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2 A.M. STUART

1. Introduction

A significant challenge facing mathematical scientistshis tlevelopment of a
coherent mathematical and algorithmic framework enablesgarchers to blend
complex mathematical models with the (often vast) datasbtsh are now rou-
tinely available in many fields of engineering, science athmology. In this
article we frame a range of inverse problems, mostly ari$iogh the conjunc-
tion of differential equations and data, in the language ajdsian statistics. In
so doing our aim is twofold: (i) to highlight common matheioat structure aris-
ing from the numerous application areas where signficargrpes has been made
by practitioners over the last few decades and therebyititeilexchange of ideas
between different application domains; (ii) to develop asteact function space
setting for the problems in order to evaluate the efficienfogxisting algorithms,
and to develop new algorithms. Applications are far reaghind include fields
such as the atmospheric sciences, oceanography, hydrglegghysics, chemistry
and biochemistry, materials science, systems biologffidriiow, econometrics,
image processing and signal processing.

The guiding principle underpinning the specific developtraithe subject of
Bayesian inverse problems in this article isawoid discretization until the last
possible momentiThis principle is enormously empowering throughout nuioaér
analysis. For example, the first order wave equation is natrefiable to a given
final state in arbitrarily small time because of finite spefgropagation. Yet every
finite difference spatial discretization of the first ordeawe equation gives rise to a
linear system of ordinary differential equations whichastollable, in any finite
time, to a given final state; asking the controllability oieasbeforediscretization
is key to understanding (Zuazua 2005). As another exampisider the heat
equation. If this is discretized in time by the theta methed@h 6 < [0,1] and
0=0 being explicit Eulerd = 1 implicit Euler), but left undiscretized in space, the
resulting algorithm on function space is only definefl & [%, 1]; thus itis possible
to deduce that thermustbe a Courant restriction # € [0, %) (Richtmyer and
Morton 1967) before even introducing spatial discretmatiYet another example
may be found in the study of Newton methods: conceptual egidin of this
algorithm on function space, before discretization, caidyconsiderable insight
when applying it as an iterative method for boundary valubi@ms in nonlinear
differential equations (Deuflhard 2004). The list of prabtewhere it is beneficial
to defer discretization to the very end of the algorithmicnfalation is almost
endless. It is perhaps not suprising, therefore, that theesdea yields insight
in the solution of inverse problems and we substantiateideia in the Bayesian
context.

The article is divided into five parts. The next section, 2dévoted to a de-
scription of the basic ideas of Bayesian statistics as egti inverse problems in
the finite dimensional setting. It also includes a pointethi® common structure
that we will highlight in the remainder of the article whervdmping the Bayesian
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viewpoint in function space. Section 3 contains a range \adrige problems aris-
ing in differential equations, showing how the Bayesianrapph may be applied
to inverse problems for functions; in particular we disuss problem of recover-
ing a field from noisy pointwise data, recovering the difusicoefficient from a
boundary value problem, given noisy pointwise observatiohthe solution, re-
covering the wave speed from noisy observations of solstiithe wave equation
and recovering the initial condition of the heat equatia@nfmoisy observation of
the solution at a positive time. We also describe a range gifcgtions, involving
similar but more complex models, arising in weather foréngs oceanography,
subsurface geophysics and molecular dynamics. In sectiom describe, and ex-
ploit, the common mathematical structure which underiff these Bayesian
inverse problems for functions. In that section we proverenfof well-posedness
for these inverse problems, by showing Lipschitz continoitthe posterior mea-
sure with respect to changes in the data; we also prove amxdpation theo-
rem which exploits this well-posedness to show that appmekion of the forward
problem (by spectral or finite element methods, for examigladis to similar ap-
proximation results for the posterior probability measusection 5 is devoted to
a survey of the existing algorithmic tools used to solve thablems highlighted
in the article. In particular Markov chain-Monte Carlo (M@NImethods, varia-
tional methods and filtering methods are overviewed. Wheoudising variational
methods we show, in the setting of section 4, that postermvgbility maximizers
can be characterized through solution of an optimal comrablem, and that this
optimal control problem has a minimizer under the same c¢immdi that lead to a
well-posed Bayesian inverse problem. Section 6 contaieb#tkground proba-
bility required to read the article; the presentation is $@ction is necessarily terse
and the reader is encouraged to follow up references in thediaphy for further
detail.

A major theme of the article is thus to confront the infinitendnsional nature
of many inverse problems. This is important because, whilstomputational
algorithms work on finite dimensional approximations, thapproximations are
typically in spaces of very high dimension and many significzhallenges stem
from this fact. By formulating inverse problems in an infendimensional setting
we build these challenges into the fabric of the problemirggett We provide a
clear concept ofhe ideal solution to the inverse problemien blending a forward
mathematical model with observational data. This concapthe used to test the
practical algorithms used in applications which, in mangesa use crude approx-
imations for reasons of computational efficiency. Furthemenit is also possible
that the function space Bayesian setting will also lead ¢éodévelopment of im-
proved algorithms which exploit the underlying mathenststructure common
to a diverse range of applications. In particular the themfryBayesian) well-
posedness which we describe forms the cornerstone of manylpgtion theories,
including finite dimensional approximations.

The text of Kaipio and Somersalo (Kaipio and Somersalo 2pé8)ides a good
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introduction to the Bayesian approach to inverse problersgeically in the con-
text of differential equations. Furthermore, the book ofv€ti and Somersalo
(Calvetti and Somersalo 200)/provides a useful introduction to the Bayesian per-
spective in scientific computing. Another overview of théjsat of inverse prob-
lems in differential equations, including a strong argutrienthe philosophy taken
in this article, namely to formulate and study inverse peald in function space,
is the book of Tarantola (Tarantola 2005) (see, especi@hgpter 5); however the
mathematics associated with this philosophical standpsinot developed there
to the same extent that it is in this article, and the focugimarily on Gaussian
problems. A frequentist viewpoint for inverse problems ondtion space is con-
tained in the book (Ramsay and Silverman 2005); however wetaal different,
Bayesian, perspective here, and study more involved difteal equation models
than those arising in (Ramsay and Silverman 2005). Noretkdghese books in-
dicate that the development that we undertake here is aahatoe, which builds
upon the existing literature.

The subject known adata assimilatiorprovides a number of important appli-
cations of the material presented here. Its developmenibds driven, to a large
extent, by practitioners working in the atmospheric anchoographic sciences and
in the geosciences. This has resulted in a plethora of &hgoid approaches and a
number of significant algorithmic innovations. A good s@ufar an understanding
of data assimilation in the context of the atmospheric s@enand weather pre-
diction in particular, is the book of Kalnay (Kalnay 2003). b&dok motivated by
applications in oceanography, which simultaneously higité some of the under-
lying function space structure of data assimilation foeéin Gaussian problems,
is Bennett's book (Bennett 2002). The book of Evensen (Ee2906) provides
a good overview of many computational aspects of the syhjeftecting the au-
thor's experience in geophysical applications and relateds. The recent special
edition of PhysicaD devoted to data assimilation providegad entry point to
some of the current research in this area (Jones and Ide.28@6her applica-
tion that fits the mathematical framework developed hereakoular dynamics.
The problems of interest do not arise from Bayesian inversblems, as such, but
rather from conditioned diffusion processes. However tlathematical structure
has much in common with that arising in Bayesian inverse |prob, and so we
include a decription of this problem area.

Throughout the article we use standard notation for BanachHilbert space
norm and inner-products - ||, (-, -); and the following notation for the finite di-
mensional Euclidean norm and inner-product], (-, -). We also use the concept
of weighted inner-products and norms in any Hilbert spacar. dny self-adjoint
positive operatord we define

(A= <A_%-7A_%.>7 | fla = HA_% N
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in the general setting and, in finite dimensions,
_1
[ la=]A"2 ]

For anya,b € H, a Hilbert space, we define the operator b by the identity
(a ® b)ec = (b,c)a for any ¢ € ‘H. We use* to denote the adjoint of a linear
operator between two Hilbert spaces. In particular we mawwi, b € H as linear
operators fronR to H and theru ® b = ab*.

In order to highlight the common structure arising in manyttef problems in
this book, we will endeavour to use the same notation reglabe the different
contexts. A Gaussian measure will be denotedvds:, C) with m the meanand
C the covariance operator The mean of the prior Gaussian measure williag
and its covariance matrix/operator will B& or Cy (we will drop the subscrip6
on the prior where no confusion arises in doing so). We widl tiee terminology
precision operatoffor the (densely defined} := C~!. For inverse problems the
operator mapping the uknown vector/field to the observatieiti be denoted by
and termed thebservation operatoand theobservational noisevill be denoted
by 7.

We emphasize that in this article we will work for the mosttpaith Gaussian
priors. In terms of the classical theory of regularizatibis ineans that we are lim-
iting ourselves to quadratic regularization terms, tyibjcim a Sobolev norm. We
recognize that there are many applications of importancerevbther regulariza-
tions are natural, especially in image processing (Rudshe®and Fatemi 1992,
Scherzer, Grasmair, Grossauer, Haltmeier and Lenzen 2@08ignificant chal-
lenge is to take the material in this article and generaltize these other settings
and there is some recent interesting work in this directlas$as, Saksman and
Siltanen 2009).

There are other problem areas which lead to the need for datigru of ran-
dom functions. For example there is a large body of work corex® with un-
certainty quantification(DeVolder, Glimm, Grove, Kang, Lee, Pao, Sharp and
Ye 2002, Kennedy and O’Hagan 2001, Mohamed, Christie andyaeov 2009,
Efendiev, Datta-Gupta, Ma and Mallick 2009). In this fiele timput data to a
differential equation is viewed as a random variable andirtkerest is in com-
puting the resulting variability in the solution, as the ummlata varies. This is
currently an active area of research in the engineering ammityn (Spanos and
Ghanem 1989, Spanos and Ghanem 2003). The work is thus pyirm@ncerned
with approximating measures which are the push forwardeuadonlinear map,
of a Gaussian measure; in constrast the inverse probleingsethich we study
here is concerned with the approximation of non-Gaussiaasores whose Radon-
Nikodym derivative with respect to a Gaussian measure iaeléthrough a related
nonlinear map. A rigorous numerical analysis underpinthgwork of (Spanos
and Ghanem 1989, Spanos and Ghanem 2003) is an active aeseafah, see in
particular (Schwab and Todor 2006, Todor and Schwab 200&yevtne problem
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is viewed as an example of Schwab’s more general programmsbteroduct ap-
proximation for high (infinite) dimensional problems (@i#on and Schwab 2010).
A different area where tensor products are used to form appedions of func-
tions of many variables is computational quantum mechaamckapproximation
of the Schrodinger equation (Lubich 2008); this work magoabe seen in the
more general context of tensor product approximationsneal algebra (Kolda
and Bader 2009). It would be interesting to investigate Wwieany of these tensor
product ideas can be transferred to the approximation dfgtitity density func-
tions in high dimensional spaces as arise naturally in Bagésverse problems.

More generally speaking this article is concerned with aaesh area which is at
the interface of applied mathematics and statistics. Busrich research interface
where there is currently significant effort. Examples idewvork in compressed
sensing, which blends ideas from statistics, probab#ipproximation theory and
harmonic analysis (Candes and Wakin 2008, Donoho 2006 )emaérch aimed at
efficient sampling of Gaussian random fields combining nizaktinear algebra
and statistics (Rue and Held 2005).
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2. The Bayesian Framework
2.1. Overview

This section introduces the Bayesian approach to inversielgms and outlines
the common structure that we will develop in the remaindethef article. In

subsection 2.2 we introduce finite dimensional inverse lprob and describe the
Bayesian approach to their solution, highlighting the roleobservational noise
which pollutes the data in many problems of practical irgeréVe show how to
construct a formula for the posterior measure on the unknofivinterest, from

the data and from a prior measure incorporating structunaiMedge about the
problem which is present prior to the aquisition of the dadtasubsection 2.3 we
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study the effect on the posterior of small observationat@oin order to connect
the Bayesian viewpoint with the classical perspective garse problems. We first
study problems where the dimensions of the data set and #rewn match; we
show that the prior measure is asymptotically irrelevart #rat, in the limit of
zero noise, the posterior measure converges weakly to a Bieasure centred on
the solution of the noise free equation. We next study theiapstructure which
arises when the mathematical model and observations acgligsthrough linear
operators, and when the prior and the noise are Gaussiamgthilts in a Gaussian
posterior measure. In this Gaussian setting we first stueyithit of vanishing
observational noise in the case where the dimension of ttzesgd is greater than
that of the unknown, showing that the prior is asymptoticallelevant, and that
the posterior measure approaches a Dirac concentratece @olilition of a natu-
ral least squares problem. We then study the situation wtherdimension of the
data set is smaller than that of the unknown. We show thateérimnit of small
observational noise, the prior remains important and weacherize this effect
explicitly. Subsection 2.4 completes the introductory eniat by describing the
common framework which we will illustrate and exploit in themainder of the
article when developing the Bayesian viewpoint on functpace.

2.2. Linking the Classical and Bayesian Approaches

In applications it is frequently of interest to solireverse problemsto find u, an
input to a mathematical model, givgran observation of (some components of, or
functions of) the solution of the model. We have an equatiatheform

y=G(u) (2.2.1)

to solve foru € X, giveny € Y, whereX,Y are Banach spaces. We will refer
to G as theobservation operatdt We refer toy asdata It is typical of inverse
problems that they alil-posed there may be no solution, or the solution may not
be unique and may depend sensitivelyyorOne approach to the problem in this
situation is to replace it by thieast squaresptimization problem of finding, for
the norm|| - ||y onY’,

. 1
argmin,c . lly — G()lly- (22.2)

This problem, too, may be difficult to solve as it may posseisgmizing sequences
u(™ which do not converge to a limit i, or it may possess multiple minima and
sensitive dependence on the datd hese issues can be somewhat ameliorated by
solving aregularizedminimization problem of the form, for some Banach space

! This operator is often denoted with the leti¢rin the atmospheric sciences community; because
we needH for Hilbert space later on, we use the symgol
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(E, I| - HE) contained inX, and pointmg € E,

. 1 1
argmin,c; (5lly = G} + 5 lu = moll})- (223)

However the choice of norms- ||z, || - ||y and the pointn, are somewhat arbi-
trary, without the making further modelling assumptionse Wil adopt a statistical
approach to the inverse problems in which these issues cartibelated and ad-
dressed in an explicit fashion. Roughly speaking the Bayeapproach will lead
to the notion of finding grobability measure.¥ on X, containing information
about the relative probability of different statesgiven the data;. For example,

in the case wher&X, Y are both finite dimensional, the noise polluting (2.2.1) is
additive and Gaussian, and the prior measure is Gaussiupotfierior measure
will have densityr? given by

1 1
7 (u) oc exp( =3 Iy = G = Sl —mol%). (2.2.4)

The properties of a measurg with such a densityr? are intimately related to
the minimization problem (2.2.3): the density is largestraimizers. But the
probabilistic approach is far richer. For example, thewdgion of the probability
measureu?, will force us to confront various modelling and mathemaitissues
which, together, will guide the choice of normis ||z, || - ||y and the pointny.
Furthermore the probabilistic approach enables us to argestions like “what is
the relative probability that the unknown functiaris determined by the different
local minimizers of (2.2.3)"; or “how certain can we be thatradiction made by
a mathematical model will lie in certain specified regimes?”

We now outline a probabilistic framework which will includee specific prob-
ability measure with density given by (2.2.4) as a speciakcarlhis framework
starts from the observation that a deeper understandingecgdurce of data of-
ten reveals that the observatiopgsire subject to noise and that a more appropriate
model equation is often of the form

y=G(u) +1 (2.2.5)

wheren is a mean-zero random variable, whose statistical prasertie might
know, but whose actual value is unknown to us; we refey & theobservational
noise In this context it is natural to adoptBayesianapproach to the problem of
determiningu from y: see section 6.6. We describe our prior beliefs ahguih
terms of a probability measufg), and use Bayes formula (see (6.6.4)) to calculate
the posterior probability measugé, for u giveny.

To be concrete, in the remainder of this subsection and indékesubsection we
consider the case whetec R,y € R? and we letry and#¥ denote the pdfs (see
section 6.1) of measurgg) andn¥. We assume that € R? is a random variable
with densityp. Then the probability of; givenu has density

p(ylu) == p(y — G(u));



INVERSE PROBLEMS 9

this is often refered to as thdata likelihood By Bayes formula (6.6.4) we obtain

~ ply = G(uw)mo(u)
™) = T = G m(u)du (2.2.6)

Thus
T (u) o< p(y — G(u))mo(u) (2.2.7)

with constant of proportionality depending only gnAbstractly (2.2.7) expresses
the fact that the posterior measuré(with densityz?) and prior measurg, (with
densityr) are related through the Radon-Nikodym derivative (seefiédra 6.2)
dpy
7 () o< ply = G(u)). (2.2.8)
Ho
Sincep is a density and thus non-negative, without loss of gertgraik may write
the right-hand side as the exponential of the negative ofenpial ® (u; y) to obtain

dp’ (u) o exp(—P(u;y)) (2.2.9)
m P 3Y)). 2.

It is this form which generalizes naturally to situationsesX, and possiblyy’,
is infinite dimensional. We show in section 3 that many inggueoblems can be
formulated in a Bayesian fashion and that the posterior aredakes this form.

In general it is hard to obtain information from a probailiheasure in high
dimensions. One useful approach to extracting informasaio find amaximum
a posteriori estimatgror MAP estimator a pointu which maximizes the poste-
rior pdf 7¥; suchvariational methods are overviewed in subsection 5.3. Another
commonly used method for interrogating a probability meaguhigh dimensions
is sampling generating a set of poin{s.,, }V_, distributed (perhaps only approxi-
mately) according ta¥(u). In this context formula (2.2.7) (or (2.2.9) in the general
setting), in which the posterior density is known only up tmastant, is useful be-
causeMCMC methodsnay be used to sample from it: MCMC methods have the
advantage of sampling from a probability measure only knapto a normalizing
constant; we overview these methods in subsection 5.2.-@liependent problems,
where the data is acquired sequentially, also provide a ofggroblems where use-
ful approximations can be developed — théilering methods are overviewed in
subsection 5.4.

We will often be interested in problems where prigrand observational noise
n are Gaussian. I ~ N(0, B) andpy = N (mg, £o) then we obtain from (2.2.7)
the formul&

7 (u) exp(-%‘Bﬁ% (v —G(w)) = %‘Egé (u~ mo)‘z)

= oxp 3]~ ), = 3w = mo)

2
5 20). (2.2.10)

2 The notation for the weighted norms and inner-products fineé at the end of section 1.
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In terms of measures this is the statement that

du¥ 1 2

d—ZO(U) X exp (—5 (y — G(u)) ‘B). (2.2.11)
Themaximum a posteriori estimatoor MAP estimatoiis then

. 1 1
argmin, g (3ly = G + Slu—mol, ). (2.2.12)

This is a specific instance of the regularized minimizatioobpem (2.2.3). Note
that in the Bayesian framework the norths||y, || - ||  and the poinin, all have a
clear interpretation in terms of the statistics of the obstonal noise and the prior
measure. In contrast these norms and point are somewhgagyridn the classical
approach.

In general the posterior probability measure (2.2.10) tsteelf Gaussian. How-
ever, ifG is linear then the posterigt? is also Gaussian. Identifying the mean and
covariance (or precision) matrix can be achieveadbmpleting the squaras for-
malized in Theorem 6.20 and Lemma 6.21 (see also Exampl@safi@ 6.23).
The following simple examples illustrate this. They alsowturther connections
between the Bayesian and classical approaches to invesskeprs, a subject we
develop further in the following subsection.

Example 2.1 Letg = 1 andg be linear so that

y=(g,u) +n

for someg € R". Assume further that ~ N(0,~?) and that we place a prior
Gaussian measur€ (0, X,) onu. Then

¥ (u) o exp(—#]y — <g,u>\2 — %(u, Zo_lu>). (2.2.13)

As the exponential of a quadratic form, this is the densita Gfaussian measure.
From Theorem 6.20 we find that the posterior mean and coariare given by

__ (39)y
7? + (g, Zog)
_ (X0g) (Zog)"
Y=o 5N
v? + (9, Z0g)
If we consider the case where observational noise disapjfresn the system then
we find that

by hM Y0g9)*
mt = limm = (Xog)y , »hi=limY = Yo — 7( 09)(Z09) .
7—0 (9, Z0g) 7—0 (9:Z09)
Notice thatX*tg = 0 and (m™,g) = y. This states the intuitively reasonable

fact that, as the observational noise decreases, knowlefdgein the direction
of g becomes certain. In directions not aligned wjtluncertainty remains, with
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magnitude determined by an interaction between propesfite prior and of the
observation operator. Thus the prior plays a central ralenes observational
noise disappears, in this example where the solution isrdeteErmined ]

Example 2.2 Assume thay > 2 andn = 1 and letG be nonlinear with the form

y=g(u+pBu’)+n

whereg € R7\{0}, 3 € R andn ~ N(0,72I). Assume further that we place a
Gaussian measur€ (0, 1) as a prior onu. Then

| 1
¥ (u) o exp(—Q—WQ\y — glu+ pu?))? — §u2)-

This measure is not Gaussian unlgss: 0.
Consider the linear case whefe= 0. The posterior measure is then Gaussian:

1 1
7 (u) ox exp (5 ly — gul? = G lul).
By Theorem 6.20, using the identity
71 -1
(’YQ[ + g9 ) g=07+19%) "9,

we deduce that the posterior mean and covariance are given by

_ (9w
72+ |g[?
2 _ ’YQ
7= a2
7?+ gl
In the limit where observational noise disappears we fintl tha
mt = limm = <g’g>, (a+)2 = lim o2 = 0.
fy—>0 ‘g’ ’y—>0

The pointm™ is the least squares solution of the overdetermined lingaatéon
y = gu found from the minimization problem

argmin,cgly — gul*.

This is a minimization problem of the form (2.2.2). In thisseawhere the system
is overdetermined, the prior plays no role in the limit of@ebservational noise.
O

2.3. Small Noise Limits of the Posterior Measure

We have shown that the Bayesian and classical perspectidiglked through the
relationship between the posterior probability densityegiby (2.2.10) and the
MAP estimator (2.2.12). This directly connects minimipatbf a regularized least
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squares problem with the Bayesian perspective. Our aim soavfurther the link
between the Bayesian and classical approaches by comgjdeg limit of small
observational noise.

The small observational noise limit is illustrated in theotexamples conclud-
ing the previous subsection. In the first, where the undeglyioise-free problem
is underdetermined, the prior provides information abbetposterior mean, and
uncertainty remains in the posterior, even as observdtimmiae disappears; fur-
thermore, that uncertainty is related to the choice of ptiothe second example,
where the underlying noise-free problem is overdeterminadertainty disappears
and the posterior converges to a Dirac measure centred deasiesquares solu-
tion of the limiting deterministic equation. The intuiti@btained from these two
examples, concerning the behaviour of the posterior medsuthe small noise
limit, is important. The first example suggests that in thdardetermined case
the prior measure plays a role in determining the posterieasure, even as the
observational noise disappears; in contrast the secondpeasuggests that, in
the overdetermined case, the prior plays no role in the snuadle limit. Many
of the inverse problems for functions that we study latetis paper are under-
determined. For these probleni® prior measure plays an important role in the
solution, even when observational noise is smallsignificant advantage of the
Bayesian framework over classical approaches is that ieséke modelling as-
sumptions which underly the prior both clear and explicit.

In the remainder of this subsection we demonstrate thatrifuétion obtained
from the two examples can be substantiated on a broad cldisstefdimensional
inverse problems. We first concentrate on the general cagghwibs between
these two examples, whege= n and, furthermore, equation (2.2.1) has a unigue
solution. We then restrict our attention to Gaussian problestudying the over
and underdetermined cases in turn. We state the resultsfigprovide proofs at
the end of the subsection. The results are stated in termgal wonvergence of
probability measures, denoted by, see the end of subsection 6.1 for background
on this concept.

We start with the case = n and assume that equation (2.2.1) has a unique
solution

u=F(y) (2.3.1)

for everyy € R™. Intuitively this unique solution should dominate the Bsig@ so-
lution to the problem (which is a probability distribution ", not a single point).
We show that this is indeed the case: the probability distidin concentrates on
the single point given by (2.3.1) as observational noisaegfiears.
We assume that there is a positive constarsuch that, for ally, § € R",
2
‘y—g(}'(y) +5)‘ > C'min{1, |62}, (2.3.2)

This condition implies that the derivativeG(u) is invertible atu = F(y), so that
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the implicit function theorem holds; the condition also lexies the possibility of
attaining the minimun® of 1|y — G(u)|* along a sequence,, — oco. We then
have:

Theorem 2.3 Assume that = n, thatG € C?(R",R") and that equation (2.2.1)
has a unique solution given by (2.3.1), for everye R™. We place a Gaussian
prior ug = N (mg, o) onu and assume that the observational nejse (2.2.5)
is distributed asV'(0,~721). Then the posterior measuré, with density given by
(2.2.10) andB = 4?1, satisfieg:¥ = d£(,) asy — 0. O

The preceding theorem concerns problems where the unugeguation (2.2.1)
relating data to model is uniquely solvable. This situatiarely arises in practice,
but is of course important for building links between the Bsign and classical
perspectives.

