ‖ · ‖Y

)

. When

applying the framework outlined in this article we will always assume that the prior
measure is Gaussian:µ0 ∼ N (m0, C0). The properties of Gaussian random mea-
sures on Banach space, and Gaussian random fields in particular, may be found in
subsections 6.3, 6.4 and 6.5. The two key properties of the prior that we will use
repeatedly are the tail properties of the measure as encapsulated in the Fernique
Theorem 6.9 and the ability to establish regularity properties from the covariace
operator: Theorem 6.24 and Lemmas 6.25 and 6.27. It is therefore possible to
broaden the scope of this material to non-Gaussian priors, for any measures for
which analogues of these two key properties hold. However Gaussian priors do
form an important clas of priors for a number of reasons: theyare relatively sim-
ple to define through covariance operators defined as fractional inverse powers of
differential operators; they are relatively straightforward to sample from; and the
Hölder and Sobolev regularity properties of functions drawn from the prior are
easily understood.

The properties ofΦ may be formalized through the following assumptions,
which we verify on a case-by-case basis for many of the PDE inverse problems
encountered in section 3.

Assumption 2.6 The functionΦ: X × Y → R has the following properties:

i) for everyε > 0 andr > 0 there isM = M(ε, r) ∈ R such that, for allu ∈ X
and ally ∈ Y with ‖y‖Y < r,

Φ(u; y) > M − ε‖u‖2
X ;

ii) for every r > 0 there is aK = K(r) > 0 such that, for allu ∈ X andy ∈ Y
with max{‖u‖X , ‖y‖Y } < r,

Φ(u; y) 6 K;

iii) for every r > 0 there isL(r) > 0 such that, for allu1, u2 ∈ X andy ∈ Y
with max{‖u1‖X , ‖u2‖X , ‖y‖Y } < r,

|Φ(u1; y) − Φ(u2; y)| 6 L‖u1 − u2‖X ;

iv) for every ε > 0 and r > 0 there isC = C(ε, r) ∈ R such that, for all
y1, y2 ∈ Y with max{‖y1‖Y , ‖y2‖Y } < r, and for allu ∈ X,

|Φ(u; y1) − Φ(u; y2)| 6 exp
(

ε‖u‖2
X + C

)

‖y1 − y2‖Y .
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These assumptions are, in turn, a lower bound, an upper boundand Lipschitz
properties inu and iny. WhenY is finite dimensional and the observational noise
is N (0,Γ), thenΦ has the form

Φ(u; y) =
1

2

∣

∣

∣
Γ− 1

2
(

y − G(u)
)

∣

∣

∣

2

=
1

2

∣

∣

∣

(

y − G(u)
)

∣

∣

∣

2

Γ
. (2.4.3)

It is then natural to derive the bounds and Lipschitz properties ofΦ from properties
of G.

Assumption 2.7 The functionG : X → Rq satisfies the following:

i) for everyε > 0 there isM = M(ε) ∈ R such that, for allu ∈ X,

|G(u)|Γ 6 exp
(

ε‖u‖2
X +M);

ii) for every r > 0 there isK = K(r) > 0 such that, for allu1, u2 ∈ X with
max{‖u1‖X , ‖u2‖X} < r,

|G(u1) − G(u2)|Γ 6 K‖u1 − u2‖X .

It is straightforward to see the following:

Lemma 2.8 Assume thatG : X → Rq satisfies Assumption 2.7. ThenΦ : X ×
Rq → R given by (2.4.3) satisfies Assumption 2.6 with

(

Y, ‖ · ‖Y

)

=
(

Rq, | · |Γ
)

.

Many properties follow from these assumptions concerning the density between
the posterior and the prior. Indeed the fact thatµy is well-defined is typically es-
tablished by using the continuity properties ofΦ(·; y). Further properties following
from these assumptions include continuity ofµy with respect to the datay, and de-
sirable perturbation properties ofµy based on finite dimensional approximation of
Φ or G. All these properties will be studied in detail in section 4.We empha-
size that many variants on the assumptions above could be used to obtain similar,
but sometimes weaker, results than those appearing in this article. For example
we work with Lipschitz continuity ofΦ in both arguments; similar results can be
proved under the weaker assumptions of continuity in both arguments. However,
since Lipschitz continuity holds for most of the applications of interest to us, we
work under these assumptions.

We reemphasize that the properties ofΦ encapsulated in Assumption 2.6 are
properties of the forward PDE problem and they do not involveinverse problems
and probability at all. The link to Bayesian inverse problems comes through the
choice of prior measureµ0 which, as we will see in sections 3 and 4, should be



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

22 A.M. STUART

chosen so thatµ0(X) = 1; this means that functions drawn at random from the
prior measure should be sufficiently regular that they lie inX with probability
one, so that the properties ofΦ from Assumptions 2.6 apply to it. (As mentioned
earlier, in this article we will use only prior measuresµ0 which are Gaussian). In
the function space setting regularity of the mean function,together with the spectral
properties of the covariance operator, determine the regularity of random draws. In
particular the rate of decay of the eigenvalues of the covariance operator plays a
central role in determining the regularity properties. These issues are discussed in
detail in subsection 6.5. For simplicity we will work throughout with covariance
operators which are defined through (possibly fractional) negative powers of the
Laplacian, or operators that behave like the Laplacian in a sense made precise
below.

To make these ideas precise, consider a second order differential operatorA on
a bounded open setD ⊂ Rd, with domain chosen so thatA is positive-definite
and invertible. LetH ⊂ L2(D). For exampleH may be restricted to the subspace
where

∫

D
u(x)dx = 0 (2.4.4)

holds in order to enforce positivity for an operator with Neumann or periodic
boundary conditions which would otherwise have constants in its kernel; or it may
be restricted to divergence free fields when incompressiblefluid flow is being mod-
elled.

We let {(φk, λk)}k∈K denote a complete orthonormal basis forH, comprising
eigenfunctions/eigenvalues ofA. ThenK ⊆ Zd\{0}. For Laplacian-like operators
we expect that the eigenvalues will grow like|k|2 and that, in simple geometries,
theφk will be bounded inL∞ and the gradient of theφk will grow like |k| in L∞.
We make these ideas precise below.

For anyu ∈ H we may write

u =
∑

k∈K

〈u, φk〉φk.

We may then define fractional powers ofA as follows, for anyα ∈ R:

Aαu =
∑

k∈K

λα
k 〈u, φk〉φk. (2.4.5)

For anys ∈ R we define the separable Hilbert spacesHs by

Hs = {u :
∑

k∈K

λs
k|〈u, φk〉|2 <∞}. (2.4.6)

These spaces have norm‖ · ‖s defined by

‖u‖2
s =

∑

k∈K

λs
k|〈u, φk〉|2.
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If s > 0 then these spaces are contained inH, but fors < 0 they are larger than
H. The following assumptions characterize a “Laplacian-like” operator. These
operators will be useful to us when constructing Gaussian priors as they will enable
us to specify regularity properties of function drawn from the prior in a transparent
fashion.

Assumption 2.9 The operatorA, densely defined on a Hilbert spaceH ⊂ L2(D; Rn),
satisfies the following properties:

i) A is positive-definite, self-adjoint and invertible;
ii) the eigenfunctions/eigenvalues{φk, λk}k∈K of A, indexed byk ∈ K ⊂

Zd\{0}, form an orthonormal basis forH;
iii) there areC± > 0 such that the eigenvalues satisfy, for allk ∈ K,

C−
6

λk

|k|2 6 C+;

iv) there isC > 0 such that

sup
k∈K

(

‖φk‖L∞ +
1

|k|‖Dφk‖L∞

)

6 C.

v) if u ∈ Hs ands > d/2 thenu ∈ C(D) and there is a constantC > 0 such
that‖u‖L∞ 6 C‖u‖s where the spacesHs are defined by (2.4.6).

Note that ifA is the Laplacian with Dirichlet or Neumann boundary conditions
then the spacesHs are contained in the usual Sobolev spacesHs. In the case
of periodic boundary conditions they are identical to the Sobolev spacesHs

per.
Thus the final assumption (v) above is a generalization of thefollowing Sobolev
embedding theorem for the Laplacian:

Theorem 2.10 Assume thatA := −△ is equipped with periodic, Neumann or
Dirichlet boundary conditions on the unit cube. Ifu ∈ Hs and s > d/2 then
u ∈ C(D) and there is a constantC > 0 such that‖u‖L∞ 6 C‖u‖s.

2.5. Discussion and Bibliography

An introduction to the Bayesian approach to statistical problems in general is
(Bernardo and Smith 1994). The approach taken to Bayesian inverse problems
as outlined in (Kaipio and Somersalo 2005) is to first discretize the problem and
then secondly apply the Bayesian methodology to a finite dimensional problem.
This is a commonly adopted methodology. In that approach, the idea of trying to
capture the limit of infinite resolution is addressed by use of statistical extrapola-
tion techniques based on modeling the error from finite dimensional approxima-
tion (Kaipio and Somersalo 2007b). The approach that is developed in this article
reverses the order of these two steps: we first apply the Bayesian methodology
to an infinite dimensional problem, and then discretize. There is some literature
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concerning the Bayesian viewpoint for linear inverse problems on function space,
including the early study (Franklin 1970), and the subsequent papers (Mandelbaum
1984), (Lehtinen, Paivarinta and Somersalo 1989) and (Fitzpatrick 1991); the paper
(Lassas et al. 2009) contains a good literature review of this material, and further
references. The papers (Lassas et al. 2009, Lassas and Siltanen 2009) also study
Bayesian inversion for linear inverse problems on functionspace; they introduce
the notion ofdiscretization invarianceand investigate the question of whether it is
possible to derive regularizations of families of finite dimensional problems, in a
fashion which ensures that meaningful limits are obtained;this idea also appears
somewhat earlier in the data assimilation literature, for aparticular PDE inverse
problem, in the paper (Bennett and Budgell 1987). In the approach taken in this ar-
ticle discretization invariance is guaranteed for finite dimensional approximations
of the function space Bayesian inverse problem. Furthermore, our approach is not
limited to problems in which a Gaussian posterior measure appears; in contrast
existing work on discretization invariance is confined to the linear, Gaussian obser-
vational noise setting in which the posterior is Gaussian ifthe prior is Gaussian.

The least squares approach to inverse problems encapsulated in (2.2.3) is of-
ten termedTikhonov regularization(Engl, Hanke and Neubauer 1996) and, more
generally, thevariational methodin the applied literature (Bennett 2002, Evensen
2006). The book (Engl et al. 1996) discusses regularizationtechniques in the
Hilbert space setting and the Banach space setting is discussed in, for example, the
recent papers (Kaltenbacher, Schöpfer and Schuster 2009,Neubauer 2009, Hein
2009). As we demonstrated, regularization is closely related to finding the MAP
estimator as defined in (Kaipio and Somersalo 2005). As such it is clear that, from
the Bayesian standpoint, regularization is intimately related to the choice of prior.
Another classical regularization method for linear inverse problems is through it-
erative solution (Engl et al. 1996); this topic is related tothe Bayesian approach to
inverse problems in (Calvetti 2007, Calvetti and Somersalo2005a).

Although we concentrate in this paper on Gaussian priors, and hence on regu-
larization via addition of a quadratic penalization term, there is active research in
the use of different regularizations (Kaltenbacher et al. 2009, Neubauer 2009, Hein
2009, Lassas and Siltanen 2009). In particular the use of total variation based regu-
larization, and related wavelet based regularizations, iscentral in image processing
(Rudin et al. 1992, Scherzer et al. 2009). We will not addresssuch regularizations
in this article, but note that the develoment of a function space Bayesian view-
point on such problems, along the lines developed here for Gaussian priors, is an
interesting research direction (Lassas et al. 2009).

Theorem 2.4 concerns the small noise limit for Gaussian noise. This topic has
been studied in greater detail in the papers (Engl, Hofinger and Kindermann 2005,
Hofinger and Pikkarainen 2007, Hofinger and Pikkarainen 2009, Neubauer and
Pikkarainen 2008) where the convergence of the posterior distribution is quanti-
fied by use of the Prokohorov and Ky Fan metrics. Gaussian problems are often
amenable to closed-form analysis, as illustrated in this section, and are hence use-
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ful for illustrative purposes. Furthermore, there are manyinteresting applications
where Gaussian structure prevails. Thus we will, on occasion, exploit Gaussianity
throughout the article, for both these reasons.

The common structure underlying a wide range of Bayesian inverse problems
for functions, and which we highlight in subsection 2.4, is developed in the papers
(Cotter, Dashti, Robinson and Stuart 2009b, Cotter, Dashti, Robinson and Stuart
2009c, Cotter, Dashti and Stuart 2009a).

In the general framework established at the start of this section we have implic-
itly assumed that the observation operatorG(·) is known to us. In practice it is often
approximated by some computer codeG(·;h) in whichh denotes a mesh parame-
ter, or parameter controlling missing physics. In this case(2.2.5) can be replaced
by the equation

y = G(u;h) + ε+ η (2.5.1)

whereε := G(u) − G(u;h). Whilst it is possible to lumpε andη together into
one single error term, and work again with equation (2.2.1),this can be mislead-
ing because the observation errorη and the computational model errorε are very
different in character. The latter is typically not mean zero, and depends uponu;
in contrast it is frequently realistic to modelη as a mean zero random variable, in-
dependent ofu. Attempts to model the effects ofε andη separately may be found
in a number of publications including Chapter 7 (Kaipio and Somersalo 2005),
(Kaipio and Somersalo 2007a), (Kaipio and Somersalo 2007b), (Glimm, Hou, Lee,
Sharp and Ye 2003), (Orrell, Smith, Barkmeijer and Palmer 2001), (Kennedy and
O’Hagan 2001), (O’Sullivan and Christie 2006b), (O’Sullivan and Christie 2006a),
(Christie, Pickup, O’Sullivan and Demyanov 2008) and (Christie 2010). A differ-
ent approach to dealing with model error is to extend the variable u to include
model terms which represent missing physics or lack of resolution in the model
and to try to learn about such systematic error from the data;this approach is un-
dertaken in (Cotter et al. 2009b).
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3. Examples

3.1. Overview

In this section we study a variety of inverse problems arising from boundary value
problems and initial-boundary value problems. Our goal is to enable application of
the framework for Bayesian inverse problems on function space that is developed
in section 4, in order to justify a formula of the form (2.4.1)for a posterior measure
µy on a function space, and to establish properties of the measureµy.

In order to carry this out it is desirable to establish that, for a wide range of
problems, the common structure encapsulated in Assumptions 2.6 or 2.7 may be
shown to hold. These assumptions concern properties of theforward problemun-
derlying the inverse problem, and have no reference to the inverse problem, its
Bayesian formulation or to probability. The link between the forward problem and
the Bayesian inverse problem is provided in this section, and in the next section. In
this section we show that choosing the prior measure so thatµ0(X) = 1, whereX
is the space in which Assumptions 2.6 or 2.7 may be shown to hold, ensures that
the posterior measure is well-defined; this may often be doneby use of Theorem
6.31. The larger the spaceX, the less restrictions the conditionµ0(X) = 1 places
on the choice of prior since it is equivalent to asking that draws fromµ0 are almost
surely in the spaceX; the largerX is the easier this is to satisfy. The next sec-
tion is concerned with ramifications of Assumptions 2.6 or 2.7 for various stability
properties of the posterior measureµy with respect to perturbations.

We will work in a Banach space setting and will always specifythe prior measure
as a Gaussian. The required background material on Gaussianmeasures in Banach
space, and Gaussian random fields, may be found in section 6. We also make
regular use of the key Theorem 6.31, from section 6.6, to showthat the posterior
is well-defined and absolutely continuous with respect to the prior. For simplicity
we work with priors whose covariance operator is a fractional negative power of
an operator such as the Laplacian. The reader should be awarethat much greater
generality than this is possible and that the simple settingfor choice of priors is
chosen for expository purposes. Other Gaussian priors may be chosen so long as
the constraintµ0(X) = 1 is satisfied.

We start in subsection 3.2 by studying the inverse problems of determining a
field from direct pointwise observations. We use this example to illustrate our ap-
proach to identifying the Radon-Nikodym derivative between posterior and prior
measures. All of the subsequent subsections in this chapterinvolve Bayesian in-
ference for random fields, but in contrast to the first subsection they are based on
indirect measurements defined through solution of a differential equation. In sub-
section 3.3 we study the problem of finding the diffusion coefficient in a two point
boundary value problem, from observations of the solution.In subsection 3.4 we
consider the problem of determining the wavespeed for the scalar wave equation
from observations of the solution. Subsection 3.5 concernsthe problem of re-
covering the initial condition for the heat equation, from observation of the entire
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solution at a positive time, when polluted by an additive Gaussian random field.
We then describe several more involved examples arising in applications such as
fluid mechanics, geophysics and molecular dynamics, all of which can be placed
in the common framework developed here, but for which space precludes a full
development of the details; see subsections 3.6, 3.7 and 3.8. The problems in fluid
mechanics are natural extensions of the inverse problem forthe initial condition of
the heat equation, and those arising in subsurface geophysics generalize the inverse
problem for the diffusion coefficient in a two point boundary-value problem. The
problem in molecular dynamics is somewhat different, as it does not arise from a
Bayesian inverse problem, but rather from a conditioned diffusion process. How-
ever the resulting mathematical structure shares much withthe inverse problems
and we include it for this reason. References to some of the relevant literature on
these applications are given in subsection 3.9.

3.2. Pointwise Data for a Random Field

Let D ⊂ Rd be a bounded open set. Consider a fieldu : D → Rn. We viewu
as an element of the Hilbert spaceH = L2(D). Assume that we are given noisy
observations{yk}q

k=1 of a functiong : Rn → Rℓ of the field at a set of points
{xk}q

k=1. Thus

yk = g(u(xk)) + ηk (3.2.1)

where the{ηk}q
k=1 describe the observational noise. Concatenating data we have

y = G(u) + η (3.2.2)

wherey = (y∗1 , · · · , y∗q )∗ ∈ Rℓq andη = (η∗1 , · · · , η∗q )∗ ∈ Rℓq. The observation
operatorG mapsX := C(D) ⊂ H into Y := Rℓq. The inverse problem is to
reconstruct the fieldu from the datay.

We assume that the observational noiseη is GaussianN (0,Γ). We specify a
prior measureµ0 on u which is GaussianN (m0, C0) and determine the posterior
measureµy for u giveny. SinceP(dy|u) = N (G(u),Γ), informal application of
Bayes rule leads us to expect that the Radon-Nikodym derivative ofµy with respect
to µ0 is

dµy

dµ0
(u) ∝ exp

(

−1

2
|y − G(u)|2Γ

)

. (3.2.3)

Below we deduce appropriate choices of prior measure which ensure that this mea-
sure is well-defined and does indeed determine the desired posterior distribution for
u giveny.

If g : Rn → Rℓ is linear, so thatG(u) = Au for some linear operatorA : X →
Rℓq, then the calculations in Example 6.23 show that the posterior meausureµy is
also Gaussian withµy = N (m, C) where

m = m0 + C0A
∗(Γ +AC0A

∗)−1(y −Am0) (3.2.4a)
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C = C0 − C0A
∗(Γ +AC0A

∗)−1AC0. (3.2.4b)

Let △ denote the Laplacian onD, with domain chosen so that Assumptions
2.9(i)–(v) hold. Recall the (Sobolev-like) spacesHs from (2.4.6). Note that, by
Assumption 2.9(v), the meanm0 of the priorµ0 is necessarily a continuous func-
tion under the assumptions of the next theorem. The theorem is proved by appli-
cation of Theorem 6.31 and the reader is encouraged to study that theorem before
reading this one:

Theorem 3.1 Assume that the domain of−△ is chosen so that Assumptions 2.9(i)-
(v) hold. Letg : Rn → Rℓ be continuous. Assume thatC0 ∝ (−△)−α with α > d

2
and assume thatm0 ∈ Hα. Thenµy(du) = P(du|y) is absolutely continuous with
respect toµ0(du) = N (m0, C0) with Radon-Nikodym derivative given by (3.2.3).
Furthermore, wheng is linear, so thatG(u) = Au for some linearA : X → Rℓq,
then the posterior is Gaussian with mean and covariance given by (3.2.4).

Proof. The formulae for the mean and covariance of the Gaussian posterior mea-
sureµy = N (m, C) which arises wheng is linear follow from Example 6.23. We
now proceed to determine the posterior measure in the non-Gaussian case. Define
Lz : X → Rn to be the pointwise evaluation operator atz ∈ D. Notice that

|Lzu− Lzv| = |u(z) − v(z)| 6 ‖u− v‖L∞

so thatLz : X → Rn is continuous. The functionG is found by composing
the continuous functiong with the operatorL· at a finite set of points and is thus
itself continuous fromX into Rℓq. To apply Theorem 6.31 it suffices to show that
µ0(X) = 1. This fact follows from Lemma 6.25 since draws fromN (0, C0) are a.s.
s−Hölder for alls ∈ (0,min{1, α− d

2}) and sincem0 ∈ Hα ⊂ X by Assumption
2.9(v).

In section 2.4 we indicated that obtaining bounds and Lipschitz properties ofG
or Φ, the mappings appearing in the Radon-Nikodym derivative betweenµy and
µ0, will be important to us in the sequel. The following lemma studies this issue.

Lemma 3.2 In the setting of Theorem 3.1 assume, in addition, thatg ∈ C1(Rn,Rℓ)
and thatg is polynomially bounded. ThenG satisfies Assumption 2.7 withX =
C(D) andY = Rℓq. Furthermore, ifDg is polynomially bounded thenK(r) is
polynomially bounded.

Proof. Sinceg is polynomially bounded andG is found by pointwise evaluation
at a finite number of points, it follows that

|G(u)| 6 p(‖u‖X )

for some polynomialp : R → R. The bound (i) of Assumption 2.7 follows. By the
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mean-value theorem (Taylor theorem with remainder) we havethat

|G(u) − G(v)|Γ 6 max
16k6K

∣

∣

∣

∫ 1

0
Dg

(

su(xk) + (1 − s)v(xk)
)

ds
(

u(xk)) − v(xk)
)

∣

∣

∣
.

Thus, for allu, v satisfyingmax{‖u‖X , ‖v‖X} < r,

|G(u) − G(v)|Γ 6 K(r)‖u− v‖X .

Furthermore,K may be bounded polynomially ifDg is bounded polynomially.
The result follows.

