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Abstract Queueing theory is typically concerned with the solution of direct prob-
lems, where the trajectory of the queueing system, and laws thereof, are derived based
on a complete specification of the system, its inputs and initial conditions. In this pa-
per we point out the importance of inverse problems in queueing theory, which aim
to deduce unknown parameters of the system based on partially observed trajecto-
ries. We focus on the class of problems stemming from probing based methods for
packet switched telecommunications networks, which have become a central tool in
the measurement of the structure and performance of the Internet. We provide a gen-
eral definition of the inverse problems in this class and map out the key variants: the
analytical methods, the statistical methods and the design of experiments. We also
contribute to the theory in each of these subdomains. Accordingly, a particular in-
verse problem based on product-form queueing network theory is tackled in detail,
and a number of other examples are given. We also show how this inverse problem
viewpoint translates to the design of concrete Internet probing applications.
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1 Introduction

Consider a dynamical system governed by some known evolution equation. In a di-
rect problem, the parameters of this dynamical system are known and the goal is to
calculate the associated ‘trajectory’. In an inverse problem, one or more trajectories
are observed and, using the evolution equations of the system, one tries to deduce
(some of) the parameters which gave rise to those trajectories.

A typical example of an inverse problem is in acoustics. In the direct problem, the
parameters could be the location and shape of some obstacle as well as some input
signals with a given spatial and temporal structure. These parameters, when used
together with the theory of wave propagation and scattering, allow one to determine
the acoustic signal at any location and time. A classical inverse problem consists in
selecting appropriate input signals, measuring the resulting acoustic signal at certain
locations where such measurements are possible, and then leveraging the shape of
the solution of the direct problem to determine the unknown location and shape of
the obstacle.

Inverse problems are in fact ubiquitous in physics, and have well established in-
carnations in many other fields such as fluid dynamics and electromagnetism. They
have major applications in seismology, geophysics, medical imaging, and industrial
process monitoring, to quote just a few.

The following toy example exhibits many of the key features of inverse problems
which we consider in this paper, and allows us to introduce some terminology.

A mass initially at height y0 and with vertical speed v0 has a trajectory given by the

direct equation y(t) = y0 +v0t −g t2

2 . Assume that the initial conditions y0 and v0 are
hidden to some observer, who can only glimpse the trajectory at n different epochs,
and assume each glimpse allows the observer to make an accurate measurement, an
observation, of the mass’s location. Our inverse problem consists in determining the
unknown parameters y0 and v0 from the observations. It is easy to see that if n ≥ 2
and if the observer knows this direct evolution equation, then the observations suffice
for him to determine the unknown parameters unambiguously. If n = 1, the observer
can only infer a linear relationship between y0 and v0, and the inverse problem is
ill-posed or ambiguous, lacking a unique solution. Furthermore, if g is unknown then
the triple (y0, v0, g) can also be determined from such observations, and this is in fact
one of the ways for estimating local values of g.

Note that the direct equation of our toy system lives in continuous time (and
space). A natural inverse problem is to determine the parameters given observations
over continuous time. Instead, we consider a more difficult problem which consists
in inverting for the parameters based only on a finite number of observations. Part
of the great richness of inverse problems in general is that the nature of the obser-
vations may be constrained in many different ways, often corresponding to practical
limitations from applications, each case demanding different solution methods. Here
we will focus on discrete observations, and we distinguish two subcases:
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– passive observations where the glimpse times are not controlled by the observer;
– active observations where the observer can choose when the process is glimpsed.

In the latter setting certain constraints still apply; for example, often there is a fixed
budget n of available glimpses, or n may be infinite but a fixed average observation
rate is imposed.

Our toy example is deterministic. One obtains stochastic scenarios if random mea-
surement errors are considered, or more fundamentally, when replacing the direct
equation by a stochastic evolution equation. The inversion problem now becomes
one of statistical estimation of the unknown parameters from the observable time se-
ries. In the active case, a natural question is that of an optimal spacing of the glimpse
times, for example in the sense of minimal estimation variance.

Finally, our toy example and its stochastic versions are non-intrusive in that the act
of making observations did not perturb the system. A natural extension is to examine
the associated intrusive or perturbation problem; for example, each glimpse could add
a random impulse to the motion. Would it still be possible to measure the parameters
even in this case?

The general aim of this paper is to discuss a class of inverse problems of queueing
theory which find their origin in Internet probing.

Over the last 15 years or so a substantial amount of work has been devoted to
various types of communication network measurement techniques, all primarily trig-
gered by the need for Internet measurement tools. For instance, the reader can consult
[2, 8, 9, 12, 14, 21, 24, 32, 36]. The field of active probing of networks, for exam-
ple, seeks to infer the values of network parameters and the statistics of the teletraffic
flowing through it, based on test packets or probes which are sent across the network.
Here the network model is typically taken to be stochastic, and active (and intrusive)
observations are made using a finite number of probes. The IPPM Working Group of
the IETF and the ACM Sigcomm’s Internet Measurement Conference (IMC) provide
typical examples of communities where these questions are debated. There are also
user associations and communities, for example Grenouille [18] which has hundreds
of thousands of members, which rely on end-to-end measurements to determine the
service levels, and fairness of access, actually provided by Internet Service Providers
(ISPs).