We now turn to problems which are either over or underdetegthand, for sim-
plicity, confine our attention to purely Gaussian probleifve again work in arbi-
trary finite dimensions and study the small observationaenlimit and its relation
to the the underlying noise-free problem (2.2.1). In Theo24 we show that the
posterior measure converges to a Dirac measure concehtmat@inimizers of the
least squares problem (2.2.2). Of course when (2.2.1) cpuety solvable this will
lead to a Dirac on its solution, as in Theorem 2.3; but moreegdly there may be
no solution to (2.2.1) and least squares minimizers prosgitatural generalized
solution concept. In Theorem 2.5 we study the Gaussian gmolr the undeter-
mined case, showing that the posterior measure converge§S#aussian measure
whose support lies on a hyperplane embedded in the space wigeunknown:
lies. The structure of this Gaussian measure is determipad interplay between
the prior, the forward model and the data. In particydor information remains
in the small noise limit This illustrates the important idea that for (frequently
occuring) underdetermined problems the prior plays a figgmit role, even when
noise is small, and should therefore be treated very cdydfoim the perspective
of mathematical modelling.

If the observational noisg is Gaussian, if the priogg is Gaussian and i is a
linear map, then the posterior measuteis also Gaussian. This follows immedi-
ately from the fact that the logarithm a¥ given by (2.2.6) is quadratic ia under
these assumptions. We now study the properties of this @awgssterior.

We assume that

n~N(0,B), po=N(mg,Xo), G(u)=Au

and thatB andX; are both invertible.
Then, sincey|u ~ N(Au, B), Theorem 6.20 shows that the posterior measure
pY is GaussianV (m, X) with

m = mg + LoA* (B + AXgA*) "L (y — Amy) (2.3.3a)
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Y =%y — DgA*(B + ATyA*) LAY, (2.3.3b)
In the case wheré = n and A, X, are invertible we see that, @& — 0,
m— A"y, T —0.

From Lemma 6.5 we know that convergence of all characterfigtictions implies
weak convergence. Furthermore, the characteristic fumcti a Gaussian is deter-
ined by the mean and covariance — Theorem 6.4. Hence for a @imtensional
family of Gaussians convergence of the mean and covarianeelimit implies
weak convergence to the Gaussian with that limiting meancawdriance. For
this family of measures the limiting covariance is zero dmasttheB — 0 limit
recovers a Dirac measure on the solution of the equatior= 3, in accordance
with Theorem 2.3. It is natural to ask what happens in thetlhvanishing noise,
more generally. The following two theorems provide an amsaéhis question.

Theorem 2.4 Assume that3 andX, are both invertible. The posterior mean and
covariance can be rewritten as

m = (A*B7 A+ 3, (A* B~y + 25 my) (2.3.4a)

Y= (A*BtA+ ;)L (2.3.4b)

If Null (4) = {0} andB = ~%By then, in the limity? — 0, ¥ = §,,,+ wherem™*
is the solution of the least squares problem

1
m* = argmin,cg.|B, * (y — Au)[%.
O

The preceding theorem shows that, in the overdetermineel wasre A*B A
is invertible, the small observational noise limit leadsatosterior which is a
Dirac, centred on the solution of a least squares probleermé@ied by the obser-
vation operator and the relative weights on the observalttiopise. Uncertainty
disappears, and the prior plays no role in this limit. ExasrpR illustrates this
situation.

We now assume that € R? andu € R™ with ¢ < n, so that the problem is
underdetermined. We assume thatk(A) = ¢ so that we may write

A= (Ay 0)Q* (2.3.5)

with Q € R™*" an orthogonal matrix so th&*Q = I, Ag € R?*? an invertible
matrix and0 € R?*("~9) a zero matrix. We also lefq = ¥, the precision
matrix for the prior, and write

" L1 Lo
LoQ=( 1 . 23.6
Q OQ < L12 L22 > ( )
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HereL;; € R7%4, L5 € R7*("~9) and Ly € R("=D*(n=9). hoth L,; and Loy
are positive definite symmetric, becalsgis.
If we write

Q= (Q1 Q2) (2.3.7)

with Q; € R™*7 and @, € R™*("~9) then Q% projects onto a—dimensional
subspace? andQ} projects onto arin — ¢)—dimensional subspad@-; here©
andO* are orthogonal.

Assume thaty = Au for someu € R™. This identity is at the heart of the
inverse problem in the smajllimit. If we definez € R? to be the unique solution
of the system of equationdyz = y thenz = Qju. On the other hand)5u is
not determined by the identity = Aw. Thus intuitively we expect to determine
z without uncertainty, in the limit of small noise, but for wertainty to remain in
other directions. With this in mind we define € R? andw’ € R" 7 via the
equation

_ w
Yo tmo = Q ( o > (2.3.8)
and then set
2= Ly Liyz + Lyyw' € R"4.

Theorem 2.5 Assume that3 andX, are both invertible and le8 = v2B,. Then,
in the limity2 — 0, u¥ = N (m*, ) where

mt=Q ( : ) (2.3.9a)

z

Y = Q2L Q3. (2.3.9b)
O

We now interpret this theorem. Sin€g(); = 0 the limiting measure may be
viewed as a Dirac measure, centred at O, and a Gaussian measu& 2, L)
in O1. These measures are independent so that the theorem bites t

1 =6, @N(2', Lyy)

viewed as a measure @@ O-+. Thus, in the small observational noise limit, we
determine the solution without uncertaintydhwhilst in O+ uncertainty remains.
Furthermore the prior plays a role in the posterior measurthe limit of zero
observational noise; specifically it enters the formulae:f@nd Lo,.

We finish this subsection by providing proofs of the precgdhree results.

Proof of Theorem 2.®efined := u — F(y) and let

£6) = —53ly = 9F ) + OF = 515, (Fw) +8 = mo)l.
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Fix ¢ € R™. Then, withIE denoting expectation undg#,

Eexp(i((,u)) = %exp(i(&f(y»)/

where

exp (@'(e, 5) + f(6))d6

n

Z = /nexp(f(é))dé.

Thus, by Lemma 6.5, it suffices to prove thatpas- 0,

% 5 exp(i(f, 5) + f(é))dé 1

Define
1) = / exp(ife.6) + /5)) b

noting thatZ = I(0). Then, fora € (2/3,1), we split/(¢) into I(¢) = I,(¢) +
I5(¢) where

L) = /ﬂw exp(i(t,0) + £(5)) o
L(t) = /5|>w exp(i{t,8) + £(0) ) do.

We considet; (¢) first so thatfd| < v¢. By Taylor expandingf () arounds = 0
we obtain

10151557 533 (75 + o)

whereB = DG(F(y)). Thus, forb = a A (3a — 2) = 3a — 2,
_ 1jo—1L 2 1
i6,0) + £0) = —5[S0* (&) —mo) |~ 551BIP +0(*).

Thus
L(¢) = exp(—%‘zgé <f(y) - mo) ‘2) /5|<»ya exp(—2L72|B5|2 + O(Wb))d&
It follows that

L) = exp(—%‘za% (f(y) — mo) ‘2) /5|<»ya exp(—;?|B5|2> X (1 + O(Wb)>d5

=" exp<—%‘za% (-7:(?/) - mo) ‘2) /

- 1exp(—%|Bz|2) X (1—|—(9(7b))dz.
2| <yem

We now estimatd,(¢) and show that it is asymptotically negligible compared
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with 7;(¢). Note that, by (2.3.2),

Cmin{1,[0]*} 1| -1 2
1(0) <~ 7 = 5|50 (Flw) + 6 —mo )|
o ~ Cmin{l, 6|2}

Thus

Cs?
(¢ </ exp|——5|dé
Bol< [ eo(-57)

[ o5 ot (7 ) s
Sincea < 1 it follows that > (¢) is exponentially small iy — 0. As I1(¢) is, to
leading order(D(~™) and independent d@f we deduce that
% 5 exp(i{t,8) + £(0))ds = % 1
asvy — 0 and the result follows[]
Proof of Theorem 2.¥Ve first note the identity
A*B™Y(B + AXpA*) = (A*B7' A+ 5,1 A*

which follows sinceXy and B are both positive definite. Sincé*B~'A + 3,
andB + AXyA* are also positive definite we deduce that

(A*BT1A+ 2 1A* B~ = 50 A*(B 4 ADpA*) L.
Thus the posterior mean may be written as
m=mo+ (A*B A+ X, A" B (y — Amy)
= (A*B'A+ )M A*B iy + A* B Amg + X5 tmg — A* B Amy)
= (A*B7'A+ 55 HA* By + 25 tmy)

as required. A similar calculation establishes the degiregerty of the posterior
covariance.
If B =~2B, then we deduce that

m = (A"By A+ 55 ) (A By ty + 7*%g 'mo)
Y =~%(A*BytA+ 425 )L
Since Nul{ A) = {0} we deduce that there is > 0 such that
_1
(€, A" By 1AS) = | By PALP > af¢f VEeR™

Thus A*By ' A is invertible and it follows that, ag — 0, the posterior mean
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converges to
+ * o—1 —1 Axp—1
m’T = (A"B,"A) "A*B; 'y
and the posterior covariance converges to zero. By Lemmavé.8educe the
desired weak convergence @f to d,,+ . It remains to characterize. ™.
Since the null-space of is empty, minimizers of
Lipb )
o(w) = 5By (y — Au)|
are unique and satisfy the normal equations
A*BytAu = A*Byly.
Hencem™ solves the desired least squares problem and the proof isletari]

Proof of Theorem 2.By Lemma 6.5 we see that it suffices to prove that the mean
m and covarianc& given by the formulae in Theorem 2.4 convergentd and

YT given by (2.3.9). We start by studying the covariance mattiich, by Theo-
rem 2.4, is given by

_ 1 * o—1 -1
E_(?ABOA+%).
Using the definition (2.3.5) oft we see that

* P—1
A*BglA:Q AjBy Ag 0 0
0 0
then by (2.3.6) we have
21:Q< ,YLQASB&lAQ—FLH Lo >Q*
Li, Lo

Applying the Schur complement formula for the inverse of driras in Lemma
6.5 we deduce that

2 * n—1 —1
Y*(A5By ~Ao) 0 ) .
S = Yoo Lo o +A (2310

@ < _72L221L12(AOBO 1A0) ! L221 Q ( )

where
1
$(|A11| +|Ag]) =0

asy — 0 and there is a constangt > 0 such that
|Aqa| + |Age| < CH?
for all v sufficiently small. From this it follows that, as— 0,
U * Lyt
EHQ<0 %;>Q._E.

Writing Q as in (2.3.7). We see tha" = Q. L,,' Q3 as required.
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We now return to the mean. By Theorem 2.4 this is given by thediba
m = Z(A*B_ly + Ealmo).
Using the expressiod = (A4, 0)Q* we deduce that
1 A:B 1 -1
m — E(¥Q< 000 >y+20 mo).
By definition ofw, w’ we deduce that

LA*Bfl
szQ( 3240 0,y+w>.

w

Using equation (2.3.10) we find that

_ z _ Z N+
m_Q< — Ly Loz + Loy > _Q< 2 > =mes

This completes the proot.]

2.4. Common Structure

In the previous subsection we showed that, for finite dinmradiproblems, Bayes
rule gives the relationship (2.2.6) between the prior argtgyr pdfsmy and ¥
respectively. Expressed in terms of the measpubesnd;., corresponding to these
densities the formula may be written as in (2.2.9):

dp¥y 1

—(u) = e —®(u; . 24.1

=70 xp(~®(u;y)) (2.4.0)
The normalization constauf(y) is chosen so that? is a probability measure:

Z(y) = /X exp(—®(us; ) dpo(u). (2.4.2)

Itis this form which generalizes readily to the setting ondiion space where there
are no densitieg? andm, with respect to Lebesgue measure, but whétdas a
Radon-Nikodym derivative (see Theorem 6.2) with respegiyto

In section 3 we will describe a range of inverse problems twisan be formu-
lated in terms of finding, and characterizing the propeniesa probability mea-
surep? on a separable Banach sp4cé, || - | x ), specified via its Radon-Nikodym
derivative with respect to a reference measur@s in (2.4.1),(2.4.2). In this sub-
section we highlight the common framework into which manyrefse problems
can be placed by studying conditions énwhich arise naturally in a wide range
of applications. This framework will then be used to devedogeneral theory for
inverse problems in section 4. It is important to note thdtewstudying inverse
problems, the properties df that we highlight in this section are typically deter-
mined by theforward PDE problemwhich maps the unknown functiom to the
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datay. In particular probability theory does not play a direceri verifying these
properties ofp. Probability becomes relevant when choosing the prior nmeaso
that it charges the Banach spa€eon which the desired properties®tfold, with

full measure. We illustrate how to make such choices of pnigection 3.

We assume that the datgis in a separable Banach spa@i | - ||y). When

applying the framework outlined in this article we will alygassume that the prior
measure is Gaussiapy ~ N (mg,Cy). The properties of Gaussian random mea-
sures on Banach space, and Gaussian random fields in partimay be found in
subsections 6.3, 6.4 and 6.5. The two key properties of tioe thrat we will use
repeatedly are the tail properties of the measure as erasgabun the Fernique
Theorem 6.9 and the ability to establish regularity praperfrom the covariace
operator: Theorem 6.24 and Lemmas 6.25 and 6.27. It is trergfossible to
broaden the scope of this material to non-Gaussian priorsariy measures for
which analogues of these two key properties hold. Howevers&an priors do
form an important clas of priors for a number of reasons: treyrelatively sim-
ple to define through covariance operators defined as fradtioverse powers of
differential operators; they are relatively straightfard to sample from; and the
Holder and Sobolev regularity properties of functionswdrdrom the prior are
easily understood.

The properties ofb may be formalized through the following assumptions,
which we verify on a case-by-case basis for many of the PDEr&&/problems
encountered in section 3.

Assumption 2.6 The function®: X x Y — R has the following properties:

i) foreverye > 0andr > OthereisM = M(e,r) € R such that, for alt, € X
and ally € Y with ||ly|ly <,

D(uy) > M —ellullk;

ii) for everyr > 0thereisak = K(r) > 0 such that, forall, € X andy € Y
with max{||u[x, [[ylly} <,

d(u;y) < K;

iii)y for every r > 0 there isL(r) > 0 such that, for alki;,us € X andy € Y
with max{||uy ||x, luz |l x, [ylly} <,

|P(u1;y) — P(u2;y)| < Llur — ual|x;

iv) for everye > 0 andr > 0 there isC = C(e,r) € R such that, for all
y1,y2 € Y with max{||y1||v, [|y2|ly} < r, and for allu € X,

(w5 91) — ()| < exp(elulk +C) lsn = waly-
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These assumptions are, in turn, a lower bound, an upper baumd.ipschitz
properties in: and iny. WhenY is finite dimensional and the observational noise
isN(0,T), then® has the form

B(uy) = 5[0 (v G(w)|

- %‘(y — G(u)) ‘i (2.4.3)

Itis then natural to derive the bounds and Lipschitz progefd® from properties
of G.

Assumption 2.7 The functiong : X — RY satisfies the following:
i) for everye > 0thereisM = M (e) € R such that, for al, € X
1G(w)|r < exp(el|ullk + M);

i) for everyr > 0 there isK' = K(r) > 0 such that, for alk;, us € X with
max{||u||x, [uzlx} <7,

G(u1) — G(ua)|r < Kllug — uz| x.
O

It is straightforward to see the following:

Lemma 2.8 Assume thatj : X — RY satisfies Assumption 2.7. Than: X x
R? — R given by (2.4.3) satisfies Assumption 2.6 w(ﬂn’, I| - ||y) = <Rq, |- |p).
O

Many properties follow from these assumptions concerriegdensity between
the posterior and the prior. Indeed the fact thatis well-defined is typically es-
tablished by using the continuity properties®(f; y). Further properties following
from these assumptions include continuitydfwith respect to the datg and de-
sirable perturbation properties pf based on finite dimensional approximation of
® or G. All these properties will be studied in detail in section We empha-
size that many variants on the assumptions above could betaisibtain similar,
but sometimes weaker, results than those appearing in rinctea For example
we work with Lipschitz continuity ofb in both arguments; similar results can be
proved under the weaker assumptions of continuity in bograents. However,
since Lipschitz continuity holds for most of the applicasoof interest to us, we
work under these assumptions.

We reemphasize that the propertiesdofencapsulated in Assumption 2.6 are
properties of the forward PDE problem and they do not invatwerse problems
and probability at all. The link to Bayesian inverse probdecomes through the
choice of prior measurg, which, as we will see in sections 3 and 4, should be
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chosen so thaty(X) = 1; this means that functions drawn at random from the
prior measure should be sufficiently regular that they lieXinwith probability
one, so that the properties @ffrom Assumptions 2.6 apply to it. (As mentioned
earlier, in this article we will use only prior measurggswhich are Gaussian). In
the function space setting regularity of the mean functiogether with the spectral
properties of the covariance operator, determine the aeigpbf random draws. In
particular the rate of decay of the eigenvalues of the camad operator plays a
central role in determining the regularity properties. essues are discussed in
detail in subsection 6.5. For simplicity we will work thrdumut with covariance
operators which are defined through (possibly fractionafative powers of the
Laplacian, or operators that behave like the Laplacian ierses made precise
below.

To make these ideas precise, consider a second order difédreperatorA on
a bounded open séd? C R¢, with domain chosen so that is positive-definite
and invertible. Let{ C L?(D). For exampleH may be restricted to the subspace
where

/ u(z)dzr =0 (2.4.4)
D

holds in order to enforce positivity for an operator with Meann or periodic
boundary conditions which would otherwise have constamits ikernel; or it may
be restricted to divergence free fields when incompres8ilitkflow is being mod-
elled.

We let {(¢r, \k) }rex denote a complete orthonormal basis for comprising
eigenfunctions/eigenvalues gf ThenK C Z\{0}. For Laplacian-like operators
we expect that the eigenvalues will grow likg? and that, in simple geometries,
the ¢, will be bounded inL*>° and the gradient of the; will grow like |k| in L.
We make these ideas precise below.

For anyu € 'H we may write

keK
We may then define fractional powers.dfas follows, for anyn € R:
ACu =y AR (u, b) O (2.4.5)
keK
For anys € R we define the separable Hilbert spagésby
M ={u: Y Mlu, ép)* < oo} (2.4.6)
keK
These spaces have noim || defined by

a2 = Al Cu, i) 2.

kek
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If s > 0then these spaces are containe@{irbut for s < 0 they are larger than
‘H. The following assumptions characterize a “Laplaciae‘libperator. These
operators will be useful to us when constructing Gaussiamgpas they will enable
us to specify regularity properties of function drawn frdma prior in a transparent
fashion.

Assumption 2.9 The operatord, densely defined on a Hilbert spaklec L?(D;R"),
satisfies the following properties:

i) A is positive-definite, self-adjoint and invertible;
ii) the eigenfunctions/eigenvaluegsy, \r }rex Of A, indexed byk € K C
Z\{0}, form an orthonormal basis f6t;
iii) there areC* > 0 such that the eigenvalues satisfy, for/ak K,

SRV
C™ <5 <0
|k[?
iv) there isC' > 0 such that
1
su o + — D S < C
sup (68l + 7106l

v) if u € H* ands > d/2 thenu € C (D) and there is a constant > 0 such
that||u|| L~ < C|lul|s where the spaceX® are defined by (2.4.6).

Note that if A is the Laplacian with Dirichlet or Neumann boundary corutis
then the space%{® are contained in the usual Sobolev spaéEs In the case
of periodic boundary conditions they are identical to théd@ev spacedd,,,.
Thus the final assumption (v) above is a generalization ofdhewing Sobolev
embedding theorem for the Laplacian:

Theorem 2.10 Assume thatd := —A is equipped with periodic, Neumann or
Dirichlet boundary conditions on the unit cube. «fe ‘H* ands > d/2 then
u € C(D) and there is a constaft > 0 such that|u|| L~ < C|lu||s. O

2.5. Discussion and Bibliography

An introduction to the Bayesian approach to statisticalbfmms in general is
(Bernardo and Smith 1994). The approach taken to Bayesiamsi& problems
as outlined in (Kaipio and Somersalo 2005) is to first diszesthe problem and
then secondly apply the Bayesian methodology to a finite dgiomal problem.
This is a commonly adopted methodology. In that approaahjdba of trying to
capture the limit of infinite resolution is addressed by ukstatistical extrapola-
tion techniques based on modeling the error from finite dsieral approxima-
tion (Kaipio and Somersalo 2006y The approach that is developed in this article
reverses the order of these two steps: we first apply the Bayesethodology
to an infinite dimensional problem, and then discretize. réhe some literature
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concerning the Bayesian viewpoint for linear inverse o on function space,
including the early study (Franklin 1970), and the subsatjpapers (Mandelbaum
1984), (Lehtinen, Paivarinta and Somersalo 1989) andg&itick 1991); the paper
(Lassas et al. 2009) contains a good literature review sfriiaterial, and further
references. The papers (Lassas et al. 2009, Lassas ameBiRA09) also study
Bayesian inversion for linear inverse problems on funcipace; they introduce
the notion ofdiscretization invariancend investigate the question of whether it is
possible to derive regularizations of families of finite dinsional problems, in a
fashion which ensures that meaningful limits are obtairikis; idea also appears
somewhat earlier in the data assimilation literature, f@agicular PDE inverse
problem, in the paper (Bennett and Budgell 1987). In the@gugr taken in this ar-
ticle discretization invariance is guaranteed for finitmensional approximations
of the function space Bayesian inverse problem. Furthezaur approach is not
limited to problems in which a Gaussian posterior measupeas; in contrast
existing work on discretization invariance is confined telinear, Gaussian obser-
vational noise setting in which the posterior is Gaussidhéafprior is Gaussian.

The least squares approach to inverse problems encapbita(e.2.3) is of-
ten termedTikhonov regularizatioEngl, Hanke and Neubauer 1996) and, more
generally, thevariational methodn the applied literature (Bennett 2002, Evensen
2006). The book (Engl et al. 1996) discusses regularizatahniques in the
Hilbert space setting and the Banach space setting is disgus, for example, the
recent papers (Kaltenbacher, Schopfer and Schuster 28fihauer 2009, Hein
2009). As we demonstrated, regularization is closely eeldd finding the MAP
estimator as defined in (Kaipio and Somersalo 2005). As dusltlear that, from
the Bayesian standpoint, regularization is intimatelated to the choice of prior.
Another classical regularization method for linear ineepsoblems is through it-
erative solution (Engl et al. 1996); this topic is relatedite Bayesian approach to
inverse problems in (Calvetti 2007, Calvetti and Somergalom).

Although we concentrate in this paper on Gaussian priors,hemce on regu-
larization via addition of a quadratic penalization tertrere is active research in
the use of different regularizations (Kaltenbacher et@)2 Neubauer 2009, Hein
2009, Lassas and Siltanen 2009). In particular the usealfiatiation based regu-
larization, and related wavelet based regularizationsemsral in image processing
(Rudin et al. 1992, Scherzer et al. 2009). We will not addsesh regularizations
in this article, but note that the develoment of a functioacgpBayesian view-
point on such problems, along the lines developed here fas&an priors, is an
interesting research direction (Lassas et al. 2009).

Theorem 2.4 concerns the small noise limit for Gaussianendi$is topic has
been studied in greater detail in the papers (Engl, Hofingetdandermann 2005,
Hofinger and Pikkarainen 2007, Hofinger and Pikkarainen 20&Qbauer and
Pikkarainen 2008) where the convergence of the postersrildition is quanti-
fied by use of the Prokohorov and Ky Fan metrics. Gaussianigmabare often
amenable to closed-form analysis, as illustrated in thii@® and are hence use-
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ful for illustrative purposes. Furthermore, there are miamgresting applications
where Gaussian structure prevails. Thus we will, on occagrploit Gaussianity
throughout the article, for both these reasons.