3.3. Inverse Problem For A Diffusion Coefficient

The previous example illustrated the formulation of an inverse problem for a func-
tion, using the Bayesian framework. However the observations of the function
were comprised of direct measurements of the function at points in its domainD.
We now consider a problem where the measurements are more indirect, and are
defined through the solution of a differential equation.

We consider the inverse problem of determining the diffusion coefficient from
observations of the solution of the two-point boundary value problem

− d

dx

(

k(x)
dp

dx

)

= 0, (3.3.1a)

p(0) = p− p(1) = p+. (3.3.1b)

We assume thatp+ > p− > 0 and that we make observations of{p(xk)}q
k=1, at

a set of points0 < x1 < · · · < xq < 1 subject to Gaussian measurement error. We
write the observations as

yk = p(xk) + ηk, k = 1, · · · , q (3.3.2)

and, for simplicity, assume that theηk form an i.i.d sequence withη1 ∼ N (0, γ2).
Our interest is in determining the diffusion coefficientk from y. To ensure thatk
is strictly positive on[0, 1] we introduceu(x) = ln(k(x)) and viewu ∈ L2((0, 1))
as the basic unknown function.

The forward problem (3.3.1) forp givenu is amenable to considerable explicit
analysis and we now use this to write down a formula for the observation operator
G and to study its properties. We first defineJx : L∞

(

(0, 1)
)

→ R by

Jx(w) =

∫ x

0
exp(−w(z))dz. (3.3.3)

The solution of (3.3.1). may be written as

p(x) = (p+ − p−)
Jx(u)

J1(u)
+ p− (3.3.4)

and is monotonic increasing; furthermorep(x) is unchanged underu(x) → u(x)+
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λ for anyλ ∈ R. The observation operator is then given by the formula

G(u) =
(

p(x1), · · · , p(xq)
)∗
. (3.3.5)

Lemma 3.3 The observation operatorG : C([0, 1]) → Rq is Lipschitz and satis-
fies the bound

|G(u)| 6
√
qp+. (3.3.6)

IndeedG satisfies Assumption 2.7 withX = C([0, 1]) andK(·) exponentially
bounded: there area, b > 0 such thatK(r) 6 a exp(br).

Proof. The fact thatG is defined onC([0, 1]) follows from the explicit solution
given in equation 3.3.4. The bound onG follows from the monotonicity of the
solution. For the Lipschitz property it suffices to considerthe caseq = 1 and,
without loss of generality, takex1 = 1

2 . Note that then

|G(u) − G(v)|
p+ − p−

=
1

J1(u)J1(v)

∣

∣

∣
J 1

2
(u)J1(v) − J 1

2
(v)J1(u)

∣

∣

∣

=
1

J1(u)J1(v)

∣

∣

∣
J 1

2
(u)

(

J1(v) − J1(u)
)

+ J1(u)
(

J 1
2
(u) − J 1

2
(v)

)

∣

∣

∣

6 J1(v)
−1|J1(v) − J1(u)| + J1(v)

−1|J 1
2
(u) − J 1

2
(v)|.

But

J1(v)
−1

6 exp
(

‖v‖∞
)

and

|Jx(u) − Jx(v)| 6 x exp
(

max{‖u‖∞, ‖v‖∞})‖u − v‖∞.
Thus we deduce that

|G(u) − G(v)| 6
3

2
(p+ − p−) exp

(

‖v‖∞ + max{‖u‖∞, ‖v‖∞})‖u− v‖∞.

We place a Gaussian prior measureµ0 ∼ N (u0, C0) on u. We say thatk is
log-normal . Since changingu by an arbitrary additive constant does not change
the solution of (3.3.1) we cannot expect to determine any information about the
value of this constant from the data. Thus we must build our assumptions about
this constant into the prior. To do this we assume thatu integrates to zero on(0, 1)
and define the prior measureµ0 on the space

H =
{

u ∈ L2
(

(0, 1)
)

∣

∣

∣

∫ 1

0
u(x)dx = 0

}

. (3.3.7)

We defineA = − d2

dx2 to be a densely defined operator onH with

D(A) =
{

u ∈ H2
per

(

(0, 1)
)

∣

∣

∣

∫ 1

0
u(x)dx = 0

}

.
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ThenA is positive-definite self-adjoint and, for anyβ > 0 andα > 1
2 (which

ensures that the covariance operator is trace-class) we maydefine the Gaussian
measureN (m0, βA

−α) onH.
We have

y = G(u) + η,

wherey = (y1, · · · , yq)
∗ ∈ Rq and η ∈ Rq is distributed asN (0, γ2I). The

probability ofy givenu (the data likelihood) is

P (y | u) ∝ exp
(

− 1

2γ2
|y − G(u)|2

)

.

We wish to findµy(du) = P(du|y). Informal use of Bayes rule suggests that

dµy

dµ0
(u) ∝ exp

(

− 1

2γ2
|y − G(u)|2

)

. (3.3.8)

We now justify this formula. SinceG(·) is Lipschitz onX := C([0, 1]), by Lemma
3.3, the basic idea underlying the justification of (3.3.8) in the next theorem is to
chooseα so thatµ0(X) = 1 so that we may apply Theorem 6.31.

Theorem 3.4 Consider the Bayesian inverse problem foru(x) = ln
(

k(x)
)

subject
to observation in the form (3.3.2), withp solving (3.3.1), and prior measureµ0 =
N (m0, C0) with m0 ∈ Hα ∩ H andC0 = βA−α. If β > 0 andα > 1

2 then
µy(du) = P(du|y) is absolutely continuous with respect toµ0(du) with Radon-
Nikodym derivative given by (3.3.8), withG defined in (3.3.5).

Proof. We apply Theorem 6.31. The functionG is continuous fromX into Rq.
Hence it suffices to show thatµ0(X) = 1. This follows from Lemma 6.25 since
α > 1

2 and draws fromµ0− are a.s.s−Hölder for alls ∈ (0,min{1, α − 1
2}) and

sincem0 ∈ Hα ⊂ X by Theorem 2.10.

3.4. Wavespeed for the Wave Equation

Consider the equation

∂v

∂t
+ c(x)

∂v

∂x
= 0, (x, t) ∈ R × (0,∞) (3.4.1a)

v = f, (x, t) ∈ R × {0} (3.4.1b)

We assume that the wavespeedc(x) is known to be a positive, one-periodic func-
tion and that we are interested in the inverse problem of determining c given the
observations

yj = v(1, tj) + ηj , j = 1, . . . , q. (3.4.2)

We assume that the observational noise{ηj}q
j=1 is mean zero Gaussian. Sincec is

postive we writec = exp(u) and view the inverse problem as being the determina-
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tion of u. We thus concatenate the data and write

y = G(u) + η

whereη ∼ N (0,Γ) andG : X → Rq whereX = C1(S); hereS denotes the unit
circle [0, 1) with end points identified to enforce periodicity. We equipX with the
norm

‖u‖X = sup
x∈S

|u(x)| + sup
x∈S

∣

∣

∣

du

dx
(x)

∣

∣

∣
.

Note that we may also viewu as a function inXper := C1
per(R), the space of

1−periodicC1 functions onR. Before defining the inverse problem precisely we
study the properties of the forward operatorG.

Lemma 3.5 Assume thatf ∈ C1(R; R) and thatf is polynomially bounded: there
are constantsK > 0 andp ∈ Z+ such that

|f(x)| 6 K
(

1 + |x|p
)

.

ThenG : X → Rq satisfies:

• there is constantC > 0:

|G(u)| 6 C
(

1 + exp(p‖u‖X)
)

;

• for all u,w ∈ X : ‖u‖X , ‖w‖X < r there isL = L(r) :

|G(u) − G(w)| 6 L‖u−w‖∞.
Proof. It suffices to consider the caseq = 1 and taket1 = 1 for simplicity. Let
Ψ(·; t, u) : R → R denote the one parameter group given by the solution operator
for the equation

dx

dt
= − exp

(

u(x)
)

(3.4.3)

where we viewu as an element ofXper in order to define the solution of this
equation. Thenv solving (3.4.1) withc = exp(u) is given by the formula

v(x, t) = f
(

Ψ(x; t, u)
)

.

Thus

G(u) = v(1, 1) = f
(

Ψ(1; 1, u)
)

(3.4.4)

and

|G(u)| = |v(1, 1)| 6 K
(

1 + |Ψ(1; 1, u)|p
)

.

But the solution of (3.4.3) subject to the conditionx(0) = 1 satisfies

|x(1)| 6 1 +

∫ 1

0
exp

(

u(x(s))
)

ds

6 1 + exp
(

‖u‖X

)

.
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Hence

Ψ(1; 1, u) 6 1 + exp
(

‖u‖X

)

(3.4.5)

and the first result follows.
For the second result letx(t) = Ψ(1; t, u) andy(t) = Ψ(1; t, w) so that, by

(3.4.3),

x(t) = 1 −
∫ t

0
exp

(

u(x(s))
)

ds

y(t) = 1 −
∫ t

0
exp

(

u(y(s))
)

ds +

∫ t

0
exp

(

u(y(s))
)

ds −
∫ t

0
exp

(

w(y(s))
)

ds.

Thus, using (3.4.5),

|x(t) − y(t)| 6 C(‖u‖X , ‖w‖X )
(

∫ 1

0
|x(s) − y(s)|ds+ ‖u− w‖∞

)

.

Application of the Gronwall inequality gives

sup
t∈[0,1]

|x(t) − y(t)| 6 C(‖u‖X , ‖w‖X )‖u− w‖∞.

Thus

|Ψ(1; 1, u) − Ψ(1, 1, w)| 6 C(‖u‖X , ‖w‖X )‖u− w‖∞.
Hence, using (3.4.4), the fact thatf isC1 and the bound (3.4.5), we deduce that

|G(u) − G(w)| =
∣

∣f
(

Ψ(1; 1, u)
)

− f
(

Ψ(1; 1, w)
)∣

∣

6 L(r)‖u− w‖∞
6 L(r)‖u− w‖X .

We wish to findµy(du) = P(du|y). Informal use of Bayes rule gives us

dµy

dµ0
(u) ∝ exp

(

−1

2
|y − G(u)|2Γ

)

. (3.4.6)

We now justify this formula by choice of prior and by application of Theorem 6.31.
We place a prior measureµ0 on the spaceX by assuming thatu ∼ µ0 is Gaus-

sian and thatu′(x) = du
dx(x) ∼ N (0, βA−α) whereA = − d2

dx2 is a densely defined
operator onH = L2(S) with

D(A) =
{

u ∈ H2(S)
∣

∣

∣

∫ 1

0
u(x)dx = 0

}

.

If β > 0 andα > 1
2 thenu′ is almost surely a continuous function, by Lemma

6.25. Defining

u(x) = u0 +

∫ x

0
u′(s)ds
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whereu0 ∼ N (0, σ2) determines the distribution ofu completely. Furthermore for
β > 0 andα > 1

2 we have thatu drawn from this measure is inX with probability
1: µ0(X) = 1. Hence we deduce the following result.

Theorem 3.6 Consider the Bayesian inverse problem foru(x) = ln
(

c(x)
)

subject
to observation in the form (3.4.2), withv solving (3.4.1), and prior measureµ0

as constructed immediately preceding this theorem. Ifβ > 0 andα > 1
2 then

µy(du) = P(du|y) is absolutely continuous with respect toµ0(du) with Radon-
Nikodym derivative given by (3.4.6).

Proof. To apply Theorem 6.31 it suffices to show thatµ0(X) = 1 since the func-
tion G is continuous fromX into Rq. The fact thatµ0(X) = 1 is established
immediately prior to this theorem.

3.5. Initial Condition for the Heat Equation

We now study an inverse problem where the datay is a function, and is hence
infinite dimensional, in contrast to preceding examples where the data has been
finite dimensional. We assume that our observation is the solution of the heat
equation at some fixed positive timeT > 0, with an added Gaussian random field
as observational noise, and that we wish to determine the initial condition.

To be concrete we consider the heat equation on a bounded opensetD ⊂ Rd,
with Dirichlet boundary conditions, and written as an ODE inHilbert spaceH =
L2(D):

dv

dt
+Av = 0, v(0) = u. (3.5.1)

HereA = −△ with D(A) = H1
0 (D)

⋂

H2(D). We assume sufficient regularity
conditions onD and its boundary∂D to ensure that the operatorA is positive and
self-adjoint onH and is the generator of an analytic semigroup. We define the
(Sobolev-like) spacesHs as in (2.4.6).

Assume that we observe the solutionv at timeT , subject to error which has the
form of a Gaussian random field, and that we wish to recover theinitial conditionu.
This problem is classically ill-posed, because the heat equation is smoothing, and
inversion of this operator is not continuous onH. Nonetheless, we will construct a
well-defined Bayesian inverse problem.

We place a prior measure onu which is a Gaussian measureµ0 ∼ N (m0, C0)
with C0 = βA−α, for someβ > 0 andα > d

2 ; consequentlyu ∈ H µ0−a.s.
by Lemma 6.27. Our aim is to determine conditions onα, and onm0, which
ensure that the Bayesian inverse problem is well-defined. Inparticular we would
like conditions under which the posterior measure is equivalent (as a measure, see
Chapter 6) to the prior measure.

We model the observationy as

y = e−ATu+ η (3.5.2)
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whereη ∼ N (0, C1) is independent ofu. The observation operatorG : H → H is
given byG(u) = e−ATu and, in fact,G : H → Hℓ for any ℓ > 0. If we assume
that C1 = δA−γ for someγ > d/2 andδ > 0 we then have that, almost surely,
η ∈ H by Lemma 6.27.

Consider the Gaussian random variable(u, y) ∈ H ×H. We have

E(u, y) := (u, y) = (m0, e
−ATm0).

Straightforward calculation shows that

E(u− u) ⊗ (u− u) = C0,

E(u− u) ⊗ (y − y) = C0e
−AT ,

E(y − y) ⊗ (y − y) = e−AT C0e
−AT + C1.

By Theorem 6.20 we find that the posterior measureµy for u giveny is also Gaus-
sian with mean

m = m0 +
β

δ
e−ATAγ−α

(

I +
β

δ
e−2ATAγ−α

)−1
(y − e−ATm0) (3.5.3)

and covariance operator

C = C0

(

I + e−2AT C0C−1
1

)−1
(3.5.4)

= βA−α
(

I +
β

δ
e−2ATAγ−α

)−1
. (3.5.5)

We now show that the posterior (Gaussian) measure onH is indeed equivalent
to the prior. We will assumeα > d

2 since this ensures that samples from the prior
are continuous functions, by Lemma 6.25.

Theorem 3.7 Consider an initial condition for the heat equation (3.5.1)with prior
Gaussian measureµ0 ∼ N (m0, βA

−α), m0 ∈ Hα, β > 0 andα > d
2 . If an obser-

vation is given in the form (3.5.2) then the posterior measureµy is also Gaussian,
with mean and variance determined by (3.5.3) and (3.5.5). Furthermore,µy and
the prior measureµ0 are equivalent Gaussian measures.

Proof. Let {φk, λk}k∈K, K = Zd\{0}, denote the eigenvalues ofA and define
κ := β

δ supk∈K e
−2λkTλγ−α

k which is finite sinceT > 0 andA generates an ana-
lytic semigroup. Furthermore, the operator

K =
(

I +
β

δ
e−2ATAγ−α

)−1

is diagonalized in the same basis asA and is a bounded and invertible linear oper-
ator with all eigenvalues lying in[(1 + κ)−1, 1]. Now from (3.5.4), for anyh ∈ H,

1

1 + κ
〈h, C0h〉 6 〈h, Ch〉 = 〈h, C0Kh〉 6 〈h, C0h〉.
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Thus, by Lemma 6.15, we deduce that condition i) of Theorem 6.13 is satisfied,

with E = Hα = Im
(

C
1
2
0

)

.
From (3.5.3) we deduce that

m−m0 =
β

δ
e−ATAγ−αK(y − e−ATm0).

SinceA generates an analytic semigroup and sinceK is bounded we deduce that
m−m0 ∈ Hr for anyr ∈ R. Hence condition ii) of Theorem 6.13 is satisfied. To
check the remaining condition iii), define

T = C− 1
2

0 CC− 1
2

0 − I

= −β
δ

(

I +
β

δ
e−2ATAγ−α

)−1
Aγ−αe−2AT .

The operatorT is clearly Hilbert-Schmidt because its eigenvaluesµk satisfy

|µk| 6
β

δ
λγ−α

k e−2λkT

and hence decay exponentially fast. This establishes iii) of Theorem 6.13 and the
proof is complete.

The preceding theorem uses the Gaussian structure of the posterior measure ex-
plicitly. To link the presentation to the other examples in this section, it is natural
to ask whether a similar result can be obtained less directly.

We defineΦ : H×H → R by

Φ(u; y) =
1

2
‖e−ATu‖2

C1
− 〈e−ATu, y〉C1 .

and use this function to derive Bayes formula for the measureµy(du) = P(du|y).
We will show thatµy(du) is absolutely continuous with respect to the priorµ0(du)
with density

dµy

dµ0
(u) ∝ exp

(

−Φ(u; y)
)

. (3.5.6)

Remark 3.8 It would be tempting to define a potential

Ψ(u; y) =
1

2
‖y − G(u)‖2

C1

=
1

2
‖y − e−ATu‖2

C1

in analogy with the examples in the two previous sections: this Ψ is a least squares
functional measuring model/data mismatch. However this quantity is almost surely
infinite, with respect to the random variabley, since draws from a Gaussian mea-
sure in infinite dimensions do not lie in the corresponding Cameron-Martin space

Im(C
1
2
1 ) – see Lemma 6.10. This undesirable property ofΨ stems directly from the
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fact that the datay is a function rather than a finite dimensional vector. To avoid the
problem we work withΦ(u; y) which, informally, may be viewed as being given
by the identity

Φ(u; y) = Ψ(u; y) − 1

2
‖y‖2

C1
.

Thus we “subtract off” the infinite part ofΨ. Since Bayes formula in the form
(3.5.6) only gives the density upto ay−dependent constant we see intuitively why
this subtraction of a term involvingy is reasonable. The issues outlined in this
remark arise quite generally when the datay is infinite dimensional and the ob-
servtional noiseη is Gaussian.

The form ofΦ arising in this problem, and the fact that the data is infinitedi-
mensional, preclude us from using Theorem 6.31 to establishthat (3.5.6) is correct;
however the method of proof is very similar to that used to prove Theorem 6.31.

Before proving that (3.5.6) is correct we state and prove some properties of the
potentialΦ.

Lemma 3.9 The functionΦ : H × H → R satisfies Assumptions 2.6 withX =
Y = H andL(r) linearly bounded.

Proof. We may write

Φ(u; y) =
1

2
‖C− 1

2
1 e−ATu‖2 − 〈C− 1

2
1 e−

1
2
ATu, C− 1

2
1 e−

1
2
AT y〉.

SinceC−1
1 = δAγ we deduce thatKλ := C− 1

2
1 e−λAT is a compact operator onH

for anyλ > 0. By the Cauchy-Schwarz inequality we have, for anya > 0,

Φ(u; y) > −a
2

2
‖C− 1

2
1 e−

1
2
ATu‖2 − 1

2a2
‖C− 1

2
1 e−

1
2
AT y‖2.

By the compactness ofK 1
2

and by choosinga arbitrarily small we deduce that
Assumption 2.6(i) holds. Assumption 2.6(ii) holds by a similar Cauchy-Schwarz
argument. SinceΦ is quadratic inu, and using the compactness ofK 1

2
andK1, we

see that

|Φ(u1; y) − Φ(u2; y)| 6 C
(

‖K1u1‖ + ‖K1u2‖ + ‖K 1
2
y‖

)

‖K 1
2
(u1 − u2)‖

6 C
(

‖u1‖ + ‖u2‖ + ‖y‖
)

‖e− 1
4
AT (u1 − u2)‖ (3.5.7)

6 C
(

‖u1‖ + ‖u2‖ + ‖y‖
)

‖u1 − u2‖ (3.5.8)

and similarly

|Φ(u; y1) − Φ(u; y2)| 6 C‖u‖‖y1 − y2‖
so that Assumptions 2.6(iii),(iv) hold.
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Theorem 3.10 Consider the inverse problem for the initial conditionu in (3.5.1),
subject to observation in the form (3.5.2) and with prior Gaussian measureµ0 =
N (m0, βA

−α). If m0 ∈ Hα, β > 0 andα > d
2 , then the posterior measure

µy(du) = P(du|y) and the priorµ0(du) are equivalent with Radon-Nikodym
derivative given by (3.5.6).

Proof. Recall thatC1 = δA−γ and thatC0 = βA−α. Define the measures

Q0(dy) = N (0, C1),

Q(dy|u) = N (e−ATu, C1),

µ0(du) = N (m0, C0).

and then define

ν0(dy, du) = Q0(dy) ⊗ µ0(du)

ν(dy, du) = Q(dy|u)µ0(du).

By Theorem 6.14 we deduce that

dQ

dQ0
(y|u) = exp

(

−1

2
‖e−ATu‖2

C1
+ 〈e−ATu, y〉C1

)

.

The measureν is well-defined because the functionΦ(·; y) : H → R is continuous
and henceµ0 measurable ifµ0(H) = 1. This last fact follows from Lemma 6.27
which show that draws fromµ0 are almost surely inH. Hence

dν

dν0
(y, u) = exp

(

−1

2
‖e−ATu‖2

C1
+ 〈e−ATu, y〉C1

)

.

By applying Theorem 6.29, noting that underν0 the random variablesy andu are
independent withu ∼ µ0, we deduce that

dµy

dµ0
(u) ∝ exp

(

−1

2
‖e−ATu‖2

C1
+ 〈e−ATu, y〉C1

)

with constant of proportionality independent ofu.

3.6. Fluid Mechanics

The preceding four subsections provide a range of examples where somewhat ex-
plicit calculations, using the solution of various forwardlinear PDE problems, es-
tablish that the associated inverse problems may be placed in the general frame-
work that we oulined in subsection 2.4, and will study further in section 4. How-
ever it is by no means necessary to have explicit solutions ofthe forward problem
to use the framework developed in this article and the examples of this subsection,
and the two subsections which follow it, illustrate this.