It is our belief that much of what is attempted in these communities can be cast into
the framework of inverse problems in queueing theory, or more generally, of inverse
problems in discrete event dynamical systems theory. The present paper contains
new and recent results in this connection and proposes a classification of questions
and problems within this setting. A small number of recent works [1, 5, 6, 26–29, 38]
provide rigorous results of this type. The great majority of the literature, however, is
focussed on heuristic inversion methods.

Section 2 describes the main concepts of inverse problems in queueing theory and
gives a first classification of these problems. The paper is then structured into sections
with increasing levels of realism. Section 3 focuses on the case where the observa-
tions provide noiseless estimates of certain stationary distributions or moments. This
leads to a class of analytical inverse problems, where the main output of the method
is a closed-form formula or a terminating algorithm providing the exact value of the
unknown parameters from the observations.



62 Queueing Syst (2009) 63: 59–107

Section 4 is centered on statistical inverse problems, where observations are finite
time series and where the need is therefore for robust inversion methods taking the
noise into account. The main outputs of the method are: (1) a set of estimators that
are shown to be asymptotically consistent, and (2) recursive algorithms allowing one
to implement the estimation of the unknown parameters from the time series.

Sections 3 and 4 are based on rather specific parametric models which may not be
realistic for representing IP networks. The drawback of such parametric methods is
that they have to be checked on testbeds and adapted using heuristic modifications in
order to cope with real IP networks and traffic (as amply exemplified in e.g. the papers
published in the proceedings of the IMC). We will not pursue this line of thought
here. We will rather investigate methods which do not suffer from this weakness.
This is the object of Sect. 5 which is centered on inversion techniques that work for
general classes of models. For these more general systems, we will limit ourselves
to the non-intrusive case. In this case, we show that there exist probing strategies
leading to asymptotically consistent and minimal variance estimators of the unknown
parameters, and this regardless of the specific instance of model taken from this class.
The conclusions of Sect. 5 are guidelines and recommendations on how to ‘optimally’
act in this more general setting. This is linked to the general framework of the design
of experiments in statistics (see the thesis of B. Parker [31] for the application of this
methodology to packet networks).

2 Inverse problems in queueing theory

Our discussion of inverse problems in queueing theory will be from the viewpoint of
an Internet prober. That is, an entity whose network observations are derived from
probes which are inserted into the network, where the latter is modeled as a queue-
ing system. The default assumption is that only end-to-end measurements on probes
are available, that is, that the network does not cooperate in any way and so must
be treated as a ‘black box’. The reason for this is that Internet service providers
are generally either unable, or unwilling, to provide information on their network
or the traffic flowing on it. In addition, a route may traverse several Autonomous Sys-
tems (administrative domains), implying the need for cooperation across multiple,
and competing, providers. Probing is one of the main ways in which knowledge of
the growth and performance of the Internet, for example its interconnection graph or
topology, is known today. Indeed, service providers themselves use probing despite
the fact that they have the option of making measurements directly on their switch-
ing infrastructure. The flexible nature of probing, and its direct access to end-to-end
metrics important for network applications, makes it an important tool for providers
to learn about their own networks. For the end user, it is perhaps their only option.
Due to its practical importance, and considerable and growing literature, we focus on
this end-to-end probing viewpoint, although of course there exist many other types
of inverse problems pertaining to queueing theory. Within the IP network framework
there are for instance many interesting ISP-centric inverse problems too, which will
be briefly discussed in Sect. 2.10. There are also interesting problems in connec-
tion with other domains of applications of queueing theory. Let us quote for instance
the queue inference engine of R. Larson [25]. This inference engine was designed
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for ATM machines where the operator of the (cash) machine wants to evaluate the
distribution of the customer queue size. The observables are here the epochs of the
beginning and the end of all transactions (as recorded by the machine). The busy
periods of the single server queue representing the ATM machine can hence be re-
constructed from these observations; from this, the law of the queue size can then
be evaluated. As we see, the nature of the problem is quite different from what was
described above because the observables are quite different (the beginning and end of
each service time in the latter case, the arrival times to and the departure times from
the queue in the Internet probing case, assuming that one represents the IP path as a
single server queue).

2.1 Direct equations of queueing theory

Queueing theory studies the dynamics of stochastic processes in a network of queue-
ing stations, such as queue sizes, losses and delays, as a function of certain parame-
ters. These parameters can be related to the structure of the stations (the number of
servers, buffer sizes, service disciplines) or can be the distribution of the stochastic
processes driving the queueing network (e.g. the rate of some exogenous Poisson ar-
rival point process, or the law of the service times in a given station). The associated
direct equations may bear either on the joint law of these stochastic processes (e.g. the
queue sizes form a Markov chain in a Jackson network), or on the recursions satis-
fied by the random variables themselves (e.g. Lindley’s equation for the end-to-end
delays for ./GI/1 FIFO queues in series).