The common structure underlying a wide range of Bayesiaarga/ problems
for functions, and which we highlight in subsection 2.4, éveloped in the papers
(Cotter, Dashti, Robinson and Stuart 280€otter, Dashti, Robinson and Stuart
200, Cotter, Dashti and Stuart 2089

In the general framework established at the start of this@ewe have implic-
itly assumed that the observation operai¢r) is known to us. In practice it is often
approximated by some computer cdég; /) in which i denotes a mesh parame-
ter, or parameter controlling missing physics. In this d@#®.5) can be replaced
by the equation

y=G(u;h) +e+n (2.5.1)

wheree := G(u) — G(u; h). Whilst it is possible to lumg andn together into
one single error term, and work again with equation (2.2Hi¥ can be mislead-
ing because the observation erfpand the computational model erroiare very
different in character. The latter is typically not meanazeand depends upan
in contrast it is frequently realistic to modelas a mean zero random variable, in-
dependent ofi. Attempts to model the effects efandr separately may be found
in a number of publications including Chapter 7 (Kaipio arar@rsalo 2005),
(Kaipio and Somersalo 20y, (Kaipio and Somersalo 200Y, (Glimm, Hou, Lee,
Sharp and Ye 2003), (Orrell, Smith, Barkmeijer and Palm&120(Kennedy and
O’Hagan 2001), (O’Sullivan and Christie 2086 (O’Sullivan and Christie 200§,
(Christie, Pickup, O’Sullivan and Demyanov 2008) and (€t 2010). A differ-
ent approach to dealing with model error is to extend theatdeiu to include
model terms which represent missing physics or lack of tgigwl in the model
and to try to learn about such systematic error from the dais;approach is un-
dertaken in (Cotter et al. 20b9
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3. Examples
3.1. Overview

In this section we study a variety of inverse problems agi$iom boundary value
problems and initial-boundary value problems. Our goad isrtable application of
the framework for Bayesian inverse problems on functiorcsphat is developed
in section 4, in order to justify a formula of the form (2.4f&) a posterior measure
¥ on a function space, and to establish properties of the measu

In order to carry this out it is desirable to establish that, d& wide range of
problems, the common structure encapsulated in Assungpfidhor 2.7 may be
shown to hold. These assumptions concern properties déthard problemun-
derlying the inverse problem, and have no reference to therse problem, its
Bayesian formulation or to probability. The link betweer torward problem and
the Bayesian inverse problem is provided in this sectiod,iathe next section. In
this section we show that choosing the prior measure squ#ft&) = 1, whereX
is the space in which Assumptions 2.6 or 2.7 may be shown ) leoisures that
the posterior measure is well-defined; this may often be dgngse of Theorem
6.31. The larger the spacg, the less restrictions the conditipn (X ) = 1 places
on the choice of prior since it is equivalent to asking thai fromy., are almost
surely in the spac&; the largerX is the easier this is to satisfy. The next sec-
tion is concerned with ramifications of Assumptions 2.6 @rfr various stability
properties of the posterior measyréwith respect to perturbations.

We will work in a Banach space setting and will always spettigyprior measure
as a Gaussian. The required background material on Gaumsi@sures in Banach
space, and Gaussian random fields, may be found in sectionéalsw make
regular use of the key Theorem 6.31, from section 6.6, to ghaivthe posterior
is well-defined and absolutely continuous with respect éogtior. For simplicity
we work with priors whose covariance operator is a fraclioregative power of
an operator such as the Laplacian. The reader should be #veaneauch greater
generality than this is possible and that the simple seftinghoice of priors is
chosen for expository purposes. Other Gaussian priors maphbsen so long as
the constrainf:o(X) = 1 is satisfied.

We start in subsection 3.2 by studying the inverse problefrdetermining a
field from direct pointwise observations. We use this example to illustraiteap-
proach to identifying the Radon-Nikodym derivative betwgmsterior and prior
measures. All of the subsequent subsections in this chaptelve Bayesian in-
ference for random fields, but in contrast to the first sulimedhey are based on
indirect measurements defined through solution of a differentiabtgu. In sub-
section 3.3 we study the problem of finding the diffusion Goefnt in a two point
boundary value problem, from observations of the solutionsubsection 3.4 we
consider the problem of determining the wavespeed for thiasgvave equation
from observations of the solution. Subsection 3.5 concémasproblem of re-
covering the initial condition for the heat equation, frolvservation of the entire



INVERSE PROBLEMS 27

solution at a positive time, when polluted by an additive &gan random field.
We then describe several more involved examples arisingpfications such as
fluid mechanics, geophysics and molecular dynamics, alllb€vcan be placed
in the common framework developed here, but for which spaeelydes a full
development of the details; see subsections 3.6, 3.7 andBeBproblems in fluid
mechanics are natural extensions of the inverse probleithédnitial condition of
the heat equation, and those arising in subsurface geagtgsneralize the inverse
problem for the diffusion coefficient in a two point boundalue problem. The
problem in molecular dynamics is somewhat different, a®ésdnot arise from a
Bayesian inverse problem, but rather from a conditioneflisidn process. How-
ever the resulting mathematical structure shares much thvthinverse problems
and we include it for this reason. References to some of tkeeanet literature on
these applications are given in subsection 3.9.

3.2. Pointwise Data for a Random Field

Let D ¢ R% be a bounded open set. Consider a field D — R™. We viewu
as an element of the Hilbert spage= L?(D). Assume that we are given noisy
observations{y; }7_, of a functiong : R" — R¢ of the field at a set of points
{xk}gzl. Thus

yr = g(u(xg)) + nk (3.2.1)
where the{n;, }7_, describe the observational noise. Concatenating data vee ha
y=G(u)+n (3.2.2)
wherey = (yi,--- ,y:)* € R"andn = (n},--- ,n})* € RY. The observation

operatorG mapsX := C(D) C H into Y := R%. The inverse problem is to
reconstruct the field from the datay.

We assume that the observational najsis GaussianV'(0,T). We specify a
prior measurgy, on u which is GaussiaV' (mg, Cy) and determine the posterior
measure.? for u giveny. SinceP(dy|u) = N (G(u),T"), informal application of
Bayes rule leads us to expect that the Radon-Nikodym dasvat 1.¥ with respect
to o is

dpy

dpio
Below we deduce appropriate choices of prior measure whiishre that this mea-
sure is well-defined and does indeed determine the desisgdruy distribution for
u giveny.

If g : R® — R’ is linear, so thag(u) = Au for some linear operatof : X —
R, then the calculations in Example 6.23 show that the pastereausurg:? is
also Gaussian witp? = N (m,C) where

m = mg + CoA*(T + ACoA*) L (y — Amy) (3.2.4a)

() ox exp (g ly ~ Gwl}). (32.3)
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C =Cy— CoA*(T + ACoA*) L AC,. (3.2.4b)

Let A denote the Laplacian of, with domain chosen so that Assumptions
2.9(i)—(v) hold. Recall the (Sobolev-like) spacks from (2.4.6). Note that, by
Assumption 2.9(v), the mean, of the prior g is necessarily a continuous func-
tion under the assumptions of the next theorem. The thewsegoved by appli-
cation of Theorem 6.31 and the reader is encouraged to dtatiyhteorem before
reading this one:

Theorem 3.1 Assume that the domain efA is chosen so that Assumptions 2.9(i)-
(v) hold. Letg : R® — R’ be continuous. Assume thag oc (—A)~ with o > &
and assume that, € H®. Thenu?(du) = P(duly) is absolutely continuous with
respect tquo(du) = N (my, Cy) with Radon-Nikodym derivative given by (3.2.3).
Furthermore, wheg is linear, so thatj(u) = Au for some lineard : X — R,
then the posterior is Gaussian with mean and covariance biy¢3.2.4).

Proof. The formulae for the mean and covariance of the Gaussiaenmsinea-
surep? = N (m,C) which arises whegp is linear follow from Example 6.23. We
now proceed to determine the posterior measure in the nossim case. Define
L, : X — R™to be the pointwise evaluation operatorzat D. Notice that

[Lew = Lev| = |u(z) = v(2)] < [lu—ol[p=

so thatL, : X — R"™ is continuous. The functiog is found by composing
the continuous functiol with the operatoll. at a finite set of points and is thus
itself continuous fromX into R%. To apply Theorem 6.31 it suffices to show that
po(X) = 1. This fact follows from Lemma 6.25 since draws frov(0, Cy) are a.s.
s—Holder for alls € (0, min{1, « — £}) and sinceny € H* C X by Assumption
2.9(v). O

In section 2.4 we indicated that obtaining bounds and Lipasgtoperties oG
or &, the mappings appearing in the Radon-Nikodym derivativevéen ¥ and
Lo, Will be important to us in the sequel. The following lemmadiés this issue.

Lemma 3.2 In the setting of Theorem 3.1 assume, in addition, ghatC'* (R", R¢)
and thatg is polynomially bounded. Theg satisfies Assumption 2.7 withh =
C(D) andY = R‘. Furthermore, ifDg is polynomially bounded thed () is
polynomially bounded.

Proof. Sinceg is polynomially bounded and is found by pointwise evaluation
at a finite number of points, it follows that

1G(uw)| < p([lullx)

for some polynomiap : R — R. The bound (i) of Assumption 2.7 follows. By the
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mean-value theorem (Taylor theorem with remainder) we tzate

1
G(u) ~ G(v)lr < max | /0 Dy(su(zi) + (1~ s)o(a))ds (u(zi)) — v(a))|

1<k<K
Thus, for allu, v satisfyingmax{||u| x, ||v]|x} < r,
G(u) = G(0)Ir < K(r)[u —vlx-

Furthermore, K’ may be bounded polynomially iDg is bounded polynomially.
The result follows. O

3.3. Inverse Problem For A Diffusion Coefficient

The previous example illustrated the formulation of an isegoroblem for a func-
tion, using the Bayesian framework. However the obsermatiof the function
were comprised of direct measurements of the function attpdn its domainD.
We now consider a problem where the measurements are marecindnd are
defined through the solution of a differential equation.

We consider the inverse problem of determining the diffasioefficient from
observations of the solution of the two-point boundary gghtoblem

d d
—%(l@(m)ﬁ) — 0, (3.3.1a)
p(0) =p~ p(1) =p". (3.3.1b)

We assume thai™ > p~ > 0 and that we make observations{of(z;)}}_,, at
a set of point$) < z; < --- <z, < 1 subject to Gaussian measurement error. We
write the observations as

yp =p(xK) +n8, k=1,---,q (3.3.2)

and, for simplicity, assume that thg form an i.i.d sequence withy, ~ N(0,+2).
Our interest is in determining the diffusion coefficiénfrom y. To ensure thak
is strictly positive or[0, 1] we introduceu(z) = In(k(x)) and viewu € L2((0,1))
as the basic unknown function.

The forward problem (3.3.1) fgr given« is amenable to considerable explicit
analysis and we now use this to write down a formula for theeplaion operator
G and to study its properties. We first defifig: LOO((O, 1)) — R by

=(w) = xex —w(z))dz. 3.3.3
Tow) = [ expl=u(:) (3:33)
The solution of (3.3.1). may be written as

p(z) = (p* —p‘)jfgzg +p” (3.3.4)

and is monotonic increasing; furthermgrer) is unchanged undes(z) — u(z)+
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A for any A € R. The observation operator is then given by the formula
G(u) = (p(a1). - () - (3.35)

Lemma 3.3 The observation operatdr : C([0,1]) — R? is Lipschitz and satis-
fies the bound

1G(u)| < Vap™. (3.3.6)

IndeedG satisfies Assumption 2.7 withk = C([0, 1]) and K (-) exponentially
bounded: there are b > 0 such that’ (r) < aexp(br).

Proof. The fact thatG is defined onC'([0, 1]) follows from the explicit solution
given in equation 3.3.4. The bound ¢nhfollows from the monotonicity of the
solution. For the Lipschitz property it suffices to consitlee case; = 1 and,

without loss of generality, take; = % Note that then

|g<;+> - g_w B Jl(u)1J1 R0 = 1@ 8 )
B W () (A (0) = () + 1 () (73 () = T3 ()|
< D)) = A+ D)7y () = T ()]
But
Ji(v)t < exp(|[v]loo)
and

| Tz (1) = Jo ()] < 2 exp (max{][ul|oo, [[0]loo Pt = ]l o
Thus we deduce that

|G(u) = G(v)| < g(f =) exp([[vlloe + max{|[uflos, [0]loc })llv = vlloo-
O

We place a Gaussian prior measuig ~ N (ug,Co) on u. We say thatk is
log-normal. Since changing: by an arbitrary additive constant does not change
the solution of (3.3.1) we cannot expect to determine angrinétion about the
value of this constant from the data. Thus we must build osumptions about
this constant into the prior. To do this we assume thategrates to zero ofv, 1)
and define the prior measugg on the space

M= {ueL2 ((0,1)) (/ dm—O (3.3.7)

We defined = —% to be a densely defined operator Hrwith

D(A) = {uEngr ((0,1)) ‘/ m—O
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Then A is positive-definite self-adjoint and, for anfy > 0 anda > % (which
ensures that the covariance operator is trace-class) wedefaye the Gaussian
measure\ (mg, BA~%) on'H.

We have

y=G(u)+n,

wherey = (y1,---,y,)* € R? andn € R is distributed as\'(0,+2I). The
probability ofy givenu (the data likelihood) is

P(y] ) xexp(—5 51y - 6w,

We wish to findu (du) = P(du|y). Informal use of Bayes rule suggests that

dpy 1 9

d—MO(U) Mexp(—ﬁw—g(uﬂ ) (3.3.8)
We now justify this formula. Sincé(-) is Lipschitz onX := C([0, 1]), by Lemma
3.3, the basic idea underlying the justification of (3.3r8)jHe next theorem is to
choosex so thatuy(X) = 1 so that we may apply Theorem 6.31.

Theorem 3.4 Consider the Bayesian inverse problemdr) = In(k(x)) subject
to observation in the form (3.3.2), wihsolving (3.3.1), and prior measurg =
N(mg,Co) with mg € H*NH andCy = BA™®. If 3 > 0 anda > % then
Y (du) = P(duly) is absolutely continuous with respect g(du) with Radon-
Nikodym derivative given by (3.3.8), witf defined in (3.3.5).

Proof. We apply Theorem 6.31. The functighis continuous fromX into RY.
Hence it suffices to show that)(X) = 1. This follows from Lemma 6.25 since
o > % and draws fromu,— are a.ss—Holder for alls € (0, min{1,a — 3}) and
sincemg € H* C X by Theorem 2.10. O

3.4. Wavespeed for the Wave Equation

Consider the equation

ov ov
n + c(x)% =0, (z,t) €Rx(0,00) (3.4.1a)
v=Ff, (z,t)€R x{0} (3.4.1b)

We assume that the wavespe€d) is known to be a positive, one-periodic func-
tion and that we are interested in the inverse problem ofraeténg ¢ given the
observations

yi=v(l,t;)+n;, j=1,...,q (3.4.2)

We assume that the observational n(ﬁsge}jzl is mean zero Gaussian. Sinces
postive we writec = exp(u) and view the inverse problem as being the determina-
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tion of v. We thus concatenate the data and write
y=G(u)+n

wheren ~ N(0,T) andG : X — RY whereX = C*(S); hereS denotes the unit
circle [0, 1) with end points identified to enforce periodicity. We equipwith the
norm

du
Jullx = supua)| + sup |7 ()|
z€S zeS 1 ax

Note that we may also view as a function inXp., := C}..(R), the space of

1—periodicC'! functions onR. Before defining the inverse problem precisely we
study the properties of the forward operagor

Lemma 3.5 Assume thaf € C*(R;R) and thatf is polynomially bounded: there
are constant® > 0 andp € Z™ such that

|f(2)] < K(1+[zfP).
Theng : X — RY satisfies:
e there is constant’ > 0:
G(uw)| < C(1 + exp(pllulx));
o forall u,w € X : |Ju||x, ||w||x < rthereisL = L(r) :
1G(u) — G(w)| < Lllu — wl|eo.

Proof. It suffices to consider the cage= 1 and taket; = 1 for simplicity. Let
U(-;t,u) : R — R denote the one parameter group given by the solution operato
for the equation
dx
dt
where we viewu as an element oi ., in order to define the solution of this
equation. Them solving (3.4.1) withc = exp(u) is given by the formula

v(z,t) = f(\I’(ac, t, u))

= —exp(u(;ﬂ)) (343)

Thus
G(u) = v(1,1) = F(¥(1;1,u)) (3.4.4)
and
IG(w)| = [v(1,1)] < K(1+[¥(1;1,u)[7).
But the solution of (3.4.3) subject to the conditiof0) = 1 satisfies

1
lz(1)] < 1 —i—/o exp (u(z(s)))ds

<1+ exp(||uHX).
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Hence
U(1;1,u) <1+ exp(flullx) (3.4.5)
and the first result follows.

For the second result let(t) = ¥(1;¢,u) andy(t) = ¥(1;¢,w) so that, by
(3.4.3),

z(t) =1 —/0 exp (u(z(s)))ds

y(t) =1 —/0 exp (u(y(s)))ds —i—/o exp (u(y(s)))ds —/0 exp (w(y(s)))ds.
Thus, using (3.4.5),

1
2(t) = y(0)] < Cllulx, o) /0 [2(s) = y(s)lds + u — wlls).
Application of the Gronwall inequality gives

sup [z (t) = y(t)] < C([Jullx; [wllx) v — wlloo-
te(0,1]

Thus
V(11 u) = ¥(1 1, w)| < Cfullx, [w]x)llv — wleo-
Hence, using (3.4.4), the fact thais C'' and the bound (3.4.5), we deduce that
G(u) — G(w)| = |f(T(A;1,u) — f(T(1;1,w))]
< L(r)llu — wlje
< L(r)[lu — wlx.

O
We wish to findu¥ (du) = P(duly). Informal use of Bayes rule gives us

duy 1

e (1) exp(—5ly — Gu)}). (3.4.6)

We now justify this formula by choice of prior and by applicet of Theorem 6.31.
We place a prior measuye, on the space& by assuming that ~ pg is Gaus-

sian and that/(z) = g—;(m) ~ N(0,A~) whereA = —% is a densely defined
operator or{ = L%(S) with

D@Dz{uéH%&L[ﬁ@Msz}

If 6 > 0anda > % thenw/ is almost surely a continuous function, by Lemma
6.25. Defining

u(z) = uo + /Or u'(s)ds
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whereug ~ N(0, 0?) determines the distribution afcompletely. Furthermore for
£ > 0anda > % we have that, drawn from this measure is i with probability
1: puo(X) = 1. Hence we deduce the following result.

Theorem 3.6 Consider the Bayesian inverse problemd¢e) = In(c(z)) subject
to observation in the form (3.4.2), with solving (3.4.1), and prior measurg
as constructed immediately preceding this theorem3 ¥ 0 anda > % then
Y (du) = P(duly) is absolutely continuous with respect ig(du) with Radon-
Nikodym derivative given by (3.4.6).

Proof. To apply Theorem 6.31 it suffices to show thg{X') = 1 since the func-
tion G is continuous fromX into R?. The fact thatuo(X) = 1 is established
immediately prior to this theorem. O

3.5. Initial Condition for the Heat Equation

We now study an inverse problem where the data a function, and is hence
infinite dimensional, in contrast to preceding examplesretibe data has been
finite dimensional. We assume that our observation is thetieal of the heat
eguation at some fixed positive tirfie> 0, with an added Gaussian random field
as observational noise, and that we wish to determine thalinondition.

To be concrete we consider the heat equation on a boundedsepBnc R¢,
with Dirichlet boundary conditions, and written as an ODHitbert spaceH =
L?*(D):

— 4+ Av =0, v(0)=u. (3.5.1)

Here A = —A with D(A) = H} (D) H?(D). We assume sufficient regularity
conditions onD and its boundary D to ensure that the operatdris positive and
self-adjoint on’H and is the generator of an analytic semigroup. We define the
(Sobolev-like) spaces® as in (2.4.6).

Assume that we observe the solutiort timeT", subject to error which has the
form of a Gaussian random field, and that we wish to recoveanthial condition.
This problem is classically ill-posed, because the heaatou is smoothing, and
inversion of this operator is not continuous A Nonetheless, we will construct a
well-defined Bayesian inverse problem.

We place a prior measure enwhich is a Gaussian measuug ~ N (mg, Co)
with Cp = A, for some > 0 anda > %; consequentlyy € H pp—a.s.
by Lemma 6.27. Our aim is to determine conditions @@nand onmyg, which
ensure that the Bayesian inverse problem is well-defineghatticular we would
like conditions under which the posterior measure is edgmtgas a measure, see
Chapter 6) to the prior measure.

We model the observationas

_ATU

y=e +n (3.5.2)
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wheren ~ N (0,C;) is independent of.. The observation operatgr: H — H is
given byG(u) = e~4Tw and, in fact,G : H — H’ for any¢ > 0. If we assume
thatC; = A7 for somey > d/2 andé > 0 we then have that, almost surely,
n € H by Lemma 6.27.

Consider the Gaussian random variafley) € H x H. We have

E(u,y) := (u,y) = (mo,e*ATmo).

Straightforward calculation shows that

E(u—1u)® (u—1u) = Cy,

E(u—1) @ (y —5) = Coe™ 7,

E(y -9 ©(y-7) =e e 4 +Cr.
By Theorem 6.20 we find that the posterior meagttéor « giveny is also Gaus-
sian with mean

m = mgy + ge_ATAV_O‘ (I + ge_QATAV_O‘) 71(y — e T'myg) (3.5.3)

and covariance operator

-1
C=0Co (1 + e—QATcoc;l) (3.5.4)
o —« é —2AT py—« -1
— 84 (I+ ~e 2T 4 ) . (3.5.5)

We now show that the posterior (Gaussian) measurg{ @ indeed equivalent
to the prior. We will assume: > % since this ensures that samples from the prior
are continuous functions, by Lemma 6.25.

Theorem 3.7 Consider an initial condition for the heat equation (3.5vith prior
Gaussian measufg ~ N (mg, BA™%), mg € H®, > 0 anda > %. If an obser-
vation is given in the form (3.5.2) then the posterior meagiiris also Gaussian,
with mean and variance determined by (3.5.3) and (3.5.5)thEtmore,.Y and
the prior measurg, are equivalent Gaussian measures.

Proof. Let {¢, M\ }rex, K = Z4\{0}, denote the eigenvalues df and define
k= 2 suppcg e 2TA]~* which is finite sincel’ > 0 and A generates an ana-
lytic semigroup. Furthermore, the operator

_ B —2AT pv—« -1
K=(1+ ~e 72T )
is diagonalized in the same basisAsnd is a bounded and invertible linear oper-
ator with all eigenvalues lying if(1 + «)~!, 1]. Now from (3.5.4), for any» € H,
1

< = < .
1+ Ii<h’COh> X <h,Ch> <haCOKh> X <haCOh>
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Thus, by Lemma 6.15, we deduce that condition i) of Theoret3 & satisfied,
1
with £ = H® = Im(COQ).
From (3.5.3) we deduce that

m—mg = ge*ATA“’*O‘K(y — efATmO).

Since A generates an analytic semigroup and siAct& bounded we deduce that
m — mg € H" for anyr € R. Hence condition ii) of Theorem 6.13 is satisfied. To
check the remaining condition iii), define

_1 _1
T - CO QCCO 2 — I
o B ﬁ —2AT pAv—« -1 y—a ,—2AT

The operatoff’ is clearly Hilbert-Schmidt because its eigenvalugsatisfy
B)\Zfae—QAkT

< -
|| 5

and hence decay exponentially fast. This establishesfiiheorem 6.13 and the
proof is complete. 0

The preceding theorem uses the Gaussian structure of theriposneasure ex-
plicitly. To link the presentation to the other exampleshiistsection, it is natural
to ask whether a similar result can be obtained less directly

We define® : H x H — R by

1, _ _
®(usy) = 5 le A ul, — e Tuye,.

and use this function to derive Bayes formula for the meagt(éu) = P(duly).
We will show thati¥ (du) is absolutely continuous with respect to the pyigfdu)
with density

duy

-_— —®(u; . 5.

e () ox xp (@ (i) (3.5.6)
Remark 3.8 It would be tempting to define a potential

1
V(wy) = lly - G(ullg,

1 —A
=5lly—e Tulg,

in analogy with the examples in the two previous sectionis: ¥his a least squares
functional measuring model/data mismatch. However thimtjty is almost surely
infinite, with respect to the random variahjesince draws from a Gaussian mea-
sure in infinite dimensions do not lie in the correspondingn€eon-Martin space

1
Im(C{) — see Lemma 6.10. This undesirable property agtems directly from the
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fact that the datg is a function rather than a finite dimensional vector. To dbé
problem we work with®(u; y) which, informally, may be viewed as being given
by the identity

1
(usy) = (usy) — Iyl

Thus we “subtract off” the infinite part ob. Since Bayes formula in the form
(3.5.6) only gives the density uptoya-dependent constant we see intuitively why
this subtraction of a term involving is reasonable. The issues outlined in this
remark arise quite generally when the dat# infinite dimensional and the ob-
servtional noise) is Gaussianl]

The form of @ arising in this problem, and the fact that the data is infidite
mensional, preclude us from using Theorem 6.31 to estathl&th{3.5.6) is correct;
however the method of proof is very similar to that used tosprbheorem 6.31.

Before proving that (3.5.6) is correct we state and proveesproperties of the
potential®.

Lemma 3.9 The function® : H x ‘H — R satisfies Assumptions 2.6 with =
Y = H andL(r) linearly bounded.

Proof. We may write
1. _1 _1 _1
usy) = 5 €y Fe M Mul? = {0y Fe# w0y 22 Ty).