Fluid mechanics provides an interesting range of applications where the tech-
nology of inverse problems is relevant. We outline examplesof such problems
and sketch their formulation as Bayesian inverse problems for functions. We also
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show that these problems may be formulated to satisfy Assumptions 2.7. Unlike
the previous three sections, however, we do not provide fulldetails; we refer to
other works for these, in the bibliography subsection.

In weather forecastinga variety of instruments are used to measure the velocity
of the air in the atmosphere. Examples include weather balloons, data from com-
mercial and military aircraft, as well as special purpose aircraft, and satellites. An
important inverse problem is to determine the global velocity field, and possibly
other fields, from theEulerian datacomprised of the various noisy measurements
described above.

As a concrete, and simplified, model of this situation we consider the linearized
shallow water equations on a two dimensional torus. The equations are a coupled
pair of PDEs for the two dimensional velocity fieldv and a scalar height fieldh,
with the form

∂v

∂t
= Sv −∇h, (x, t) ∈ T2 × [0,∞), (3.6.1a)

∂h

∂t
= −∇ · v, (x, t) ∈ T2 × [0,∞). (3.6.1b)

The two dimensional unit torusT2 is shorthand for the unit square with periodic
boundary conditions imposed. The skew matrixS is given by

S =

(

0 1
−1 0

)

and the term involving it arises from the Coriolis effect.
The objective is to find the initial velocity and height fields(v(0), h(0)) =

(u, p) ∈ H where

H :=
{

u ∈ L2(T2; R3)
∣

∣

∣

∫

T2

udx
}

.

We assume that we are given noisy observations of the velocity field at positions
{xj}J

j=1 and times{tk}K
k=1, all positive. Concatenating data we write

y = G(u, p) + η. (3.6.2)

HereG maps a dense subset ofH into R2JK and is theobservation operator. Be-
cause the PDE (3.6.1) is linear, so too isG. We assume thatη ∼ N (0,Γ) is
independent ofu and we consider the Bayesian inverse problem of finding the pos-
terior measureµy(du) = P(du|y) from the priorµ0. We letA = −△ on T2 with
domain

D(A) =
{

H2(T2)
∣

∣

∣

∫

T2

udx = 0
}

and define the prior through fractional powers ofA.

Theorem 3.11 Consider an initial condition for the shallow water equations (3.6.1)
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with prior Gaussian measureµ0 = N (m0, βA
−α) with m0 ∈ Hα ∩H, β > 0 and

α > 2. If a noisy observation is made in the form (3.6.2) then the posterior measure
µy is also Gaussian, and is absolutely continuous with respectto the prior measure
µ0, with Radon-Nikodym derivative

dµy

dµ0
(u, p) ∝ exp

(

−1

2
|y − G(u, p)|2Γ

)

, (3.6.3)

whereG is given by (3.6.2). Furthermore, the observation operatorG satisfies
Assumptions 2.7 withX = Hs andK globally bounded, for anys > 1.

In oceanographya commonly used method of gathering data about ocean cur-
rents, temperature, salinity and so forth is through the useof Lagrangian instru-
ments which are transported by the fluid velocity field and transmit positional in-
formation using GPS. An important inverse problem is to determine the velocity
field in the ocean from the Lagrangian data comprised of the GPS information
about the position of the instruments. As an idealized modelconsider the incom-
pressible Stokes (ι = 0) or Navier-Stokes (ι = 1) equations written in the form:

∂v

∂t
+ ιv.∇v = ν∆v −∇p+ f, (x, t) ∈ T2 × [0,∞), (3.6.4a)

∇ · v = 0, (x, t) ∈ T2 × [0,∞), (3.6.4b)

v = u, (x, t) ∈ T2 × {0}. (3.6.4c)

As in the preceding example we impose periodic boundary conditions, here on the
velocity field v and the pressurep. We assume thatf has zero average overD,
noting that this implies the same forv(x, t), provided thatu(x) = v(x, 0) has
zero initial average. We define the Stokes operatorA and Leray projectorP in the
standard fashion, together with the Sobolev spacesHs = D(As/2) as in (2.4.6).
The equations (3.6.4) can be written as an ODE in the Hilbert spaceH:

dv

dt
+ ιB(v, v) + νAu = ψ (3.6.5)

whereψ = Pf andB(v, v) represents the projection, underP , of the nonlinear
convective term.

We assume that we are given noisy observations of Lagrangiantracers with po-
sition z solving the integral equation

zj(t) = zj,0 +

∫ t

0
v(zj(s), s)ds. (3.6.6)

These equations have a unique solution providedu ∈ H andψ ∈ L2((0, T );H).
For simplicity assume that we observe all the tracersz at the same set of times

{tk}K
k=1 and that the initial particle tracer positionszj,0 are known to us:

yj,k = zj(tk) + ηj,k, j = 1, . . . , J k = 1, . . . ,K, (3.6.7)
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where theηj,k’s are zero mean Gaussian random variables. The times{tk} are
assumed to be positive. Concatenating data we may write

y = G(u) + η (3.6.8)

with y = (y∗1,1, . . . , y
∗
J,K)∗ andη ∼ N (0,Γ) for some covariance matrixΓ captur-

ing the correlations present in the noise. The functionG maps a dense subspace of
H into R2JK. The objective is to find the initial velocity fieldu, giveny. We start
by stating a result concerning the observation operator.

Lemma 3.12 Assume thatψ ∈ C([0, T ];Hγ) for someγ > 0. ThenG given by
(3.6.8) satisfies Assumptions 2.7 withX = Hℓ for anyℓ > 0.

These properties of the observation operatorG lead to the following theorem:

Theorem 3.13 Let µ0 = N (m0, βA
−α) denote a prior Gaussian measure onµ0.

If m0 ∈ Hα, β > 0 andα > 1 then the measureµy(du) = P(du|y) is absolutely
continuous with respect toµ0, with Radon-Nikodym derivative given by

dµy

dµ0
(u) ∝ exp

(

−1

2
|y − G(u)|2Γ

)

, (3.6.9)

with G defined by (3.6.8).

Notice that the required lower bound on the exponentα in the preceding theorem
is lower than that appearing in Theorem 3.11. This is becausethe (Navier-)Stokes
equation is smoothing and hence less regularity is requiredon the initial condition
in order to define the observation operatorG than for the linearized shallow water
equations.

3.7. Subsurface Geophysics

Determining the permeability of subsurface rock is enormously important in a
range of different applications. Among these applicationsare the prediction of
transport of radioactive waste from underground waste repositories, and the opti-
mization of oil recovery from underground fields. We give an overview of some
inverse problems arising in this area. As in the previous subsection we do not give
full details, leaving these to the cited literature in the bibliography subsection.

The permeability tensorK is a central component ofDarcy’s lawwhich relates
the velocity fieldv to the gradient of the pressurep in porous media flow:

v = −K∇p. (3.7.1)

In generalK is a tensor field. However the problem is often simplified by assuming
thatK = kI wherek is a scalar field andI the identity tensor; we make this
simplification.

In many subsurface flow problems it is reasonable to model thevelocity field as



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

42 A.M. STUART

incompressible. Combining this constraint with the Darcy law (3.7.1) shows that
the pressurep is governed by the PDE

∇ ·
(

−k∇p
)

= 0, x ∈ D, (3.7.2a)

p = h, x ∈ ∂D. (3.7.2b)

This model is a widely used simplified model in nuclear waste disposal mod-
elling. The inverse problem is to find the permeabilityk from observations of the
pressure at points in the interior ofD; this information can be found by measuring
the height of the water table. For simplicity we work in two orthree dimensions
d and assume thatD ⊂ Rd is bounded and open. As in subsection 3.3 it is phys-
ically and mathematically important thatk be positive, in order that the elliptic
equation for the pressure is well-posed. Hence we writek = exp(u) and consider
the problem of determiningu.

We assume that we observe

yj = p(xj) + ηj , j = 1, · · · , J (3.7.3)

and note that this may be written as

y = G(u) + η (3.7.4)

for some implicitly defined functionG. We assume thatη ∼ N (0,Γ) is indepen-
dent ofu. Before formulating the Bayesian inverse problem we state the following
result concerning the forward problem:

Lemma 3.14 Assume that the boundary ofD, ∂D, is C1−regular and that the
boundary datah may be extended to a functionh ∈ W 1,2r(D) with r > d

2 . The
functionG satisfies Assumptions 2.7 withX = C(D).

We define the prior Gaussian measure through fractional powers of the Laplacian
A = −△ with

D(A) = {u ∈ H2(D)|∇u · n = 0,

∫

D
u(x)dx = 0}.

Heren denotes the unit outward normal on the boundary ofD.

Theorem 3.15 Let the assumptions of Lemma 3.14 hold and letµ0 = N (0, βA−α)
denote a prior Gaussian measure onµ0. If β > 0 andα > d

2 then the mea-
sureµy(du) = P(du|y) is absolutely continuous with respect toµ0, with Radon-
Nikodym derivative

dµy

dµ0
(x) ∝ exp

(

−1

2
|y − G(u)|2Γ

)

(3.7.5)

andG given by (3.7.4).
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Once the posterior measure onu is known it can be used to quantify uncertainty
in predictions made concerning the Lagrangian transport ofradioactive particles
under the velocity fieldv given by (3.7.1). In particular the push forward of the
measureµy ontov, and hence onto particle trajectoriesz obeying

dz

dt
= v(z),

will define a measure on the possible spread of radioative contaminants, enabling
risk assesment to be undertaken.

The oil industry routinely confronts an inverse problem similar to, but more
complex than, that arising in the nuclear waste industry. Again, uncertainty quan-
tification is important as it enables more effective decision making concerned with
the substantial investment of resources required to extract oil from increasingly
complex environments. The primary difference between the simple model we have
described for nuclear waste management, and that which we are about to describe
for oil extraction, arises because the subsurface fluid flow for oil extraction is mul-
tiphase (gas, water, oil) and significant on much shorter time-scales than in the
nuclear waste management scenario. We study a simplified two-phase problem,
for oil and water alone. The physical model contains two unknown scalar fields,
the water saturationS (volume fraction of water in an oil-water mixture) and pres-
surep, and is posed in a bounded open setD ⊂ Rd. Darcy’s law now takes the
form

v = −λ(S)k∇p (3.7.6)

Mass conservation and transport respectively give the equations

−∇ ·
(

λ(S)k∇p
)

= h1, (x, t) ∈ D × [0,∞),

∂S

∂t
+ v · ∇f(S) = η△S, (x, t) ∈ D × [0,∞), (3.7.7)

p = h2, (x, t) ∈ ∂D × [0,∞). (3.7.8)

The flux functionf is known (typically the Buckley-Leverett form is used) and the
source/boundary termsh1, h2 are also both assumed known. The scalarη is the
(also assumed known) diffusivity of the multiphase flow, typically very small. Ini-
tial conditions forS are specified onD at timet = 0. There are additional boundary
conditions onS which we now describe. We partition∂D = ∂Dout

⋃

∂Din. We
think of pumping water in on the boundary∂Din, so thatS = 1 there, and specify
a Robin boundary condition on∂Dout determining the flux of fluid in terms ofS
the water saturation.

We assume that we have access to noisy measurements of thefractional flow
F (t) which quantifies the fraction of oil produced on a subset∂Dmeas of the out-
flow boundary∂Dout. This measurement is via the function

F (t) = 1 −
∫

∂Dmeas f(S)vndl
∫

∂Dmeas vndl
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wherevn is the component of the velocityv which is normal to the boundary and
dl denotes integration along the boundary. Assume that we makemeasurements of
F at times{tk}K

k=1, polluted by Gaussian noise. Then the data are as follows

yk = F (tk) + ηk, k = 1, . . . ,K,

where theηk ’s are zero mean Gaussian random variables. Concatenating data we
may write

y = G(u) + η

where, as before,k(x) = exp
(

u(x)
)

. We assume thatη ∼ N (0,Γ) for some
covariance matrixΓ encapsulating measurement errors. The priorµ0 is a Gaussian
measure onu, specified as in the previous section. We once again anticipate that

dµ

dµ0
(x) ∝ exp

(

−1

2
|y − G(u)|2B

)

. (3.7.9)

This is similar to the nulcear waste problem, but the observation operatorG is
now more complicated. However similar analyses of the properties of the forward
problem, and the resulting Bayesian inverse problem, can beundertaken.

3.8. Molecular Dynamics

Consider a molecule described by the positionsx of N atoms moving inRd, with
d = 1, 2 or 3. If we assume that the particles interact according to a potential
V : Rd → R and are subject to thermal activation then, in theover-dampedlimit
where the inertial relaxation time is fast we obtain theBrownian dynamicsmodel
for the position ofx:

dx

dt
= −∇V (x) +

√

2

β

dW

dt
. (3.8.1)

HereW is a standardRNd valued Brownian motion andβ the inverse temperature.
One of the key challenges in molecular dynamics is to understand how molecules
rearrange themselves to change from one configuration to another: in some ap-
plications this may represent a chemical reaction, and in others a conformational
change such as seen in biomolecules. When the temperature issmall (β ≫ 1)
the solutions of (3.8.1) spend most of their time near the minima of the potential
V . Transitions between different minima of the potential arerare events. Simply
solving the SDE starting from one of the minima will be a computationally infea-
sible way of generating sample paths which jump between minima since the time
to make a transition is exponentially small inβ. Instead we may condition on this
rare event occuring. This may be viewed as an inverse problemto determine the
controlW which drives the system from one configuration to another. However,
we will work directly with the functionsx which result from this control as these
constitute the more physically interesting quantity. Because the Brownian motion
W is a random function, this leads naturally to the question ofdetermining the
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probability measure on functionsx undergoing the desired transition between con-
figurations. The desired transition can be defined by conditioning the dynamics
given by (3.8.1) to satisfy the boundary conditions

x(0) = x−, x(T ) = x+. (3.8.2)

We viewx as an element ofL2((0, T ); RNd) and denote theNd−dimensional
Brownian bridge measurearising from (3.8.1), (3.8.2) in the caseV ≡ 0 by µ0.
We also defineµ to be the desired bridge diffusion measure arising from the given
V . We may view bothµ0 andµ as measures onL2((0, T ); RNd); the measureµ0

is Gaussian but, unlessV is quadratic, the measureµ is not. We now proceed to
determine the Radon-Nikodym derivative ofµ with respect to the Gaussian bridge
diffusionµ0.

Theorem 3.16 AssumeV ∈ C2(RNd; R) and that the stochastic initial value
problem, found from (3.8.1), (3.8.2) without the conditionx(T ) = x+, has so-
lutions which do not explode almost surely ont ∈ [0, T ]. Then the measureµ
defined by the bridge diffusion problem (3.8.1), (3.8.2) is absolutely continuous
with respect to the Brownian bridge measureµ0 found from (3.8.1),(3.8.2) in the
caseV ≡ 0. Furthermore the Radon-Nikodym derivative is given by

dµ

dµ0
(x) ∝ exp (−Φ(x)) , (3.8.3)

where the potentialΦ is defined by

Φ(x) =
β

2

∫ T

0
G(x(t))dt, (3.8.4a)

G(x) =
1

2
‖∇V (x)‖2 − 1

β
∆V (x). (3.8.4b)

In addition, we find that a large class of problems lead to the common structure
of subsection 2.4. There is no explicit datay ∈ Y in this problem, but we can let
y ∈ Rp denote the parameters appearing in the potentialV , and hence inG. (Note
thatβ is not such a parameter as it appears inG, but not inV ; more fundamentally
it appears inµ0 and so is not simply a parameter in the potentialΦ). We thus write
V (x; y) andG(x; y).

Lemma 3.17 Consider the functionΦ defined by (3.8.4a), (3.8.4b) withV : RNd×
Rp → R. Assume that, for anyε, r > 0 there isM = M(ε, r) ∈ R such that, for
all ‖y‖ < r,

G(x; y) > −ε2|x|2 +M ;

assume also thatG ∈ C1(RNd ×Rp,R) with derivativeDyG(x; y) which is poly-
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nomially bounded inx. ThenΦ satisfies Assumptions 2.6 withX = H1((0, T )).

3.9. Discussion and Bibliography

We started this section by studying the problem of determining a field from obser-
vation. This is intimately related to the study of interpolation of data by splines, a
subject comprehensively developed and overviewed in (Wahba 1990). The link be-
tween spline interpolation and inverse problems using Gaussian fields is overviewed
in (Gu 2002).

The inverse problem for the diffusion coefficient in subsection 3.3 is a one-
dimensional analogue of the inverse problems arising in thegeophysics commu-
nity which we overview in subsection 3.7; these problems, which arise in the
study of groundwater flow and are hence of interest to the burial of (radioactive
nuclear and other) waste, are discussed in (Zimmerman, de Marsily, Gotway, Ma-
rietta, Axness, Beauheim, Bras, Carrera, Dagan, Davies, Gallegos, Galli, Gomez-
Hernandez, Grindrod, Gutjahr, Kitanidis, Lavenue, McLaughlin, Neuman, Rama-
Rao, Ravenne and Rubin 1998, Cliffe and Stone 2008). A related inverse problem
for the diffusion coefficient of an elliptic PDE is that arising in electrical impe-
dence tomography; this widely studied inverse problem requires recovery of the
diffusion coefficient from measurements of the boundary flux. It is of central im-
portance in the medical sciences, and also has a rich mathematical structure – see
(Borcea 2002, Uhlmann 2009) for reviews.

Inverse problems for the heat equation, the subject of subsection 3.5, are widely
studied. See, for example, the cited literature in (Beck, Blackwell and Clair 2005,
Engl et al. 1996). An early formulation of this problem in a Bayesian framework
appears in (Franklin 1970).

We study applications to fluid dynamics in subsection 3.6: the subject known
as data assimilation. The texts (Kalnay 2003) and (Bennett 2002) overview in-
verse problems in fluid mechanics from the perspective of weather prediction and
oceanography respectively; see also the papers (Apte, Jones, Stuart and Voss 2008b,
Lorenc 1986, Ide, Kuznetsov and Jones 2002, Kuznetsov, Ide and Jones 2003,
Nichols 2003a, Nodet 2006) for representative examples, some closely related to
the specific model problems that we study in this article. Theorem 3.11, aris-
ing in our study of Eulerian observations and integration into a wave equation
model, is proved in (Dashti et al. 2010). Lemma 3.12 and Theorem 3.13, aris-
ing in the study of Lagrangian observations, are proved in (Cotter et al. 2009b)
(Navier-Stokes case) and (Cotter et al. 2009a) (Stokes case). A major question
facing the research community in data assimilation for fluidmechanics applica-
tions is to determine whether future increase in available computer resources is
used to increase resolution of the computational models, orto improve estimates
of uncertainty. (The question is discussed, in the context of climate modelling,
in (Palmer, Doblas-Reyes, Weisheimer, Shutts, Berner and Murphy 2009).) The
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framework developed in subsection 3.6 allows for a systematic treatment of un-
certainty, as quantified by the variability in the posteriormeasure; furthermore the
framework may be extended to make inference not only about the initial condition
but also about forcing to the model, thereby enabling model error to be uncov-
ered in a systematic fashion. In this context we define model error to be an error
term in the dynamical model equations, as in (Hagelberg, Bennett and Jones 1996).
Note however that in practical data assimilation, model errors are sometimes com-
bined with the observation errors (Cohn 1997). Further discussion of model er-
ror for problems arising in the atmospheric sciences may be found in the papers
(Nichols 2003b, Fang, Pain, Navon, Piggott, Gorman, Farrell and Allison 2009b).
In (Cotter et al. 2009b) we discuss both Eulerian and Lagrangian data assimilation
with and without model error, with fluid flow model given by theNavier-Stokes
equations (3.6.4) withι = 1.

The subject of minimal regularity required to define Lagrangian trajectories
(3.6.6) in a Navier-Stokes velocity field is covered in (Chemin and Lerner 1995,
Dashti and Robinson 2007). This theory is easily extended tocover the case of the
Stokes equations.

The systematic treatement of Lagrangian data assimilationis developed in the
sequence of papers (Ide et al. 2002, Kuznetsov et al. 2003, Salman, Kuznetsov,
Jones and Ide 2006, Salman, Ide and Jones 2008) with recent application in (Vernieres,
Ide and Jones 2008). Although the subject had ben treated in an applied con-
text, these were the first papers to develop a clear dynamicalsystems framework
in which the coupled (skew-product) dynamical system for the fluid and the La-
grangian particles was introduced as the fundamental object of study.

The papers (Pimentel, Haines and Nichols 2009, Pimentel, Haines and Nichols
2008, M.J. Bell and Nichols 2004, Huddleston, Bell, Martin and Nichols 2004,
Martin, Bell and Nichols 2002) describe a variety of applications of ideas from
data assimilation to problems in oceanography. The paper (Wlasak, Nichols and
Roulstone 2006) discusses data assimilation in the atmospheric sciences, using a
potential vorticity formulation. In (Bannister, Katz, Cullen, Lawless and Nichols
2008) forecast errors are studied for data assimilation problems in fluid flow. The
paper (Alekseev and Navon 2001) uses a wavelet based approach to study the in-
verse problem of determining inflow fluid properties from outflow measurements.

Some of the earliest work concerning the statistical formulation of inverse prob-
lems was motivated by geophysical applications (Backus 1970a, Backus 1970b,
Backus 1970c) such as those introduced in subsection 3.7. The interpolation of
a random field, observed at a finite set of points, is overviewed in (Gu 2008) and
it often refered to as Krigging (Cressie 1993). Overviews ofissues arising in oil
reservoir simulation may be found in (Farmer 2005, Farmer 2007). The mathemat-
ical statement of the oil reservoir simulation problem as outlined here is formulated
in (Ma, Al-Harbi, Datta-Gupta and Efendiev 2007) and further discussion of nu-
merical methods is untertaken in (Dostert, Efendiev, T.Y. and Luo 2006).

The formulation of problems from molecular dynamics in terms of probability
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measures on time-dependent functions has a long history. Onthe mathematical side
this is intimately related to the theory of rare events (Freidlin and Wentzell 1984)
and an overview of some of the sampling techniques used for this problem may be
found in (Bolhuis, Chandler, Dellago and Geissler 2002). The particular formu-
lation of the problem that we untertake here, in which the length of the transition
T is specifieda priori, can be found in (Dashti et al. 2010); see also (Reznikoff
and Vanden Eijnden 2005, Hairer, Stuart, Voss and Wiberg 2005, Hairer, Stuart
and Voss 2007). A generalization to second order Newtonian dynamics models,
in place of the over-damped Brownian dynamics model (3.8.1)may be found in
(Hairer, Stuart and Voss 2009a).
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4. Common Structure

4.1. Overview

It is natural to view the posterior measureµy given by (2.4.1) asthe ideal solutionto
the problem of combining a mathematical model with datay. However, obtaining
a formula such as this is only the beginning: we are confronted with the formidable
task of extracting information from this formula. At a high level this entire section
is devoted to the question of thestabilityof measuresµy to perturbations of various
kinds, under Assumptions 2.6 or 2.7. These stability results help to create firm
foundations for thealgorithmsdesigned to obtain information from the measure
µy; these algorithms are overviewed in the next section.