The solution of the direct equation bears on the law of these stochastic processes
and might be the steady state or the transient distribution. The solution in the re-
cursion viewpoint might be the steady state or the transient random state random
variable.

In the network probing setting, there are two types of customers in the network: the
customers (or packets) sent by regular users, often referred to as cross-traffic, and the
customers (or probes) sent by the prober performing the measurement experiment.
The former are typically fixed, namely the prober has no way to act on the cross-
traffic offered to the network, whereas the latter can be sent at will, at least in the case
of active probes.

Note that probes are themselves packets. In the active measurement case, their
sizes may be chosen at will within a range of values. In the case of the Internet, all
IP packets contain a header carrying essential information such as the IP address of
the destination, so that 0 size probes are not possible. The maximal size of an IP
packet is also fixed, which translates to an upper bound on probe size. In the passive
measurement case, probes are just normal packets sent as part of a given application,
for instance the packets of a Transport Control Protocol (TCP) flow in charge of
a file transfer. The probe sizes are then determined by the selected application and
associated network protocol.

A key question within this setting is whether the chosen parametric queueing
model is an acceptable approximation of the concrete communication network with
its cross-traffic and its probes. One most often needs a solution for the direct equa-
tion in order to solve the inverse problem. There is hence a crucial trade-off between
realism of the queueing model and the mathematical tractability of its direct equation.
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2.2 Noise

Deviations from ideal assumptions, which we denote generically by ‘noise’, are
present at several levels within this setting:

– Most queueing problems are random by nature: for instance, cross-traffic is best
represented as a random process. A key question here is whether the underlying
random processes are stationary or not. Since stationarity is most often desirable
for tractability, this will lead to upper bounds on the probing period which should
not exceed the timescale at which macroscopic, for example diurnal, changes oc-
cur.

– There may also be actual measurement noise in the data. In the probing frame-
work, most raw measurements consist of probe departure and arrival timestamps.
Neither timestamping, nor the clocks that underlie them, are perfect, and high pre-
cision is important in order to resolve small difference in latencies (system times)
arising from high capacity links (high service rates). The probability law of the
measurement errors can however be well approximated in many cases.

– Finally, there may be noise stemming from the nature of the data itself: all practical
time series obtained from a measurement experiment are finite, and so the resulting
estimators for parameters are non-degenerate random variables. In others words,
there are statistical errors in the parameter estimates.

In spite of all these random phenomena, it may still make sense to consider deter-
ministic direct equations. For instance, the law of a stationary and ergodic stochastic
process is a deterministic object, and the pointwise ergodic theorem shows that when
the observables contain an infinite time series of samples of such a process, these
allow one to reconstruct the stationary law in question with arbitrary precision. In
what follows, we will distinguish between noiseless inverse problems, which corre-
spond to a kind of mathematical idealization of reality (e.g. obtained with infinite
stationary and ergodic time series, which allow one to determine the exact value of
all mean quantities), and noise-aware or robust inverse problems where the intrinsic
randomness of the problem is faced.

2.3 Probing actions

The observables are generated through certain actions of the network prober. We
below describe what actions are allowed.

Choice of topology Whenever probes traverse more than a single station, the route
they follow must be specified. Here a route is an input–output/origin–destination pair.
Within the IP network setting these end points correspond to interfaces in IP routers.
In queueing theory, a natural incarnation is that of a route in the sense of Kelly-type
networks [23]. The chief scenarios are as follows. The network probing is:

– point-to-point when probes are sent from a single source to a single destination;
– point-to-multipoint when probes are sent from a single source to multiple destina-

tions (the network of queues traversed then has a tree-like topology);
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– multipoint-to-point in the case of multiple sources to a single destination;
– multipoint-to-multipoint in the case of multiple sources to multiple destinations.

In the point-to-multipoint case, the actual IP network experiment may differ depend-
ing on whether the network has native IP multicast available or not. In the former
case, probes fork out at each node of the network with a degree larger than 1, and
this is well represented by what happens in a Fork–Join queueing network [7]; in the
latter case, the experiment will in fact consist of a collection of coordinated point-
to-point schemes. In the other cases, the only possibility directly supported by the
current Internet is that of a collection of point-to-point schemes. Note that it is gener-
ally assumed that all probes traveling from a given source to a given destination pass
by the same sequence of internal stations (routers), though this can be generalized.