_1
SinceC; ! = §A” we deduce thakCy := C, 2e~*7 is a compact operator cH
for any A > 0. By the Cauchy-Schwarz inequality we have, for any 0,

CL2

1 1 _1
O(usy) = —7\\61 e ATy — ﬁ”@ 2em 2 Ty| 2,

By the compactness df: and by choosing: arbitrarily small we deduce that

Assumption 2.6(i) holds.” Assumption 2.6(ii) holds by a samiCauchy-Schwarz
argument. Sinc@ is quadratic inu, and using the compactnessl@; and/Cq, we

see that

(1) = @(uzi )| < C(IKutll + [Krual + 1] ) Iy (11 = )]
< O (Il + luzll + Iyl ) €= #47 (wr = uz)|| - (35.7)
<C

(Il =+ lazll =+l s = v (3.5.8)

and similarly
[P (u; 1) — (s y2)| < Cllullllyr — y2ll
so that Assumptions 2.6(iii),(iv) hold. O
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Theorem 3.10 Consider the inverse problem for the initial conditioin (3.5.1),
subject to observation in the form (3.5.2) and with prior €&aan measurg, =
N(mg,BA™). If mg € H*, 8 > 0anda > g, then the posterior measure
Y (du) = P(duly) and the priorug(du) are equivalent with Radon-Nikodym
derivative given by (3.5.6).

Proof. Recall thatC; = 64~ and thatCy = SA~“. Define the measures

Qo(dy) = N(0,Cy),
Q(dylu) = N(e*u,C1),
po(du) = N (mg, Co).
and then define

vo(dy, du) = Qo(dy) ® po(du)
v(dy, du) = Q(dy|u)uo(du).
By Theorem 6.14 we deduce that

dQ 1, _ _
a0, ) = e (=5l Tull, + e Tu g, ).

The measure is well-defined because the functiét-; y) : H — R is continuous
and henceiy measurable ifiy(H) = 1. This last fact follows from Lemma 6.27
which show that draws fromg are almost surely ift{. Hence

dv

1, _ _
() = exp (=g lle Tul, + (e uy)e, ).

By applying Theorem 6.29, noting that undgrthe random variableg andu are
independent withi ~ p, we deduce that

duY

1
oo () o xp (=5l ull, + (T y)e, )

with constant of proportionality independentof O

3.6. Fluid Mechanics

The preceding four subsections provide a range of examptesensomewhat ex-
plicit calculations, using the solution of various forwdirtear PDE problems, es-
tablish that the associated inverse problems may be placdeigeneral frame-
work that we oulined in subsection 2.4, and will study furtlresection 4. How-
ever it is by no means necessary to have explicit solutiorieeoforward problem
to use the framework developed in this article and the exesnpi this subsection,
and the two subsections which follow it, illustrate this.

Fluid mechanics provides an interesting range of apptioatiwhere the tech-
nology of inverse problems is relevant. We outline exampliesuch problems
and sketch their formulation as Bayesian inverse problemfuhctions. We also
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show that these problems may be formulated to satisfy Assangp2.7. Unlike
the previous three sections, however, we do not providediethils; we refer to
other works for these, in the bibliography subsection.

In weather forecasting variety of instruments are used to measure the velocity
of the air in the atmosphere. Examples include weather dradlodata from com-
mercial and military aircraft, as well as special purposeratft, and satellites. An
important inverse problem is to determine the global v&jofield, and possibly
other fields, from thézulerian datacomprised of the various noisy measurements
described above.

As a concrete, and simplified, model of this situation we @Brsthe linearized
shallow water equations on a two dimensional torus. Thetansare a coupled
pair of PDEs for the two dimensional velocity fieldand a scalar height field,
with the form

% — Su—Vh, (2,1) €T x [0,00), (3.6.1a)
% — _V.u, (2,£) €T x[0,00). (3.6.1b)

The two dimensional unit torus? is shorthand for the unit square with periodic
boundary conditions imposed. The skew mafiis given by

= (4 0)

and the term involving it arises from the Coriolis effect.
The objective is to find the initial velocity and height fields(0), h(0)) =
(u,p) € H where

H = {u € LQ(TQ;R?’)‘/ udm}.
T2
We assume that we are given noisy observations of the welfieltl at positions
{mj}gzl and times{#;, }¥_,, all positive. Concatenating data we write
y=G(u,p) + 1. (3.6.2)

HereG maps a dense subsetfinto R*>’X and is theobservation operatorBe-
cause the PDE (3.6.1) is linear, so toodis We assume thay ~ N(0,T) is
independent of, and we consider the Bayesian inverse problem of finding tke po
terior measure¥ (du) = P(duly) from the priorug. We letA = —A on T2 with
domain

D(A) = {HQ(']TQ)‘ /W udz = 0}

and define the prior through fractional powers/bf

Theorem 3.11 Consider an initial condition for the shallow water equiasi¢3.6.1)
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with prior Gaussian measufg = N (mg, BA~%) with mg € H*N'H, 3 > 0 and
a > 2. If anoisy observation is made in the form (3.6.2) then theqras measure
1Y is also Gaussian, and is absolutely continuous with respehbe prior measure
o, With Radon-Nikodym derivative

dpy

d—ﬂo(u,p) o exp<—%\y - Q(u,p)l%>7 (3.6.3)

where G is given by (3.6.2). Furthermore, the observation opergt@atisfies
Assumptions 2.7 withX = H*® and K globally bounded, for any > 1. [

In oceanographya commonly used method of gathering data about ocean cur-
rents, temperature, salinity and so forth is through theaiideagrangian instru-
ments which are transported by the fluid velocity field anddnait positional in-
formation using GPS. An important inverse problem is to eiee the velocity
field in the ocean from the Lagrangian data comprised of th& @formation
about the position of the instruments. As an idealized modesider the incom-
pressible Stokes (= 0) or Navier-Stokes:(= 1) equations written in the form:

% +wNVv=vAv—Vp+f, (x,t)eT?x]0,00), (3.6.4a)
V-v=0, (xt)eT?x][0,00), (3.6.4b)
v=u, (z,t)eT?x{0}. (3.6.4¢)

As in the preceding example we impose periodic boundaryitiond, here on the
velocity field v and the pressurg. We assume that has zero average ovép,
noting that this implies the same fo(z,t), provided thatu(z) = v(x,0) has
zero initial average. We define the Stokes operdta@nd Leray projectolP in the
standard fashion, together with the Sobolev spd¢és= D(A°/?) as in (2.4.6).
The equations (3.6.4) can be written as an ODE in the HillpateaH:

% +1B(v,v) + vVAu =9 (3.6.5)

wherey = Pf and B(v,v) represents the projection, under of the nonlinear
convective term.

We assume that we are given noisy observations of Lagramgiaers with po-
sition z solving the integral equation

t
zi(t) = zj0 +/0 v(z;(s), s)ds. (3.6.6)

These equations have a unique solution provided andvy € L?((0,T); H).
For simplicity assume that we observe all the traceas the same set of times
{tk}fz1 and that the initial particle tracer positiong, are known to us:

Yjk = Zj(tk) + Nj.k> ] = 1, - ,J k= 1, ey K7 (367)
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where then; ;'s are zero mean Gaussian random variables. The titigsare
assumed to be positive. Concatenating data we may write

y=G(u) +n (3.6.8)

withy = (yi4,...,¥5 )" andn ~ N(0,T') for some covariance matrix captur-
ing the correlations present in the noise. The funcfiamaps a dense subspace of
H into R27K. The objective is to find the initial velocity field, giveny. We start
by stating a result concerning the observation operator.

Lemma 3.12 Assume that) € C([0,T]; H) for somey > 0. ThengG given by
(3.6.8) satisfies Assumptions 2.7 with = ¢ for any¢ > 0. [

These properties of the observation opergtdead to the following theorem:

Theorem 3.13 Let 9 = N (mo, BA~%) denote a prior Gaussian measure;@n
If mg € H*, 8 > 0anda > 1 then the measurg(du) = P(duly) is absolutely
continuous with respect @y, with Radon-Nikodym derivative given by

dpy 1

e (1) exp(~3ly — G)}). (3.6.9)

with G defined by (3.6.8)0

Notice that the required lower bound on the exponreimtthe preceding theorem
is lower than that appearing in Theorem 3.11. This is bectheséNavier-)Stokes
equation is smoothing and hence less regularity is requinethe initial condition
in order to define the observation operadothan for the linearized shallow water
eqguations.

3.7. Subsurface Geophysics

Determining the permeability of subsurface rock is enorshoimportant in a
range of different applications. Among these applicatians the prediction of
transport of radioactive waste from underground wastesigp@es, and the opti-
mization of oil recovery from underground fields. We give arerwiew of some
inverse problems arising in this area. As in the previousesction we do not give
full details, leaving these to the cited literature in thilioigraphy subsection.

The permeability tensak’ is a central component @arcy’s lawwhich relates
the velocity fieldv to the gradient of the pressupgn porous media flow:

v=—-KVp. (3.7.1)

In generalK is a tensor field. However the problem is often simplified tguasing
that K = kI wherek is a scalar field and the identity tensor; we make this
simplification.

In many subsurface flow problems it is reasonable to modeldlazity field as
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incompressible. Combining this constraint with the Daiay (3.7.1) shows that
the pressure is governed by the PDE

V. (-kVp) =0, z€D, (3.7.2a)

p=h, z€dD. (3.7.2b)

This model is a widely used simplified model in nuclear wasspasal mod-
elling. The inverse problem is to find the permeabilitfrom observations of the
pressure at points in the interior 6f; this information can be found by measuring
the height of the water table. For simplicity we work in twotbree dimensions
d and assume thdd ¢ R is bounded and open. As in subsection 3.3 it is phys-
ically and mathematically important thatbe positive, in order that the elliptic
equation for the pressure is well-posed. Hence we virite exp(u) and consider
the problem of determining.

We assume that we observe

and note that this may be written as
y=G(u)+n (3.7.4)

for some implicitly defined functio;. We assume thaj ~ A (0,T") is indepen-
dent ofu. Before formulating the Bayesian inverse problem we staddllowing
result concerning the forward problem:

Lemma 3.14 Assume that the boundary @b, 0D, is C'—regular and that the
boundary data& may be extended to a functigne W' (D) with r > <. The
function G satisfies Assumptions 2.7 wit = C(D). O

We define the prior Gaussian measure through fractional fsosi¢he Laplacian
A = —A with

D(A) = {u € H2(D)[Vau -1 = 0, / u(z)dz = 0}.
D
Heren denotes the unit outward normal on the boundaryof

Theorem 3.15 Let the assumptions of Lemma 3.14 hold anddet= NV (0, BA™®)
denote a prior Gaussian measurean If 3 > 0 anda > 4 then the mea-
surep? (du) = P(duly) is absolutely continuous with respect;ig, with Radon-
Nikodym derivative
dp
dpio
andg given by (3.7.4)J

(z) ox exp(—%|y — g(u)h%) (3.7.5)
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Once the posterior measure oiis known it can be used to quantify uncertainty
in predictions made concerning the Lagrangian transporadibactive particles
under the velocity field given by (3.7.1). In particular the push forward of the
measure:¥ ontov, and hence onto patrticle trajectoriesbeying

dz

E = U(Z)>
will define a measure on the possible spread of radioativeantnants, enabling
risk assesment to be undertaken.

The oil industry routinely confronts an inverse problem i&amto, but more
complex than, that arising in the nuclear waste industryaiAguncertainty quan-
tification is important as it enables more effective decisitaking concerned with
the substantial investment of resources required to exg@ibdrom increasingly
complex environments. The primary difference betweenithele model we have
described for nuclear waste management, and that whichenabaut to describe
for oil extraction, arises because the subsurface fluid foveil extraction is mul-
tiphase (gas, water, oil) and significant on much shorteetstales than in the
nuclear waste management scenario. We study a simplifiegohase problem,
for oil and water alone. The physical model contains two wwkm scalar fields,
the water saturatio§' (volume fraction of water in an oil-water mixture) and pres-
surep, and is posed in a bounded open getc R¢. Darcy’s law now takes the
form

v=—\(S)kVp (3.7.6)
Mass conservation and transport respectively give thetiemsa

—V - (M(S)kVp) = h1, (z,t) € D x [0,00),
% +v-Vf(S)=nAS, (z,t) € D x[0,00), (3.7.7)
p=hy, (z,t)€ 0D x[0,00). (3.7.8)

The flux functionf is known (typically the Buckley-Leverett form is used) ahé t
source/boundary ternvs,, hy are also both assumed known. The scalés the
(also assumed known) diffusivity of the multiphase flow,itgtly very small. Ini-
tial conditions forS are specified o® attimet = 0. There are additional boundary
conditions onS which we now describe. We partitiohD = dD°u | JoD™. We
think of pumping water in on the boundaf\D™*, so thatS = 1 there, and specify
a Robin boundary condition afD°" determining the flux of fluid in terms of
the water saturation.

We assume that we have access to noisy measurements foddtienal flow
F(t) which quantifies the fraction of oil produced on a sulisbt"** of the out-
flow boundaryd D°%*. This measurement is via the function

_ Jopmeas f(S)vndl

F(t)=1
( ) faDmeas /Undl
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wherew,, is the component of the velocitywhich is normal to the boundary and
dl denotes integration along the boundary. Assume that we maksurements of
Fat times{tk}};l, polluted by Gaussian noise. Then the data are as follows

yk:F(tk)+77k> kzla"'vKa

where then,'s are zero mean Gaussian random variables. Concatenatiagve
may write

y=6(u)+n

where, as beforek(z) = exp(u(xz)). We assume thay ~ A(0,T") for some
covariance matriX’ encapsulating measurement errors. The priois a Gaussian
measure om, specified as in the previous section. We once again antiécthat

d

" 1
T @) cexp(=3ly = G(w)lh). (3.7.9)

This is similar to the nulcear waste problem, but the obdemwaoperatorg is
now more complicated. However similar analyses of the ptagseof the forward
problem, and the resulting Bayesian inverse problem, cambertaken.

3.8. Molecular Dynamics

Consider a molecule described by the positioref N atoms moving irR?, with
d = 1,2 or 3. If we assume that the particles interact according to a piaten
V : R? — R and are subject to thermal activation then, in érer-dampedimit
where the inertial relaxation time is fast we obtain Brewnian dynamicsnodel

for the position ofz:

dx 2 dW

i VV(x)+ \/; e (3.8.1)
HereW is a standar® " valued Brownian motion and the inverse temperature.
One of the key challenges in molecular dynamics is to undedshow molecules
rearrange themselves to change from one configuration tth@moin some ap-
plications this may represent a chemical reaction, andhersta conformational
change such as seen in biomolecules. When the temperatsneals (G > 1)
the solutions of (3.8.1) spend most of their time near theimmanof the potential
V. Transitions between different minima of the potential i@ events. Simply
solving the SDE starting from one of the minima will be a conapionally infea-
sible way of generating sample paths which jump betweenmarsince the time
to make a transition is exponentially smallgnInstead we may condition on this
rare event occuring. This may be viewed as an inverse protiesetermine the
control W which drives the system from one configuration to anothewéi@r,
we will work directly with the functionse which result from this control as these
constitute the more physically interesting quantity. Besathe Brownian motion
W is a random function, this leads naturally to the questionleiermining the
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probability measure on functionsundergoing the desired transition between con-
figurations. The desired transition can be defined by candiig the dynamics
given by (3.8.1) to satisfy the boundary conditions

r(0) =2, xT)=z". (3.8.2)

We viewz as an element of?((0,T); RV9) and denote théVd—dimensional
Brownian bridge measurarising from (3.8.1), (3.8.2) in the ca$é = 0 by py.
We also defing: to be the desired bridge diffusion measure arising from theng
V. We may view bothu and . as measures oh?((0,7); RV4); the measure
is Gaussian but, unleds is quadratic, the measugeis not. We now proceed to
determine the Radon-Nikodym derivative ofvith respect to the Gaussian bridge
diffusion p.

Theorem 3.16 AssumeV < C?(RVN4;R) and that the stochastic initial value
problem, found from (3.8.1), (3.8.2) without the conditiofil’) = =™, has so-
lutions which do not explode almost surely éne [0,7]. Then the measurg
defined by the bridge diffusion problem (3.8.1), (3.8.2) lis@utely continuous
with respect to the Brownian bridge measuggfound from (3.8.1),(3.8.2) in the
casel = 0. Furthermore the Radon-Nikodym derivative is given by

dp
d—MO(x) x exp (—®(z)), (3.8.3)
where the potentiab is defined by
@@%ngTG@@ML (3.8.42)
G(x) = %HVV(QU)HQ - %AV(x). (3.8.4b)

0

In addition, we find that a large class of problems lead to tirarnon structure
of subsection 2.4. There is no explicit datae Y in this problem, but we can let
y € RP denote the parameters appearing in the potehtjand hence irdz. (Note
that g is not such a parameter as it appear&ijrbut not inV’; more fundamentally
it appears inug and so is not simply a parameter in the potenbipl We thus write
V(z;y) andG(z;y).

Lemma 3.17 Consider the functio® defined by (3.8.4a), (3.8.4b) wiihi : RV x
RP — R. Assume that, for any,r > 0 there isM = M(e,r) € R such that, for
all ||lyl| <,

Glasy) > —*|a® + M;
assume also that € C1(RY4 x RP, R) with derivative D,,G (; y) which is poly-
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nomially bounded inc. Then® satisfies Assumptions 2.6 witk = H'((0,7)).
O

3.9. Discussion and Bibliography

We started this section by studying the problem of detemgiwi field from obser-
vation. This is intimately related to the study of intergala of data by splines, a
subject comprehensively developed and overviewed in (\Wa880). The link be-
tween spline interpolation and inverse problems using Sandields is overviewed
in (Gu 2002).

The inverse problem for the diffusion coefficient in subgett3.3 is a one-
dimensional analogue of the inverse problems arising ing@physics commu-
nity which we overview in subsection 3.7; these problemsijctvlarise in the
study of groundwater flow and are hence of interest to theabofi(radioactive
nuclear and other) waste, are discussed in (Zimmerman, dsiliy)a&otway, Ma-
rietta, Axness, Beauheim, Bras, Carrera, Dagan, Davieéedaa, Galli, Gomez-
Hernandez, Grindrod, Gutjahr, Kitanidis, Lavenue, Mclaiug Neuman, Rama-
Rao, Ravenne and Rubin 1998, Cliffe and Stone 2008). A ctlaterse problem
for the diffusion coefficient of an elliptic PDE is that arigi in electrical impe-
dence tomography; this widely studied inverse problem ireguecovery of the
diffusion coefficient from measurements of the boundary.fltixs of central im-
portance in the medical sciences, and also has a rich maticahsiructure — see
(Borcea 2002, Uhlmann 2009) for reviews.

Inverse problems for the heat equation, the subject of stibse3.5, are widely
studied. See, for example, the cited literature in (BeclgcBlvell and Clair 2005,
Engl et al. 1996). An early formulation of this problem in ayBaian framework
appears in (Franklin 1970).

We study applications to fluid dynamics in subsection 3.& ghbject known
as data assimilation. The texts (Kalnay 2003) and (Benr@iRPoverview in-
verse problems in fluid mechanics from the perspective otheggprediction and
oceanography respectively; see also the papers (Aptes Jenmrt and Voss 2008
Lorenc 1986, Ide, Kuznetsov and Jones 2002, Kuznetsov, ndeJanes 2003,
Nichols 200%, Nodet 2006) for representative examples, some closedyectito
the specific model problems that we study in this article. ofem 3.11, aris-
ing in our study of Eulerian observations and integratiot ia wave equation
model, is proved in (Dashti et al. 2010). Lemma 3.12 and Tém08.13, aris-
ing in the study of Lagrangian observations, are proved iotteC et al. 2008)
(Navier-Stokes case) and (Cotter et al. 28)0&tokes case). A major question
facing the research community in data assimilation for flmiechanics applica-
tions is to determine whether future increase in availablmpmuter resources is
used to increase resolution of the computational modelty onprove estimates
of uncertainty. (The question is discussed, in the contéxdimate modelling,
in (Palmer, Doblas-Reyes, Weisheimer, Shutts, Berner angphy 2009).) The
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framework developed in subsection 3.6 allows for a systientegatment of un-
certainty, as quantified by the variability in the posterimeasure; furthermore the
framework may be extended to make inference not only abeunihial condition
but also about forcing to the model, thereby enabling modelréo be uncov-
ered in a systematic fashion. In this context we define modet & be an error
term in the dynamical model equations, as in (HagelbergnBemnd Jones 1996).
Note however that in practical data assimilation, modedrsrare sometimes com-
bined with the observation errors (Cohn 1997). Furtherudision of model er-
ror for problems arising in the atmospheric sciences mayobad in the papers
(Nichols 2003, Fang, Pain, Navon, Piggott, Gorman, Farrell and Alliso@%).

In (Cotter et al. 2008) we discuss both Eulerian and Lagrangian data assimilation
with and without model error, with fluid flow model given by thavier-Stokes
equations (3.6.4) with = 1.

The subject of minimal regularity required to define Lagiangtrajectories
(3.6.6) in a Navier-Stokes velocity field is covered in (Clremand Lerner 1995,
Dashti and Robinson 2007). This theory is easily extendedver the case of the
Stokes equations.

The systematic treatement of Lagrangian data assimilatialeveloped in the
sequence of papers (Ide et al. 2002, Kuznetsov et al. 200@a8aKuznetsov,
Jones and Ide 2006, Salman, Ide and Jones 2008) with reqaitiion in (Vernieres,
Ide and Jones 2008). Although the subject had ben treated applied con-
text, these were the first papers to develop a clear dynamsysééms framework
in which the coupled (skew-product) dynamical system fer floid and the La-
grangian particles was introduced as the fundamental bijestudy.

The papers (Pimentel, Haines and Nichols 2009, Pimentéhgdand Nichols
2008, M.J. Bell and Nichols 2004, Huddleston, Bell, MartimdaNichols 2004,
Martin, Bell and Nichols 2002) describe a variety of appiimas of ideas from
data assimilation to problems in oceanography. The papéasai, Nichols and
Roulstone 2006) discusses data assimilation in the atredspéciences, using a
potential vorticity formulation. In (Bannister, Katz, Qeh, Lawless and Nichols
2008) forecast errors are studied for data assimilatioblpras in fluid flow. The
paper (Alekseev and Navon 2001) uses a wavelet based appmatudy the in-
verse problem of determining inflow fluid properties fromflaw measurements.

Some of the earliest work concerning the statistical foatiah of inverse prob-
lems was motivated by geophysical applications (Backu®4,98ackus 1976,
Backus 1976) such as those introduced in subsection 3.7. The inteipolaf
a random field, observed at a finite set of points, is overvieingGu 2008) and
it often refered to as Krigging (Cressie 1993). Overviewsssfies arising in oil
reservoir simulation may be found in (Farmer 2005, Farm@720The mathemat-
ical statement of the oil reservoir simulation problem aimed here is formulated
in (Ma, Al-Harbi, Datta-Gupta and Efendiev 2007) and furtdescussion of nu-
merical methods is untertaken in (Dostert, Efendiev, Tod huo 2006).

The formulation of problems from molecular dynamics in terafi probability
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measures on time-dependent functions has a long historthé@dmathematical side
this is intimately related to the theory of rare events (@meiand Wentzell 1984)
and an overview of some of the sampling technigues usediptbblem may be
found in (Bolhuis, Chandler, Dellago and Geissler 2002) e Pharticular formu-
lation of the problem that we untertake here, in which thetlerof the transition

T is specifieda priori, can be found in (Dashti et al. 2010); see also (Reznikoff
and Vanden Eijnden 2005, Hairer, Stuart, Voss and Wiberd 2Birer, Stuart
and Voss 2007). A generalization to second order Newtonjygramlics models,

in place of the over-damped Brownian dynamics model (3.81&y be found in
(Hairer, Stuart and Voss 208p



INVERSE PROBLEMS 49

4. Common Structure
4.1. Overview

Itis natural to view the posterior measuyrégiven by (2.4.1) athe ideal solutiorio
the problem of combining a mathematical model with dat&owever, obtaining
a formula such as this is only the beginning: we are confrbni¢h the formidable
task of extracting information from this formula. At a higkvel this entire section
is devoted to the question of tlseability of measureg? to perturbations of various
kinds, under Assumptions 2.6 or 2.7. These stability resudlp to create firm
foundations for thealgorithmsdesigned to obtain information from the measure
1Y, these algorithms are overviewed in the next section.

In this section, then, we study the well-posedness of probleith respect to
parameters, or data, entering the definition of the measneeshow Lipschitz
properties of the posterior measure with respect to chaimgt® data. We also
study the related issue of approximating the measure, ticpkar the approxima-
tion by measures defined over a finite dimensional space.eStifss 4.2 concerns
well-posedness in the setting where the data is in the formrfurfiction: itis infinite
dimensional. In practical applications the data will al&doe finite, but when the
data is very dense it is a useful abstraction to considerdke @k being a function
and so this situation is conceptually important. Howevdrewthe data is sparse
it is best viewed as finite as a number of mathematical sirogtifins follow from
this. The well-posedness of the posterior measure in thi® fidata situation is
studied in subsection 4.3. In section 4.4 we study the effeapproximating the
potential® and the effect of this approximation on the meagutgiven by (2.4.1).