In this section, then, we study the well-posedness of problems with respect to
parameters, or data, entering the definition of the measure:we show Lipschitz
properties of the posterior measure with respect to changesin the data. We also
study the related issue of approximating the measure, in particular the approxima-
tion by measures defined over a finite dimensional space. Subsection 4.2 concerns
well-posedness in the setting where the data is in the form ofa function: it is infinite
dimensional. In practical applications the data will always be finite, but when the
data is very dense it is a useful abstraction to consider the data as being a function
and so this situation is conceptually important. However, when the data is sparse
it is best viewed as finite as a number of mathematical simplifications follow from
this. The well-posedness of the posterior measure in this finite data situation is
studied in subsection 4.3. In section 4.4 we study the effectof approximating the
potentialΦ and the effect of this approximation on the measureµy given by (2.4.1).

A key idea throughout this section is the use of metrics to study distances be-
tween probability measures. This topic is discussed in subsection 6.7 and, in par-
ticular, the Hellinger metric which we use throughout this section, is introduced.
The primary takeaway message concerning the Hellinger metric is this: consider
two measures which are absolutely continuous with respect to a common Gaussian
reference measure and which are distanceε apart in the Hellinger metric. Then the
expectations of polynomially bounded functions under these two measures are also
O(ε) apart. In particular the mean and covariance operator areO(ε) apart.

4.2. Well-Posedness

The probability measure of interest is typically defined through a density with re-
spect to a Gaussian reference measureµ0 = N (0, C) on a Hilbert spaceH which,
by shift of origin, we have taken to have mean zero. We assume that, for some
separable Banach spaceX, we haveµ0(X) = 1. We let {φk, γk}∞k=1 denote the
eigenfunctions and eigenvalues ofC.

As in our previous developments,µy denotes the measure of interest, withy
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denoting parameters, or data, entering its definition. As in(2.4.1) we assume that

dµy

dµ0
(u) =

1

Z(y)
exp

(

−Φ(u; y)
)

. (4.2.1)

Recall thatΦ(u; y) is the potential and that thenormalization constantZ(y) is
chosen so thatµy is a probability measure:

Z(y) =

∫

H
exp

(

−Φ(u; y)
)

dµ0(u). (4.2.2)

Both for this integral, and for others below, we observe thatif µ0(X) = 1 we may
write

Z(y) =

∫

X
exp

(

−Φ(u; y)
)

dµ0(u)

and hence use properties ofΦ(·; y) which hold onX.
In the preceding section we showed that a number of inverse problems give

rise to a probability measureµy of the form (4.2.1) whereΦ : X × Y → R

satisfies Assumptions 2.6. The data (or parameters)y is (are) assumed to lie in a

Banach space
(

Y, ‖ · ‖Y

)

. We allow for the case whereY is infinite dimensional

and the data is in the form of a function. The four Assumptions2.6 (i)–(iv) play
different roles, indicated by the following two theorems. The third assumption is
important for showing that the posterior probability measure is well-defined, whilst
the fourth is important for showing continuity with respectto data. The first and
second assumptions lead to bounds on the normalization constantZ from above
and below respectively.

Theorem 4.1 Let Φ satisfy Assumptions 2.6(i) and (iii) and assume thatµ0 is a
Gaussian measure satisfyingµ0(X) = 1. Thenµy given by (4.2.1) is a well-
defined probability measure onH.

Proof. Under Assumption 2.6(iii) it follows thatΦ is µ0− measurable and hence
the measureµy is well-defined by (4.2.1). By Assumption 2.6(i) we have that, for
‖y‖Y < r and allε sufficiently small,

|Z(y)| =

∫

X
exp

(

−Φ(u; y)
)

dµ0(u)

6

∫

X
exp

(

ε‖u‖2
X −M(ε, r)

)

dµ0(u)

6 C exp
(

−M(ε, r)
)

<∞,

sinceµ0 is a Gaussian probability measure and we may chooseε sufficiently small
so that the Fernique Theorem 6.9 applies. Thus the measure isnormalizable and
the proof is complete.

This proof directly shows that the posterior measure is a well-defined probability
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measure, without recourse to a conditioning argument. The conditioning argument
used in Theorem 6.31 provides the additional fact thatµy(du) = P(du|y).

Now we study continuity properties of the measureµy with respect toy ∈ Y ,
under Assumptions 2.6(i), (ii) and (iv). This establishes the robustness of many of
the problems introduced in the preceding section to changesin data.

Theorem 4.2 Let Φ satisfy Assumptions 2.6(i), (ii) and (iv). Assume also thatµ0

is a Gaussian measure satisfyingµ0(X) = 1 and that the measureµy ≪ µ0 with
Radon-Nikodym derivative given by (4.2.1), for eachy ∈ Y . Thenµy is Lipschitz
in the datay, with respect to the Hellinger distance: ifµy andµy′

are two measures
corresponding to datay andy′ then there isC = C(r) > 0 such that, for ally, y′

with max{‖y‖Y , ‖y′‖Y } < r,

dHell(µ
y, µy′

) 6 C‖y − y′‖Y .

Consequently the expectation of any polynomially bounded functionf : X → E
is continuous iny. In particular the mean and, in the caseX is a Hilbert space, the
covariance operator, are continuous iny.

Proof. Throughout the proof, all integrals are overX, unless specified otherwise.
The constantC may depend onε andr and changes from occurence to occurence.
Let Z = Z(y) andZ ′ = Z(y′) denote the normalization constants forµy andµy′

so that

Z =

∫

exp
(

−Φ(u; y)
)

dµ0(u)

Z ′ =

∫

exp
(

−Φ(u; y′)
)

dµ0(u).

Using Assumption 2.6(ii) gives, for anyr > 0,

|Z| >

∫

{‖u‖X6r}
exp

(

−K(r)
)

dµ0(u) = exp
(

−K(r)
)

µ0{‖u‖X 6 r}.

This lower bound is positive becauseµ0 has full measure onX and is Gaussian so
that all balls inX have positive probability. We have an analogous lower bound
for |Z ′|.

Using Assumptions 2.6(i) and (iv), and using the Fernique Theorem 6.9 forµ0,

|Z − Z ′| 6

(

∫

exp
(

ε‖u‖2
X −M

)

exp
(

ε‖u‖2
X + C

)

dµ0(u)
)

‖y − y′‖Y

6 C‖y − y′‖Y .

From the definition of Hellinger distance we have

2dHell(µ
y, µy′

)2 =

∫

(

Z− 1
2 exp

(

−1

2
Φ(u; y)

)

− (Z ′)−
1
2 exp

(

−1

2
Φ(u; y′)

)

)2
dµ0(u)

6 I1 + I2
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where

I1 =
2

Z

∫

(

exp
(

−1

2
Φ(u; y)

)

− exp(−1

2
Φ(u; y′)

)

)2
dµ0(u),

I2 = 2
∣

∣Z− 1
2 − (Z ′)−

1
2

∣

∣

2
∫

exp(−Φ(u; y′)
)

dµ0(u).

Now, again using Assumptions 2.6(i) and (iv) and the Fernique Theorem 6.9

Z

2
I1 6

∫

1

4
exp

(

ε‖u‖2
X −M

)

exp
(

2ε‖u‖2
X + 2C

)

‖y − y′‖2
Y dµ0(u)

6 C‖y − y′‖2
Y .

A similar use of the Fernique Theorem and Assumptions 2.6(i)shows that the
integral inI2 is finite. Also, using the bounds onZ,Z ′ from below,

∣

∣Z− 1
2 − (Z ′)−

1
2

∣

∣

2
6 C

(

Z−3 ∨ (Z ′)−3
)

|Z − Z ′|2

6 C‖y − y′‖2
Y .

Combining gives the desired continuity result in the Hellinger metric.
Finally all moments ofu in X are finite underµy andµy′

because the change
of measure from Gaussianµ0 involves a term which may be bounded by use of
Assumption 2.6(i). The Fernique theorem may then be applied. The desired result
concerning the continuity of moments follows from Lemma 6.37.

Example 4.3 An example in which the data is a function is given in subsection
3.5 where we study the inverse problem of determining the initial condition for the
heat equation, given noisy observation of the solution at a positive time; in Lemma
3.9 we establish that Assumptions 2.6 hold in this case.

4.3. Well-Posedness: Finite Data

For Bayesian inverse problems in which a finite number of observations are made,
the potentialΦ has the form

Φ(u; y) =
1

2
|y − G(u)|2Γ (4.3.1)

wherey ∈ Rq is the data,G : X → Rq is the observation operator and| · |Γ is a
covariance weighted norm onRq. In this case it is natural to express conditions on
the potentialΦ in terms ofG. Recall that this is undertaken in Assumptions 2.7. By
Lemma 2.8 we know that Assumptions 2.7 imply Assumptions 2.6for Φ given by
(4.3.1). The following corollary of Theorem 4.2 is hence automatic.

Corollary 4.4 Assume thatΦ : X × Rq → R is given by (4.3.1) and letG satisfy
Assumptions 2.7. Assume also thatµ0 is a Gaussian measure satisfyingµ0(X) =
1. Then the measureµy given by (4.2.1) is a well-defined probability measure and
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is Lipschitz in the datay, with respect to the Hellinger distance: ifµy andµy′

are
two measures corresponding to datay andy′ then there isC = C(r) > 0 such
that, for ally, y′ with max{|y|Γ, |y′|Γ} < r,

dHell(µ
y, µy′

) 6 C|y − y′|Γ.
Consequently the expectation of any polynomially bounded functionf : X → E
is continuous iny. In particular the mean and, in the caseX is a Hilbert space, the
covariance operator, are continuous iny.

Example 4.5 The first example of a problem with the structure of Assumptions 2.7
may be found in the discussion of finite dimensional inverse problems in section
2.2, and formula (2.2.8) in the case whereρ is a Gaussian density; if, for example,
G is differentiable and polynomially bounded, then Assumptions 2.7 hold – see
Example 2.2 for an explicit illustration. All the examples in section 3, with the
exception of the heat equation example for which the data is infinite, and the oil
reservoir problem for which the appropriate analysis and choice ofX has not yet
been carried out, fit the framework of Corollary 4.4.

4.4. Approximation of Measures in the Hellinger Metric

To implement algorithms designed to sample the posterior measureµy given by
(4.2.1) we need to make finite dimensional approximations. We study this issue
here. Since the dependence ony is not relevant in this section we study measures
µ given by

dµ

dµ0
(u) =

1

Z
exp

(

−Φ(u)
)

(4.4.1)

where the normalization constantZ is given by

Z =

∫

X
exp

(

−Φ(u)
)

dµ0(u). (4.4.2)

We approximateµ by approximatingΦ. In particular we defineµN by

dµN

dµ0
(u) =

1

ZN
exp

(

−ΦN (u)
)

(4.4.3)

where

ZN =

∫

X
exp

(

−ΦN (u)
)

dµ0(u). (4.4.4)

Our interest is in translating approximation results forΦ (determined by the for-
ward problem) into approximation results forµ (which describes the inverse prob-
lem).

The following theorem proves such a result, bounding the Hellinger distance,
and hence the total variation distance, between measuresµ andµN in terms of the
error in approximatingΦ.
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Theorem 4.6 Assume that the measuresµ andµN are both absolutely continuous
with respect toµ0, satisfyingµ0(X) = 1, with Radon-Nikodym derivatives given
by (4.4.1), (4.4.3) and thatΦ andΦN satisfy Assumptions 2.6(i),(ii) with constants
uniform inN . Assume also that, for anyε > 0 there isK = K(ε) > 0 such that

|Φ(u) − ΦN (u)| 6 K exp
(

ε‖u‖2
X

)

ψ(N) (4.4.5)

whereψ(N) → 0 asN → ∞. Then the measuresµ andµN are close with respect
to the Hellinger distance: there is a constantC, independent ofN , and such that

dHell(µ, µ
N ) 6 Cψ(N). (4.4.6)

Consequently the expectation underµ andµN of any polynomially bounded func-
tion f : X → E areO

(

ψ(N)
)

close. In particular the mean and, in the caseX is
a Hilbert space, the covariance operator, areO

(

ψ(N)
)

close.

Proof. Throughout the proof, all integrals are overX. The constantC changes
from occurence to occurence. The normalization constantsZ andZN satisfy lower
bounds which are identical to that proved forZ in the course of establishing The-
orem 4.2.

From Assumptions 2.6(i) and (4.4.5), using the fact thatµ0 is a Gaussian proba-
bility measure so that the Fernique Theorem 6.9 applies,

|Z − ZN | 6

∫

Kψ(N) exp
(

ε‖u‖2
X −M

)

exp
(

ε‖u‖2
X

)

dµ0(u)

6 Cψ(N).

From the definition of Hellinger distance we have

2dHell(µ, µ
N )2 =

∫

(

Z− 1
2 exp

(

−1

2
Φ(u)

)

− (ZN )−
1
2 exp

(

−1

2
ΦN (u)

)

)2
dµ0(u)

6 I1 + I2

where

I1 =
2

Z

∫

(

exp
(

−1

2
Φ(u)

)

− exp(−1

2
ΦN (u)

)

)2
dµ0(u),

I2 = 2
∣

∣Z− 1
2 − (ZN )−

1
2

∣

∣

2
∫

exp(−ΦN (u)
)

dµ0(u).

Now, again using Assumptions 2.6(i) and equation (4.4.5), together with the
Fernique Theorem 6.9,

Z

2
I1 6

∫

K2 exp
(

3ε‖u‖2
X −M

)

ψ(N)2dµ0(u)

6 Cψ(N)2.

A similar use of the Fernique Theorem and Assumptions 2.6(i)shows that the
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integral inI2 is finite. Thus, using the bounds onZ,ZN from below,
∣

∣Z− 1
2 − (ZN )−

1
2

∣

∣

2
6 C

(

Z−3 ∨ (ZN )−3
)

|Z − ZN |2

6 Cψ(N)2.

Combining gives the desired continuity result in the Hellinger metric.
Finally all moments ofu in X are finite underµ andµN because the change

of measure from Gaussianµ0 involves a term which may be controlled by the
Fernique theorem. The desired results follow from Lemma 6.37.

Example 4.7 Consider the inverse problem for the heat equation, from subsection
3.5, in the case whereD = (0, 1). Approximate the Bayesian inverse problem by
use of a spectral approximation of the forward mape−AT : H → H. Let PN

denote the orthogonal projection inH onto the firstN eigenfunctions ofA. Then,
for anyT > 0 andr > 0,

‖e−AT − e−ATPN‖L(H,Hr) = O
(

exp(−cN2)
)

.

From (3.5.7) we have the Lipschitz property that

|Φ(u) − Φ(v)| 6 C
(

‖u‖ + ‖v‖ + ‖y‖
)

‖e− 1
4
AT (u− v)‖.

If we defineΦN (u) = Φ(PNu) then the two preceding estimates combine to give,
for someC, c > 0 and independent of(u, y),

|Φ(u) − ΦN (u)| 6 C
(

‖u‖ + ‖y‖
)

‖u‖ exp(−cN2).

Thus (4.4.5) holds and Theorem 4.6 shows that the posterior measure is perturbed
by a quantity with order of magnitudeO

(

exp(−cN2)
)

in the Hellinger metric.

Remark 4.8 Approximation may come from two sources: (i) from representing
the target functionu in a finite dimensional basis; and (ii) from approximating the
forward model, and hence the potentialΦ, by a numerical method such as a finite
element or spectral method. In general these two sources of approximation error
are distinct and must be treated seperately. An important issue is to balance the
two sources of error to optimize work load. In the case whereu is a subset of, or
the entire, initial condition for a dynamical system andG is defined through com-
position of some function with the solution operator then (i) and (ii) will overlap
if a spectral approximation is employed for (ii), using the finite dimensional basis
from (i). This is the situation in the preceding example.

For Bayesian inverse problems with finite data the potentialΦ has the form given
in (4.3.1) wherey ∈ Rq is the data,G : X → Rq is the observation operator and
| · |Γ is a covariance weighted norm onRq. If GN is an approximation toG and we
define

ΦN :=
1

2
|y − GN (u)|2Γ (4.4.7)
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then we may define an approximationµN toµ as in (4.4.3). The following corollary
relatingµ andµN is useful.

Corollary 4.9 Assume that the measuresµ andµN are both absolutely continuous
with respect toµ0, with Radon-Nikodym derivatives given by (4.4.1),(4.3.1)and
(4.4.3), (4.4.7) respectively. Assume also thatG is approximated by a functionGN

with the property that, for anyε > 0, there isK ′ = K ′(ε) > 0 such that

|G(u) − GN (u)| 6 K ′ exp
(

ε‖u‖2
X

)

ψ(N) (4.4.8)

whereψ(N) → 0 asN → ∞. If G andGN satisfy Assumptions 2.7(i) uniformly
in N then there is a constantC, independent ofN , and such that

dHell(µ, µ
N ) 6 Cψ(N). (4.4.9)

Consequently the expectation underµ andµN of any polynomially bounded func-
tion f : X → E is O

(

ψ(N)
)

close. In particular the mean and, in the caseX is a
Hilbert space, the covariance operator, areO

(

ψ(N)
)

close.

Proof. We simply show that the conditions of Theorem 4.6 hold. That (i), (ii) of
Assumptions 2.6 hold follows as in the proof of Lemma 2.8. Also (4.4.5) holds
since (for someK : R+ → R+ defined in the course of the following chain of
inequalities)

|Φ(u) − ΦN (u)| 6
1

2
|2y − G(u) − GN (u)|Γ|G(u) − GN (u)|Γ

6

(

|y|Γ + exp
(

ε‖u‖2
X +M(ε)

)

)

×K ′(ε) exp
(

ε‖u‖2
X

)

ψ(N)

6 K(2ε) exp(2ε‖u‖2
X )ψ(N)

as required.

A notable fact concerning Theorem 4.6 is that the rate of convergence attained in
the solution of the forward problem, encapsulated in approximation of the function
Φ by ΦN , is transfered into the rate of convergence of the related inverse problem
for measureµ given by (4.4.1) and its approximation byµN . Key to achieving this
transfer of rates of convergence is the dependence of the constant in the forward
error bound (4.4.5) onu. In particular it is necessary that this constant is integrable
by use of the Fernique Theorem 6.9. In some applications it isnot possible to obtain
such dependence. Then convergence results can sometimes still be obtained, but at
weaker rates. We state a theorem applicable in this situation.

Theorem 4.10 Assume that the measuresµ andµN are both absolutely continuous
with respect toµ0, satisfyingµ0(X) = 1, with Radon-Nikodym derivatives given
by (4.4.1), (4.4.3) and thatΦ andΦN satisfy Assumptions 2.6(i),(ii) with constants
uniform inN . Assume also that, for anyR > 0 there isK = K(R) > 0 such that,
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for all u with ‖u‖X 6 R,

|Φ(u) − ΦN (u)| 6 Kψ(N) (4.4.10)

whereψ(N) → 0 asN → ∞. Then the measuresµ andµN are close with respect
to the Hellinger distance:

dHell(µ, µ
N ) → 0 (4.4.11)

asN → ∞. Consequently the expectation of any polynomially bounded function
f : X → E underµN converges to the corresponding expectation underµ asN →
∞. In particular the mean and, in the caseX is a Hilbert space, the covariance
operator, converge.

4.5. Discussion and Bibliography

The idea of placing a number of inverse problems within a common Bayesian
framework, and studying general properties in this abstract setting, is developed
in (Cotter et al. 2009b). That paper contains Theorems 4.1 and 4.2 under Assump-
tions 2.6 in the case where (i) is satisfied trivially becauseΦ is bounded from below
by a constant; note that this case occurs whenever the data isfinite dimensional.
Generalizing the theorems to allow for (i) as stated here wasundertaken in (Hairer,
Stuart and Voss 2010), in the context of signal processing for stochastic differential
equations.

Theorem 4.2 is a form of well-posedness. Recall that in the approximation of
forward problems in differential equations well-posedness and a local approxi-
mation property form the key concepts which underpin the equivalence theorems
of Dahlquist (Hairer, Nørsett and Wanner 1993, Hairer and Wanner 1996), Lax
(Richtmyer and Morton 1967) and Sanz-Serna–Palencia (Sanz-Serna and Palencia
1985). It is also natural that the well-posedness that we have exhibited for inverse
problems should, when combined with forward approximation, give rise to approx-
imation results for the inverse problem. This is the basic idea underlying Theorem
(4.6). That result, Corollary 4.9 and Theorem 4.10 are all stated and proved in
(Cotter et al. 2009a).

The underlying well-posedness of properly formulated Bayesian inverse prob-
lems has a variety of twists and turns which we do not elaborate fully here. The
interested reader should consult (Dashti et al. 2010).
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5. Algorithms

5.1. Overview

We have demonstrated that a wide range of inverse problems for functionsu given
datay give rise to a posterior measureµy with the form (2.4.1). This formula en-
capsulates neatly the ideal information that we have about afunction, formed from
conjunction of model and data. Furthermore, for many applications, the potential
Φ satisfies Assumptions 2.6. From this we have shown in section4 that the formula
(2.4.1) indeed leads to a well-defined posteriorµy and that this measure enjoys nice
robustness properties with respect to changes in the data orapproximation of the
forward problem. However we have not yet addressed the issueof how to obtain
information from the formula (2.4.1) for the posterior measure. We devote this
section to an overview of the computational issues which arise in this context.

If the prior measure is Gaussian and the potentialΦ(·; y) is quadratic then the
posterior is also Gaussian. This situation arises, for example, in the inverse problem
for the heat equation described in subsection 3.5. The measure µy is then charac-
terized by a function (the mean) and an operator (the covariance) and formulae can
be obtained for these quantities by completing the square using Theorem 6.20: see
the developments for the heat equation, or Example 6.23, foran illustration of this.