Passive probing actions Purely passive probing is in fact monitoring, and the only
freedom the experimenter enjoys is an ability to filter packets according to various
criteria, for example to only take note of TCP packets, and to decide which of these
to ‘baptize’ or tag as probes. A less restrictive case is when the prober can in addition
control certain overall parameters of probing traffic. In the IP setting, he could for
instance select an HTTP application which would initiate several TCP connections
whose packets would act as probes, or alternatively a UDP-based application like
Voice over IP (VoIP) could be used to generate a probe stream. Here the prober can
insure that probes of the desired transport and application type are present, and also
decide on when to start and end the flow(s), but there is still no control at the level of
individual packet timing.

Active probing actions Active probing consists in sending a set of probes at care-
fully selected epochs and with carefully chosen sizes. Complete control is possible
subject only to constraints on probe size and/or rate as noted above. We include in
this category the important case where the probe sizes and their emission times are
defined through stochastic processes with fully controlled parameters.

2.4 Observables

Observables are the raw data quantities available to the prober through conducting a
probing experiment, and derive from the probing actions just described. In the end-
to-end viewpoint, for each route this data consists of probe packet size and departure
timestamp at the origin, and loss indication and arriving timestamp (if applicable) at
the destination. Effectively therefore, the information is of two types for each route:
a loss indication for each probe marking whether it arrived at the destination or not,
and if applicable, the probe latency or delay in traversing the route.

In the case of active observations, the packet sizes and departure times are in fact
controlled by the prober and therefore already known. For simplicity we nonetheless
refer to these as observables.

2.5 Unknown parameters and performance metrics

In the context of communication network probing, typical parameters to be identified
would be:
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– structure parameters of the nodes/queueing stations traversed by the probes such
as the speed of the link/server, the buffer size, the service discipline used (e.g. to
check neutrality, an important requirement of the IETF that packets should not be
discriminated against on the basis of the application they stem from);

– cross-traffic parameters at a given node if the law of the cross-traffic is in a known
parametric class, or otherwise its full distribution.

It is often desirable to estimate certain performance metrics such as the packet loss
probability, or the distribution of packet latency, along a route or at a given node, in
the context of incomplete knowledge of the system parameters.

2.6 Intrusiveness, bias and restitution

Since probes are processed as customers by the queueing system, and moreover have
a minimum size which is positive, they interact with cross-traffic and so are inherently
intrusive. At first glance, this seems to make the inverse problems more difficult. In
fact, as we shall see, intrusiveness may be useful and can be leveraged in many cases
(for example, see the poly-phase methods introduced below).

As a result of intrusiveness, in general, the performance metrics of the system
with cross-traffic and probes differ from those of the system with cross-traffic only.
The performance metrics (or the parameters) of the system “without the probes” are
often referred to as the ground truth in the network probing literature. For instance,
the probability that a typical packet of the cross-traffic on a given route will be lost
if there were no probes, or the mean cross-traffic load at the kth router on a route,
belong to the ground truth. More generally, the parameters listed above (structural or
pertaining to cross-traffic) are by definition part of the ground truth.

An important question is the reconstruction of some ground truth metric from the
observation or the estimation of the metric for the perturbed system. This will be
referred to as restitution below.

Restitution may even be needed in the non-intrusive case (for example, when
probes have zero size and system time is the metric of interest) because of the sam-
pling bias problem: a typical example is when the ground truth can be evaluated from
certain time-averages and where probe-averages do not coincide with time-averages.

2.7 Identifiability, ambiguity

The observables, either implicitly or explicitly, carry information regarding a spa-
tiotemporal slice of the network experienced by the probes. This information is
clearly partial, which gives rise to a host of system identifiability questions. For ex-
ample, in the context of intrusive probing, it is not clear whether the restitution of
many ground truth metrics is possible even in principle.

We shall see below that some parameters or performance metrics of a queueing
system are not always identifiable from the observables. In some cases, different pa-
rameters can lead to the same observations.
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2.8 Estimation problems

As mentioned above in Sect. 2.2, in practice the duration of a probing experiment
compatible with stationarity is finite, and the number of probes that can be sent dur-
ing a finite time interval is likewise finite. As a result, in practice the observables con-
sist of time series of finite length, and inversion for the unknown parameters based
on them is no longer a deterministic problem, but one of statistical estimation. This
leads to a new class of problems in the design of such estimators, and the establish-
ment of their properties, in particular the classical ones of bias, variance, asymptotic
consistency and asymptotic normality.

In the case of active probing, the degrees of freedom in how probes are sent al-
low for another level of problems built on optimizing the statistical properties in the
above. For example, a natural question is to ask how probes should be spaced so as
to minimize estimation variance.

2.9 The prober’s path(s) to ground truth

Let us summarize by stressing that all paths to a given ground truth or performance
metric require the following series of steps:

(1) a tractable and yet realistic direct equation for the dynamics of the observables;
(2) a proof of the identifiability of the perturbed metric from the observables;
(3) the definition (and possibly the optimization) of estimators for these metrics;
(4) the design of a restitution mechanism allowing one to reconstruct the ground

truth from the perturbed or biased metrics.