A key idea throughout this section is the use of metrics tdystlistances be-
tween probability measures. This topic is discussed inextlum 6.7 and, in par-
ticular, the Hellinger metric which we use throughout thest®n, is introduced.
The primary takeaway message concerning the Hellingerieristthis: consider
two measures which are absolutely continuous with respectbmmon Gaussian
reference measure and which are distanapart in the Hellinger metric. Then the
expectations of polynomially bounded functions underéhte® measures are also
O(e) apart. In particular the mean and covariance operato©at¢ apart.

4.2. Well-Posedness

The probability measure of interest is typically definedtigh a density with re-
spect to a Gaussian reference meagyre- N (0,C) on a Hilbert spacé{ which,
by shift of origin, we have taken to have mean zero. We asstmaie for some
separable Banach spadg we havey(X) = 1. We let {¢x, v }72, denote the
eigenfunctions and eigenvalues®f

As in our previous developmentgs? denotes the measure of interest, with
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denoting parameters, or data, entering its definition. A2if.1) we assume that
du¥
() =
dpio Z(y)

Recall that®(u;y) is the potentialand that thenormalization constan¥(y) is
chosen so that? is a probability measure:

25) = | exp(~0(uis)dua(w). (4.2.2)

Both for this integral, and for others below, we observe that(X) = 1 we may
write

exp(—CI)(u;y)). (4.2.1)

2(y) = /X exp (—®(u; ) dpo(u)

and hence use properties®f-; y) which hold onX.

In the preceding section we showed that a number of inversblgms give
rise to a probability measurg? of the form (4.2.1) whereb : X xY — R
satisfies Assumptions 2.6. The data (or parametgis)are) assumed to lie in a

Banach spacéY, [ - Hy). We allow for the case wher¥ is infinite dimensional

and the data is in the form of a function. The four Assumpti2rés (i)—(iv) play

different roles, indicated by the following two theoremsheTthird assumption is
important for showing that the posterior probability meaass well-defined, whilst
the fourth is important for showing continuity with respéatdata. The first and
second assumptions lead to bounds on the normalizatiortacdr#s from above

and below respectively.

Theorem 4.1 Let ® satisfy Assumptions 2.6(i) and (iii) and assume thgts a
Gaussian measure satisfying(X) = 1. ThenpV given by (4.2.1) is a well-
defined probability measure dt.

Proof. Under Assumption 2.6(iii) it follows tha® is ;.p— measurable and hence
the measure? is well-defined by (4.2.1). By Assumption 2.6(i) we have {liat
llylly < r and alle sufficiently small,

Z(y)| = /X exp(—®(u; ) dyao )

< [ exp(ellully = M(e.m)duol)
X
< Cexp(—M(a,r)) < 00,

sincep is a Gaussian probability measure and we may cheaséficiently small
so that the Ferniqgue Theorem 6.9 applies. Thus the measnmnslizable and
the proof is completel] O

This proof directly shows that the posterior measure is &dafined probability
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measure, without recourse to a conditioning argument. ©hditoning argument
used in Theorem 6.31 provides the additional fact tdtlu) = P(du|y).

Now we study continuity properties of the measpfewith respect toy € Y,
under Assumptions 2.6(i), (ii) and (iv). This establishies tobustness of many of
the problems introduced in the preceding section to chaingdsta.

Theorem 4.2 Let ® satisfy Assumptions 2.6(i), (ii) and (iv). Assume also that
is a Gaussian measure satisfyiag X ) = 1 and that the measuge < i with
Radon-Nikodym derivative given by (4.2.1), for eagke Y. ThenyV is Lipschitz
in the datay, with respect to the Hellinger distanceyif and." are two measures
corresponding to dataandy’ then there is” = C(r) > 0 such that, for ally, v/
with masc{ [ylly, |1/ [y} < 7.

(¥, 1) < Clly = o/ -

Consequently the expectation of any polynomially boundedttfionf : X — E
is continuous iny. In particular the mean and, in the cakeds a Hilbert space, the
covariance operator, are continuougyin

Proof. Throughout the proof, all integrals are ovEr unless specified otherwise.
The constanC may depend oa andr and changes from occurence to occurence.
Let Z = Z(y) andZ’ = Z(y') denote the normalization constants forand ¥’

so that

Z = /eXp<—<I>(U; y))dﬂo(u)
7' = /eXD<—¢’(U; y’))duo(U)-
Using Assumption 2.6(ii) gives, for any> 0,
1Z] > / exp(—K(r))dpo(u) = exp (=K (1)) po{llul x <r}.
{llullx<r}

This lower bound is positive becaugg has full measure oX and is Gaussian so
that all balls inX have positive probability. We have an analogous lower bound
for | Z/].

Using Assumptions 2.6(i) and (iv), and using the Ferniqguedram 6.9 for.,

221 < ([ explelull — M) exp(elullk + C)duo(u)) ly = o/l
<Cly—y'llv
From the definition of Hellinger distance we have
/ _1 1 it 1 2
2, (1Y, ¥ )? = /(Z 2 exp(—5®(u;y)) — (2') 72 exp(—52(u; y’))) dpuo(u)

<h+ 1
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where
I = %/(eXp(—%@(U; y)) - exp(—%@(u; y'))>2dﬂo(“)7

I, = 2|Z_% - (Z’)‘%‘Q/exp(—q)(u; y'))dpo(u).
Now, again using Assumptions 2.6(i) and (iv) and the Femigbheorem 6.9

A 1
S0 < [ expleluli - M) exp(2elulic +20) Iy — o duo(u)

<Clly -3

A similar use of the Ferniqgue Theorem and Assumptions 2%{gws that the
integral in1; is finite. Also, using the bounds dfy Z’ from below,

1z — (2P < oz BV (2?2 - 2P
<Cly -y}

Combining gives the desired continuity result in the Hgién metric.

Finally all moments ofu in X are finite undep: and ¥’ because the change
of measure from Gaussiam, involves a term which may be bounded by use of
Assumption 2.6(i). The Fernigue theorem may then be appliee desired result
concerning the continuity of moments follows from Lemmar6.3 O

Example 4.3 An example in which the data is a function is given in subsecti
3.5 where we study the inverse problem of determining th@lrdondition for the

heat equation, given noisy observation of the solution atsitipe time; in Lemma
3.9 we establish that Assumptions 2.6 hold in this case.

4.3. Well-Posedness: Finite Data

For Bayesian inverse problems in which a finite number of ndagi®ns are made,
the potentiakb has the form

D) = 3y~ G(w)} @3.)

wherey € R? is the datag : X — R? is the observation operator ahd|r is a
covariance weighted norm d@¥. In this case it is natural to express conditions on
the potentiald in terms ofG. Recall that this is undertaken in Assumptions 2.7. By
Lemma 2.8 we know that Assumptions 2.7 imply Assumptiond@.@ given by
(4.3.1). The following corollary of Theorem 4.2 is hencecamitic.

Corollary 4.4 Assume thatb : X x R? — R is given by (4.3.1) and lef satisfy
Assumptions 2.7. Assume also thatis a Gaussian measure satisfyjag X ) =
1. Then the measurg’ given by (4.2.1) is a well-defined probability measure and
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is Lipschitz in the data, with respect to the Hellinger distance:if anduy/ are
two measures corresponding to dgtandy’ then there isC = C(r) > 0 such
that, for ally, y" with max{|y|r, [¢/|r} < 7,

dHeu(Myv My/) < C‘y - y/’F-

Consequently the expectation of any polynomially boundggttionf : X — E
is continuous iny. In particular the mean and, in the cak%ds a Hilbert space, the
covariance operator, are continuougyiri]

Example 4.5 The first example of a problem with the structure of Assunmia.7
may be found in the discussion of finite dimensional invensilems in section
2.2, and formula (2.2.8) in the case wheris a Gaussian density; if, for example,
G is differentiable and polynomially bounded, then Assumpsi 2.7 hold — see
Example 2.2 for an explicit illustration. All the examples section 3, with the
exception of the heat equation example for which the datgafisite, and the oil
reservoir problem for which the appropriate analysis armaghof X has not yet
been carried out, fit the framework of Corollary 4(4.

4.4. Approximation of Measures in the Hellinger Metric

To implement algorithms designed to sample the posteriasoreu? given by
(4.2.1) we need to make finite dimensional approximationg stMdy this issue
here. Since the dependencepis not relevant in this section we study measures
w given by

du 1
where the normalization constaftis given by
Z = / exp(—®(u))duo(u). (4.4.2)
X
We approximate: by approximating®. In particular we defing.V by
dpN 1 N
where
A / exp (=@ (u)) dpo(u). (4.4.4)
X

Our interest is in translating approximation results ¥fo{determined by the for-
ward problem) into approximation results ferwhich describes the inverse prob-
lem).

The following theorem proves such a result, bounding thdimgdr distance,
and hence the total variation distance, between meagused ;.Y in terms of the
error in approximatingp.
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Theorem 4.6 Assume that the measurgsand;”Y are both absolutely continuous
with respect tqu, satisfyingu(X) = 1, with Radon-Nikodym derivatives given
by (4.4.1), (4.4.3) and that and®"" satisfy Assumptions 2.6(i),(ii) with constants
uniform in N. Assume also that, for any> 0 there iSK' = K (¢) > 0 such that

() — ¥ (u)] < K exp(elfull %) (N) (4.4.5)

wherey)(N) — 0asN — oco. Then the measurgsandy’Y are close with respect
to the Hellinger distance: there is a const@hindependent ofV, and such that

(11, 1) < CH(N). (4.4.6)

Consequently the expectation ungeand’v of any polynomially bounded func-
tonf: X - F areO(¢(N)) close. In particular the mean and, in the ca&és
a Hilbert space, the covariance operator,(a(@z(N )) close.

Proof. Throughout the proof, all integrals are ou&r. The constantC changes
from occurence to occurence. The normalization constématsd Z” satisfy lower
bounds which are identical to that proved 6iin the course of establishing The-
orem 4.2.

From Assumptions 2.6(i) and (4.4.5), using the fact fhais a Gaussian proba-
bility measure so that the Fernique Theorem 6.9 applies,

2= 2% < [ Ko esp(ellull - ) exp(elul’)duo(w)
< CY(N).
From the definition of Hellinger distance we have
_1 1 2
21, p™)? = /(Z 2 exp(— 5@ (u) - (2V)72 exp(——‘I’N( ))) dpuo(u)
<+ 1z

where
n =2 [ (ew(-5e) - exp(—lwu)))?duo(u),

I=2[273 — (ZzV) 73 /exp u)) dpo(w).

Now, again using Assumptions 2.6(i) and equation (4.4&jether with the
Fernique Theorem 6.9,

A
Zn< / K2 exp (3elfull% — M)w(N)2dpo(u)
< CY(N)?.

A similar use of the Ferniqgue Theorem and Assumptions 2%{@ws that the
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integral in1, is finite. Thus, using the bounds &h Z from below,
1272 —(ZN) 2P < (273 v (Z2N) B |2 - ZN]?
< CP(N)*.

Combining gives the desired continuity result in the Hgién metric.

Finally all moments ofu in X are finite undep, and /¥ because the change
of measure from Gaussiagn, involves a term which may be controlled by the
Fernigue theorem. The desired results follow from Lemmd.6.3 O

Example 4.7 Consider the inverse problem for the heat equation, fronsesttipn
3.5, in the case wherP = (0, 1). Approximate the Bayesian inverse problem by
use of a spectral approximation of the forward map'” : H — H. Let PN
denote the orthogonal projectionH onto the firstV eigenfunctions ofd. Then,
foranyT > 0 andr > 0,

||67AT — efATPNHE(H’Hr) = O(exp(—cNQ)).

From (3.5.7) we have the Lipschitz property that
_1
@) = @) < C(Jlull + ol + Iyl ) e~ 34T (u = ).

If we define®” (u) = ®(PNw) then the two preceding estimates combine to give,
for someC, ¢ > 0 and independent dfu, y),

() = @ ()] < C(Jjull + lyl ) ull exp(—eN?).

Thus (4.4.5) holds and Theorem 4.6 shows that the postegasure is perturbed
by a quantity with order of magnitud® (exp(—cN?)) in the Hellinger metricJ

Remark 4.8 Approximation may come from two sources: (i) from represent
the target function: in a finite dimensional basis; and (ii) from approximating th
forward model, and hence the potentiglby a numerical method such as a finite
element or spectral method. In general these two sourcegpobdmation error
are distinct and must be treated seperately. An importankiss to balance the
two sources of error to optimize work load. In the case wheiga subset of, or
the entire, initial condition for a dynamical system ahik defined through com-
position of some function with the solution operator théraid (ii) will overlap

if a spectral approximation is employed for (ii), using tha@té dimensional basis
from (i). This is the situation in the preceding examplé.

For Bayesian inverse problems with finite data the potefitiaés the form given
in (4.3.1) wherey € R? is the datag : X — R? is the observation operator and
|- |- is a covariance weighted norm &a4. If GV is an approximation t¢ and we
define

1
N = Sl - GN(u)2 (4.4.7)
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then we may define an approximatigfl to 1 as in (4.4.3). The following corollary
relating ;. andp? is useful.

Corollary 4.9 Assume that the measurgsind." are both absolutely continuous
with respect tgug, with Radon-Nikodym derivatives given by (4.4.1),(4.3ahd
(4.4.3), (4.4.7) respectively. Assume also tfias approximated by a functiog’v
with the property that, for any > 0, there isK’ = K’(¢) > 0 such that

1G(u) = G (w)] < K exp(el|ullX ) (V) (4.4.8)

wherey)(N) — 0 asN — oo. If G andG" satisfy Assumptions 2.7(i) uniformly
in N then there is a constafit, independent ofV, and such that

o (2, 1) < CY(N). (4.4.9)

Consequently the expectation ungeand’v of any polynomially bounded func-
tion f : X — Eis O(¢(NN)) close. In particular the mean and, in the casés a
Hilbert space, the covariance operator, @r(ep(N)) close.

Proof. We simply show that the conditions of Theorem 4.6 hold. ThHati{) of
Assumptions 2.6 hold follows as in the proof of Lemma 2.8. 0A4.4.5) holds
since (for somekK : Rt — RT defined in the course of the following chain of
inequalities)

() 2V (w)| < 5120 — Gw) ~ GV (W)lrlG(u) G (w)lr

< (Ivlr + exp(ellulk + M(e) ) x K'(e) exp(eljulk)w(N)
< K(2¢) exp(2e]|ul|% ) (N)
as required. O

A notable fact concerning Theorem 4.6 is that the rate of eyence attained in
the solution of the forward problem, encapsulated in agpraiion of the function
® by &Y, is transfered into the rate of convergence of the relateetse problem
for measure: given by (4.4.1) and its approximation py". Key to achieving this
transfer of rates of convergence is the dependence of thetasdnin the forward
error bound (4.4.5) on. In particular it is necessary that this constant is intelgra
by use of the Fernique Theorem 6.9. In some applicationsidtipossible to obtain
such dependence. Then convergence results can sometiliies abtained, but at
weaker rates. We state a theorem applicable in this situatio

Theorem 4.10 Assume that the measuresind,Y are both absolutely continuous
with respect tqug, satisfyinguo(X) = 1, with Radon-Nikodym derivatives given
by (4.4.1), (4.4.3) and that and®?" satisfy Assumptions 2.6(i),(ii) with constants
uniform in N. Assume also that, for anf > 0 there isK' = K(R) > 0 such that,
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for all uw with |lu||x < R,
|®(u) — N (u)| < Ky(N) (4.4.10)

wherey)(N) — 0asN — oco. Then the measurgsandy’Y are close with respect
to the Hellinger distance:

(1, 1Y) — 0 (4.4.11)

asN — oo. Consequently the expectation of any polynomially boundegttion
f: X — Eunderu converges to the corresponding expectation updesN —
oo. In particular the mean and, in the caXeis a Hilbert space, the covariance
operator, convergd.]

4.5. Discussion and Bibliography

The idea of placing a number of inverse problems within a commBayesian
framework, and studying general properties in this abssatting, is developed
in (Cotter et al. 2008). That paper contains Theorems 4.1 and 4.2 under Assump-
tions 2.6 in the case where (i) is satisfied trivially becabsebounded from below
by a constant; note that this case occurs whenever the ditdtésdimensional.
Generalizing the theorems to allow for (i) as stated herewmaertaken in (Hairer,
Stuart and Voss 2010), in the context of signal processingtéxhastic differential
eqguations.

Theorem 4.2 is a form of well-posedness. Recall that in thereimation of
forward problems in differential equations well-posednesd a local approxi-
mation property form the key concepts which underpin thevadgnce theorems
of Dahlquist (Hairer, Ngrsett and Wanner 1993, Hairer anchivga 1996), Lax
(Richtmyer and Morton 1967) and Sanz-Serna—Palencia {Sanma and Palencia
1985). It is also natural that the well-posedness that we leatibited for inverse
problems should, when combined with forward approximat@we rise to approx-
imation results for the inverse problem. This is the bastaidnderlying Theorem
(4.6). That result, Corollary 4.9 and Theorem 4.10 are allest and proved in
(Cotter et al. 2008).

The underlying well-posedness of properly formulated B inverse prob-
lems has a variety of twists and turns which we do not elabdidty here. The
interested reader should consult (Dashti et al. 2010).
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5. Algorithms
5.1. Overview

We have demonstrated that a wide range of inverse problenfigrfctionsu given
datay give rise to a posterior measuu# with the form (2.4.1). This formula en-
capsulates neatly the ideal information that we have abfuriaion, formed from
conjunction of model and data. Furthermore, for many appbas, the potential
o satisfies Assumptions 2.6. From this we have shown in sedtibat the formula
(2.4.1) indeed leads to a well-defined posteribiand that this measure enjoys nice
robustness properties with respect to changes in the datppooximation of the
forward problem. However we have not yet addressed the @shew to obtain
information from the formula (2.4.1) for the posterior ma@s We devote this
section to an overview of the computational issues whicsedri this context.

If the prior measure is Gaussian and the poteritigl y) is quadratic then the
posterior is also Gaussian. This situation arises, for gkann the inverse problem
for the heat equation described in subsection 3.5. The meagus then charac-
terized by a function (the mean) and an operator (the caweg)aand formulae can
be obtained for these quantities by completing the squang d$heorem 6.20: see
the developments for the heat equation, or Example 6.23fdlustration of this.

However in general there is no explicit way of charactegime measurg? as
can be done in the Gaussian case. Thus approximations amlitational tools
are required to extract information from the formula (2)4Q@ne approach to this
problem is to employ sampling techniques which (approxafyatgenerate sam-
ple functions according to the probability distributionghed by (2.4.1). Among
the most powerful generic tools for sampling are Markov chain Monte Carlo
(MCMC) methods which we overview in subsection 5.2. Howgwdrilst these
methods can be very effective when tuned carefully to théquéar problem at
hand, they are undeniably costly and, for many applicationpracticable at cur-
rent levels of computer resources. For this reason we alsatelévo subsections
to variational andfiltering methods which are widely used in practice because of
their computational expedience. When viewed in terms df tiedation to (2.4.1)
these methods constitute approximations. Furthermosethpproximations are,
in many cases, not well understood. In the near future welseengin role of
MCMC methods as providing controlled approximations totthe posterior mea-
sure ¥, against which variational and filtering methodologies bantested, on
well-desighed model problems. In the longer term, as coatjmutal power and al-
gorithmic innovation grows, we also anticipate increasisg of MCMC methods
in their own right to approximate (2.4.1).

From a Bayesian perspetive, the variational methods okstibs 5.3 start from
the premise that variability in the posterior measure islsara that most of the
information resides in a single peak of the probability rsttion, which can be
found by optimization techniques. We view this problem frtma standpoint of
optimal control, showing that a minimizer exists whenever tommon frame-
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work of subsection 2.4 applies; we also overview algorithpriactice in the area.
Subsection 5.4 describes the widely-used filtering metlddsh approximate the
posterior measure arising in time-dependent data assiomlgroblems by a se-
guence of probability measures in time, updated sequbntighe importance of
this class of algorithms stems from the fact that, in manyiegions, solutions are
required on-line, with updates required as more data isiemtjuthus sequential
updating of the posterior measure at the current time isralatérurthermore se-
guential updates are computationally efficient as theyaedine dimensionality of
the desired posterior measure, breaking a correlated meeaisa sequence of times
into a sequence of conditionally independent measureshttizae, provided there
is an underlying Markovian structure. We conclude, in g&c8.5, with references
to the literature concerning algorithms.

When discussing MCMC methods and variational methods tperd#ence of
the potential® appearing in (2.4.1) will not be relevant and we will consittee
problem for the posterior measure written in the form

du 1
d—,uo(u) = exp(—@(u)) (5.1.1)
with normalization constant
Z:/ exp(—®(u)) dpo(u). (5.1.2)
X

We refer tou as thetarget distribution For the study of both MCMC and varia-
tional methods, we will also find it useful to define

I(u) = %Huug + O (u). (5.1.3)

This is, of course, a form of regularized least squares fonat as introduced in
section 2.

5.2. Markov Chain-Monte Carlo

The basic idea of MCMC methods is simple: design a Markovrchéth the
property that a single sequence of output from the cKain}> , is distributed
according tou given by (5.1.1). This is &erybroad algorithmic prescription and
allows for significant innovation in the design of methodsed to the particular
structure of the desired target distribution. We will foarsa particular class of
MCMC methods known alletropolis-HastinggMH) methods.

The key ingredient of these methods is a probability measnt®, parameter-
tized byu € X: a Markov transition kernej(u, dv). This kernel is used to propose
moves from the current state of the Markov chajnto a new point distributed as
q(un, ). This proposed point is then accepted or rejected accordigctiterion
which uses the target distributign The resulting Markov chain has the desired
property of preserving the target distribution. Key to theeess of the method is
the choice of;. We now give details of how the method is constructed.
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Giveng(u, -) and the target. we define a new measure 6h x X defined by
v(du,dv) = q(u, dv)p(du).
We define the same measure, with the roles ahdv reversed, by
v' (du,dv) = q(v, du)u(dv).

Provided thai" is absolutely continuous with respectitave may define
T

alu,v) = min{l, dd%(u,v)}

Now define a random variabtgu, v), independent of the probability space under-
lying the transition kernej, with the property that

1 with probability a(v, )
v, v) = { 0 otherwise ’

We now create a random Markovian sequetag}2°, as follows. Given a
proposalv,, ~ q(u,, ) we set

(5.2.1)

Unt1 = Y(Up, Vp)Up + (1 — Y (up, vn))un (5.2.2)

If we choose the randomness in the propasabnd the binary random variable
~(un, v,) independently of each other for eaechand independently of the values
for differentn, then this construction gives rise to a Markov chain withdbeired

property.

Theorem 5.1 Under the given assumptions the Markov chain defined byZpi2.
invariant forp: if ug ~ pthenu,, ~ p for all n > 0. Furthermore, if the resulting
Markov chain is ergodic then, for any continuous boundedtion f : X — R,
any M > 0, and forug p—almost surely,

if:f(u )H/f(u) (du) as N — oo (5.2.3)
N n-+M « 1% . L.

n=1

O

In words this theorem states that the empirical distritutbthe Markov chain
converges weakly to that of the target measure However, this nice abstract
development has not addressed the question of actuallyrootisg a MH method.

If X = R"™ and the target measures has a positive density with respkebesgue
measure then this is straightforward: any choice of keutel dv) will suffice,
provided it too has positive density with respect to Lebesmeasure, for every
u. It then follows thatv™ < v. From this wide range of admissible proposal
distributions, the primary design choice is to identify poeals which lead to low
correlation in the resulting Markov chain, as this increas#iciency.
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Example 5.2 A widely used proposal kernel is simply that ofandom walk for
example ifug = N(0,C) itis natural to propose

v =u+ V26¢ (5.2.4)

where¢ ~ N (0,C). A straightforward calculation shows that

a(u,v) = min{l,exp(f(u) - I(U))}

where [ is given by (5.1.3). Thus if the proposed state correspoads lbwer
value of the regularized least squares functidrtalen the proposal is automatically
accepted; otherwise it will be accepted with a probabilgpehding od (u)—1(v).

The parameted is a scalar which controls the size of the move. Large values
lead to proposals which are hence unlikely to be acceptedlirig to high cor-
relation in the Markov chain. On the other hand small movesalomove very
far, again leading to high correlation in the Markov chautentifying appropriate
values ofé between these extremes is key to making effective algosithiore
complex proposals use additional information ahbdt in an attempt to move into
regions of high probability (lowd). [

In infinite dimensions things are not so straightforwardardom walk will not
typically deliver the required condition” < v. For example, if.g = N (0,C) and
X is infinite dimensional then the proposal (5.2.4) will notisfg this constraint.
However, a little thought shows that appropriate modifaaiare possible.