However in general there is no explicit way of characterizing the measureµy as
can be done in the Gaussian case. Thus approximations and computational tools
are required to extract information from the formula (2.4.1). One approach to this
problem is to employ sampling techniques which (approximately) generate sam-
ple functions according to the probability distribution implied by (2.4.1). Among
the most powerful generic tools for sampling are theMarkov chain Monte Carlo
(MCMC) methods which we overview in subsection 5.2. However, whilst these
methods can be very effective when tuned carefully to the particular problem at
hand, they are undeniably costly and, for many applications, impracticable at cur-
rent levels of computer resources. For this reason we also devote two subsections
to variational andfiltering methods which are widely used in practice because of
their computational expedience. When viewed in terms of their relation to (2.4.1)
these methods constitute approximations. Furthermore these approximations are,
in many cases, not well understood. In the near future we see the main role of
MCMC methods as providing controlled approximations to thetrue posterior mea-
sureµy, against which variational and filtering methodologies canbe tested, on
well-designed model problems. In the longer term, as computational power and al-
gorithmic innovation grows, we also anticipate increasinguse of MCMC methods
in their own right to approximate (2.4.1).

From a Bayesian perspetive, the variational methods of subsection 5.3 start from
the premise that variability in the posterior measure is small and that most of the
information resides in a single peak of the probability distribution, which can be
found by optimization techniques. We view this problem fromthe standpoint of
optimal control, showing that a minimizer exists whenever the common frame-
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work of subsection 2.4 applies; we also overview algorithmic practice in the area.
Subsection 5.4 describes the widely-used filtering methodswhich approximate the
posterior measure arising in time-dependent data assimilation problems by a se-
quence of probability measures in time, updated sequentially. The importance of
this class of algorithms stems from the fact that, in many applications, solutions are
required on-line, with updates required as more data is acquired; thus sequential
updating of the posterior measure at the current time is natural. Furthermore se-
quential updates are computationally efficient as they reduce the dimensionality of
the desired posterior measure, breaking a correlated measure at a sequence of times
into a sequence of conditionally independent measures at each time, provided there
is an underlying Markovian structure. We conclude, in section 5.5, with references
to the literature concerning algorithms.

When discussing MCMC methods and variational methods the dependence of
the potentialΦ appearing in (2.4.1) will not be relevant and we will consider the
problem for the posterior measure written in the form

dµ

dµ0
(u) =

1

Z
exp

(

−Φ(u)
)

(5.1.1)

with normalization constant

Z =

∫

X
exp

(

−Φ(u)
)

dµ0(u). (5.1.2)

We refer toµ as thetarget distribution. For the study of both MCMC and varia-
tional methods, we will also find it useful to define

I(u) =
1

2
‖u‖2

C + Φ(u). (5.1.3)

This is, of course, a form of regularized least squares functional as introduced in
section 2.

5.2. Markov Chain-Monte Carlo

The basic idea of MCMC methods is simple: design a Markov chain with the
property that a single sequence of output from the chain{un}∞n=0 is distributed
according toµ given by (5.1.1). This is averybroad algorithmic prescription and
allows for significant innovation in the design of methods tuned to the particular
structure of the desired target distribution. We will focuson a particular class of
MCMC methods known asMetropolis-Hastings(MH) methods.

The key ingredient of these methods is a probability measureonX, parameter-
tized byu ∈ X: a Markov transition kernelq(u, dv). This kernel is used to propose
moves from the current state of the Markov chainun to a new point distributed as
q(un, ·). This proposed point is then accepted or rejected according to a criterion
which uses the target distributionµ. The resulting Markov chain has the desired
property of preserving the target distribution. Key to the success of the method is
the choice ofq. We now give details of how the method is constructed.
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Givenq(u, ·) and the targetµ we define a new measure onX ×X defined by

ν(du, dv) = q(u, dv)µ(du).

We define the same measure, with the roles ofu andv reversed, by

ν⊤(du, dv) = q(v, du)µ(dv).

Provided thatν⊤ is absolutely continuous with respect toν we may define

α(u, v) = min
{

1,
dν⊤

dν
(u, v)

}

.

Now define a random variableγ(u, v), independent of the probability space under-
lying the transition kernelq, with the property that

γ(u, v) =
{

1 with probability α(v, u)
0 otherwise

. (5.2.1)

We now create a random Markovian sequence{un}∞n=0 as follows. Given a
proposalvn ∼ q(un, ·) we set

un+1 = γ(un, vn)vn +
(

1 − γ(un, vn)
)

un. (5.2.2)

If we choose the randomness in the proposalvn and the binary random variable
γ(un, vn) independently of each other for eachn, and independently of the values
for differentn, then this construction gives rise to a Markov chain with thedesired
property.

Theorem 5.1 Under the given assumptions the Markov chain defined by (5.2.2) is
invariant forµ: if u0 ∼ µ thenun ∼ µ for all n > 0. Furthermore, if the resulting
Markov chain is ergodic then, for any continuous bounded function f : X → R,
anyM > 0, and foru0 µ−almost surely,

1

N

N
∑

n=1

f(un+M ) →
∫

X
f(u)µ(du) as N → ∞. (5.2.3)

In words this theorem states that the empirical distribution of the Markov chain
converges weakly to that of the target measureµ. However, this nice abstract
development has not addressed the question of actually constructing a MH method.
If X = Rn and the target measures has a positive density with respect to Lebesgue
measure then this is straightforward: any choice of kernelq(u, dv) will suffice,
provided it too has positive density with respect to Lebesgue measure, for every
u. It then follows thatν⊤ ≪ ν. From this wide range of admissible proposal
distributions, the primary design choice is to identify proposals which lead to low
correlation in the resulting Markov chain, as this increases efficiency.
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Example 5.2 A widely used proposal kernel is simply that of arandom walk; for
example ifµ0 = N (0, C) it is natural to propose

v = u+
√

2δξ (5.2.4)

whereξ ∼ N (0, C). A straightforward calculation shows that

α(u, v) = min
{

1, exp
(

I(u) − I(v)
)

}

whereI is given by (5.1.3). Thus if the proposed state corresponds to a lower
value of the regularized least squares functionalI then the proposal is automatically
accepted; otherwise it will be accepted with a probability depending onI(u)−I(v).

The parameterδ is a scalar which controls the size of the move. Large values
lead to proposals which are hence unlikely to be accepted, leading to high cor-
relation in the Markov chain. On the other hand small moves donot move very
far, again leading to high correlation in the Markov chain. Identifying appropriate
values ofδ between these extremes is key to making effective algorithms. More
complex proposals use additional information aboutDΦ in an attempt to move into
regions of high probability (lowΦ).

In infinite dimensions things are not so straightforward: a random walk will not
typically deliver the required conditionν⊤ ≪ ν. For example, ifµ0 = N (0, C) and
X is infinite dimensional then the proposal (5.2.4) will not satisfy this constraint.
However, a little thought shows that appropriate modifications are possible.

Example 5.3 The random walk can be modified to obtain the desired absolute
continuity ofν⊤ with respect toν. The proposal

v =
(

1 − 2δ
)

1
2u+

√
2δξ (5.2.5)

whereξ ∼ N (0, C) will satisfy the desired condition for anyδ ∈ R. The accep-
tance probability is

α(u, v) = min
{

1, exp
(

Φ(u) − Φ(v)
)

}

.

Thus if the proposed state corresponds to a lower value ofΦ than does the current
state it will automatically be accepted.

The proposal in (5.2.5) should be viewed as an appropriate analogue of the ran-
dom walk proposal in infinite dimensional problems. Intuition as to why this pro-
posal works in the infinite dimensional setting can be obtained by observing that,
if u ∼ N (0, C) andv is constructed using (5.2.5), thenv ∼ N (0, C); thus the
proposal preserves the underlying reference measure (prior) µ0. In constrast the
proposal (5.2.4) does not: ifu ∼ N (0, C) thenv ∼

√

(1 + 2δ)N (0, C).
Note that the choiceδ = 1

2 in (5.2.5) yields anindependence samplerwhere
proposalsv are made from the prior measureµ0, independently of the current state
of the Markov chainu. As in finite dimensions, improved proposals can be found
by including information aboutDΦ in the proposal.
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In computational practice, of course, we always implement asampling method
in finite dimensions. The error incurred by doing so may be quantified by use
of Theorem 4.6. It is natural to ask whether there is any valuein deriving MH
methods on function space, especially since this appears harder than doing so in
finite dimensions. The answer, of course, is yes. Any MH method in finite di-
mensions which does not correspond to a well-defined limiting MH method in the
function space (infinite dimensional) limit will degenerate as the dimension of the
space increases. This effect can be quantified and compared with what happens
when proposals defined on function space are used. In conclusion, then, the func-
tion space viewpoint on MCMC methods is a useful one which leads to improved
algorithms, and an understanding of the shortcomings of existing algorithms.

5.3. Variational Methods

Variational methods attempt to answer the following question: how do we find
the most likely functionu under the posterior measureµ given by (5.1.1). To
understand this consider first the case whereX = Rn andµ0 = N (0, C) is a
Gaussian prior. Thenµ has density with respect to Lebesgue measure and the
negative logarithm of this density is given by (5.1.3).3 Thus the Lebesgue density
of µ is maximized by minimizingI overRn. Another way of looking at this is as
follows: if u is such a minimizer then the probability of a small ball of radiusε and
centred atu will be maximized, asymptotically asε→ 0, by choosingu = u.

If X is an infinite dimensional Hilbert space then there is no Lebesgue measure
onX and we cannot directly maximize the density. However we may again con-
sider the probability of small balls atu ∈ X, of radiusε. We may then ask howu
should be chosen to maximize the probability of the ball, aymptotically asε → 0.
Again takingµ0 = N (0, C) this question leads to the conclusion thatu should be
chosen as a global minimizer ofI given by (5.1.3) over the Cameron-Martin space
E with inner-product〈·, ·〉C and norm‖ · ‖C .

Recall thatΦ measures model-data mismatch, in the context of applications to
inverse probems. In the case wherey is finite dimensional it has the form (4.3.1).
It is thus natural to minimizeΦ directly, as in (2.2.2). However, whenX is infinite
dimensional, this typically leads to minimizing sequenceswhich do not converge
in any reasonable topology. The addition of the quadratic penalization inE may
be viewed as aTikhonov regularizationto overcome this problem. Minimization
of I is thus a regularizednonlinear least squares problemas in (2.2.3). Of course
this optimization approach can be written down directly, with no reference to prob-
ability. The beauty of the Bayesian approach is that it provides a rational basis for
the choice of norms underlying the objective functionalΦ, as well as the choice of
norm in the regularization term proportional to‖u‖2

C . Furthermore, the Bayesian

3 Recall that for economy of notation we drop explicit reference to they dependence ofΦ in this
subsection as it plays no role.
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viewpoint gives an interpretation of the resulting optimization problem as a prob-
ability maximizer. And finally the framework of section 2.4,which leads to well-
posed posterior measures, also leads directly to an existence theory for probability
maximizers. We now describe this theory.

Theorem 5.4 Let Assumptions 2.6(i), (iii) hold and assume thatµ0(X) = 1. Then
there existsu ∈ E such that

I(u) = I := inf{I(u) : u ∈ E}.
Furthermore, if{un} is a minimizing sequence satisfyingI(un) → I(u) then there
is a subsequence{un′} that converges strongly tou in E.

Proof. First we show thatI is weakly lower semicontinuous onE. Letun ⇀ u in
E. By the compact embedding ofE in X, which follows from Theorem 6.11 since
µ0(X) = 1, we deduce thatun → u, strongly inX. By the Lipschitz continuity
of Φ in X (Assumption 2.6(iii)) we deduce thatΦ(un) → Φ(u). ThusΦ is weakly
continuous onE. The functionalJ(u) := 1

2‖u‖2
C is weakly lower semicontinuous

onE. HenceI(u) = J(u) + Φ(u) is weakly lower semicontinuous onE.
Now we show thatI is coercive onE. Again using the fact thatE is compactly

embedded inX, we deduce that there isK > 0 such that

‖u‖2
X 6 K‖u‖2

C .

Hence, by Assumption 2.6(i), it follows that, for anyε > 0, there isM(ε) ∈ R

such that
(1

2
−Kε

)

‖u‖2
C +M(ε) 6 I(u).

By choosingε sufficiently small, we deduce that there isM ∈ R such that, for all
u ∈ E,

1

4
‖u‖2

C +M 6 I(u). (5.3.1)

This establishes coercivity.
Consider a minimizing sequence. For anyδ > 0 there isN1 = N1(δ):

M 6 I 6 I(un) 6 I + δ, ∀n > N1.

Using (5.3.1) we deduce that the sequence{un} is bounded inE and, sinceE is a
Hilbert space, there existsu ∈ E such that (possibly along a subsequence)un ⇀ u
in E. From the weak lower semicontinuity ofI it follows that, for anyδ > 0,

I 6 I(u) 6 I + δ.

Sinceδ is arbitrary the first result follows.
Now consider the subsequenceun ⇀ u. Then there isN2 = N2(δ) > 0 such
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that forn, ℓ > N2,

1

4
‖un − uℓ‖2

C =
1

2
‖un‖2

C +
1

2
‖uℓ‖2

C − ‖1

2
(un + uℓ)‖2

C

= I(un) + I(uℓ) − 2I
(1

2
(un + uℓ)

)

− Φ(un) − Φ(uℓ) + 2Φ
(1

2
(un + uℓ)

)

6 2(I + δ) − 2I − Φ(un) − Φ(uℓ) + 2Φ
(1

2
(un + uℓ)

)

6 2δ − Φ(un) − Φ(uℓ) + 2Φ
(1

2
(un + uℓ)

)

.

But un, uℓ and 1
2(un + uℓ) all converge strongly tou in X. Thus, by continuity of

Φ, we deduce that for alln, ℓ > N3(δ),

1

4
‖un − uℓ‖2

C 6 3δ.

Hence the sequence is Cauchy inE and converges strongly and the proof is com-
plete.

Example 5.5 Recall the inverse problem for the diffusion coefficient of the one-
dimensional elliptic problem described in subsection 3.3 The obejctive is to find
u(x) appearing in

− d

dx

(

exp
(

u(x)
) dp

dx

)

= 0,

p(0) = p− p(1) = p+,

wherep+ > p−. The observations are

yk = p(xk) + ηk, k = 1, · · · , q
written succintly as

y = G(u) + η,

whereη ∈ Rq is distributed asN (0, γ2I). The functionG is Lipschitz in the space
of continuous functionsX = C([0, 1]) by Lemma 3.3.

Recall that changingu by an arbitrary additive constant does not change the
solution of (3.3.1) and so we assume thatu integrates to zero on(0, 1). We define

H =
{

u ∈ L2
(

(0, 1)
)
∣

∣

∫ 1

0
u(x)dx = 0

}

.

We takeA = − d2

dx2 with

D(A) =
{

u ∈ H2
per

(

(0, 1)
)∣

∣

∫ 1

0
u(x)dx = 0

}

.

ThenA is positive-definite self-adjoint and we may define the priorGaussian mea-
sureµ0 = N (0,A−1) on H. By Lemma 6.25 we deduce thatµ0(X) = 1. The
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Cameron-Martin space

E = Im(A− 1
2 ) =

{

u ∈ H1
per

(

(0, 1)
)
∣

∣

∫ 1

0
u(x)dx = 0

}

is compactly embedded intoC([0, 1]) by Theorem 2.10; this is also a consequence
of the general theory of Gaussian measures sinceµ0(X) = 1. By the Lipschitz
continuity ofG in X and Theorem 5.4 we deduce that

I(u) :=
1

2
‖u‖2

H1
per

+
1

2γ2
|y − G(u)|2

attains its infimum atu ∈ E.

In summary, the function space Bayesian viewpoint on inverse problems is in-
structive in developing an understanding of variational methods. In particular it
implicitly guides choice of the regularization that will lead to a well-posed mini-
mization problem.

5.4. Filtering

There are two key ideas underlying filtering: the first is to build up knowledge
about the posterior sequentially, and hence perhaps more effeciently; the second
is to break up the unknownu and build up knowledge about its constituent parts
sequentially, hence reducing the computational dimensionof each sampling prob-
lem. Thus the first idea relies on decomposing thedata sequentially, whilst the
second relies on decomposing theunknownsequentially.

The first basic idea is to build up information aboutµy sequentially as the size
of the data set increases. For simplicity assume that the data is finite dimensional
and can be written asy = {yj}J

j=1. Assume also that each data pointyj is found
from a mappingGj : X → Rℓ and subject to independent Gaussian observational
noisesηj ∼ N (0,Γj) so that

yj = Gj(u) + ηj. (5.4.1)

Thus the data is inRq for q = ℓJ. The posterior measure has the form

dµy

dµ0
(u) ∝ exp

(

−1

2

J
∑

j=1

|yj − Gj(u)|2Γj

)

. (5.4.2)

Now letµy
i denote the posterior distribution given only the datay = {yj}i

j=1. Then

dµy
i

dµ0
(u) ∝ exp

(

−1

2

i
∑

j=1

|yj − Gj(u)|2Γj

)

. (5.4.3)
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Furthermore, settingµy
0 = µ0, we have

dµy
i+1

dµy
i

(u) ∝ exp
(

−1

2
|yi+1 − Gi+1(u)|2Γj

)

. (5.4.4)

Compare formulae (5.4.2) and (5.4.4). WhenJ is large it is intuitive thatµy
i+1 is

closer toµy
i thanµy = µy

J is to µ0. This suggests that formula (5.4.4) may be
used as the basis of obtainingµy

i+1 from µy
i and thereby to approachµy = µy

J
by iterating this overi. In summary the first key idea enables us to build up our
approximation toµy incrementally over an ordered set of data.

The second key idea involves additional structure. Imaginethat we haveyj =
y(tj) for some set of times

0 6 t1 < t2 < · · · < tJ <∞.

Assume furthermore thatu is also time-dependent and can be decomposed asu =
{uj}J

j=1 whereuj = u(tj) and that (5.4.1) simplifies to

yj = Gj(uj) + ηj. (5.4.5)

Then it is reasonable to seek to find the conditional measures

νi|1:i(dui) := P(dui|{yj}i
j=1). (5.4.6)

Notice that each of these measures lives on a smaller space than doesµy and this
dimension reduction is an important feature of the methodology. Assuming that the
sequenceu = {uj}J

j=1 is governed by a Markovian evolution, the measure (5.4.6)
uniquely determines the measure

νi+1|1:i(dui+1) := P(dui+1|{yj}i
j=1).

Incorporating the(i+ 1)st data point we find that

dνi+1|1:i+1

dνi+1|1:i
(ui+1) ∝ exp

(

−1

2
|yi+1 − Gi+1(ui+1)|2Γj

)

. (5.4.7)

Thus we have a way of building the measures given by (5.4.6) incrementally ini.
Clearly, by definition,νJ|1:J(duJ) agrees with the marginal distribution ofµy(du)

on the coordinateuJ = u(tJ); however the distribution ofνi|1:i(dui) for i < J does
not agree with the marginal distribution ofµy(du) on coordinateui = u(ti). Thus
the algorithm is potentially very powerful at updating the current state of the sys-
tem given data upto that time; but it fails to update previousstates of the system,
given data that subsequently becomes available. We discussthe implications of
this in subsection 5.5.

5.5. Discussion and Bibliography

We overview the methods described in this section, highlight some relevant reated
literature, and discuss inter-relations between the methodologies. A number of as-
pects concerning computational methods for inverse problems, both classical and
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statistical, are overviewed in (Vogel 2002). An important conceptual algorithmic
distinction to make in time-dependent data assimilation problems is betweenfore-
castingmethods, which are typically used online to make predictions as data is
acquired sequentially, andhindcastingmethods which are used offline to obtain
improved understanding (this is also calledreanalysis) and, for example, may be
used for the purposes of parameter estimation to obtain improved models. MCMC
methods are natural for hindcasting and reanalysis; filtering is natural in the fore-
casting context. Filtering methods update the estimate of the state based only on
data from the past, whereas the full posterior measure estimates the state at any
given time based on both past and future observations; methods based on this full
posterior measure are known assmoothing methodsand include MCMC methods
based on the posterior and variational methods which maximize the posterior prob-
ability.

The development of MCMC methods was initiated with the 1953 paper by
Metropoliset al (Metropolis, Rosenbluth, Teller and Teller 1953) in which asym-
metric random walk proposal was used to determine thermodynamic properties,
such as the equation of state, from a microscopic statistical model. In 1970 Hast-
ings (Hastings 1970) demonstrated that the idea could be generalized to quite gen-
eral families of proposals, providing the seed for the studyof these methods in the
statistics community (Gelfand and Smith 1990, Smith and Roberts 1993, Bernardo
and Smith 1994). The paper (Tierney 1998) provides the infinite dimensional
framework for MH methods that we outline here; in particularTheorem 5.1 fol-
lows from the work in that paper. Ergodic theorems, such as the convergence of
time-averages as in (5.2.3), can in many cases be proved for much wider classes
of functions than continuous bounded functions. The general methodology is de-
scribed in (Meyn and Tweedie 1993) and an application to MH methods is given in
(Roberts and Tweedie 1996).

The degeneration of many MH methods on state spaces of finite but grow-
ing dimension is a well-known phenomenon to many practitioners. An analysis
and quantification of this effect was first undertaken in (Roberts, Gelman and
Gilks 1997), where random walk proposals were studied for ani.i.d. target, and
subsequently in (Roberts and Rosenthal 1998, Roberts and Rosenthal 2001, Beskos
and Stuart 2009, Beskos, Roberts and Stuart 2009) for other target distributions
and proposals; see (Beskos and Stuart 2010) for an overview.The idea of us-
ing proposals designed to work in the infinite dimensional context to overcome
this degeneration is developed in (Stuart, Voss and Wiberg 2004, Beskos, Roberts,
Stuart and Voss 2008) in the context of sampling conditioneddiffusions, and is
desribed more generally in (Beskos and Stuart 2009, Beskos et al. 2009, Beskos
and Stuart 2010, Cotter et al. 2009c).