The aim of the following sections is to illustrate the above in a few fundamental
scenarios. Fortunately enough, some of the requirements may be relaxed in some
cases; one may for instance

– idealize step 3, by assuming an infinite time series and therefore, for example,
a full knowledge of the stationary distribution of some observable; this leads to
deterministic problems that will be illustrated in Sect. 3;

– avoid step 4, by selecting an active probing strategy involving probes rare and
small enough to have almost no impact, which justifies a claim that the perturbed
and unperturbed systems are the same in practice.

Of course, the validity of such simplifications will have to be discussed in detail.

2.10 ISP-centric inverse queueing problems

The scenarios considered in the remainder of the paper focus on point-to-point in-
verse problems (which are often more challenging than their multipoint counterparts)
arising in active Internet probing with end-to-end observables. For the sake of com-
pleteness, we now add a few words on other practical incarnations of inverse prob-
lems in queueing theory stemming from the ISP viewpoint.

The simplest observables for an ISP are time series of individual queue sizes and
traffic (service times and packet sizes and arrival times) at the input or output ports
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of its own routers. The ISP has the privileged option of directly and non-intrusively
monitoring these, though at the cost of additional monitoring hardware. Its actions
then primarily consist in choosing when and what queues or traffic processes to mon-
itor. The parameters and metrics of interest are quite different from, in some sense
inverse to, those alluded to in the above. An elegant example is that of the reconstruc-
tion of end-to-end metrics, such as the packet-loss point process or the fluctuations
of end-to-end delays (jitter) experienced by a typical user whose packets pass by the
monitored router, given the node-based observables.

Other aspects of the problem, such as the direct equations to be used, their random
nature, the resulting need for estimators of the metrics of interest, are all quite similar
to what was described above in the Internet prober case.

3 Noiseless inverse queueing problems

As mentioned above, in this section we assume that the availability of an infinite
time series has provided perfect knowledge of the distribution function of the end-to-
end stationary observables, so that step 3 from Sect. 2.9 may be skipped. This is an
idealization of the noise-aware case, which we study in Sect. 4.

Within this context, we discuss three types of classical models of queueing the-
ory on which Internet probing type inversion is possible: M/G/1, M/M/1 loss, and
Kelly networks. The methods described in this section all leverage the fact that probes
are intrusive. They consist in varying the probing rate and in observing how the sys-
tem reacts to this variation. There are again various levels of realism: one can either
assume, as in Sect. 3.1, that the mapping that describes the variation of the observa-
tion as a function of the probing rate can be deduced from the observations, or pursue
a more realistic scenario (considered in the other subsections) where one knows the
value of this variation at some finite number of points (probing rates), as in the ‘finite
number of glimpses’ scenario of the Introduction.

There is a small literature on this analytic approach, scattered in the communica-
tion network literature, particularly the proceedings of venues with a strong Internet
focus. Among these the first seems to be [38]. Another early paper advocating an ana-
lytical inversion for the estimation of loss processes in networks is [1]. The approach
in the latter is moment-based (see below).

3.1 The M/G/1 queue

Before probes are injected, the system consists of a FIFO M/G/1 queue with a sin-
gle server with speed 1. The input rate λ and the service distribution G are the two
unknown parameters of cross-traffic. The sizes of probes obey a law K (this is the
service time for probes) and arrive according to a Poisson point process with rate x.
The active prober only has access to the distribution of end-to-end delays of probes.
Can he reconstruct the unknown parameters λ and G?

The direct equation is the Pollaczek–Khinchin (PK) formula [40] which stipulates
that the stationary waiting times of probes have, for Laplace Transform (LT),

̂W(s) = (1 − xK − λG)s

s − x(1 − ̂K(s)) − λ(1 − ̂G(s))
,
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where ̂K(·) and ̂G(·) denote the LT of K and G respectively, and K and G their
means. We assume that

xK + λG < 1

which is necessary and sufficient for the existence of a stationary regime. Since λ

and G are unknown, it is impossible to check this condition without prior knowledge.
Most Internet resources have a moderate utilization factor (i.e. λG rarely exceeds
3/4 or even 1/2) and if xK � 1, then the last condition is quite likely to hold. Note
that as a general principle probing overhead should be kept small, in order to avoid
consuming network bandwidth, to reduce intrusiveness, and to prevent probes being
confused with network attacks, so assuming xK � 1 is quite reasonable.

From our infinite-time series assumption, we have access to any function of the
stationary end-to-end delay process of probes. In particular, the function ̂W(s) is
indirectly observable (i.e. can be obtained from the direct delay observable) for all
values of x and K since the waiting time of a probe is obtained by subtracting its
service time—which is known to the prober—from its end-to-end delay.