Example 5.3 The random walk can be modified to obtain the desired absolute
continuity of ™ with respect ta.. The proposal

v =(1-20) 2w+ V/25¢ (5.2.5)

where¢ ~ N(0,C) will satisfy the desired condition for any € R. The accep-
tance probability is

alu,v) = min{l,exp(fb(u) — ®(v)) }

Thus if the proposed state corresponds to a lower valdetbin does the current
state it will automatically be accepted.

The proposal in (5.2.5) should be viewed as an appropriat®gne of the ran-
dom walk proposal in infinite dimensional problems. Intuitias to why this pro-
posal works in the infinite dimensional setting can be ole@ihy observing that,
if uw ~ AN(0,C) andwv is constructed using (5.2.5), then~ A/(0,C); thus the
proposal preserves the underlying reference measure)(pijo In constrast the
proposal (5.2.4) does not:iif ~ N'(0,C) thenv ~ /(1 + 25)N(0,C).

Note that the choicé = % in (5.2.5) yields arindependence samplevhere
proposale are made from the prior measyig, independently of the current state
of the Markov chairu. As in finite dimensions, improved proposals can be found
by including information aboub® in the proposall
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In computational practice, of course, we always implemesarapling method
in finite dimensions. The error incurred by doing so may bentjfiad by use
of Theorem 4.6. It is natural to ask whether there is any valugeriving MH
methods on function space, especially since this appeatgeththan doing so in
finite dimensions. The answer, of course, is yes. Any MH ntinofinite di-
mensions which does not correspond to a well-defined lignitiH method in the
function space (infinite dimensional) limit will degenerats the dimension of the
space increases. This effect can be quantified and compatedviat happens
when proposals defined on function space are used. In camtjuken, the func-
tion space viewpoint on MCMC methods is a useful one whicddea improved
algorithms, and an understanding of the shortcomings stiegi algorithms.

5.3. Variational Methods

Variational methods attempt to answer the following questihow do we find

the most likely functionu under the posterior measuregiven by (5.1.1). To
understand this consider first the case wh&re= R™ andpp = N(0,C) is a
Gaussian prior. Thep has density with respect to Lebesgue measure and the
negative logarithm of this density is given by (5.1.3)Thus the Lebesgue density

of u is maximized by minimizing overRR"™. Another way of looking at this is as
follows: if w is such a minimizer then the probability of a small ball ofitestt and
centred at: will be maximized, asymptotically as— 0, by choosingu = .

If X is an infinite dimensional Hilbert space then there is no kghe measure
on X and we cannot directly maximize the density. However we ng@iracon-
sider the probability of small balls at€ X, of radiuse. We may then ask how
should be chosen to maximize the probability of the ball, pigtically ass — 0.
Again takinguy = N(0,C) this question leads to the conclusion thathould be
chosen as a global minimizer 6fgiven by (5.1.3) over the Cameron-Martin space
E with inner-product(-, -)¢ and norm|| - ||¢.

Recall thatd measures model-data mismatch, in the context of applitatio
inverse probems. In the case wheris finite dimensional it has the form (4.3.1).
It is thus natural to minimiz@ directly, as in (2.2.2). However, whefi is infinite
dimensional, this typically leads to minimizing sequenadsgch do not converge
in any reasonable topology. The addition of the quadrati@jigation inE may
be viewed as dikhonov regularizatiorto overcome this problem. Minimization
of I is thus a regularizedonlinear least squares probleas in (2.2.3). Of course
this optimization approach can be written down directifthwio reference to prob-
ability. The beauty of the Bayesian approach is that it ptesia rational basis for
the choice of norms underlying the objective functioftalas well as the choice of
norm in the regularization term proportional ffe||2. Furthermore, the Bayesian

3 Recall that for economy of notation we drop explicit refereno they dependence ob in this
subsection as it plays no role.
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viewpoint gives an interpretation of the resulting optiaiian problem as a prob-
ability maximizer. And finally the framework of section 2which leads to well-

posed posterior measures, also leads directly to an egestbrory for probability

maximizers. We now describe this theory.

Theorem 5.4 Let Assumptions 2.6(i), (iii) hold and assume tpgt X ) = 1. Then
there existar € E such that

I(@) =1 :=inf{I(u) : u € E}.

Furthermore, ifu,, } is a minimizing sequence satisfyidgu,,) — I(u) then there
is a subsequenc,, } that converges strongly @in E.

Proof. First we show thaf is weakly lower semicontinuous di. Letu,, — win
E. By the compact embedding &fin X, which follows from Theorem 6.11 since
uo(X) = 1, we deduce that,, — @, strongly inX. By the Lipschitz continuity
of ® in X (Assumption 2.6(iii)) we deduce thé(u,,) — ®(w). Thus® is weakly
continuous onE. The functional/(u) := 1|ju||2 is weakly lower semicontinuous
on E. Hencel (u) = J(u) + ®(u) is weakly lower semicontinuous df.

Now we show thaf is coercive onE. Again using the fact thak’ is compactly
embedded inX, we deduce that there I§ > 0 such that

lull% < Klul2-

Hence, by Assumption 2.6(i), it follows that, for aay> 0, there isM (¢) € R
such that
1
(5 - K&t)HuH(Q; + M(e) < I(u).

By choosinge sufficiently small, we deduce that therelis € R such that, for all
u € F,

1

Zuuug + M < I(u). (5.3.1)

This establishes coercivity.
Consider a minimizing sequence. For any 0 there isSN; = N1 (6):
M<T<I(u,) <I+06, ¥Yn>Nj.

Using (5.3.1) we deduce that the sequefieg} is bounded inZ and, sincer is a
Hilbert space, there existsc F such that (possibly along a subsequenge)} u
in E. From the weak lower semicontinuity &fit follows that, for anys > 0,

I<I(@m<I+4.

Sinces is arbitrary the first result follows.
Now consider the subsequenegg — w. Then there isVo = N3(§) > 0 such
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that forn, ¢ > Ns,
Tl — el = 2 lunlld + el — 15 (un + w2
= I(up) + I(ug) — 21( (i +11) ) = B(un) — () + 2<1>< (tn + ue))
2T +6) — 2T — (uy) — B(uy) + 2<1>< (un + W))
<20 — ®(up) — (ug) + 2<1>( (un + W))

But w,,, ug and%(un + uy) all converge strongly t@ in X. Thus, by continuity of
®, we deduce that for alt, ¢ > N3(9),

ZHun - u@||% < 3.

Hence the sequence is CauchyHrand converges strongly and the proof is com-
plete.[] O

Example 5.5 Recall the inverse problem for the diffusion coefficient lodé tone-
dimensional elliptic problem described in subsection 3i& ®bejctive is to find
u(x) appearing in

~ 2 (exp(u@) ) <o,

p(0)=p~ p(1)=p",

wherep™ > p~. The observations are
yr =pr) +nk, k=1, ,q
written succintly as
y=6(u)+n,

wheren € R? is distributed as\V'(0, v21). The functiong is Lipschitz in the space
of continuous functions{' = C([0, 1]) by Lemma 3.3.

Recall that changing: by an arbitrary additive constant does not change the
solution of (3.3.1) and so we assume thahtegrates to zero o0, 1). We define

H={ue12((0,1) |/ 2)dz =0}
We takeAd = —% with

D(A) = {uGHEeT ((0,1)) |/ dx—O

ThenA is positive-definite self-adjoint and we may define the pBaussian mea-
surepg = N(0, A7) on’H. By Lemma 6.25 we deduce that(X) = 1. The
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Cameron-Martin space
E=Im(A2)= {ueltflger ((0,1)) \/ dx—O

is compactly embedded intd([0, 1]) by Theorem 2.10; this is also a consequence
of the general theory of Gaussian measures sing&’) = 1. By the Lipschitz
continuity ofG in X and Theorem 5.4 we deduce that

1 2 1 2
1) = 3y, + 551y = G(w)|
attains its infimum at; € £. O

In summary, the function space Bayesian viewpoint on irv@reblems is in-
structive in developing an understanding of variationathmds. In particular it
implicitly guides choice of the regularization that willde to a well-posed mini-
mization problem.

5.4. Filtering

There are two key ideas underlying filtering: the first is tdldwp knowledge
about the posterior sequentially, and hence perhaps mfmeezftly; the second
is to break up the unknown and build up knowledge about its constituent parts
sequentially, hence reducing the computational dimensi@ach sampling prob-
lem. Thus the first idea relies on decomposing diaga sequentially, whilst the
second relies on decomposing tineknownsequentially.

The first basic idea is to build up information abait sequentially as the size
of the data set increases. For simplicity assume that tleigldihite dimensional
and can be written ag = {yj}gzl. Assume also that each data pojgtis found

from a mappingg; : X — R’ and subject to independent Gaussian observational
noisesn; ~ N (0,T';) so that

y; = Gj(u) +n;. (5.4.1)

Thus the data is ifR? for ¢ = ¢J. The posterior measure has the form

du?
dzo( )“GXP(_‘Z’% Gj(u )!%,.)- (5.4.2)

Now let/! denote the posterior distribution given only the data {yj};i:l. Then

d
) x o z,% 6w, ). 5.4
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Furthermore, settingg = g, We have

dpi
dys

Compare formulae (5.4.2) and (5.4.4). WhEis large it is intuitive tha‘;uf+1 is
closer toy! thanp¥ = pf is to py. This suggests that formula (5.4.4) may be
used as the basis of obtaining, , from x! and thereby to approagh’ = 1
by iterating this ovei. In summary the first key idea enables us to build up our
approximation tqu¥ incrementally over an ordered set of data.

The second key idea involves additional structure. Imatiaé we havey; =
y(t;) for some set of times

() oc exp(— s~ Gen ()R, ). (5.4.4)

O<ti<ta <<ty <oo.

Assume furthermore that is also time-dependent and can be decomposed-as
{u;}]_, whereu; = u(t;) and that (5.4.1) simplifies to

y; = Gjug) +nj. (5.4.5)
Then it is reasonable to seek to find the conditional measures
Vi (dug) = P(dug|{y; }i—)). (5.4.6)

Notice that each of these measures lives on a smaller spacealtes:? and this
dimension reduction is an important feature of the methagiol Assuming that the
sequence; = {uj}gzl is governed by a Markovian evolution, the measure (5.4.6)
uniquely determines the measure

Vi+1|1:i(dui+1) = P(dui-kl‘{yj};:l)-
Incorporating thei + 1)t data point we find that

dyi R 1
ﬁ(uiﬂ) x eXP(_i‘yi—H - Qi+1(ui+1)\%j)- (5.4.7)
Thus we have a way of building the measures given by (5.4dgmentally ir.
Clearly, by definitiony;.5(duy) agrees with the marginal distribution of (du)
on the coordinate; = u(t;); however the distribution of;,.;(du;) for i < J does
not agree with the marginal distribution pf(du) on coordinate:; = u(t;). Thus
the algorithm is potentially very powerful at updating therent state of the sys-
tem given data upto that time; but it fails to update previstades of the system,
given data that subsequently becomes available. We dishassnplications of
this in subsection 5.5.

5.5. Discussion and Bibliography

We overview the methods described in this section, highkgime relevant reated
literature, and discuss inter-relations between the naetlogies. A number of as-
pects concerning computational methods for inverse pnogldoth classical and
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statistical, are overviewed in (Mogel 2002). An importaohceptual algorithmic
distinction to make in time-dependent data assimilati@mblams is betweefore-
castingmethods, which are typically used online to make predistiaa data is
acquired sequentially, arfiindcastingmethods which are used offline to obtain
improved understanding (this is also callednalysi3 and, for example, may be
used for the purposes of parameter estimation to obtainowegrmodels. MCMC
methods are natural for hindcasting and reanalysis; filjeis natural in the fore-
casting context. Filtering methods update the estimatbebtate based only on
data from the past, whereas the full posterior measure at&#the state at any
given time based on both past and future observations; methased on this full
posterior measure are known &moothing methodasnd include MCMC methods
based on the posterior and variational methods which maxithie posterior prob-
ability.

The development of MCMC methods was initiated with the 19%pgv by
Metropoliset al (Metropolis, Rosenbluth, Teller and Teller 1953) in whickyan-
metric random walk proposal was used to determine thernadigproperties,
such as the equation of state, from a microscopic statisticalel. In 1970 Hast-
ings (Hastings 1970) demonstrated that the idea could bergiéered to quite gen-
eral families of proposals, providing the seed for the stofdyrese methods in the
statistics community (Gelfand and Smith 1990, Smith anddrsti1993, Bernardo
and Smith 1994). The paper (Tierney 1998) provides the tefidimensional
framework for MH methods that we outline here; in particuldreorem 5.1 fol-
lows from the work in that paper. Ergodic theorems, such asctimvergence of
time-averages as in (5.2.3), can in many cases be proveduohn mider classes
of functions than continuous bounded functions. The gémeethodology is de-
scribed in (Meyn and Tweedie 1993) and an application to Mithiods is given in
(Roberts and Tweedie 1996).

The degeneration of many MH methods on state spaces of finitgrow-
ing dimension is a well-known phenomenon to many practien An analysis
and quantification of this effect was first undertaken in (&t Gelman and
Gilks 1997), where random walk proposals were studied foriah target, and
subsequently in (Roberts and Rosenthal 1998, Roberts asehital 2001, Beskos
and Stuart 2009, Beskos, Roberts and Stuart 2009) for atingettdistributions
and proposals; see (Beskos and Stuart 2010) for an overvidwe. idea of us-
ing proposals designed to work in the infinite dimensionaitert to overcome
this degeneration is developed in (Stuart, Voss and Wibe@d 2Beskos, Roberts,
Stuart and Voss 2008) in the context of sampling conditioddfdisions, and is
desribed more generally in (Beskos and Stuart 2009, Begkals 2009, Beskos
and Stuart 2010, Cotter et al. 2@)9

The use of MCMC methods for sampling the posterior distrdsuairising in the
Bayesian approach to inverse problems is highlighted iripjeand Somersalo
2000, Kaipio and Somersalo 2005, Calvetti and Somersal6,Z0élvetti, Kuceyeski
and Somersalo 2008). When sampling complex high dimenispmsderior distri-
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butions, such as those that arise from finite dimensionatoxppation of mea-
suresp¥ given by (2.4.1), can be extremely computationally chajieg. It is,
however, starting to become feasible; recent examples of wothis direction
include (Calvetti and Somersalo 2006, Dostert et al. 20G6pik and Somersalo
2000, Heino, Tunyan, Calvetti and Somersalo 2007, CajMdttkula, Pursiainen
and Somersalo 2009). In (Cotter et al. 200@wverse problems such those in sub-
section 3.6 are studied by means of the MH technology stegifnim the pro-
posal (5.2.5). Examples of application of MCMC techniguethe statistical solu-
tion of inverse problems arising in oceanography, hydrplag geophysics may be
found in (Efendiev et al. 2009, Cui, Fox, Nicholls and O’8lh 2009, McKeague,
Nicholls, Speer and Herbei 2005, Herbei, McKeague and S8, McLaughlin
and Townley 1996, Michalak and Kitanidis 2003, Mosegaaudi Barantola 1995).
The paper (Herbei and McKeague 2009) studies the geomegiadieity proper-
ties of the resulting Markov chains, employing the framednaeveloped in (Meyn
and Tweedie 1993).

The idea of using proposals more general than (5.2.4), aniticular pro-
posals that use derivative information concernipgis studied in (Roberts and
Tweedie 1996). A key concept here is thangevin equation a stochastic dif-
ferential equation for whicly is an invariant measure. Discretizing this equation,
which involves the derivative 0P, is the basis for good proposals. This is related
to the fact that, for small discretization parameter, trappsals nearly inherit this
invariance undey:.. Applying this idea in the infinite dimensional context is-de
scribed in (Apte, Hairer, Stuart and Voss 2007, Beskos andr52009), based on
the idea of Langevin equations in infinite dimensions (Hadteal. 2005, Hairer et
al. 2007, Hairer, Stuart and Voss 2009

Characterizing the centres of small balls with maximum phility has been an
object of interest in the theory of stochastic differendgliations for some time.
See (lkeda and Watanabe 1989, Durr and Bach 1978) for th@estrsetting, and
(Zeitouni and Dembo 1987) for a generalization to signakpssing problems.
Our main Theorem 5.4 concerning the existence of probgbiibximizers pro-
vides a nice link between Bayesian inverse problems andnapttontrol. The
key ingredients are continuity of the forward mapping frdra tinknown function
to the data, in the absence of observational noise, in a sfa@nd choice of a
prior measure which has the properties that draws from iabmest surely inX:
to(X) = 1; this then guarantees that the Tikhonov regularizatiorichvis in the
Cameron-Martin norm for the prior measure, is sufficienttovp existence of a
minimizer for the variational method.

The idea concluding the proof of the first part Theorem 5.4asdard in the
theory of calculus of variations: see Chapter 3, Theoremid (Dacarogna 1989).
The strong convergence argument generalizes an argunoentTheorem 11.2.1
in (Kinderlehrer and Stampacchia 1980). The PhD thesis afeil{Nodet 2005)
contains a specific instance of Theorem 5.4, for a model ofdragian data as-
similation in oceanography, and motivated the approactwtiaake here; related
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work is undertaken in (White 1993) for Burgers equation. Keraative approach
to the existence of minimizers is to study the Euler-Lageaaguations. The pa-
per (Hagelberg et al. 1996) studies existence by this apprf a minimization
problem closely related to the MAP estimator. The paperistuthe equations of
fluid mechanics, formulated in terms vorticity-streamftimie variables. Ther ap-
proach has the disadvantage of requiring a derivative toeléfie Euler-Lagrange
equations, a short time-interval to obtain existence oflatism, and also requires
further second derivative information to distinguish beg&r minimizers and saddle
points. However it does form the basis of a numerical apgréaéind the MAP es-
timator. For linear differential equations subject to Gaas noise there is a beauti-
ful explicit construction of the MAP estimator, using thel&ul_agrange equations,
known as theepresenter methodr his method is described in (Bennett 2002).

Variational methods in image processing are overvieweS8dahérzer et al. 2009)
and Bayesian approach to this field is exemplified by (Cahaettl Somersalo
2005, Calvetti and Somersalo 20@7Calvetti and Somersalo 2008) and, implic-
itly, in (Ellerbroek and Vogel 2009). Variational method® &nown in the atmo-
spheric and oceanographic literature4i3vVARmethods (Derber 1989, Courtier
and Talagrand 1987, Talagrand 1987, Courtier 1997) andedsawe shown, they
are linked to probability maximizers. In the presence of eiafror the method
is known asweak constraint 4ADVARZupanski 1997). There are also variational
methods for sequential problems which update the prolbalpilaximizer at a se-
quence of times; this methodology is knowrB/AR(Courtier, Anderson, Heck-
ley, Pailleux, Vasiljevic, Hamrud, Hollingworth, Rabiend Fisher 1998) and is
closely related to filtering. Indeed, although filtering aradiational methods may
be viewed as competing methodologies they are, in fact, istihdt methodolo-
gies and hybrid methods are sought which combine the adyestaf both; see
(Kalnay, Li, Miyoshi, Yang and Ballabrera-Poy 2007), foaexple.

Although we strongly advocate the function space view poimtvariational
methods, a great deal of work is carried out by first disdragizhe problem, and
then defining the variational problem. Some representgimers which take this
approach for large scale applications arising in fluid magtwinclude (Bennett
and Miller 1990, Bennett and Chua 1994, Eknes and Evensen, I&%ua and
Bennett 2001, Yu and O’Brien 1991, Watkinson, Lawless, Nistand Roulstone
2007, Gratton, Lawless and Nichols 2007, Johnson, Hoskiitkiols and Ballard
2006, Lawless and Nichols 2006, Johnson, Hoskins and Nick@05, Lawless,
Gratton and Nichols 20@5 Lawless, Gratton and Nichols 20@5Stanton, Law-
less, Nichols and Roulstone 2005, Wlasak and Nichols 19883.paper (Griffith
and Nichols 1998) contains an overview of adjoint methodgdun the solution
of data assimilation problems with model error, primaritytihe context of varia-
tional methods. A discussion of variational methods forltbeenz equations, and
references to the extensive literature in this area, mapiedin (Evensen 2006).

The regularized nonlinear least squares or Tikhonov agprt@ainverse prob-
lems is widely studied, including in the infinite dimensibrs@tting of Hilbert
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spaces — see the book (Engl et al. 1996) and the referenaeintheand Banach

spaces — see the papers (Kaltenbacher et al. 2009, Neulti®r+2in 2009) and

the references therein. Although we have concentrated gedn priors, and

hence on regularization via addition of a quadratic pentibn term, there is active
research in the use of different regularizations (Kaltehkaet al. 2009, Neubauer
2009, Hein 2009, Lassas and Siltanen 2009). In particutaugie of total variation

based regularization, and related wavelet based regatiais, is central in image
processing (Rudin et al. 1992).

Solving the very high dimensional optimization problemsakharise from dis-
cretizing the minimization problem (5.1.3) is extremelatiénging and, as with
filtering methods, ideas from model reduction (AntoulasteSen and Gugerrin
2001) are frequently used to obtain faster algorithms. Sappdications of model
reduction techniques, mainly to data assimilation prolslansing in fluid mechan-
ics, may be found in (Lawless, Nichols, Boess and Bunset@ar200®, Law-
less, Nichols, Boess and Bunse-Gerstner 20@8iffith and Nichols 2000, Griffith
and Nichols 1998, Akella and Navon 2009, Fang, Pain, Navagggd®, Gorman
and Allison 2009, Fang et al. 20a9 and the references therein. Another ap-
proach to dealing with the high dimensional problems thiatdn data assimilation
is to use ideas from machine learning (Mitchell, BuchanaeJdhg, Dietterich,
Rosenbloom and Waibel 1990) to try to find good quality low elivsional ap-
proximations to the posterior measure; see for examplenSkrehambeau, Corn-
ford, Opper, Shawe-Taylor and Barillec 2t)&hen, Cornford, Archambeau and
Opper 2009, Vrettas, Cornford and Shen 2009, Shen, Archamlégornford and
Opper 2008, Archambeau, Opper, Shen, Cornford and Shawe-Taylor 2808,
chambeau, Cornford, Opper and Shawe-Taylor 2007).

There are some applications where the objective functimasl not be differen-
tiable. This can arise for two primary reasons. Firstly tiEERModel itself may
have discontinuous features arising from switches, or lstike solutions; and
secondly the method of observing the PDE may have switchesrtain threshold
values of the physcial parameters. In this case it is of ésteto find computa-
tional algorithms to identify MAP estimators which do noguére derivatives of
the objective functional; see (Zupanski, Navon and Zupia2388).

An overview of the algorithmic aspects of particle filterirfgr non-Gaussian
problems, is contained in the edited volume (Doucet and @o2®01) and a more
mathematical treatment of the subject may be found in (BathGrisan 2009). An
introduction to filtering in continuous time, and a derieatiof the Kalman-Bucy
filter in particular, which exploits the Gaussian structof&near problems with ad-
ditive Gaussian noise, is undertaken in (Oksendal 2003hdtid be emphasized
that these methods are all developed primarily in the cordtlow dimensional
problems. In practice filtering in high dimensional systésextremely hard. This
is because the iterative formulae (5.4.4) and (5.4.7) deRrptess the density of
the target measure with respect to an easily understoods@auseasure, as hap-
pens in (2.4.1). To overcome this issue, particle approtiana of the reference
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measures are used, corresponding to approximation by Diesses; thus the al-
gorithms build up sequential approximations based on Dinases. In high di-
mensions this can be extremely computationally demandialgvarious forms of
approximation are employed to deal with curse of dimenditgnproblem. See
(Bengtsson, Bickel and Li 2008, Bickel, Li and Bengtsson&0f@r discussion
of the fundamental difficulties arising in high dimensiofi#tering and (Snyder,
Bengtsson, Bickel and Anderson 2008) for a development edetideas in the
context of applications. A review of some recent matherahtlevelopments in the
subject of high dimensional filtering, especially in the o of the modelling or
turbulent atmosheric flows, may be found in (Majda, Harlird &ershgorin 2009).
A review of filtering from the perspective of geophysical bBggtions, may be
found in (Van Leeuwen 2009). A widely used approach is thaedaon the
ensemble Kalman filter (Burgers, Van Leeuwen and Evense, B&nsen and
Van Leeuwen 2000, Evensen 2006) which uses an ensembletimigmto prop-
agate the dynamics, but incorporates data using a Gauggiaoxamation which
is hard to justify in general; see also (Berliner 2001, OtinH Szunyogh, Zimin,
Kostelich, Corazza, Kalnay, Patil and Yorke 2004). Furidygproaches based on
the use of ensembles to approximate error covariance patipagnay be found
in (Chorin and Krause 2004, Dance, Livings and Nichols 2Q0¢ings, Dance
and Nichols 2008). The paper (Bengtsson, Snyder and NycbRa)2lescribes
a generalization of the ensemble Kalman filter, based onumigtof Gaussians,
motivated by the high dimensional systems arising in fluidadyics data assimi-
lation problems. The paper (Bennett and Budgell 1987) etutfie use of filtering
techniques in high dimensions, motivated by oceanogragéiia assimlation, and
contains a study of the question of how to define families dfdfidimensional
filters which converge to a function space valued limit asfthite dimensional
computation is refined; it is thus related to the concept sémditization invariance
refered to in subsection 2.5. However, the methodology fovipg limiting be-
haviour in (Bennett and Budgell 1987), based on Fourieryaiglis useful only
for linear Gaussian problems; in contrast the approachlolesd here, namely for-
mulation of the inverse problem on function space, gives tdsalgorithms which
are robust under discretization even in the non-Gaussisa ca

In (Apte et al. 2007, Apte, Jones and Stuart 2)08udies comparing the ideal
solution obtained from applying MCMC methods to the postef2.4.1) are com-
pared with ensemble Kalman filter methods. The context isgadragian data as-
similation problem driven by a low dimensional truncatidrtite linearized shal-
low water equations (3.6.1) and the results demonstrafallpitn the ensemble
Kalman filter approach. An unambiguous and mathematicadli-defined defini-
tion of theideal solution as given by (2.4.1), plays an important role in underpin-
ning such computational studies.