The use of MCMC methods for sampling the posterior distribution arising in the
Bayesian approach to inverse problems is highlighted in (Kaipio and Somersalo
2000, Kaipio and Somersalo 2005, Calvetti and Somersalo 2006, Calvetti, Kuceyeski
and Somersalo 2008). When sampling complex high dimensional posterior distri-
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butions, such as those that arise from finite dimensional approximation of mea-
suresµy given by (2.4.1), can be extremely computationally challenging. It is,
however, starting to become feasible; recent examples of work in this direction
include (Calvetti and Somersalo 2006, Dostert et al. 2006, Kaipio and Somersalo
2000, Heino, Tunyan, Calvetti and Somersalo 2007, Calvetti, Hakula, Pursiainen
and Somersalo 2009). In (Cotter et al. 2009c) inverse problems such those in sub-
section 3.6 are studied by means of the MH technology stemming from the pro-
posal (5.2.5). Examples of application of MCMC techniques to the statistical solu-
tion of inverse problems arising in oceanography, hydrology an geophysics may be
found in (Efendiev et al. 2009, Cui, Fox, Nicholls and O’Sullivan 2009, McKeague,
Nicholls, Speer and Herbei 2005, Herbei, McKeague and Speer2008, McLaughlin
and Townley 1996, Michalak and Kitanidis 2003, Mosegaard and Tarantola 1995).
The paper (Herbei and McKeague 2009) studies the geometric ergodicity proper-
ties of the resulting Markov chains, employing the framework developed in (Meyn
and Tweedie 1993).

The idea of using proposals more general than (5.2.4), and inparticular pro-
posals that use derivative information concerningΦ, is studied in (Roberts and
Tweedie 1996). A key concept here is theLangevin equation: a stochastic dif-
ferential equation for whichµ is an invariant measure. Discretizing this equation,
which involves the derivative ofΦ, is the basis for good proposals. This is related
to the fact that, for small discretization parameter, the proposals nearly inherit this
invariance underµ. Applying this idea in the infinite dimensional context is de-
scribed in (Apte, Hairer, Stuart and Voss 2007, Beskos and Stuart 2009), based on
the idea of Langevin equations in infinite dimensions (Hairer et al. 2005, Hairer et
al. 2007, Hairer, Stuart and Voss 2009b).

Characterizing the centres of small balls with maximum probability has been an
object of interest in the theory of stochastic differentialequations for some time.
See (Ikeda and Watanabe 1989, Dürr and Bach 1978) for the simplest setting, and
(Zeitouni and Dembo 1987) for a generalization to signal processing problems.
Our main Theorem 5.4 concerning the existence of probability maximizers pro-
vides a nice link between Bayesian inverse problems and optimal control. The
key ingredients are continuity of the forward mapping from the unknown function
to the data, in the absence of observational noise, in a spaceX, and choice of a
prior measure which has the properties that draws from it arealmost surely inX:
µ0(X) = 1; this then guarantees that the Tikhonov regularization, which is in the
Cameron-Martin norm for the prior measure, is sufficient to prove existence of a
minimizer for the variational method.

The idea concluding the proof of the first part Theorem 5.4 is standard in the
theory of calculus of variations: see Chapter 3, Theorem 1.1, in (Dacarogna 1989).
The strong convergence argument generalizes an argument from Theorem II.2.1
in (Kinderlehrer and Stampacchia 1980). The PhD thesis of Nodet (Nodet 2005)
contains a specific instance of Theorem 5.4, for a model of Lagrangian data as-
similation in oceanography, and motivated the approach that we take here; related
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work is undertaken in (White 1993) for Burgers equation. An alternative approach
to the existence of minimizers is to study the Euler-Lagrange equations. The pa-
per (Hagelberg et al. 1996) studies existence by this approach for a minimization
problem closely related to the MAP estimator. The paper studies the equations of
fluid mechanics, formulated in terms vorticity-streamfunction variables. Ther ap-
proach has the disadvantage of requiring a derivative to define the Euler-Lagrange
equations, a short time-interval to obtain existence of a solution, and also requires
further second derivative information to distinguish between minimizers and saddle
points. However it does form the basis of a numerical approach to find the MAP es-
timator. For linear differential equations subject to Gaussian noise there is a beauti-
ful explicit construction of the MAP estimator, using the Euler-Lagrange equations,
known as therepresenter method. This method is described in (Bennett 2002).

Variational methods in image processing are overviewed in (Scherzer et al. 2009)
and Bayesian approach to this field is exemplified by (Calvetti and Somersalo
2005b, Calvetti and Somersalo 2007a, Calvetti and Somersalo 2008) and, implic-
itly, in (Ellerbroek and Vogel 2009). Variational methods are known in the atmo-
spheric and oceanographic literature as4DVARmethods (Derber 1989, Courtier
and Talagrand 1987, Talagrand 1987, Courtier 1997) and, as we have shown, they
are linked to probability maximizers. In the presence of model error the method
is known asweak constraint 4DVAR(Zupanski 1997). There are also variational
methods for sequential problems which update the probability maximizer at a se-
quence of times; this methodology is known as3DVAR(Courtier, Anderson, Heck-
ley, Pailleux, Vasiljevic, Hamrud, Hollingworth, Rabier and Fisher 1998) and is
closely related to filtering. Indeed, although filtering andvariational methods may
be viewed as competing methodologies they are, in fact, not distinct methodolo-
gies and hybrid methods are sought which combine the advantages of both; see
(Kalnay, Li, Miyoshi, Yang and Ballabrera-Poy 2007), for example.

Although we strongly advocate the function space view pointon variational
methods, a great deal of work is carried out by first discretizing the problem, and
then defining the variational problem. Some representativepapers which take this
approach for large scale applications arising in fluid mechanics include (Bennett
and Miller 1990, Bennett and Chua 1994, Eknes and Evensen 1997, Chua and
Bennett 2001, Yu and O’Brien 1991, Watkinson, Lawless, Nichols and Roulstone
2007, Gratton, Lawless and Nichols 2007, Johnson, Hoskins,Nichols and Ballard
2006, Lawless and Nichols 2006, Johnson, Hoskins and Nichols 2005, Lawless,
Gratton and Nichols 2005b, Lawless, Gratton and Nichols 2005a, Stanton, Law-
less, Nichols and Roulstone 2005, Wlasak and Nichols 1998).The paper (Griffith
and Nichols 1998) contains an overview of adjoint methods, used in the solution
of data assimilation problems with model error, primarily in the context of varia-
tional methods. A discussion of variational methods for theLorenz equations, and
references to the extensive literature in this area, may be found in (Evensen 2006).

The regularized nonlinear least squares or Tikhonov approach to inverse prob-
lems is widely studied, including in the infinite dimensional setting of Hilbert
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spaces – see the book (Engl et al. 1996) and the references therein – and Banach
spaces – see the papers (Kaltenbacher et al. 2009, Neubauer 2009, Hein 2009) and
the references therein. Although we have concentrated on Bayesian priors, and
hence on regularization via addition of a quadratic penalization term, there is active
research in the use of different regularizations (Kaltenbacher et al. 2009, Neubauer
2009, Hein 2009, Lassas and Siltanen 2009). In particular the use of total variation
based regularization, and related wavelet based regularizations, is central in image
processing (Rudin et al. 1992).

Solving the very high dimensional optimization problems which arise from dis-
cretizing the minimization problem (5.1.3) is extremely challenging and, as with
filtering methods, ideas from model reduction (Antoulas, Soresen and Gugerrin
2001) are frequently used to obtain faster algorithms. Someapplications of model
reduction techniques, mainly to data assimilation problems arising in fluid mechan-
ics, may be found in (Lawless, Nichols, Boess and Bunse-Gerstner 2008b, Law-
less, Nichols, Boess and Bunse-Gerstner 2008a, Griffith and Nichols 2000, Griffith
and Nichols 1998, Akella and Navon 2009, Fang, Pain, Navon, Piggott, Gorman
and Allison 2009a, Fang et al. 2009b) and the references therein. Another ap-
proach to dealing with the high dimensional problems that arise in data assimilation
is to use ideas from machine learning (Mitchell, Buchanan, DeJong, Dietterich,
Rosenbloom and Waibel 1990) to try to find good quality low dimensional ap-
proximations to the posterior measure; see for example (Shen, Archambeau, Corn-
ford, Opper, Shawe-Taylor and Barillec 2008b, Shen, Cornford, Archambeau and
Opper 2009, Vrettas, Cornford and Shen 2009, Shen, Archambeau, Cornford and
Opper 2008a, Archambeau, Opper, Shen, Cornford and Shawe-Taylor 2008,Ar-
chambeau, Cornford, Opper and Shawe-Taylor 2007).

There are some applications where the objective functionalmay not be differen-
tiable. This can arise for two primary reasons. Firstly the PDE model itself may
have discontinuous features arising from switches, or shock-like solutions; and
secondly the method of observing the PDE may have switches atcertain threshold
values of the physcial parameters. In this case it is of interest to find computa-
tional algorithms to identify MAP estimators which do not require derivatives of
the objective functional; see (Zupanski, Navon and Zupanski 2008).

An overview of the algorithmic aspects of particle filtering, for non-Gaussian
problems, is contained in the edited volume (Doucet and Gordon 2001) and a more
mathematical treatment of the subject may be found in (Bain and Crisan 2009). An
introduction to filtering in continuous time, and a derivation of the Kalman-Bucy
filter in particular, which exploits the Gaussian structureof linear problems with ad-
ditive Gaussian noise, is undertaken in (Oksendal 2003). Itshould be emphasized
that these methods are all developed primarily in the context of low dimensional
problems. In practice filtering in high dimensional systemsis extremely hard. This
is because the iterative formulae (5.4.4) and (5.4.7) do notexpress the density of
the target measure with respect to an easily understood Gaussian measure, as hap-
pens in (2.4.1). To overcome this issue, particle approximations of the reference
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measures are used, corresponding to approximation by Diracmasses; thus the al-
gorithms build up sequential approximations based on Diracmsses. In high di-
mensions this can be extremely computationally demanding and various forms of
approximation are employed to deal with curse of dimensionality problem. See
(Bengtsson, Bickel and Li 2008, Bickel, Li and Bengtsson 2008) for discussion
of the fundamental difficulties arising in high dimensionalfiltering and (Snyder,
Bengtsson, Bickel and Anderson 2008) for a development of these ideas in the
context of applications. A review of some recent mathematical developments in the
subject of high dimensional filtering, especially in the context of the modelling or
turbulent atmosheric flows, may be found in (Majda, Harlim and Gershgorin 2009).
A review of filtering from the perspective of geophysical applications, may be
found in (Van Leeuwen 2009). A widely used approach is that based on the
ensemble Kalman filter (Burgers, Van Leeuwen and Evensen 1998, Evensen and
Van Leeuwen 2000, Evensen 2006) which uses an ensemble of particles to prop-
agate the dynamics, but incorporates data using a Gaussian approximation which
is hard to justify in general; see also (Berliner 2001, Ott, Hunt, Szunyogh, Zimin,
Kostelich, Corazza, Kalnay, Patil and Yorke 2004). Furtherapproaches based on
the use of ensembles to approximate error covariance propagation may be found
in (Chorin and Krause 2004, Dance, Livings and Nichols 2009,Livings, Dance
and Nichols 2008). The paper (Bengtsson, Snyder and Nychka 2003) describes
a generalization of the ensemble Kalman filter, based on mixtures of Gaussians,
motivated by the high dimensional systems arising in fluid dynamics data assimi-
lation problems. The paper (Bennett and Budgell 1987) studies the use of filtering
techniques in high dimensions, motivated by oceanographicdata assimlation, and
contains a study of the question of how to define families of finite dimensional
filters which converge to a function space valued limit as thefinite dimensional
computation is refined; it is thus related to the concept of discretization invariance
refered to in subsection 2.5. However, the methodology for proving limiting be-
haviour in (Bennett and Budgell 1987), based on Fourier analysis, is useful only
for linear Gaussian problems; in contrast the approach developed here, namely for-
mulation of the inverse problem on function space, gives rise to algorithms which
are robust under discretization even in the non-Gaussian case.

In (Apte et al. 2007, Apte, Jones and Stuart 2008a) studies comparing the ideal
solution obtained from applying MCMC methods to the posterior (2.4.1) are com-
pared with ensemble Kalman filter methods. The context is a Lagrangian data as-
similation problem driven by a low dimensional truncation of the linearized shal-
low water equations (3.6.1) and the results demonstrate pitfalls in the ensemble
Kalman filter approach. An unambiguous and mathematically well-defined defini-
tion of theideal solution, as given by (2.4.1), plays an important role in underpin-
ning such computational studies.

A study of particle filters for Lagrangian data assimilationis undertaken in
(Spiller, Budhiraja, Ide and Jones 2008) and another application of filtering to
oceanographic problems can be found in (Brasseur, Bahurel,Bertino, Birol, Brankart,
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Ferry, Losa, Remy, Schroeter, Skachko, Testut, Tranchat, Van Leeuwen and Verron
2005). Recent contributions to the study of filtering in the context the high di-
mensional systems of interest in geophysical applicationsinclude (Bergemann and
Reich 2009, Cui et al. 2009, Chorin and Krause 2004, Chorin and Tu 2009a, Chorin
and Tu 2009b, Gottwald, Mitchell and Reich 2009, Majda and Grote 2007, Majda
and Gershgorin 2008, Majda and Harlim 2008, Van Leeuwen 2001, Van Leeuwen
2003). A comparison of various filtering methods, for the Kuramoto-Sivashinksy
equation, may be found in (Jardak, Navon and Zupanski 2009).In the paper
(Pikkarainen 2006), filtering is studied in the case where the the state space for
the dynamical variable is infinite dimensional, and modelled by an SPDE. An at-
tempt is made to keep track of the error made when approximating the infinite
dimensional system by a finite dimensional one. In this regard, a useful approx-
imation is introduced in (Huttunen and Pikkarainen 2007), building on ideas in
(Kaipio and Somersalo 2007a). Parameter estimation in the context of filtering can
be problematic and smoothing should ideally be used when parameters are also
to be estimated. However there is some activity to try and make parameter esti-
mation feasible in online scenarios; see (Hurzeler and Kunsch 2001) for a general
discussion and (Vossepoel and Van Leeuwen 2007) for an application.

We conclude this bibliography by highlighting an importantquestion confronting
many applied disciplines where data assimilation is important. It is typically the
case that models in fields such as climate prediction, oceanography, oil reservoir
simulation and weather prediction are not fully resolved and various sub-grid scale
models are used to compensate for this fact. This then raisesthe question: should
future increased computer resources be invested in furthermodel resolution, or in
more detailed study of uncertainty? In the language of this section a stark ver-
sion of this questions is as follows: should we employ only variational methods
which identify probability maximizers, but do not quantifyrisk, investing future
computer power in resolving the function space limit more fully; or should we use
MCMC methods, which quantify risk and uncertainty very precisely, but whose
implementation is very costly and will preclude further model resolution? This is
a hard question. An excellent discussion in the context of climate models may be
found in (Palmer et al. 2009).



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

INVERSE PROBLEMS 73

6. Probability

6.1. Overview

This section contains an overview of the probabilistic ideas used throughout the
article. The presentation is necessarily terse and the reader is refered to the bib-
liography subsection at the end for references to material containing the complete
details. Subsection 6.2 describes a number of basic definitions from the theory
of probability that we will use throughout the article. In subsection 6.3 we intro-
duce Gaussian measures on Banach spaces and describe the central ideas of the
Cameron-Martin space and the Fernique Theorem. Subsection6.4 describes some
explicit calculations concerning Gaussian measures on Hilbert space. In particu-
lar we discuss the Karhunen-Loeve expansion and conditioned Gaussian measures.
The Karhunen-Loeve expansion is a basic tool for constructing random draws from
a Gaussian measure on Hilbert space, and for analyzing the regularity properties
of such random draws. Conditioned measures are key to the Bayesian approach to
inverse problems and the Gaussian setting provides useful examples which help to
build intuition. In subsection 6.5 we introduce random fields and, in the Gaussian
case, show how these may be viewed as Gaussian measures on vector fields. The
key idea that we use from this subsection is to relate the properties of the covari-
ance operator to sample function regularity. In subsection6.6 we describe Bayesian
probability and a version of Bayes’ Theorem appropriate on function space. This
will underpin the approach to inverse problems that we take in this article. We
conclude, in subsection 6.7, with a discussion of metrics onprobability measures,
and describe properties of the Hellinger metric in particular. This will enable us to
measure distance between pairs of probability measures, and is a key ingredient in
the definition of well-posed posterior measures described in this article.

In this section, and indeed throughout the article, we will use the following nota-
tional conventions. The measureµ0 will denote a prior measure, andπ0 its density
with respect to Lebesgue measure when the state space isRn. Likewise the mea-
sureµy will denote a posterior measure, given datay, andπy its density with
respect to Lebesgue measure when the state space isRn; occasionally we will drop
they dependence and writeµ andπ. Given a densityρ(u, y) on a pair of jointly
distributed random variables we will writeρ(u|y) (resp.ρ(y|u)) for the density of
the random variableu (resp.y), given a single observation ofy (resp.u). We also
write ρ(u) for the marginal density found by integrating outy, and similarlyρ(y)
the marginal density found by integrating outu. We will use similar conventions
for other densities, and the densities arising from conditioning and marginalization.

6.2. Basic Concepts

A measure (resp. probability) space is a triplet(Ω,F , µ) whereΩ is the sample
space,F theσ−algebra of events andµ the measure (resp. probability measure). In
this article we will primarily be concerned with situationsin whichΩ is a separable
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Banach space
(

X, ‖ · ‖X

)

andF is the Borelσ−algebraB(X) generated by the

open sets, in the strong topology. We are interested inRadon measuresonX which
are characterized by the property

µ(A) = sup
{

µ(B)
∣

∣B ⊂ A, B compact
}

, A ∈ B(X).

We useE andP to denote expectation and probability respectively andE(·|·) and
P(·|·) for conditional expectation and probability; on occasion we will use the nota-
tion Eµ or Pµ if we wish to indicate that the expectation (or probability)in question
is with respect to a particular measureµ. We use∼ as shorthand foris distributed
as; thusx ∼ µ means thatx is drawn from a probability measureµ. A real valued
measurable function on the measure space(Ω,F , µ) is one for which the preimage
of every Borel set inR is in F (is µ−measurable).

A functionm ∈ X is calledthe meanof µ on Banach spaceX if, for all ℓ ∈ X∗,
whereX∗ denotes the dual space of linear functionals onX,

ℓ(m) =

∫

X
ℓ(x)µ(dx).

If m = 0 the measure is calledcentred. In the Hilbert space setting we have that,
for x ∼ µ, m = Ex. A linear operatorK : X∗ → X is called the covariance
operator if, for allk, ℓ ∈ X∗,

k(Kℓ) =

∫

X
k(x−m)ℓ(x−m)µ(dx).

In the Hilbert space setting whereX = X∗ the covariance operator is characterized
by the identity

〈k,Kℓ〉 = E〈k, (x−m)〉〈(x−m), ℓ〉, (6.2.1)

for x ∼ µ and for allk, ℓ ∈ X. Thus

K = E(x−m) ⊗ (x−m). (6.2.2)

If µ andν are two measures on the same measure space thenµ is absolutely
continuouswith respect toν if ν(A) = 0 impliesµ(A) = 0. This is sometimes
written µ ≪ ν. The two measures areequivalentif µ ≪ ν andν ≪ µ. If the
measures are supported on disjoint sets then they aremutually singularor singular.

A family of measuresµ(n) on Banach spaceX is said toconverge weaklyto
measureµ onX if

∫

X
f(x)µ(n)(dx) →

∫

X
f(x)µ(dx)

for all continuous boundedf : E → R. We writeµ(n) ⇒ µ. 4

4 This should not be confused with weak convergence of functions.
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The characteristic function of a probability distributionµ on a separable Banach
spaceX is, for ℓ ∈ X∗,

ϕµ(ℓ) = E exp
(

iℓ(x)
)

.

Theorem 6.1 If µ andν are two Radon measures on a separable Banach spaceX
and ifϕµ(ℓ) = ϕν(ℓ) for all ℓ ∈ X∗, thenµ = ν.

The followingRadon-Nikodym Theoremplays an important role in this article.

Theorem 6.2 Let µ andν be two measures on the same measure space(Ω,F). If
µ ≪ ν andν is σ−finite then there existsν−measurable functionf : Ω → [0,∞]
such that, for allν−measurable setsA ∈ F ,

µ(A) =

∫

A
f(x)dν(x).

The functionf is known as theRadon-Nikodym derivativeof µ with respect to
ν. The derivative is written as

dµ

dν
(x) = f(x). (6.2.3)

We will sometimes simply refer tof = dµ/dν as thedensityof µ with respect to
ν. If µ is also a probability measure then

1 = µ(Ω) =

∫

Ω
f(x)dν(x).

Thus, ifν is a probability measure,Eνf(x) = 1.
We give an example which illustrates a key idea which underlies the material we

develop in this section. We work in finite dimensions but highlight what can be
transfered to probability measures on a Banach space.

Example 6.3 For a probability measureµ on Rd which is absolutely continuous
with respect to Lebesgue measureλ we use the shorthandpdf for the probability
density function, ordensity, ρ defined so that

µ(A) =

∫

A
ρ(x)dx (6.2.4)

for A ∈ F , whereF is the sigma algebra generated by the open sets inRd. Strictly
speaking this is thepdf with respect to Lebesgue measureas we integrate the den-
sity against Lebesgue measure to find the probability of a setA. Note that

dµ

dλ
(x) = ρ(x).
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It is also possible to find the density ofµ with respect to a Gaussian measure. To
illustrate this, letµ0 = N (0, I) denote a standard unit Gaussian inRd. Then

µ0(dx) =
√

(2π)−d exp
(

−1

2
|x|2

)

dx.

Thus the density ofµ with respect toµ0 is

ρg(x) =
√

(2π)d exp
(1

2
|x|2

)

ρ(x).

We then have the identities

µ(A) =

∫

A
ρg(x)µ0(dx) (6.2.5)

and
dµ

dµ0
(x) = ρg(x).

It turns out that, in the infinite dimensional setting, the formulation (6.2.5) general-
izes much more readily than does (6.2.4). This is because infinite dimensional
Gaussian measure is well-defined, and because many measureshave a density
(Radon-Nikodym derivative) with respect to an infinite dimensional Gaussian mea-
sure. In constrast, infinite dimensional Lebesgue measure does not exist.