We now proceed to invert the direct equation. By letting s go to infinity, we have

̂W(∞) = Px(W = 0) = 1 − xK − λG = κ(x)

which is also indirectly observable. Hence for all x, 1 − κ(x) = xK + λG. Pick two
different values x1 and x2 of x. The linear system

1 − κ(x1) = x1K + λG,

1 − κ(x2) = x2K + λG
(1)

determines λ and G, which, substituting into the PK transform

̂G(s) = (1 − xK − λG)s

̂W(s)λ
− s − x − λ + x ̂K(s)

λ
, (2)

determines the transform of the entire law G. Therefore, our two unknown parameters
can be unambiguously estimated from such observables.

This approach also allows us to estimate the ground truth stationary end-to-end
delay distribution. The restitution formula consists in again applying the PK formula
for waiting time, but this time without the probe traffic, which is possible since λ and
G are now known.

The main weaknesses of the present approach should be clear:

– it requires the estimation of distribution functions (here LTs) rather than moments;
it may be desirable to have moment-based methods (see Sects. 3.2 and 3.4 below);

– it in fact requires several infinite time series, one per value of x; for instance, the
solution of the linear system (1) would in practice require two successive phases:
a phase where the prober sends probes at rate x1 and collects enough samples to
have a precise enough estimate of the stationary probability Px1(W = 0) that a
probe sees an empty system upon arrival; a phase where he sends probes at rate x2
and obtains estimates for Px2(W = 0), which is a new system requiring a new time
series. It would be desirable to have mono-phase inversion techniques.
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3.2 The M/M/1 queue

The setting of this section is slightly different from that of the last section. The system
is a M/M/1 FIFO queue with a server of unknown speed μ. Cross-traffic is Poisson
with unknown intensity λ and exponential packets with mean 1. The active prober
sends Poisson probes with rate x to the system. All probes have exponential size
of mean 1. Can one reconstruct λ and μ when observing only the mean stationary
end-to-end delays experienced by the probes?

The stationary mean number of packets and probes in the station is

N(x) = λ + x

μ − λ − x
,

under the condition λ + x < μ. From Little’s formula the mean end-to-end delay D

of probes (or packets) is

D(x) = N

λ + x
= 1

μ − λ − x
. (3)

This formula, which is our direct equation, shows that the constant μ − λ, which
carries the interpretation of residual bandwidth, can be reconstructed from the ob-
servation of D associated with two different values of x. However, the individual
constants μ and λ cannot be reconstructed individually from this alone. Fortunately
enough, this mean residual bandwidth is sufficient for the restitution of the ground
truth cross-traffic delay D(0) = 1

μ−λ
.

Let us summarize our conclusions on this case: we have here a first-moment based,
though poly-phase (here two-phase) probing strategy allowing one to determine un-
ambiguously the mean residual bandwidth of an M/M/1 queue solely from the mea-
surement of the empirical mean end-to-end delays experienced by probes. Within this
context, the problem of identifying the intensity of cross-traffic or the speed of the
server is however ill-posed.

When adding second-order estimates, one obtains the additional information
needed to resolve the two parameters. For instance, when sending packet pairs with
size y at the same time, one gets that their system times, D and D′, are such that
D′ − D = y/μ so that μ can be determined (this packet-pair method actually holds
for all G/G/1 FIFO queues). In reality, two packets cannot arrive exactly at the same
time. It is shown in Appendix 6.1 that in the M/M/1 queue, two packets with size y

sent t seconds apart have system times D and D′ which are such that, as t goes to 0,

E(DD′) = K(y) − t

(

(1 − ρ)y + ρ

μ

)

+ o(t)

where K(y) is some constant. The slope w.r.t. t of the function t → E(DD′) is
(1 − ρ)y + ρ

μ
and it can be estimated, so that 1 − ρ and ρ

μ
can also be estimated

to arbitrary precision, using different values of y. This determines both λ and μ un-
ambiguously.

There are other practical methods to evaluate μ not based on moments. The sim-
plest one consists in sending probes with constant size y and in looking for the probes



Queueing Syst (2009) 63: 59–107 71

with minimal delay. This minimal delay of course allows one to determine μ unam-
biguously.

3.3 The M/M/1/B queue

The setting is the following: the prober sends Poisson probes with rate x into a system
which, without the probes, would be an M/M/1/B queue with Poisson (cross-traffic)
input point process of unknown intensity λ. Cross-traffic packets are assumed to have
exponential sizes of parameter 1, and the prober emulates this by choosing to send
probes with the same size distribution.

Under natural independence assumptions, the full system (with cross-traffic and
probes) is an M/M/1/B queue with arrival rate λ + x and service rate μ. The direct
equation is the following classical expression for the stationary loss probability p(x)

(see for example [40]):

p(x) = ( λ+x
μ

)B − ( λ+x
μ

)B+1

1 − ( λ+x
μ

)B+1
. (4)

Similarly, the probability q(x) that the queue is empty is

q(x) = 1 − λ+x
μ

1 − ( λ+x
μ

)B+1
. (5)

Can one determine λ, μ and B , assuming that these parameters (or some of them) are
unknown?