A study of particle filters for Lagrangian data assimilatisnundertaken in
(Spiller, Budhiraja, Ide and Jones 2008) and another agjiic of filtering to
oceanographic problems can be found in (Brasseur, BalBggino, Birol, Brankart,
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Ferry, Losa, Remy, Schroeter, Skachko, Testut, Tranclaat] ¥¢euwen and Verron
2005). Recent contributions to the study of filtering in tlomtext the high di-
mensional systems of interest in geophysical applicaiiocisde (Bergemann and
Reich 2009, Cui et al. 2009, Chorin and Krause 2004, ChowdnTar200%, Chorin
and Tu 2009, Gottwald, Mitchell and Reich 2009, Majda and Grote 2007 jdda
and Gershgorin 2008, Majda and Harlim 2008, Van Leeuwen 2081 Leeuwen
2003). A comparison of various filtering methods, for the &uapto-Sivashinksy
equation, may be found in (Jardak, Navon and Zupanski 2008)the paper
(Pikkarainen 2006), filtering is studied in the case wheeettte state space for
the dynamical variable is infinite dimensional, and modklly an SPDE. An at-
tempt is made to keep track of the error made when approxigdkie infinite
dimensional system by a finite dimensional one. In this kgaruseful approx-
imation is introduced in (Huttunen and Pikkarainen 2007j)ding on ideas in
(Kaipio and Somersalo 20@Y. Parameter estimation in the context of filtering can
be problematic and smoothing should ideally be used wheanpeters are also
to be estimated. However there is some activity to try andengdcameter esti-
mation feasible in online scenarios; see (Hurzeler and &u@601) for a general
discussion and (Vossepoel and Van Leeuwen 2007) for ancagipin.

We conclude this bibliography by highlighting an importgoestion confronting
many applied disciplines where data assimilation is ingott It is typically the
case that models in fields such as climate prediction, oggapby, oil reservoir
simulation and weather prediction are not fully resolved arious sub-grid scale
models are used to compensate for this fact. This then rdiseguestion: should
future increased computer resources be invested in funileelel resolution, or in
more detailed study of uncertainty? In the language of thitien a stark ver-
sion of this questions is as follows: should we employ onlsiateonal methods
which identify probability maximizers, but do not quantifigk, investing future
computer power in resolving the function space limit moiby/fuor should we use
MCMC methods, which quantify risk and uncertainty very jgely, but whose
implementation is very costly and will preclude further rebresolution? This is
a hard question. An excellent discussion in the contextiofate models may be
found in (Palmer et al. 2009).
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6. Probability
6.1. Overview

This section contains an overview of the probabilistic gleaed throughout the
article. The presentation is necessarily terse and theeréadefered to the bib-
liography subsection at the end for references to matesiatiaining the complete
details. Subsection 6.2 describes a number of basic defisiirom the theory
of probability that we will use throughout the article. Inbsection 6.3 we intro-
duce Gaussian measures on Banach spaces and describetthkideas of the
Cameron-Martin space and the Fernique Theorem. Subsecdatescribes some
explicit calculations concerning Gaussian measures doeHikpace. In particu-
lar we discuss the Karhunen-Loeve expansion and conditi@@issian measures.
The Karhunen-Loeve expansion is a basic tool for constrgatindom draws from
a Gaussian measure on Hilbert space, and for analyzing glaréy properties
of such random draws. Conditioned measures are key to thesiayapproach to
inverse problems and the Gaussian setting provides usefoiles which help to
build intuition. In subsection 6.5 we introduce random féedohd, in the Gaussian
case, show how these may be viewed as Gaussian measuredanfiedds. The
key idea that we use from this subsection is to relate thegpti@s of the covari-
ance operator to sample function regularity. In subse@&i6mwe describe Bayesian
probability and a version of Bayes’ Theorem appropriatewnttion space. This
will underpin the approach to inverse problems that we takthis article. We
conclude, in subsection 6.7, with a discussion of metricprobability measures,
and describe properties of the Hellinger metric in pardcuThis will enable us to
measure distance between pairs of probability measurdssarkey ingredient in
the definition of well-posed posterior measures describetis article.

In this section, and indeed throughout the article, we vei# the following nota-
tional conventions. The measyig will denote a prior measure, ang its density
with respect to Lebesgue measure when the state sp@ce Iskewise the mea-
sure ¥ will denote a posterior measure, given dgtaand 7¥ its density with
respect to Lebesgue measure when the state sp&€e éecasionally we will drop
the y dependence and wrife and7. Given a density(u,y) on a pair of jointly
distributed random variables we will writgu|y) (resp.p(y|u)) for the density of
the random variable (resp.y), given a single observation gf(resp.«). We also
write p(u) for the marginal density found by integrating autand similarlyp(y)
the marginal density found by integrating aut We will use similar conventions
for other densities, and the densities arising from coowiitig and marginalization.

6.2. Basic Concepts

A measure (resp. probability) space is a triplet F, 1) where( is the sample
space,F theo—algebra of events andthe measure (resp. probability measure). In
this article we will primarily be concerned with situatioimswvhich (2 is a separable
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Banach spaC<€X, | - HX) andF is the Borelo—algebra3(X) generated by the

open sets, in the strong topology. We are interesté&hition measuresn X which
are characterized by the property

u(A) = sup{,u(B)|B C A, Bcompact}, A e B(X).

We useE andP to denote expectation and probability respectively Bdt) and
IP(-]-) for conditional expectation and probability; on occasiawill use the nota-
tion E# or P# if we wish to indicate that the expectation (or probabilityjuestion
is with respect to a particular measyreWe use~ as shorthand fais distributed
as thusx ~ p means that is drawn from a probability measuge A real valued
measurable function on the measure sgareF, i) is one for which the preimage
of every Borel set iR is in F (is u—measurable).

A functionm € X is calledthe mearof 1 on Banach spac¥ if, for all / € X*,
where X™* denotes the dual space of linear functionalsXgn

f(m):/Xf(x),u(dx).

If m = 0 the measure is callecentred In the Hilbert space setting we have that,
for z ~ u, m = Ex. A linear operatorK : X* — X is called the covariance
operator if, for allk, ¢ € X*,

k(K?) = /X k(z —m)l(x — m)u(dx).

In the Hilbert space setting whelé = X™* the covariance operator is characterized
by the identity

(k, Kt) = E(k, (x — m)){((x —m),{), (6.2.1)
for x ~ p and for allk, ¢ € X. Thus
K=E(x—m)® (z —m). (6.2.2)

If 4 andv are two measures on the same measure spaceuti@absolutely
continuouswith respect tav if v(A) = 0 implies u(A) = 0. This is sometimes
written 1 < v. The two measures aeguivalentif ¢ <« v andrv < u. If the
measures are supported on disjoint sets then thayaneally singularor singular.

A family of measures:(™) on Banach spac&’ is said toconverge weaklyo
measure; on X if

2™ (dz) — T T
/Xf()u (dz) /Xf()u(d)

for all continuous bounded : £ — R. We write (") = 4. 4

4 This should not be confused with weak convergence of funstio
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The characteristic function of a probability distributipron a separable Banach
spaceX is, for/ € X*,

ou(l) = Eexp(il(x)).

Theorem 6.1 If ; andv are two Radon measures on a separable Banach dpace
and if,(¢) = ¢, (¢) forall ¢ € X*, theny = v. [

The following Radon-Nikodym Theoreptays an important role in this article.

Theorem 6.2 Let i andv be two measures on the same measure s@facg). If
@ < v andv is o—finite then there exists—measurable functiorf : 2 — [0, oo]
such that, for alb—measurable setd ¢ F,

_ /A Flx)dv()

The functionf is known as th&Radon-Nikodym derivativef 1, with respect to
v. The derivative is written as

0

W) = 1@, (6.2.3)

We will sometimes simply refer t¢ = du/dv as thedensityof 1 with respect to
v. If pis also a probability measure then

/f )dv(z

Thus, ifv is a probability measur&” f(z) = 1.

We give an example which illustrates a key idea which undetle material we
develop in this section. We work in finite dimensions but kgt what can be
transfered to probability measures on a Banach space.

Example 6.3 For a probability measurg on R¢ which is absolutely continuous
with respect to Lebesgue measwave use the shorthangdf for the probability
density function, odensity p defined so that

M(A):/Ap(:v)d:c (6.2.4)

for A € F, whereF is the sigma algebra generated by the open sék§ iStrictly
speaking this is thedf with respect to Lebesgue measagewe integrate the den-
sity against Lebesgue measure to find the probability of @l sétote that

dp
(@) = plz).
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Itis also possible to find the density pfwith respect to a Gaussian measure. To
illustrate this, lefug = N(0, I) denote a standard unit GaussiarRih Then

po(dz) = 4/ (2m)—d exp(—%|x|2)d:n.
Thus the density of. with respect tqug is

pal) =/ (2m) exp (5 ) ().

We then have the identities

p(A) = [ pela)po(da (6.2.5)

and

dp

—(x) = pe(x).

T () = pela)

It turns out that, in the infinite dimensional setting, thenfalation (6.2.5) general-
izes much more readily than does (6.2.4). This is becauseitenfilimensional

Gaussian measure is well-defined, and because many medswes density

(Radon-Nikodym derivative) with respect to an infinite dmmnal Gaussian mea-
sure. In constrast, infinite dimensional Lebesgue meaxgs Kot exist[]

We conclude this subsection with two definitions of opematdoth important
for definitions associated with Gaussian measures on Hidpaice. Le{ ¢y }°
denote an orthonormal basis for a separable Hilbert spacé linear operator
A :'H — H is trace-classor nuclearif

Tr(A) = (A¢y, ¢r) < 0. (6.2.6)
k=1
The sum is independent of the choice of basis. The operhteHilbert-Schmidt
if

> Il Agk|? < o0 (6.2.7)
k=1

If A is self-adjoint and we choose tke; } to be the eigenfunctions of, then the
sum in (6.2.6) is simply the sum of the eigenvaluesdofA weaker condition is
that the eigenvalues are square-summable which is (6.2.7).

6.3. Gaussian Measures

We will primarily employ Gaussian measures in the Hilbedapsetting. However
they can also be defined on Banach spaces and, on occasiorill wmploy this

level of generality. Indeed when studying Gaussian randelusfin subsection 6.5,
we will show that, for a Gaussian measuren a Hilbert spacé+, there is often a
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Banach spac& which is continuously embedded i and has the property that
u(X) = 1. We would then like to define the measyreon the Banach spac¥.
We thus develop Gaussian measure theory on separable Bspeads here.

Having defined Gaussian measure, we describe its chasictdtinction, and
we state the Fernique Theorem which exploits tail properitGaussian mea-
sure. We follow this with definition and discussion of the Gmom-Martin space.
We then describe the basic tools required to study the aesotntinuity of two
Gaussian measures.

A measure; on <X, B(X)) is Gaussiarif, for any ¢ € X*, {(x) ~ N (my,0?)
for somem, € R, o, € R. Note thats, = 0 is allowed, so that the induced measure
on/(xz) may be a Dirac mass at,. Note also that it is expected that, = ¢(m),
wherem is the mean defined above, atmgi = ((K (), whereK is the covariance
operator. The meam and covariance operat@f are indeed well-defined by this
definition of covariance operator.

Theorem 6.4 A Gaussian measure (<nX, B(X)) has a meam: and covariance
operatorK . Furthermore the characteristic function of the measure is

©(f) = exp <z£(m) — %E(K@))
U

Hence by Theorem 6.1 we see that the mean and covariance eteippthar-
acterize the Gaussian measure and so we are justified ininigitddy A (m, K).
The following lemma demonstrates an important role for abgaristic functions
in studying weak convergence.

Lemma 6.5 Consider a family of probability measurg§”. Assume that, for all
e X7,

P (£) — exp <i€(m+) - %E(K+€)> .
Thenu™ = N(m*, K+). O

In the Hilbert space setting we refer to the inverse of theadance operatof
as theprecision operatoand denote it by_. It is natural to ask what conditions an
operator must satisfy in order to be a covariance operatondGntuition can be
obtained by thinking of the precision operator as a (pogsfbhctional differential
operator of sufficiently high order. To pursue this issudtkelfurther we confine
ourselves to the Hilbert space setting. The following teeoprovides a precise
answer to the question concerning properties of the cavegiaperator.

Theorem 6.6 If N'(0,C) is a Gaussian measure on a Hilbert spacthenC is a
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self-adjoint, positive semi-definite trace-class operatoH. Furthermore, for any
integerp, there is constant’ = C,, > 0 such that, for: ~ N(0,C),

E||z]|? < C’p<Tr(C))p.

Conversely, ifn € H, andC is a self-adjoint, positive semi-definite, trace-class lin
ear operator on a Hilbert spagg then there is a Gaussian measure N (m,C)
onH. U

Example 6.7 Unit Brownian bridge on/ = (0, 1) may be viewied as a Gaussian
process orL.?(.J) with precision operatof = —% andD (L) = H*(J) (N Hg(J).
Thus the eigenvalues 6farey, = (k*72)~! and are summablé.]

If z ~ A(0,C), thenE||z||?> = Tr(C). Combining this fact with the previous the-
orem we have the following generalization of the well-kngwoperty concerning
the moments of finite dimensional Gaussian measures.

Corollary 6.8 If A/(0,C) is a Gaussian measure on a Hilbert spaahen, for any
positive integep, there isC;, > 0 such thafE||z|| % < C,(E|z|?)". O

In fact, as in finite dimensions, the exponentials of certpiadratic functionals
are bounded for Gaussian measures. This is the Ferniqueerhechich we state
in the Banach space context:

Theorem 6.9 If © = N(0, K) is a Gaussian measure on Banach spéceo that
w(X) = 1, then there exista > 0 such that

| explalel)n(do) < oc.
X
O

We define theCameron-Martin spacd” associated with a Gaussian measure
pu =N (0, K) on Banach spac# to be the intersection of all linear spaces of full
measure undgs.’

Lemma 6.10 Let £ be the Cameron-Martin space of Gaussian meagstte\V/ (0, K)
on Banach spac¥. In infinite dimensions it is necessarily the case fhdl) = 0.
FurthermoreFE can be endowed with a Hilbert-space structure. Indeed fasGa

sian measure&/(0,C) on the Hilbert spac{H, () ->> the Cameron-Martin space
is the Hilbert spacé” := Im(C%) with inner-product

1

(Ye=(C"2,C2).

5 In most develoments of the subject this charactertizaagivien after a more abstract definition
of the Cameron-Martin space. However, for our purposedekid of abstraction is not needed.
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OJ

Note that the covariance operat@rof a Gaussian probability measure on a
Hilbert spaceH is necessarily compact becausés trace class so that the eigen-
values ofC> decay at least algebraically. Thus the Cameron-Martinesha(:C%)
is compactly embedded iH. In fact we have the following more general result:

Theorem 6.11 The Cameron-Martin spadé associated with a Gaussian measure
pu = N (0, K) on Banach spac& is compactly embedded in all spac&$ with
full measure ((X’) = 1) underp. O

Example 6.12 Consider a probability measureon R? which is a product measure
of the formdy ® A/(0, 1). Introduce coordinate&e,, x2) so that the marginal omn;

is p and the marginal om is A'(0, 1). The intersection of all linear spaces with
full measure is the subset Bf defined by the line

E = {(x1,72) € R? : 21 = 0}.

Note furthermore that this subset is characterized by tbegsty that the measures
v(-) andv(a + -) are equivalent (as measures) if and only & E. Thus, for this
example, the Cameron-Martin space defines the space ofaddlevghifts, under
which equivalence of the measures holds.

We now generalize the last observation in the preceding pleamve show that
the Cameron-Martin space characterizes precisely thdfie ghthe mean of a
Gaussian measure which preserve equivalence.

Theorem 6.13 Two Gaussian measures = N (m;,C;), i = 1,2, on a Hilbert
spaceH are either singular or equivalent. They are equivalent @ anly if the
following three conditions hold:

1 1
i) Im(C¢) =Im(C5) :=E;
II) miy —mg € F;

i) the operator? := (¢; 2¢5 ) (C} cg)* _ ['is Hilbert-Schmidt inE.

N

O

In particular, choosing; = C, we see that shifts in the mean give rise to equiv-
alent Gaussian measures if and only if the shifts lie in thm&an-Martin space
E. ltis of interest to characterize the Radon-Nikodym defiesarising from such
shifts in the mean.

Theorem 6.14 Consider two measures = N (m;,C), i = 1,2, on Hilbert space
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H, whereC has eigenbasi§g;, A\, } 32 ;. Denote the Cameron-Martin space by
If m; — mo € E then the Radon-Nikodym derivative is given by

d 1
d—z;(ﬂz) = exp<<m1 — Mo, T —ma)c — §Hm1 — m2||%)
O

Sincem; —my € Im(C%) the quadratic fornfjm, —ms||% is defined; the random
variablex — (mj; — mg,x — mg)c is defined via a limiting procedure as follows.
By the the Karhunen-Loeve expansion (6.4.1) below we hawedpresentation of
z ~N(0,C) as

T —mg = Z VAW
k=1

wherew = {w;}72, € Qisani.i.d. sequence d¥ (0, 1) random variables. Then
(m1 — ma, x — ma)c is defined as thé?(2; H) limit in n of the series

"1
——=(my — ma, ¢p)w.

In establishing the first of the conditions in Theorem 6.18, following lemma
is often useful:

Lemma 6.15 For any two positive-definite, self-adjoint, bounded lineperators

1 1
C; on a Hilbert spacé, i = 1,2, the conditionlm(C{) C Im(C5) holds if and
only if there exists a constai > 0 such that

(h,Crh) < K (h,Coh) Vh e H.
O

Example 6.16 Consider two Gaussian measugeson H = L3(J),J = (0,1)
both with precision operatat = —%22 and the domain of beingH¢ (J)NH?(J).
(Informally — £ is the Laplacian oy with homogeneous Dirichlet boundary con-
ditions.) The mean ofi; is a functionm € H and the mean ofi» is 0. Thus
p1 ~ N(m,C) andus ~ N(0,C) whereC = £L~1. HereC; = Co = C andT = 0
so that i) and iii) in Theorem 6.13 are satisfied with= Im(C%) = H}(J). It fol-
lows that the measures are equivalentiffic E. If this condition is satisfied then,
from Theorem 6.14, the Radon-Nikodym derivative betweenttyo measures is
given by

d,u1 1
@) = o (o) = 5 mly ).
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Example 6.17 Consider two mean-zero Gaussian measuje®H = L2(J), J =
(0,1) with norm || - || and precision operators; = —% +ITandly; = —%
respectively, both with domaifi (J) N H2(J).
The operatorg,, £, share the same eigenfunctions
or(z) = V2sin (kmx)
and have eigenvalues
(1) = A(2) + 1, A(2) = kP2,
respectively. Thugi; ~ N(0,C1) and us ~ N(0,Cy) where, in the basis of
eigenfunctions(; and(C, are diagonal with eigenvalues
1 1
K2m2 +1° k22
respectively. We have, fdr, = (h, ¢r),
(G N L+ )

724+ 1 = (h,Coh) Zkez+(k:7r)*2h2
Thus, by Lemma 6.15, Theorem 6.13i) is satisfied. Part iijiadtivially. Notice
that

<1

1 1
TZCl 26261 2 _I
is diagonalized in the same basis as@hand has eigenvalues
1
k272’
These are square summable and so part iii) of Theorem 6.13 lamid the two
measures are absolutely continuous with respect to onbembt

A Hilbert space( X, (-, -)x) of functionsf : D ¢ R? — R is called areproduc-
ing kernel Hilbert spaceRKHS for short, if pointwise evaluation is a continuous
linear functional in the Hilbert space. If(y) = (f,ry)x thenry is called the
representenf the RKHS.

Example 6.18 Let J = (0,1). Note thati{ = L?(J;R) is not a RKHS. Consider
X = H'(J;R) equipped with the inner-product

1
(a,b) = a(0)b(0) —i—/o a (x)b' (z)dz. (6.3.1)

If ry(z) =1+ 2 Aythenf(y) = (f,ry). Notice thatr, € X. Thus, by the
Cauchy-Schwarz inequality,

|f(y) — 9(v)]

<
<

’(f - gﬂqy)’
1f = glxllryllx,
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demonstrating that pointwise evaluation is a continuonsadi functional onX.
Notice, furthermore, that the expressigfy) = (f,ry) is an explicit statement of
the Riesz Representation Theordm.

In the literature there is often an overlap of terminologyreunding the RKHS
and the Cameron-Martin space. This is related to the fatthlaepresenter of an
RKHS can often be viewed as the covariance function (seesstibs 6.5 below)
of a covariance operator associated to a Gaussian measiifé BnR).

6.4. Explicit Calculations With Gaussian Measures

In this section we confine our attention to Gaussian measuréblbert space. We
provide a number of explicit formulae that are helpful trgbaut the article, and
which also help to build intuition about measures on infiditeensional spaces.

We can construct random draws from a Gaussian measure certiifiace as
follows, using theKarhunen-Loeve expansion

Theorem 6.19 Let C be a self-adjoint, positive semi-definite, nuclear operato
a Hilbert spaceit and letm € H. Let {¢x, v )52, be an orthonormal set of
eigenvectors/eigenvalues férordered so that

Y2V 2.

Take{¢, }72 , tobe ani.i.d. sequence wigh ~ N (0,1). Then the random variable
x € 'H given by theKarhunen-Loeve expansion

r=m+ Y \rbn (6.4.1)
k=1

is distributed according to = A (m,C). O

In applications the eigenvalues and eigenvectois wfll often be indexed over
a different countable set, s&. In this context certain calculations are cleaner if
we write the Karhunen-Loeve expansion (6.4.1) in the form

z=m+ Y ko (6.4.2)

keK

Here the{¢, } rek are ani.i.d. set of random variables all distributed\&$), 1). Of
course the order of summation does, in general, matter; syeerwe use (6.4.2),
however, the ordering will not be material to the outcome waiilistreamline the
calculations to use (6.4.2).

The next theorem concerns conditioning of Gaussian measure

Theorem 6.20 Let H = H; & H» be a separable Hilbert space with projectors
Il;: H — H,;. Let(z1,22) € H1 @ He be anH-valued Gaussian random variable
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with meanm = (m1, m2) and positive definite covariance operaforDefine
Cij = E(zi — my) ® (zj — my).
Then the conditional distribution af; givenzxs is Gaussian with mean
m' =mq + 0126521 (xg - mg) (6.4.3)
and covariance operator
C' = C11 — C12C55 Cor. (6.4.4)
O

To understand this theorem it is useful to consider the ¥iotig finite dimen-
sional result concerning block matrix inversion.

Lemma 6.21 Consider a positive-definite matr&X with the block form
Cn Crio
C= .
< Cly Cx )
ThenCys is positive-definite symmetric and ttf&hur complement defined by
S=Cp — 0120521013 is positive-definite symmetric. Furthermore

1 St —S71C1205%"
Cc = —1,% o—1 -1 1, o—1 -1 |-
—Cp OS5 Chy + 0y OS5 C12Cyp
Now let(z, y) be jointly Gaussian with distributiaN (m, C) andm = (m}, m3)*.

Then the conditional distribution af giveny is Gaussian with meam’ and co-
variance matrixC’ given by

m' = mi + 0120521(y — m2),
C' = Oy — C19C5,' Cy.
O

Example 6.22 Consider a random variablewith Gaussian prior probability dis-
tribution A/ (0, 1) and hence associated pdf
1
mo(u) o eXp(—EuQ).