We conclude this subsection with two definitions of operators, both important
for definitions associated with Gaussian measures on Hilbert space. Let{φk}∞k=1
denote an orthonormal basis for a separable Hilbert spaceH. A linear operator
A : H → H is trace-classor nuclearif

Tr(A) :=

∞
∑

k=1

〈Aφk, φk〉 <∞. (6.2.6)

The sum is independent of the choice of basis. The operatorA is Hilbert-Schmidt
if

∞
∑

k=1

‖Aφk‖2 <∞ (6.2.7)

If A is self-adjoint and we choose the{φk} to be the eigenfunctions ofA, then the
sum in (6.2.6) is simply the sum of the eigenvalues ofA. A weaker condition is
that the eigenvalues are square-summable which is (6.2.7).

6.3. Gaussian Measures

We will primarily employ Gaussian measures in the Hilbert space setting. However
they can also be defined on Banach spaces and, on occasion, we will employ this
level of generality. Indeed when studying Gaussian random fields in subsection 6.5,
we will show that, for a Gaussian measureµ on a Hilbert spaceH, there is often a
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Banach spaceX which is continuously embedded inH and has the property that
µ(X) = 1. We would then like to define the measureµ on the Banach spaceX.
We thus develop Gaussian measure theory on separable Banachspaces here.

Having defined Gaussian measure, we describe its characteristic function, and
we state the Fernique Theorem which exploits tail properties of Gaussian mea-
sure. We follow this with definition and discussion of the Cameron-Martin space.
We then describe the basic tools required to study the absolute continuity of two
Gaussian measures.

A measureµ on
(

X,B(X)
)

is Gaussianif, for any ℓ ∈ X∗, ℓ(x) ∼ N (mℓ, σ
2
ℓ )

for somemℓ ∈ R, σℓ ∈ R.Note thatσℓ = 0 is allowed, so that the induced measure
on ℓ(x) may be a Dirac mass atmℓ. Note also that it is expected thatmℓ = ℓ(m),
wherem is the mean defined above, andσ2

ℓ = ℓ(Kℓ), whereK is the covariance
operator. The meanm and covariance operatorK are indeed well-defined by this
definition of covariance operator.

Theorem 6.4 A Gaussian measure on
(

X,B(X)
)

has a meanm and covariance

operatorK. Furthermore the characteristic function of the measure is

ϕ(ℓ) = exp
(

iℓ(m) − 1

2
ℓ(Kℓ)

)

.

Hence by Theorem 6.1 we see that the mean and covariance completely char-
acterize the Gaussian measure and so we are justified in denoting it by N (m,K).
The following lemma demonstrates an important role for characteristic functions
in studying weak convergence.

Lemma 6.5 Consider a family of probability measuresµ(n). Assume that, for all
ℓ ∈ X∗,

ϕµ(n)(ℓ) → exp

(

iℓ(m+) − 1

2
ℓ(K+ℓ)

)

.

Thenµ(n) ⇒ N (m+,K+).

In the Hilbert space setting we refer to the inverse of the covariance operatorC
as theprecision operatorand denote it byL. It is natural to ask what conditions an
operator must satisfy in order to be a covariance operator. Good intuition can be
obtained by thinking of the precision operator as a (possibly) fractional differential
operator of sufficiently high order. To pursue this issue a little further we confine
ourselves to the Hilbert space setting. The following theorem provides a precise
answer to the question concerning properties of the covariance operator.

Theorem 6.6 If N (0, C) is a Gaussian measure on a Hilbert spaceH thenC is a
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self-adjoint, positive semi-definite trace-class operator onH. Furthermore, for any
integerp, there is constantC = Cp > 0 such that, forx ∼ N (0, C),

E‖x‖2p
6 Cp

(

Tr(C)
)p
.

Conversely, ifm ∈ H, andC is a self-adjoint, positive semi-definite, trace-class lin-
ear operator on a Hilbert spaceH, then there is a Gaussian measureµ = N (m, C)
onH.

Example 6.7 Unit Brownian bridge onJ = (0, 1) may be viewied as a Gaussian
process onL2(J) with precision operatorL = − d2

dx2 andD
(

L
)

= H2(J)
⋂

H1
0 (J).

Thus the eigenvalues ofC areγk = (k2π2)−1 and are summable.

If x ∼ N (0, C), thenE‖x‖2 = Tr(C).Combining this fact with the previous the-
orem we have the following generalization of the well-knownproperty concerning
the moments of finite dimensional Gaussian measures.

Corollary 6.8 If N (0, C) is a Gaussian measure on a Hilbert spaceH then, for any
positive integerp, there isCp > 0 such thatE‖x‖2p 6 Cp

(

E‖x‖2
)p
.

In fact, as in finite dimensions, the exponentials of certainquadratic functionals
are bounded for Gaussian measures. This is the Fernique Theorem which we state
in the Banach space context:

Theorem 6.9 If µ = N (0,K) is a Gaussian measure on Banach spaceX, so that
µ(X) = 1, then there existsα > 0 such that

∫

X
exp

(

α‖x‖2
X

)

µ(dx) <∞.

We define theCameron-Martin spaceE associated with a Gaussian measure
µ = N (0,K) on Banach spaceX to be the intersection of all linear spaces of full
measure underµ.5

Lemma 6.10 LetE be the Cameron-Martin space of Gaussian measureµ = N (0,K)
on Banach spaceX. In infinite dimensions it is necessarily the case thatµ(E) = 0.
FurthermoreE can be endowed with a Hilbert-space structure. Indeed for Gaus-

sian measuresN (0, C) on the Hilbert space
(

H, 〈·, ·〉
)

the Cameron-Martin space

is the Hilbert spaceE := Im(C 1
2 ) with inner-product

〈·, ·〉C = 〈C− 1
2 ·, C− 1

2 ·〉.
5 In most develoments of the subject this charactertization is given after a more abstract definition

of the Cameron-Martin space. However, for our purposes thislevel of abstraction is not needed.
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Note that the covariance operatorC of a Gaussian probability measure on a
Hilbert spaceH is necessarily compact becauseC is trace class so that the eigen-
values ofC 1

2 decay at least algebraically. Thus the Cameron-Martin space Im(C 1
2 )

is compactly embedded inH. In fact we have the following more general result:

Theorem 6.11 The Cameron-Martin spaceE associated with a Gaussian measure
µ = N (0,K) on Banach spaceX is compactly embedded in all spacesX ′ with
full measure (µ(X ′) = 1) underµ.

Example 6.12 Consider a probability measureν onR2 which is a product measure
of the formδ0⊗N (0, 1). Introduce coordinates(x1, x2) so that the marginal onx1

is δ0 and the marginal onx2 is N (0, 1). The intersection of all linear spaces with
full measure is the subset ofR2 defined by the line

E = {(x1, x2) ∈ R2 : x1 = 0}.
Note furthermore that this subset is characterized by the property that the measures
ν(·) andν(a+ ·) are equivalent (as measures) if and only ifa ∈ E. Thus, for this
example, the Cameron-Martin space defines the space of allowable shifts, under
which equivalence of the measures holds.

We now generalize the last observation in the preceding example: we show that
the Cameron-Martin space characterizes precisely those shifts in the mean of a
Gaussian measure which preserve equivalence.

Theorem 6.13 Two Gaussian measuresµi = N (mi, Ci), i = 1, 2, on a Hilbert
spaceH are either singular or equivalent. They are equivalent if and only if the
following three conditions hold:

i) Im(C
1
2
1 ) = Im(C

1
2
2 ) := E;

ii) m1 −m2 ∈ E;

iii) the operatorT :=
(

C− 1
2

1 C
1
2
2

)(

C− 1
2

1 C
1
2
2

)∗
− I is Hilbert-Schmidt inE.

In particular, choosingC1 = C2 we see that shifts in the mean give rise to equiv-
alent Gaussian measures if and only if the shifts lie in the Cameron-Martin space
E. It is of interest to characterize the Radon-Nikodym derivative arising from such
shifts in the mean.

Theorem 6.14 Consider two measuresµi = N (mi, C), i = 1, 2, on Hilbert space
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H, whereC has eigenbasis{φk, λk}∞k=1. Denote the Cameron-Martin space byE.
If m1 −m2 ∈ E then the Radon-Nikodym derivative is given by

dµ1

dµ2
(x) = exp

(

〈m1 −m2, x−m2〉C −
1

2
‖m1 −m2‖2

C

)

.

Sincem1−m2 ∈ Im(C 1
2 ) the quadratic form‖m1−m2‖2

C is defined; the random
variablex → 〈m1 −m2, x−m2〉C is defined via a limiting procedure as follows.
By the the Karhunen-Loeve expansion (6.4.1) below we have the representation of
x ∼ N (0, C) as

x−m2 =

∞
∑

k=1

√

λkωkφk

whereω = {ωk}∞k=1 ∈ Ω is an i.i.d. sequence ofN (0, 1) random variables. Then
〈m1 −m2, x−m2〉C is defined as theL2(Ω;H) limit in n of the series

n
∑

k=1

1√
λk

〈m1 −m2, φk〉ωk.

In establishing the first of the conditions in Theorem 6.13, the following lemma
is often useful:

Lemma 6.15 For any two positive-definite, self-adjoint, bounded linear operators

Ci on a Hilbert spaceH, i = 1, 2, the conditionIm(C
1
2
1 ) ⊂ Im(C

1
2
2 ) holds if and

only if there exists a constantK > 0 such that

〈h, C1h〉 6 K〈h, C2h〉 ∀h ∈ H.

Example 6.16 Consider two Gaussian measuresµi on H = L2(J), J = (0, 1)

both with precision operatorL = − d2

dx2 and the domain ofL beingH1
0 (J)∩H2(J).

(Informally −L is the Laplacian onJ with homogeneous Dirichlet boundary con-
ditions.) The mean ofµ1 is a functionm ∈ H and the mean ofµ2 is 0. Thus
µ1 ∼ N (m, C) andµ2 ∼ N (0, C) whereC = L−1. HereC1 = C2 = C andT = 0

so that i) and iii) in Theorem 6.13 are satisfied withE = Im(C 1
2 ) = H1

0(J). It fol-
lows that the measures are equivalent iffm ∈ E. If this condition is satisfied then,
from Theorem 6.14, the Radon-Nikodym derivative between the two measures is
given by

dµ1

dµ2
(x) = exp

(

〈m,x〉H1
0
− 1

2
‖m‖2

H1
0

)

.
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Example 6.17 Consider two mean-zero Gaussian measuresµi onH = L2(J), J =

(0, 1) with norm ‖ · ‖ and precision operatorsL1 = − d2

dx2 + I andL2 = − d2

dx2

respectively, both with domainH1
0 (J) ∩H2(J).

The operatorsL1,L2 share the same eigenfunctions

φk(x) =
√

2 sin (kπx)

and have eigenvalues

λk(1) = λk(2) + 1, λk(2) = k2π2,

respectively. Thusµ1 ∼ N (0, C1) andµ2 ∼ N (0, C2) where, in the basis of
eigenfunctions,C1 andC2 are diagonal with eigenvalues

1

k2π2 + 1
,

1

k2π2

respectively. We have, forhk = 〈h, φk〉,
π2

π2 + 1
6

〈h, C1h〉
〈h, C2h〉

=

∑

k∈Z+(1 + k2π2)−1h2
k

∑

k∈Z+(kπ)−2h2
k

6 1.

Thus, by Lemma 6.15, Theorem 6.13i) is satisfied. Part ii) holds trivially. Notice
that

T = C− 1
2

1 C2C
− 1

2
1 − I

is diagonalized in the same basis as theCi and has eigenvalues

1

k2π2
.

These are square summable and so part iii) of Theorem 6.13 holds and the two
measures are absolutely continuous with respect to one another.

A Hilbert space(X, 〈·, ·〉X) of functionsf : D ⊂ Rd → R is called areproduc-
ing kernel Hilbert space, RKHS for short, if pointwise evaluation is a continuous
linear functional in the Hilbert space. Iff(y) = 〈f, ry〉X then ry is called the
representerof the RKHS.

Example 6.18 Let J = (0, 1). Note thatH = L2(J ; R) is not a RKHS. Consider
X = H1(J ; R) equipped with the inner-product

(a, b) = a(0)b(0) +

∫ 1

0
a′(x)b′(x)dx. (6.3.1)

If ry(x) = 1 + x ∧ y thenf(y) = (f, ry). Notice thatry ∈ X. Thus, by the
Cauchy-Schwarz inequality,

|f(y) − g(y)| 6 |(f − g, ry)|
6 ‖f − g‖X‖ry‖X ,
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demonstrating that pointwise evaluation is a continuous linear functional onX.
Notice, furthermore, that the expressionf(y) = (f, ry) is an explicit statement of
the Riesz Representation Theorem.

In the literature there is often an overlap of terminology surrounding the RKHS
and the Cameron-Martin space. This is related to the fact that the representer of an
RKHS can often be viewed as the covariance function (see subsection 6.5 below)
of a covariance operator associated to a Gaussian measure onL2(D; R).

6.4. Explicit Calculations With Gaussian Measures

In this section we confine our attention to Gaussian measureson Hilbert space. We
provide a number of explicit formulae that are helpful throughout the article, and
which also help to build intuition about measures on infinitedimensional spaces.

We can construct random draws from a Gaussian measure on Hilbert spaceH as
follows, using theKarhunen-Loeve expansion.

Theorem 6.19 Let C be a self-adjoint, positive semi-definite, nuclear operator in
a Hilbert spaceH and letm ∈ H. Let {φk, γk}∞k=1 be an orthonormal set of
eigenvectors/eigenvalues forC ordered so that

γ1 > γ2 > · · · .
Take{ξk}∞k=1 to be an i.i.d. sequence withξ1 ∼ N (0, 1). Then the random variable
x ∈ H given by theKarhunen-Loeve expansion

x = m+
∞
∑

k=1

√
γkξkφk (6.4.1)

is distributed according toµ = N (m, C).

In applications the eigenvalues and eigenvectors ofC will often be indexed over
a different countable set, sayK. In this context certain calculations are cleaner if
we write the Karhunen-Loeve expansion (6.4.1) in the form

x = m+
∑

k∈K

√
γkξkφk. (6.4.2)

Here the{ξk}k∈K are an i.i.d. set of random variables all distributed asN (0, 1). Of
course the order of summation does, in general, matter; whenever we use (6.4.2),
however, the ordering will not be material to the outcome andwill streamline the
calculations to use (6.4.2).

The next theorem concerns conditioning of Gaussian measures.

Theorem 6.20 Let H = H1 ⊕ H2 be a separable Hilbert space with projectors
Πi : H → Hi. Let (x1, x2) ∈ H1 ⊕H2 be anH-valued Gaussian random variable
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with meanm = (m1,m2) and positive definite covariance operatorC. Define

Cij = E(xi −mi) ⊗ (xj −mj).

Then the conditional distribution ofx1 givenx2 is Gaussian with mean

m′ = m1 + C12C−1
22

(

x2 −m2

)

(6.4.3)

and covariance operator

C′ = C11 − C12C−1
22 C21. (6.4.4)

To understand this theorem it is useful to consider the following finite dimen-
sional result concerning block matrix inversion.

Lemma 6.21 Consider a positive-definite matrixC with the block form

C =

(

C11 C12

C∗
12 C22

)

.

ThenC22 is positive-definite symmetric and theSchur complementS defined by
S = C11 − C12C

−1
22 C

∗
12 is positive-definite symmetric. Furthermore

C−1 =

(

S−1 −S−1C12C
−1
22

−C−1
22 C

∗
12S

−1 C−1
22 +C−1

22 C
∗
12S

−1C12C
−1
22

)

.

Now let(x, y) be jointly Gaussian with distributionN (m,C) andm = (m∗
1,m

∗
2)

∗.
Then the conditional distribution ofx given y is Gaussian with meanm′ and co-
variance matrixC ′ given by

m′ = m1 + C12C
−1
22 (y −m2),

C ′ = C11 − C12C
−1
22 C

∗
12.

Example 6.22 Consider a random variableu with Gaussian prior probability dis-
tributionN (0, 1) and hence associated pdf

π0(u) ∝ exp
(

−1

2
u2

)

.

Let y be the random variabley = u+ ξ whereξ ∼ N (0, σ2) is independent ofu.
Then the likelihood ofy givenu has pdf proportional to

exp
(

− 1

2σ2
|y − u|2

)

.

The joint probability of(u, y) thus has pdf proportional to

exp
(

− 1

2σ2
|y − u|2 − 1

2
|u|2

)

.
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Since

1

2σ2
|y − u|2 +

1

2
|u|2 =

(σ2 + 1

2σ2

)

∣

∣

∣
u− 1

σ2 + 1
y
∣

∣

∣

2
+ cy

wherecy is independent ofu we see that theu|y is a GaussianN (m,γ2) with

m =
1

σ2 + 1
y, γ2 =

σ2

σ2 + 1
.

This technique for deriving the mean and covariance of a Gaussian measure is often
termedcompleting the square; it may be rigorously justified by Theorem 6.20 as
follows. First we observe thatm1 = m2 = 0, thatC11 = C12 = C21 = 1 and that
C22 = 1 + σ2. The formulae (6.4.3) and (6.4.4) then give identical results to those
found by completing the square.

We now study an infinite dimensional version of the previous example.

Example 6.23 Consider a random variableu on a Hilbert spaceH distributed ac-

cording to a measureµ0 ∼ N (m0, C0). We assume thatm0 ∈ Im(C
1
2
0 ). Assume

thaty ∈ Rm is also Gaussian and is given by

y = Au+ η

whereA : X → Rm is linear and continuous on a Banach spaceX ⊆ H with
µ0(X) = 1. The adjoint ofA, denotedA∗, is hence the operator fromRm → X∗

defined by the identity

〈Au, v〉 = (A∗v)(u)

which holds for allv ∈ Rm, u ∈ X, and whereA∗v ∈ X∗ is a linear functional on
X. We also assume thatη ∼ N (0,Γ) is independent ofu and thatΓ is positive-

definite. Thusy|u is Gaussian with density proportional toexp
(

−1
2 |y−Au|2Γ

)

.We

would like to characterize the Gaussian measureµy for u|y. Let µy = N (m, C).
To calculateC andm we first use the idea of completing the square, simply com-
puting formally as if the Hilbert space foru were finite dimensional and had a
density with respect to Lebesgue measure; we will then justify the resulting formu-
lae after the fact by means of Theorem 6.20. The formal Lebesgue density foru|y
is proportional to

exp
(

−1

2
|y −Au|2Γ − 1

2
‖u−m0‖2

C0

)

.

But
1

2
|y −Au|2Γ +

1

2
‖u−m0‖2

C0
=

1

2
‖u−m‖2

C + cy
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with cy independent ofu and hence completing the square gives

C−1 = A∗Γ−1A+ C−1
0 (6.4.5a)

m = C
(

A∗Γ−1y + C−1
0 m0

)

. (6.4.5b)

We now justify this informal calculation.
The pair(u, y) is jointly Gaussian withEu = m0 andEy = Am0. We define

u = u − m0 andy = y − Am0. Note thaty = Au + η. The pair(u, y) has
covariance operator with components

C11 = Euu∗ = C0,

C22 = Eyy∗ = AC0A
∗ + Γ,

C21 = Eyu∗ = AC0.

Thus, by Theorem 6.20, we deduce that the meanm and covariance operatorC for
u conditional ony are given, respectively, by

m = m0 + C0A
∗(Γ +AC0A

∗)−1(y −Am0) (6.4.6)

and

C = C0 − C0A
∗(Γ +AC0A

∗)−1AC0. (6.4.7)

We now demonstrate that the formulae (6.4.6),(6.4.7) agreewith (6.4.5). To check
agreement with the formula for the inverse ofC found by completing the square,
we show that the product is indeed the identity. Note that

(

C0 − C0A
∗(Γ +AC0A

∗)−1AC0

)(

C−1
0 +A∗Γ−1A

)

=
(

I − C0A
∗(Γ +AC0A

∗)−1A
)(

I + C0A
∗Γ−1A

)

= I + C0A
∗Γ−1A− C0A

∗(Γ +AC0A
∗)−1(A+AC0A

∗Γ−1A)

= I + C0A
∗Γ−1A− C0A

∗Γ−1A

= I.

To check agreement with the two formulae for the mean we proceed as follows.
We have

Γ−1 − (Γ +AC0A
∗)−1AC0A

∗Γ−1 = (Γ +AC0A
∗)−1. (6.4.8)

The formula for the mean derived by completing the square gives

m = C
(

(C−1 −A∗Γ−1A)m0 +A∗Γ−1y
)

= m0 + CA∗Γ−1(y −Am0).

To get agreement with the formula (6.4.6) it suffices to show that

CA∗Γ−1 = C0A
∗(Γ +AC0A

∗)−1.
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By (6.4.7) and (6.4.8),

CA∗Γ−1 = C0A
∗Γ−1 − C0A

∗(Γ +AC0A
∗)−1AC0A

∗Γ−1

= C0A
∗(Γ +AC0A

∗)−1,

and we are done.

6.5. Gaussian Random Fields

Our aim in this subsection is to construct, and study the properties of, Gaussian ran-
dom functions. We first consider the basic construction of random functions, then
Gaussian random functions, following this by a study of the regularity properties
of Gaussian random functions.

Let (Ω,F ,P) be a probability space andD ⊆ Rd an open set. Arandom fieldon
D is a measurable mappingu : D × Ω → Rn. Thus, for anyx ∈ D, u(x; ·) is an
Rn−valued random variable; on the other hand, for anyω ∈ Ω, u(·;ω) : D → Rn

is a vector field. In the construction of random fields it is commonplace to first
construct thefinite dimensional distributions. These are found by choosing any
integerq > 1, and any set of points{xk}q

k=1 inD, and then considering the random
vector(u(x1; ·)∗, · · · , u(xq; ·)∗)∗ ∈ Rnq. From the finite dimensional distributions
of this collection of random vectors we would like to be able to make sense of the
probability measureµ onX, a Banach space, via the formula

µ(A) = P(u(·;ω) ∈ A), A ∈ B(X), (6.5.1)

whereω is taken from a common probability space on which the random ele-
mentu ∈ X is defined. It is thus necessary to study the joint distribution of a
set ofq Rn−valued random variables, all on a common probability space.Such
Rnq−valued random variables are, of course, only defined up to a set of zero mea-
sure. It is desirable that all such finite dimensional distributions are defined on a
common subsetΩ0 ⊂ Ω with full measure, so thatu may be viewed as a function
u : D × Ω0 → Rn; such a choice of random field is termed amodification. In
future developments, statements about almost sure (regularity) properties of a ran-
dom field should be interpreted as statements concerning theexistence of a modi-
fication possessing the stated almost sure regularity property. We will often simply
write u(x), suppressing the explicit dependence on the probability space.