From our infinite-time series assumption, we have access to the loss rate p(x)

as well as to the sequence of end-to-end delays for each probe. Using packet-pair
techniques [32], or alternatively by observing delay minima when probes are chosen
of constant size, it is possible to extract the server speed μ. We therefore assume that
μ is known. One key consequence of knowing μ is that the prober then knows the
service time of each probe, and he can therefore measure the empirical probability
q(x) that the queue is empty, since for probes which encounter an empty queue the
observed end-to-end delay is equal to the service time.

Assume a poly-phase probing scheme with N different probe intensities xi ,
i = 1, . . . ,N . Within our noiseless setting, the prober’s measurements allow him to
determine the associated loss rate pi and empty queue probability qi , and hence to
compute the ratio ri = pi

qi
. From (4) and (5), the following should hold for all mea-

sured ratios:

∀1 ≤ i ≤ N, ri = r(xi) = p(xi)

q(xi)
=

(

λ + xi

μ

)B

,

where r(x) is the polynomial (λ + x)B/μB . For all N ≥ 1 let LN(x) denote the
Lagrange polynomial interpolating the points (xi, ri), i = 1, . . . ,N , namely the poly-
nomial in x of degree at most N − 1 defined by the formula

LN(x) =
N

∑

i=1

ri
∏

j 	=i

x − xj

xi − xj

.
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For N ≥ B + 1, we have LN(x) = r(x) for all x. Hence λ and B can be determined
as follows:

– B is the degree of LN(x);
– ( λ

μ
)B is the constant term of LN(x) (or −λ is the unique real root of LN(x)).

The main limitation of this characterization is that we do not know when N ≥
B + 1, i.e. how many phases are needed. In other words, we have an algorithm which
converges to the correct values when letting N go to infinity, but we have no termi-
nation criterion for this algorithm. The following lemma and theorem provide such a
termination criterion.

Lemma 1 Consider the set of polynomials rλ,μ,B(x) with B ranging over the positive
integers and λ and μ over the positive real line. Two different polynomials of this
family intersect in at most 2 points of the positive real line.

Proof Consider the polynomials P1(x) = rλ1,μ1,B1 and P2(x) = rλ2,μ2,B2 . One can
assume without loss of generality that λ1 > λ2. Let δ = λ1 − λ2. Setting y = x + λ2,
the equality P1(x) = P2(x) now reads

(y + δ)B1 = μ
B1
1

μ
B2
2

yB2 .

If B1 ≤ B2, let k = B2 − B1. The equality is equivalent to

(

1 + δ

y

)B1

y−k = μ
B1
1

μ
B2
2

.

The left-hand term is a decreasing function of y for positive y, and the right-hand
term is constant. There is therefore at most 1 solution for positive y and hence for
positive x.

If B1 > B2, let k = B1 − B2. The equality is equivalent to

(

1 + δ

y

)B1

yk = μ
B1
1

μ
B2
2

.

Assume there exist at least 3 positive solutions 0 < y1 < y2 < y3. Then applying
Rolle’s theorem to the function f (y) = (1 + δ

y
)B1yk , we get that there are two points

y4 ∈]y1;y2[ and y5 ∈]y2;y3[ such that ∂f (y4)
∂y

= 0 and ∂f (y5)
∂y

= 0. Now, note that the
derivative

∂f

∂y
= yk−1

(

1 + δ

y

)B1−1(

k

(

1 + δ

y

)

− B1δ

y

)

admits only one zero y = δB2
k

, which contradicts the existence of 3 solutions y1 <

y2 < y3. �
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Theorem 1 Assume we have a set of observation points (xi, ri), i = 1, . . . ,N , stem-
ming from an M/M/1/B queue with parameters λ and μ. If N > 2 and if the La-
grange polynomial LN(x) interpolating the points (xi, ri), i = 1, . . . ,N , can be writ-
ten as (

̂λ+x
μ̂

)
̂B for some positive integer ̂B and some positive numbers ̂λ and μ̂, then

B = ̂B and̂λ = λ.

Proof This is a consequence of Lemma 1. The polynomials LN(x) and rλ,μ,B(x)

intersect in N > 2 points, and therefore are equal. �

We have hence a termination rule: increase the cardinal N of the set of points
(xi, ri), i = 1, . . . ,N , until the Lagrange polynomial LN(x) interpolating these
points is of the form (

̂λ+x
μ̂

)
̂B .

We can hence reconstruct the ground truth (on the intensity of cross-traffic and on
the loss probability for cross-traffic packets in the absence of probes) by using the
formulas for the M/M/1/B queue again, since all the missing parameters are now
determined.

More elaborate questions can be addressed along similar lines, for example con-
cerning the determination of the parameters when μ is unknown, but we will not
pursue this line of thought here as our aim is more to illustrate the set of problems
and solution methods than to provide an exhaustive set of solutions.