Let y be the random variablg = u + ¢ where¢ ~ N(0, o?) is independent of..
Then the likelihood of; givenu has pdf proportional to

1
eXp(—ﬁ]y — u\2)

The joint probability of(u, y) thus has pdf proportional to

1 1
eXP(—ﬁLl/ - U|2 - §|u|2)-
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Since

02+1” 1

2
202 u—02+1y Tty

wherec, is independent of, we see that the|y is a GaussiaiV'(m, v%) with

1 9 o?
= (72—1-1y7 U o241
This technique for deriving the mean and covariance of a Sansneasure is often
termedcompleting the squardt may be rigorously justified by Theorem 6.20 as
follows. First we observe that, = ms = 0, thatC;; = C19 = Co1 = 1 and that
Cy2 = 1 + o2. The formulae (6.4.3) and (6.4.4) then give identical restdtthose
found by completing the squark]

We now study an infinite dimensional version of the previaxeneple.

Example 6.23 Consider a random variableon a Hilbert spacé{ distributed ac-

1
cording to a measurgy ~ N (mg,Cy). We assume thatyy € Im(C§ ). Assume
thaty € R™ is also Gaussian and is given by

y=Au+n

whereA : X — R™ is linear and continuous on a Banach spateC H with
to(X) = 1. The adjoint ofA, denotedA*, is hence the operator frol®™ — X*
defined by the identity

(Au,v) = (A™0)(u)

which holds for alk € R™,u € X, and whered*v € X* is a linear functional on
X. We also assume that~ A (0,T") is independent of. and thatl" is positive-
definite. Thug|u is Gaussian with density proportionaleop (—%]y—Au\%) .We
would like to characterize the Gaussian meagtitéor u|y. Let u¥ = N (m,C).

To calculateC andm we first use the idea of completing the square, simply com-
puting formally as if the Hilbert space far were finite dimensional and had a
density with respect to Lebesgue measure; we will thenfyuiste resulting formu-

lae after the fact by means of Theorem 6.20. The formal Laebedgnsity foru|y

is proportional to

1 1
exp(—5ly — Auff = Sllu—moll3,).

But

1 1 1
§|y — Aulf + §||U - m0||%O = §||U —mllg + Cy



INVERSE PROBLEMS 85

with ¢, independent ofi and hence completing the square gives
cl=AT'tA4¢5t (6.4.5a)
m = C(A*F’ly + Co_lmo>. (6.4.5b)

We now justify this informal calculation.

The pair(u, y) is jointly Gaussian wittEu = my andEy = Amg. We define
u = u—myandy = y — Amgy. Note thaty = Au + 7. The pair(u,y) has
covariance operator with components

Cn1 = Euu™ = Cy,
Coo = Eyy* = ACoA* + T,
Co1 = Ey_u* = ACy.

Thus, by Theorem 6.20, we deduce that the meaand covariance operatGrfor
u conditional ony are given, respectively, by

m = mq + CoA*(T + ACoA*) " (y — Amy) (6.4.6)
and
C =Cy— CoA* (T + ACyA*) L AC,. (6.4.7)

We now demonstrate that the formulae (6.4.6),(6.4.7) agithe(6.4.5). To check
agreement with the formula for the inversefound by completing the square,
we show that the product is indeed the identity. Note that

(co —CoAN(T + ACOA*)’lACO) (co—l + A*r*lA)
_ <1 — CoA (T + ACOA*)—lA) <I + cOA*r—1A>
— I+ CoA*T ' A — CoA*(T + ACoA*) "1 (A + ACoA'T 1 A)

=T+ CoA* T 'A — CuA* T A
=1.

To check agreement with the two formulae for the mean we paes follows.
We have

It — (I + ACoA*) LACYA* T ™! = (T + ACoA*) L. (6.4.8)
The formula for the mean derived by completing the squaresgiv
m = c<(C*1 AT A)ymg + A*r*ly)
= mo + CA*T L (y — Amy).
To get agreement with the formula (6.4.6) it suffices to shuat t
CA*T™! = CuA* (I 4+ ACoA") 1.
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By (6.4.7) and (6.4.8),
CA* T = CuA* T — CuA* (I + ACoA*) L ACYA* T 1
= C()A* (F + ACoA*)_l,

and we are dond.]

6.5. Gaussian Random Fields

Our aim in this subsection is to construct, and study thegnt@s of, Gaussian ran-
dom functions. We first consider the basic construction nfloan functions, then
Gaussian random functions, following this by a study of thgutarity properties
of Gaussian random functions.

Let (2, F,P) be a probability space arfd C R an open set. Aandom fieldon
D is a measurable mapping: D x Q — R"™. Thus, for anyx € D, u(z;-) is an
R™—valued random variable; on the other hand, for any 2, u(-;w) : D — R™
is a vector field. In the construction of random fields it is coomplace to first
construct thdinite dimensional distributions These are found by choosing any
integerg > 1, and any set of pointgz, }{_, in D, and then considering the random
vector(u(z;-)*, - -+ ,u(zg; -)*)* € R™. From the finite dimensional distributions
of this collection of random vectors we would like to be aldartake sense of the
probability measurg on X, a Banach space, via the formula

u(A) =Pu(w) € 4), Ae B(X), (6.5.1)

wherew is taken from a common probability space on which the randtam e
mentu € X is defined. It is thus necessary to study the joint distrdsutdf a
set of¢ R™—valued random variables, all on a common probability sp&sch
R™ —valued random variables are, of course, only defined up toaf gero mea-
sure. It is desirable that all such finite dimensional distibns are defined on a
common subse®, C €2 with full measure, so thai may be viewed as a function
u : D x Qy — R"; such a choice of random field is termedradification In
future developments, statements about almost sure (réagylaroperties of a ran-
dom field should be interpreted as statements concerningxibeence of a modi-
fication possessing the stated almost sure regularity pgyop#e will often simply
write u(z), suppressing the explicit dependence on the probabilagesp

A Gaussian random fielés one where, for any integer > 1, and any set of
points {z;}7_, in D, the random vectotu(xz;-)*,--- ,u(zy;-)*)* € R"is a
Gaussian random vector. Theean functiorof a Gaussian random fieldis(z) =
Eu(z). Thecovariance functioris c(z,y) = E(u(z) — m(z)) (u(y) — m(y))".
For Gaussian random fields this function, together with t&mfunction, com-
pletely specify the joint probability distribution fofu(z1;-)*, -, u(ze)*)* €
R™. Furthermore, if we view the Gaussian random field as a Gauss&asure
on L?(D;R™) then the covariance operator can be constructed from treieoce
function as follows. Without loss of generality we considee mean zero case;
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the more general case follows by shift of origin. Since thkl fiis mean zero we
have, from (6.2.1),

(h1,Cha) = E(h1,u)(u, ha)

_E/ / ha (z)* (w(@)u(y)*) he(y)dyde
= [ iy ( /D (u(z)u(y)*Yha(y)dy ) d
:/Dhl(x)*</Dc(:U,y)h2(y)dy)dw

(Co) (@) = /D (2, 9)d(y)dy. 6.5.2)

Thus the covariance operator of a Gaussian random field iatagral operator
with kernel given by the covariance function.

If we view the Gaussian random field as a measure on the spaee”(D; R")
then the covariance operatéf : X* — X may also be written as an integral
operator as follows. For simplicity we consider the case- 1. We note that
¢ =1, € X* may be identified with a signed measyreon D. Then similar
arguments to those used in the Hilbert space case show that

(Kfu)(:v):/[)c(:v,y)p(dy). (6.5.3)

This may be extended to the case of random fields taking vaiugs.

A mean-zero Gaussian random field is terratdionaryif ¢(z, y) = s(z—y) for
some matrix-valued functior, so that shifting the field by a fixed random vector
does not change the statistics. ltdstropicif, in addition, s(x — y) = «(Jz — y|),
for some matrix-valued function

An important general question concerning random fields fstbcriteria to es-
tablish their regularity, expressed in terms of the coveréafunction or operator.
An important tool in this context is thEolmogorov Continuity Theoremvhich
follows below. This theorem expresses sample functionlaeiy in terms of the
covariance function of the random field. Another key toolstablishing regularity
is the Karhunen-Loeve expansion (6.4.2) which expressesdom draw from a
Gaussian measure in terms of the eigenfunctions and eilgesvaf the covariance
operator and may be used to express sample function ragularierms of the
decay of the eigenvalues of the covariance operator. Bedetapproaches to sam-
ple function regularity, one working from the covariancedtions, and one from
eigenvalues of the covariance operator, are useful in ipeagthen considering
Bayesian inverse problems for functions; this is becaus® aussian measures
may be specified via either the covariance function or thagarmce operator.

and we deduce that
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Theorem 6.24 Consider anR™—valued random field: on a bounded open set
D c R%. Assume that there are constafifss > 0 andd > 1 such that

Elu(z) = u(y)® < K|z —y[*™*.
Thenuw is almost surely Holder continuous dn with any exponent smaller than
min{l,e/0}. O

In this article we mainly work with priors specified throudtetcovariance op-
erator on a simple geometry, as this makes the expositior steaightforward.
Specifically we consider covariance operators construaseflactional powers of
operatorsA whose leading order behaviour is like that of the Laplaciaraect-
angle. Precisely we will assume that Assumptions 2.9 hold.

By using the Kolmorogorov continuity theorem we can now prthe following.

Lemma 6.25 Let A satisfy Assumptions 2.9 (i)—(iv). Consider a Gaussian mea-

surep = N(0,C) with C = A~ with « > £. Thenu ~ p is almost surely

s—Hdlder continuous for any exponesitk min{1, o — %}.
Proof. The Karhunen-Loeve expansion (6.4.2) shows that

=y W |a/2§k¢k z).

kek

Thus, for any. > 0 and forC' a (possibly changing) constant independent, af
andg¢,

Elu(z +h) —u(@)? <Y |k|2a|¢k x+h) — gp(x)|?
keK

<CY o |1<;|2a min{|k|?|n[%, 1}

kek

1
c/ L min{|k2 |2, 1}dk
k=1 |2

<C k|20~ |p2dk + C k|2 dk
NI [kl >|h|

< C|hf /Ih - g o [ ganintag,
1 R~
_ C(‘hyzﬂ(dm(ka)) n ‘hlfL(d72a)).
Making the optimal choice = 1 gives
Elu(z + h) — u(z)|? < C’|h|2a*d.
Thus, by Corollary 6.8 witl{ = R",
Elu(z) - u(y)* < Clz — y|?*= "



INVERSE PROBLEMS 89

for anyp € N. Choosing the exponends= 2p ande = (2a.— d)p — 2d and letting
p — oo, we deduce from Theorem 6.24 that the functiors-isHolder with any
exponents as specifiedl] O

Example 6.26 Assume that a Gaussian random field with meaguras the prop-
erty that, forX = C(D;R"), u(X) = 1. Then the Cameron-Martin space for this

measure, denoted t(;E, (-, ->E) , Is compactly embedded ik, by Theorem 6.11,
and hence there is a constdnt> 0 so that

I 1x <Cl - e

Hence pointwise evaluation is a continuous linear funeticon the Cameron-
Martin space so that this space may be viewed as an RKHS.

As an example consider the Gaussian meaddfe, 5.A~) on H, with A sat-
isfying Assumptions 2.9 (i)—(iv). Thep(X) = 1 for o > %l by Lemma 6.25.
The Cameron-Martin space is jugt'. This shows that the spaé¢” is compactly
embedded in the space of continuous functionsofas %. (Of course a related

fact follows more directly from the Sobolev embedding Tieeor2.10).0]

We now turn to Sobolev regularity, again using the Karhubheeave expansion.
Recall the Sobolev-like spaces (2.4.6) defirtty= D(A%/?).

Lemma 6.27 Consider a Gaussian measure= N (0, A~%) where A satisfies

Assumptions 2.9(i)—(iii) andv > g. Thenu ~ p is in ‘H*® almost surely for any

s€[0,a—9).

Proof. The Karhunen-Loeve expansion (6.4.2) shows that
keK
with {¢;} ani.i.d. A/(0, 1) sequence angj, = A\, “. Thus
Ellull? = Y wAi-
keK

If the sum is finite therE||u? < oo andu € H* u—almost surely. We have

S A= YA

k€K keK

Since the eigenvalues, of A grow like |k|?> we deduce that this sum is finite if
and only ifa > s + d/2, by comparison with an integrall O

It is interesting that the Holder and Sobolev exponentslipted by Lemmas
6.25 and Lemma 6.27 agree fér< o < & + 1. The proof of Holder regularity
uses Gaussianity in a fundamental way to obtain this prepkriparticular, in the
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proof of Lemma 6.25, we use the fact that the second momenao$§ians can be
used to bound arbitrarily high moments. Note that using thigov embedding
Theorem 2.10, together with Lemma 6.27, to determine Hdfdeperties does
not, of course, give results which are as sharp as thosenebtfiom Lemma 6.25.
For example, using Lemma 6.27 and Theorem 2.10 shows thasiclyyy > d
ensures that is almost surely continuous. On the other hand Lemma 6.2&sho
that choosingy = d ensures that: is almost surely Holder continuous with any
exponent less thad/2; in particularu is almost surely continuous.

Example 6.28 Consider the cas¢ = 2,n = 1 andD = [0, 1]?. Define the Gaus-
sian random field through the measpre- V(0 (—A) ™) whereA is the Lapla-
cian with domainH¢ (D) N H%(D). Then Assumptions 2.9 are satisfied by\.
By Lemma 6.27 it follows that choosing > 1 suffices to ensure that draws from
w are almost surely id?(D). Then, by Lemma 6.25, it follows that, in fact, draws
from 1 are almost surely i@’'(D). U

In many applications in this article we will be interestec¢constructing a proba-
bility measureu on a Hilbert spacét which is absolutely continuous with respect
to a given reference Gaussian measuyeWe can then write, via Theorem 6.2,

o) x oxp(-0(@)
o (x) x exp( —P(x) ). (6.5.4)
The Theorem 6.14 provides an explicit example of this stmgctvhery, andpg are
both Gaussian. For expression (6.5.4) to make sense weedbhat the potential

® : H — R is yp—measurable. Implicit in the statement of Theorem 6.14 is
just such a measurability property of the logarithm of thegiky between the two
Gaussian measures. We return to the structure (6.5.4),agalire case wherg is

not necessarily Gaussian, in the next subsection.

6.6. Bayesian Probability

Bayesian probablity forms the underpinnings of the apgrdadnverse problems
taken in this article. In this subsection we first discussgibieeral concept of con-
ditioned measures. We then turn to Bayesian probabilithénfinite dimensional
case, and finally generalize Bayes Theorem to the functianespetting. The fol-
lowing theorem is of central importance.

Theorem 6.29 Let 1, v be probability measures dfix T'where(S, A) and(T, B)
are measurable spaces. Denotd:byy) with € S andy € T an element of' x
T. Assume thal, < v and thatu has Radon-Nikodym derivativé with respect
to v. Assume further that the conditional distributiona9f underv, denoted by
vY(dx), exists. Then the conditional distribution fy underyu, denotedu? (dx),
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exists and.¥ <« v¥. The Radon-Nikodym derivative is given by

%(a@) _ {c(y)ﬁb(ﬂc ,y), ifc(y) >0,and

6.6.1
dvy 1 else ( )
with ¢(y) = [4 o(x,y) dv¥(x) forally € T. [

Given a probability triplet(Q2, F,P) and two setsd, B € F with P(A) >
0,P(B) > 0 we define the probabilities of given B and B given A by

P(A|B) = —~ P(AN B),

P(B)
P(B|A) — ﬁP(A " B).
Combining gives Bayes formula
P(AB) — ﬁP(BM)IP(A). (6.6.2)

If (u,y) € RExR’ is ajointly distributed pair of random variables with Lepas
densityp(u, y) then the infinitesimal version of the preceding formulastet that

p(uly) o< p(ylu)p(u), (6.6.3)
and where the normalization constant depends only. drhus
u
pluly) = —LWIP() (6.6.4)

Jra p(ylu)p(u)du’

This gives an expression for the probability of a randomala&w, given a single
observation of a random variablg which requires knowledge of only thgior
(unconditioned) probability density(«) and the conditional probability density
p(ylu) of y givenu. Both these expressions are readily available in many rtindel
scenarios, as we demonstrate in section 3. This observatithe starting point
for the Bayesian approach to probability. Furthermoreedtae a wide range of
sampling methods which are designed to sample probabiktgsures known only
upto a multiplicative constant (see section 5) and knowdegftthe normalization
constant is not required in this context: the formula (6.612y be used directly
to implement these algorithms. Recall that in the genergleBian framework
introduced in section 1 we refer to the observatioasdataand top(y|u) as the
likelihood of the data.

Example 6.30 Consider Example 6.22. The random variafley) is distributed
according to a measuyg)(u, y) which has density with respect to Lebesgue mea-
sure given by
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By completing the square we showed that the posterior pililyaimeasure foru
giveny is po(u|y) with density

1+ o2 o?+1 1 2
Wo(u|y) - (271'02 )exp(—( 202 )‘u— UQ—I—Iy‘ >

This result also follows from (6.6.3) which shows that

m(u,y)
TolUuw =
0( |y) fRd W(u,y)du
Now consider a random variable, y) distributed according to measyéu, y)
which has density(u, y) with respect tquo(u, y). We assume that > 0 every-
where onR¢ x R’. By Theorem 6.29 the random variable found by conditioning
u from p ony has density

B p(u,y)
Py = Ty mo(uly)du

with respect targ (u|y). O

The expression (6.6.3) may be rewritten to give an expradsiatheratio of the
posterior and prior pdfs:

p(uly)
x p(ylu), (6.6.5)
p(u) (wle)
with constant of proportionality which depends only pnand not ornu. Stated
this way the formula has a natural generalization to infiditeensions as we now
explain.

Let u be a random variable distributed according to meagygyren a separable
Banach spacéX, I| - H). We assume that trdatay € R™ is given in terms of the
observation operatog by the formulay = G(u)+n, wheren € R™ is independent
of u and has density with respect to Lebesgue measure; for simplicity we assume
that the support of is R™. Define®(u;y) to be any function which differs from
—log(p(y — G(u))) by an additive function of only. Hence it follows that

Py — G(u))
P(y)

with constant of proportionality independent@f Use of Bayes rule in the form
(6.6.5) suggests that the probability measured@iven y, denotedu? (du), has
Radon-Nikodym derivative with respect g given by
dp
dpo
We refer to such an argumentiagormal application of Bayes ruléNe now justify
the formula rigorously.

x exp (—‘I’(U; y))

(u) o exp(—P(u;y)). (6.6.6)
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Theorem 6.31 Assume thatj : X — R™ is continuous, thap has support equal
to R™ and thatug(X) = 1. Thenu|y is distributed according to the measure
1Y (du) which is absolutely continuous with respectig(du) and has Radon-
Nikodym derivative given by (6.6.6).

Proof. Throughout the proot’(y) denotes a constant depending mprbut not
on u, and possibly changing between occurences. Qgidy) = p(y)dy and
Q(dy|u) = p(y — G(u))dy. By construction

dQ

dTQO( lu) = C(y) exp(—‘I’(% y))

with constant of proportionality independentwafNow define

vo(dy, du) = Qo(dy) @ po(du),
v(dy, du) = Q(dy|u) pio(du).

Note thaty, is a product measure under whiehandy are independent random
variables. Sinc& : X — R™ is continuous we deduce thét : X — R is
continuous and hence, singg(X) = 1, is up—measurable. Thusis well-defined
and is absolutely continuous with respecigovith Radon-Nikodym derivative

dv

Gy o) = Cly)exp(=®(usy);

again the constant of proportionality depends onlyoNote that

| exp(=us)uoldn) =€) [ oy - Gw)nola) > 0
X X

sincep > 0 everywhere ofR™ and since : X — R™ is continuous. By Theorem
6.29 we have the desired result, singéduly) = po(du). O 0

Remark 6.32 Finally we remark that, ifs¥ is absolutely continuous with respect
to uo then any property which holds almost surely undgmwill also hold almost
surely undem:¥. The next example illustrates how useful this factis.

Example 6.33 Let o denote the Gaussian random field constructed in Example
6.28, witha: > 1 so that draws fronu are almost surely continuous. Now imagine
that we observe, the L?(D)—norm ofu drawn fromyg, subject to noise:

y = |Jul]”* +n.

We assume that ~ N(0,~2), independently of.. The L?(D)—norm is a continu-
ous function onX = C(D) andug(X) = 1; hence evaulation of the?(D)—norm
is p—measurable and the measyré(du) = P(duly) is absolutely continuous
with respect tq:y with Radon-Nikodym derivative given by

du

e () o< exp (=gl ).
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Note that the probability measurg’ is not Gaussian. Nonetheless, any function
drawn frompY is almost surely irC (D). [J

6.7. Metrics on Measures

In section 4 it will be important to estimate the distancensstn two probability
measures and thus we will be interested in metrics which uneakistance between
probability measures.

In this section we introduce two useful metrics on measuties:total varia-
tion distanceand theHellinger distance We discuss the relationships between
the metrics and indicate how they may be used to estimaterelif€es between
expectations of random variables under two different messsu

Assume that we have two probability measureand ./ both absolutely con-
tinuous with respect to the same reference measuréhe following define two
concepts of distance betwegrand.'.

Definition 6.34 Thetotal variation distancebetweenu andy/ is

Tv,uﬂ /‘

In particular, ify’ is absolutely continuous with respect;mhen

1
dr, ) == ‘1
(u 1) = 5 / o
Definition 6.35 TheHellinger distancebetweery andy’ is

fdu / d,u
e (M ,u \/ d_I/ - dl/ dV

In particular, ify’ is absolutely continuous with respect;tahen

dutiei) = (5 [ (1- ‘2—‘:)2@). (6.7.2)

The total variation distance as defined is invariant underctivice ofv in that
it is unchanged if a different reference measure, with retsjeewhichy, andy are
absolutely continuous, is used. Furthermore, it follovesrfithe definition that

0 < dn(p, i) < 1.

The Hellinger distance is also unchanged if a differentresfee measure, with
respect to whichu and .’ are absolutely continuous, is used. Furthermore, it fol-
lows from the definition that

(6.7.1)

O < dHeII(//[ﬂ ,u/) < 1
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The Hellinger and total variation distances are relatedbavs:

Lemma 6.36 Assume that two probability measuresand;’ are both absolutely
continuous with respect to a measutelhen

1

_dTV ) ' <dHeH ) ' <dTv ’ ' .
7 (1 1) (1 1) (1 1)

=

0

The Hellinger distance is particularly useful for estimgtithe difference be-
tween expectation values of functions of random variabledeu different mea-
sures. This idea is encapsulated in the following lemma:

Lemma 6.37 Assume that two probability measurgsandz’ on a Banach space
(X ol ||X) are both absolutely continuous with respect to a measufessume

also thatf : X — FE, where <E, Il - ||) is a Banach space, has second moments
with respect to bothy andy’. Then

1
I — B I < 2(BEI I + B I £11P)  dit, 1):

Furthermore, if(E, (0] - ||) is a Hilbert space and : X — FE has fourth
moments then

1B & f — B f @ £ < 2(BA A + B A1) duai 1)
U

Remark 6.38 Note, in particular, that choosin§ = E, and with f chosen to be
the identity mapping, we deduce that the differences in namhcovariance op-
erators under two measures are bounded above by the Heltiggance between
the two measured.]

6.8. Discussion and Bibliography

For a general classical introduction to probability theseg (Breiman 1992) and
for a modern treatment of the subject, see (Grimmett andakir 2001). For a
concise, modern (and more advanced) treatment of the sglee¢Williams 1991).
The text (Chorin and Hald 2006) provides an overview of tdosn probability
and stochastic processes aimed at applied mathematicians.

The discussion of Gaussian measures in a Hilbert space,rantsf Lemma
6.15 and Theorems 6.6, 6.2, 6.13 and 6.14, may be found inr@e &d Zabczyk
1992). Theorem 6.14 is also proved in (Bogachev 1998). Tdtares notes (Hairer
2009) are also a good source, and contain proof of Theoremstakll as the Fer-
nigue Theorem 6.9. The references (Bogachev 1998, Haifd, 20fshits 1995)
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all discuss Gaussian measures in the Banach space settingarticular Theo-
rem 6.4 is proved in (Lifshits 1995) and (Hairer 2009) hasca mixposition of the
Fernique Theorem.

The Karhunen-Loeve expansion is described in (Loeve 19G&ye 1978) and a
modern treatment of Gaussian random fields is containeddie(A4990). Recent
work exploiting the Karhunen-Loeve expansion to approtérsolutions of dif-
ferential equations with random coefficients may be foun(Sichwab and Todor
2006, Todor and Schwab 2007).

Theorem 6.29 is proved in (Dudley 2002), section 10.2. Fareeeal discussion
of Bayes rule in finite dimensions see, for example, (Bickel ®oksum 2001).
The approach to Bayes rule in infinite dimensions that we tilopheorem 6.31
was used to study a specific problem arising in signal praogsa (Hairer et
al. 2007). The topic of metrics on probability measures, famther references to
the literature, may be found in (Gibbs and Su 2002). Notetti@thoice of nor-
malization constants in the definitions of the total vadiatand Hellinger metrics
differs in the literature.
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