A Gaussian random fieldis one where, for any integerq > 1, and any set of
points {xk}q

k=1 in D, the random vector(u(x1; ·)∗, · · · , u(xq; ·)∗)∗ ∈ Rnq is a
Gaussian random vector. Themean functionof a Gaussian random field ism(x) =
Eu(x). Thecovariance functionis c(x, y) = E

(

u(x) − m(x)
)(

u(y) − m(y)
)∗
.

For Gaussian random fields this function, together with the mean function, com-
pletely specify the joint probability distribution for(u(x1; ·)∗, · · · , u(xq)

∗)∗ ∈
Rnq. Furthermore, if we view the Gaussian random field as a Gaussian measure
onL2(D; Rn) then the covariance operator can be constructed from the covariance
function as follows. Without loss of generality we considerthe mean zero case;
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the more general case follows by shift of origin. Since the field has mean zero we
have, from (6.2.1),

〈h1, Ch2〉 = E〈h1, u〉〈u, h2〉

= E

∫

D

∫

D
h1(x)

∗
(

u(x)u(y)∗
)

h2(y)dydx

= E

∫

D
h1(x)

∗
(

∫

D

(

u(x)u(y)∗
)

h2(y)dy
)

dx

=

∫

D
h1(x)

∗
(

∫

D
c(x, y)h2(y)dy

)

dx

and we deduce that
(

Cφ
)

(x) =

∫

D
c(x, y)φ(y)dy. (6.5.2)

Thus the covariance operator of a Gaussian random field is an integral operator
with kernel given by the covariance function.

If we view the Gaussian random field as a measure on the spaceX = C(D; Rn)
then the covariance operatorK : X∗ → X may also be written as an integral
operator as follows. For simplicity we consider the casen = 1. We note that
ℓ = ℓµ ∈ X∗ may be identified with a signed measureµ on D. Then similar
arguments to those used in the Hilbert space case show that

(

Kℓµ
)

(x) =

∫

D
c(x, y)µ(dy). (6.5.3)

This may be extended to the case of random fields taking valuesin Rn.
A mean-zero Gaussian random field is termedstationaryif c(x, y) = s(x−y) for

some matrix-valued functions, so that shifting the field by a fixed random vector
does not change the statistics. It isisotropic if, in addition,s(x− y) = ι(|x − y|),
for some matrix-valued functionι.

An important general question concerning random fields is tofind criteria to es-
tablish their regularity, expressed in terms of the covariance function or operator.
An important tool in this context is theKolmogorov Continuity Theoremwhich
follows below. This theorem expresses sample function regularity in terms of the
covariance function of the random field. Another key tool in establishing regularity
is the Karhunen-Loeve expansion (6.4.2) which expresses a random draw from a
Gaussian measure in terms of the eigenfunctions and eigenvalues of the covariance
operator and may be used to express sample function regularity in terms of the
decay of the eigenvalues of the covariance operator. Both these approaches to sam-
ple function regularity, one working from the covariance functions, and one from
eigenvalues of the covariance operator, are useful in practice when considering
Bayesian inverse problems for functions; this is because prior Gaussian measures
may be specified via either the covariance function or the covariance operator.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

88 A.M. STUART

Theorem 6.24 Consider anRn−valued random fieldu on a bounded open set
D ⊂ Rd. Assume that there are constantsK, ε > 0 andδ > 1 such that

E|u(x) − u(y)|δ 6 K|x− y|2d+ε.

Thenu is almost surely Hölder continuous onD with any exponent smaller than
min{1, ε/δ}.

In this article we mainly work with priors specified through the covariance op-
erator on a simple geometry, as this makes the exposition more straightforward.
Specifically we consider covariance operators constructedas fractional powers of
operatorsA whose leading order behaviour is like that of the Laplacian on a rect-
angle. Precisely we will assume that Assumptions 2.9 hold.

By using the Kolmorogorov continuity theorem we can now prove the following.

Lemma 6.25 Let A satisfy Assumptions 2.9 (i)–(iv). Consider a Gaussian mea-
sureµ = N (0, C) with C = A−α with α > d

2 . Thenu ∼ µ is almost surely
s−Hölder continuous for any exponents < min{1, α − d

2}.
Proof. The Karhunen-Loeve expansion (6.4.2) shows that

u(x) =
∑

k∈K

1

|λk|α/2
ξkφk(x).

Thus, for anyι > 0 and forC a (possibly changing) constant independent oft, x
andξ,

E|u(x+ h) − u(x)|2 6 C
∑

k∈K

1

|k|2α
|φk(x+ h) − φk(x)|2

6 C
∑

k∈K

1

|k|2α
min{|k|2|h|2, 1}

6 C

∫

|k|>1

1

|k|2α
min{|k|2|h|2, 1}dk

6 C

∫

16|k|6|h|−ι

|k|2(1−α)|h|2dk +C

∫

|k|>|h|−ι

|k|−2αdk

6 C|h|2
∫ |h|−ι

1
rd−1+2(1−α)dr + C

∫ ∞

|h|−ι

rd−1−2αdr

= C
(

|h|2−ι
(

d+2(1−α)
)

+ |h|−ι(d−2α)
)

.

Making the optimal choiceι = 1 gives

E|u(x+ h) − u(x)|2 6 C|h|2α−d.

Thus, by Corollary 6.8 withH = Rn,

E|u(x) − u(y)|2p
6 C|x− y|(2α−d)p
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for anyp ∈ N. Choosing the exponentsδ = 2p andε = (2α−d)p−2d and letting
p → ∞, we deduce from Theorem 6.24 that the function iss−Hölder with any
exponents as specified.

Example 6.26 Assume that a Gaussian random field with measureµ has the prop-
erty that, forX = C(D; Rn), µ(X) = 1. Then the Cameron-Martin space for this

measure, denoted by
(

E, 〈·, ·〉E
)

, is compactly embedded inX, by Theorem 6.11,

and hence there is a constantC > 0 so that

‖ · ‖X 6 C‖ · ‖E .

Hence pointwise evaluation is a continuous linear functional on the Cameron-
Martin space so that this space may be viewed as an RKHS.

As an example consider the Gaussian measureN (0, βA−α) onH, with A sat-
isfying Assumptions 2.9 (i)–(iv). Thenµ(X) = 1 for α > d

2 by Lemma 6.25.
The Cameron-Martin space is justHα. This shows that the spaceHα is compactly
embedded in the space of continuous functions, forα > d

2 . (Of course a related
fact follows more directly from the Sobolev embedding Theorem 2.10).

We now turn to Sobolev regularity, again using the Karhunen-Loeve expansion.
Recall the Sobolev-like spaces (2.4.6) definingHs = D(As/2).

Lemma 6.27 Consider a Gaussian measureµ = N (0,A−α) whereA satisfies
Assumptions 2.9(i)–(iii) andα > d

2 . Thenu ∼ µ is in Hs almost surely for any
s ∈ [0, α − d

2).

Proof. The Karhunen-Loeve expansion (6.4.2) shows that

u =
∑

k∈K

√
γkξkφk

with {ξk} an i.i.d.N (0, 1) sequence andγk = λ−α
k . Thus

E‖u‖2
s =

∑

k∈K

γkλ
s
k.

If the sum is finite thenE‖u‖2
s <∞ andu ∈ Hs µ−almost surely. We have
∑

k∈K

γkλ
s
k =

∑

k∈K

λs−α
k .

Since the eigenvaluesλk of A grow like |k|2 we deduce that this sum is finite if
and only ifα > s+ d/2, by comparison with an integral.

It is interesting that the Hölder and Sobolev exponents predicted by Lemmas
6.25 and Lemma 6.27 agree ford

2 < α < d
2 + 1. The proof of Hölder regularity

uses Gaussianity in a fundamental way to obtain this property. In particular, in the
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proof of Lemma 6.25, we use the fact that the second moment of Gaussians can be
used to bound arbitrarily high moments. Note that using the Sobolev embedding
Theorem 2.10, together with Lemma 6.27, to determine Hölder properties does
not, of course, give results which are as sharp as those obtained from Lemma 6.25.
For example, using Lemma 6.27 and Theorem 2.10 shows that choosingα > d
ensures thatu is almost surely continuous. On the other hand Lemma 6.25 shows
that choosingα = d ensures thatu is almost surely Hölder continuous with any
exponent less thand/2; in particularu is almost surely continuous.

Example 6.28 Consider the cased = 2, n = 1 andD = [0, 1]2. Define the Gaus-
sian random field through the measureµ = N (0,

(

−△
)−α

) where△ is the Lapla-
cian with domainH1

0 (D) ∩ H2(D). Then Assumptions 2.9 are satisfied by−△.
By Lemma 6.27 it follows that choosingα > 1 suffices to ensure that draws from
µ are almost surely inL2(D). Then, by Lemma 6.25, it follows that, in fact, draws
from µ are almost surely inC(D).

In many applications in this article we will be interested inconstructing a proba-
bility measureµ on a Hilbert spaceH which is absolutely continuous with respect
to a given reference Gaussian measureµ0. We can then write, via Theorem 6.2,

dµ

dµ0
(x) ∝ exp

(

−Φ(x)
)

. (6.5.4)

The Theorem 6.14 provides an explicit example of this structure whenµ andµ0 are
both Gaussian. For expression (6.5.4) to make sense we require that the potential
Φ : H 7→ R is µ0–measurable. Implicit in the statement of Theorem 6.14 is
just such a measurability property of the logarithm of the density between the two
Gaussian measures. We return to the structure (6.5.4) again, in the case whereµ is
not necessarily Gaussian, in the next subsection.

6.6. Bayesian Probability

Bayesian probablity forms the underpinnings of the approach to inverse problems
taken in this article. In this subsection we first discuss thegeneral concept of con-
ditioned measures. We then turn to Bayesian probability in the finite dimensional
case, and finally generalize Bayes Theorem to the function space setting. The fol-
lowing theorem is of central importance.

Theorem 6.29 Letµ, ν be probability measures onS×T where(S,A) and(T,B)
are measurable spaces. Denote by(x, y) with x ∈ S andy ∈ T an element ofS ×
T . Assume thatµ ≪ ν and thatµ has Radon-Nikodym derivativeφ with respect
to ν. Assume further that the conditional distribution ofx|y underν, denoted by
νy(dx), exists. Then the conditional distribution ofx|y underµ, denotedµy(dx),
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exists andµy ≪ νy. The Radon-Nikodym derivative is given by

dµy

dνy
(x) =

{

1
c(y)φ(x, y), if c(y) > 0, and

1 else
(6.6.1)

with c(y) =
∫

S φ(x, y) dνy(x) for all y ∈ T .

Given a probability triplet
(

Ω,F ,P
)

and two setsA,B ∈ F with P(A) >
0,P(B) > 0 we define the probabilities ofA givenB andB givenA by

P(A|B) =
1

P(B)
P
(

A ∩B
)

,

P(B|A) =
1

P(A)
P
(

A ∩B
)

.

Combining gives Bayes formula

P(A|B) =
1

P(B)
P(B|A)P(A). (6.6.2)

If (u, y) ∈ Rd×Rℓ is a jointly distributed pair of random variables with Lebesgue
densityρ(u, y) then the infinitesimal version of the preceding formula tells us that

ρ(u|y) ∝ ρ(y|u)ρ(u), (6.6.3)

and where the normalization constant depends only ony. Thus

ρ(u|y) =
ρ(y|u)ρ(u)

∫

Rd ρ(y|u)ρ(u)du
. (6.6.4)

This gives an expression for the probability of a random variableu, given a single
observation of a random variabley, which requires knowledge of only theprior
(unconditioned) probability densityρ(u) and the conditional probability density
ρ(y|u) of y givenu. Both these expressions are readily available in many modelling
scenarios, as we demonstrate in section 3. This observationis the starting point
for the Bayesian approach to probability. Furthermore there are a wide range of
sampling methods which are designed to sample probability measures known only
upto a multiplicative constant (see section 5) and knowledge of the normalization
constant is not required in this context: the formula (6.6.3) may be used directly
to implement these algorithms. Recall that in the general Bayesian framework
introduced in section 1 we refer to the observationy asdataand toρ(y|u) as the
likelihoodof the data.

Example 6.30 Consider Example 6.22. The random variable(u, y) is distributed
according to a measureµ0(u, y) which has density with respect to Lebesgue mea-
sure given by

π0(u, y) =
1

2πσ
exp

(

−1

2
u2 − 1

2σ2
|y − u|2

)

.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

92 A.M. STUART

By completing the square we showed that the posterior probability measure foru
giveny is µ0(u|y) with density

π0(u|y) =

√

(1 + σ2

2πσ2

)

exp
(

−
(σ2 + 1

2σ2

)
∣

∣

∣
u− 1

σ2 + 1
y
∣

∣

∣

2)

.

This result also follows from (6.6.3) which shows that

π0(u|y) =
π(u, y)

∫

Rd π(u, y)du
.

Now consider a random variable(u, y) distributed according to measureµ(u, y)
which has densityρ(u, y) with respect toµ0(u, y). We assume thatρ > 0 every-
where onRd × Rℓ. By Theorem 6.29 the random variable found by conditioning
u from µ ony has density

ρ(u|y) =
ρ(u, y)

∫

Rd ρ(u, y)π0(u|y)du
with respect toπ0(u|y).

The expression (6.6.3) may be rewritten to give an expression for theratio of the
posterior and prior pdfs:

ρ(u|y)
ρ(u)

∝ ρ(y|u), (6.6.5)

with constant of proportionality which depends only ony, and not onu. Stated
this way the formula has a natural generalization to infinitedimensions as we now
explain.

Let u be a random variable distributed according to measureµ0 on a separable

Banach space
(

X, ‖ · ‖
)

. We assume that thedatay ∈ Rm is given in terms of the

observation operatorG by the formulay = G(u)+η,whereη ∈ Rm is independent
of u and has densityρ with respect to Lebesgue measure; for simplicity we assume
that the support ofρ is Rm. DefineΦ(u; y) to be any function which differs from
− log

(

ρ(y − G(u))
)

by an additive function ofy only. Hence it follows that

ρ(y − G(u))

ρ(y)
∝ exp

(

−Φ(u; y)
)

with constant of proportionality independent ofu. Use of Bayes rule in the form
(6.6.5) suggests that the probability measure foru given y, denotedµy(du), has
Radon-Nikodym derivative with respect toµ0 given by

dµy

dµ0
(u) ∝ exp

(

−Φ(u; y)
)

. (6.6.6)

We refer to such an argument asinformal application of Bayes rule. We now justify
the formula rigorously.
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Theorem 6.31 Assume thatG : X → Rm is continuous, thatρ has support equal
to Rm and thatµ0(X) = 1. Then u|y is distributed according to the measure
µy(du) which is absolutely continuous with respect toµ0(du) and has Radon-
Nikodym derivative given by (6.6.6).

Proof. Throughout the proofC(y) denotes a constant depending ony, but not
on u, and possibly changing between occurences. LetQ0(dy) = ρ(y)dy and
Q(dy|u) = ρ(y − G(u))dy. By construction

dQ

dQ0
(y|u) = C(y) exp

(

−Φ(u; y)
)

with constant of proportionality independent ofu. Now define

ν0(dy, du) = Q0(dy) ⊗ µ0(du),

ν(dy, du) = Q(dy|u)µ0(du).

Note thatν0 is a product measure under whichu andy are independent random
variables. SinceG : X → Rm is continuous we deduce thatΦ : X → R is
continuous and hence, sinceµ0(X) = 1, isµ0−measurable. Thusν is well-defined
and is absolutely continuous with respect toν0 with Radon-Nikodym derivative

dν

dν0
(y, u) = C(y) exp

(

−Φ(u; y)
)

;

again the constant of proportionality depends only ony. Note that
∫

X
exp

(

−Φ(u; y)
)

µ0(du) = C(y)

∫

X
ρ(y − G(u))µ0(du) > 0

sinceρ > 0 everywhere onRm and sinceG : X → Rm is continuous. By Theorem
6.29 we have the desired result, sinceν0(du|y) = µ0(du).

Remark 6.32 Finally we remark that, ifµy is absolutely continuous with respect
to µ0 then any property which holds almost surely underµ0 will also hold almost
surely underµy. The next example illustrates how useful this fact is.

Example 6.33 Let µ0 denote the Gaussian random field constructed in Example
6.28, withα > 1 so that draws fromµ0 are almost surely continuous. Now imagine
that we observey, theL2(D)−norm ofu drawn fromµ0, subject to noiseη:

y = ‖u‖2 + η.

We assume thatη ∼ N (0, γ2), independently ofu. TheL2(D)−norm is a continu-
ous function onX = C(D) andµ0(X) = 1; hence evaulation of theL2(D)−norm
is µ0−measurable and the measureµy(du) = P(du|y) is absolutely continuous
with respect toµ0 with Radon-Nikodym derivative given by

dµy

dµ0
(u) ∝ exp

(

− 1

2γ2

∣

∣y − ‖u‖2
∣

∣

2
)

.
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Note that the probability measureµy is not Gaussian. Nonetheless, any function
drawn fromµy is almost surely inC(D).

6.7. Metrics on Measures

In section 4 it will be important to estimate the distance between two probability
measures and thus we will be interested in metrics which measure distance between
probability measures.

In this section we introduce two useful metrics on measures:the total varia-
tion distanceand theHellinger distance. We discuss the relationships between
the metrics and indicate how they may be used to estimate differences between
expectations of random variables under two different measures.

Assume that we have two probability measuresµ andµ′ both absolutely con-
tinuous with respect to the same reference measureν. The following define two
concepts of distance betweenµ andµ′.

Definition 6.34 The total variation distancebetweenµ andµ′ is

dTV(µ, µ
′) =

1

2

∫

∣

∣

∣

dµ

dν
− dµ′

dν

∣

∣

∣
dν.

In particular, ifµ′ is absolutely continuous with respect toµ then

dTV(µ, µ
′) =

1

2

∫

∣

∣

∣
1 − dµ′

dµ

∣

∣

∣
dµ. (6.7.1)

Definition 6.35 TheHellinger distancebetweenµ andµ′ is

dHell(µ, µ
′) =

√

(1

2

∫

(

√

dµ

dν
−

√

dµ′

dν

)2
dν

)

.

In particular, ifµ′ is absolutely continuous with respect toµ then

dHell(µ, µ
′) =

√

√

√

√

(1

2

∫

(

1 −
√

dµ′

dµ

)2
dµ

)

. (6.7.2)

The total variation distance as defined is invariant under the choice ofν in that
it is unchanged if a different reference measure, with respect to whichµ andµ′ are
absolutely continuous, is used. Furthermore, it follows from the definition that

0 6 dTV(µ, µ
′) 6 1.

The Hellinger distance is also unchanged if a different reference measure, with
respect to whichµ andµ′ are absolutely continuous, is used. Furthermore, it fol-
lows from the definition that

0 6 dHell(µ, µ
′) 6 1.
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The Hellinger and total variation distances are related as follows:

Lemma 6.36 Assume that two probability measuresµ andµ′ are both absolutely
continuous with respect to a measureν. Then

1√
2
dTV(µ, µ

′) 6 dHell(µ, µ
′) 6 dTV(µ, µ

′)
1
2 .

The Hellinger distance is particularly useful for estimating the difference be-
tween expectation values of functions of random variables under different mea-
sures. This idea is encapsulated in the following lemma:

Lemma 6.37 Assume that two probability measuresµ andµ′ on a Banach space
(

X, ‖ · ‖X

)

are both absolutely continuous with respect to a measureν. Assume

also thatf : X → E, where
(

E, ‖ · ‖
)

is a Banach space, has second moments

with respect to bothµ andµ′. Then

‖Eµf − Eµ′

f‖ 6 2
(

Eµ‖f‖2 + Eµ′‖f‖2
)

1
2
dHell(µ, µ

′).

Furthermore, if
(

E, 〈·, ·〉, ‖ · ‖
)

is a Hilbert space andf : X → E has fourth

moments then

‖Eµf ⊗ f − Eµ′

f ⊗ f‖ 6 2
(

Eµ‖f‖4 + Eµ′‖f‖4
)

1
2
dHell(µ, µ

′).

Remark 6.38 Note, in particular, that choosingX = E, and withf chosen to be
the identity mapping, we deduce that the differences in meanand covariance op-
erators under two measures are bounded above by the Hellinger distance between
the two measures.

6.8. Discussion and Bibliography

For a general classical introduction to probability theorysee (Breiman 1992) and
for a modern treatment of the subject, see (Grimmett and Stirzaker 2001). For a
concise, modern (and more advanced) treatment of the subject see (Williams 1991).
The text (Chorin and Hald 2006) provides an overview of toolsfrom probability
and stochastic processes aimed at applied mathematicians.

The discussion of Gaussian measures in a Hilbert space, and proofs of Lemma
6.15 and Theorems 6.6, 6.2, 6.13 and 6.14, may be found in (Da Prato and Zabczyk
1992). Theorem 6.14 is also proved in (Bogachev 1998). The lectures notes (Hairer
2009) are also a good source, and contain proof of Theorem 6.1as well as the Fer-
nique Theorem 6.9. The references (Bogachev 1998, Hairer 2009, Lifshits 1995)
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all discuss Gaussian measures in the Banach space setting. In particular Theo-
rem 6.4 is proved in (Lifshits 1995) and (Hairer 2009) has a nice exposition of the
Fernique Theorem.

The Karhunen-Loeve expansion is described in (Loève 1977,Loève 1978) and a
modern treatment of Gaussian random fields is contained in (Adler 1990). Recent
work exploiting the Karhunen-Loeve expansion to approximate solutions of dif-
ferential equations with random coefficients may be found in(Schwab and Todor
2006, Todor and Schwab 2007).

Theorem 6.29 is proved in (Dudley 2002), section 10.2. For a general discussion
of Bayes rule in finite dimensions see, for example, (Bickel and Doksum 2001).
The approach to Bayes rule in infinite dimensions that we adopt in Theorem 6.31
was used to study a specific problem arising in signal processing in (Hairer et
al. 2007). The topic of metrics on probability measures, andfurther references to
the literature, may be found in (Gibbs and Su 2002). Note thatthe choice of nor-
malization constants in the definitions of the total variation and Hellinger metrics
differs in the literature.
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