3.4 Kelly networks

The systems treated thus far were hardly networks. This subsection is focused on
point-to-point probing with many stations, for which we propose a queueing model
based on product form theory, and a poly-phase, moment-based inversion method
based on a linear interpolation. Since this system will be our reference model in what
follows, we provide a discussion, in Appendix 6.2, of how well it maps to real IP
networks.

3.4.1 The system

We first describe the system without its probes. It consists of a Kelly network with K

stations S = s1, . . . , sK = D and K +1 routes. Route 0 has an exogenous arrival point
process which is Poisson of intensity λ0 and follows the path s1, . . . , sK . Route i, for
i 	= 0 has an exogenous Poisson arrival process of intensity λi and its path is the
singleton si . All packets have exponential size with mean 1. The service rate (or the
speed) of si is μi .

The prober sends probes according to a Poisson point process with rate x and with
exponential sizes with mean 1. Probes follow the same path as flow 0 (namely from
S to D). We are hence within the context of point-to-point probing.

The unknown parameters are λ0, λ1, . . . , λK,μ1, . . . ,μK . The observables are the
stationary end-to-end delays experienced by the probes.
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3.4.2 The direct equation

Let us first give the stationary distribution of the end-to-end delays of probes, our
direct equation within this setting.

Let us denote by N
j
i and Xj the number of packets of class i, and the number

of probes respectively, in station j in steady state. From the product form of Kelly
networks [23], we know that if x + λ0 + λj < μj for all j , then

P
(

Xj = kj ,N
j

0 = n
j

0,N
j
j = n

j
j , j = 1, . . . ,K

)

=
K
∏

j=1

(n
j

0 + n
j
j + kj )!

n
j

0!nj
j !kj !

λ
n

j
0

0 λ
n

j
j

j xkj

μ
n

j
0+n

j
j +kj

j

μj − λ0 − λj − x

μj

. (6)

Let γj = μj −λ0 −λj denote the residual bandwidth on station j . Direct calculations
show that the marginal distribution of the number of probes is

P
(

Xj = kj , j = 1, . . . ,K
)

=
∑

n1
1≥0

· · ·
∑

nK
K≥0

∑

n1
0≥0

· · ·
∑

nK
0 ≥0

P
(

Xj = kj ,N
j

0 = n
j

0,N
j
j = n

j
j , j = 1, . . . ,K

)

=
K
∏

j=1

(

x

γj

)kj

γj − x

γj

. (7)

These equations tell us that our system is equivalent, from the point of view of the
probes, to a new system with K M/M/1 stations in series, without any cross-traffic,
and where the server of station j has speed γj = μj − λj − λ0, namely the residual
bandwidth on station j in the initial system. From this point on, we will therefore
consider such a network. The fact that residual bandwidths are sufficient to charac-
terize (as well as the best one can hope to determine from) stationary end-to-end
delays is in line with what was already observed in the one-station case considered
in Sect. 3.2.

The generating function of the total number of probes in the (reduced) system in
equilibrium is

ψN(z) =
K
∏

j=1

γj − x

γj − xz
. (8)

Since probe arrivals are Poisson, PASTA [4] tells us that the distribution of the total
number of probes in the system in steady state as given by (7) is the same as that just
before a probe arrives. The latter also coincides with the probability distribution of
the number of probes in the system just after a probe leaves it (see [4], Chap. 3). In
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addition, the mean value of D(x) of the stationary end-to-end delay of a probe in the
network is

D(x) =
K

∑

i=1

1

γi − x
. (9)

The proof of this formula, which is the basis of what follows, can be found in Appen-
dix 6.3.

Remark 1 More general classes of cross-traffic paths can also be considered within
this framework. In such an extension, there are as many traffic paths as there are
pairs of integers (i, j) with 1 ≤ i ≤ j ≤ K . A path of type (i, j) brings cross-traffic
which is Poisson and enters the network on station i and leaves it from station K .
The methodology described above works in this more general setting. It is easy to
show that the final result is exactly the same as above, namely (8) and (9) still hold
with γi now equal to μi − ξi , where ξi denotes the sum of the intensities on all paths
traversing node i.

3.4.3 Linear system inversion

In this case, we use a first-moment poly-phase inversion technique, under the fol-
lowing assumption: the prober can measure the mean end-to-end delay of probes for
each phase, and the number of stations is known (in real IP networks the latter can be
measured by such tools as traceroute). We will explain how the prober can compute
the coefficients of the polynomial whose roots are the residual bandwidths of each
station on the path.

From (9) the mean end-to-end delay can be expressed as follows:

D(x) =
K

∑

i=1

1

γi − x
=

∑K−1
k=0 akx

k

∑K
k=0 bkxk

, (10)

where ak, bk are real numbers defined by

K
∑

k=0

bkx
k =

K
∏

i=1

(γi − x),

K−1
∑

k=0

akx
k =

K
∑

i=1

∏

j 	=i

(γj − x).

So

bk = (−1)k
∑

(i1,...,iK−k),ij 	=il

γi1 · · ·γiK−k
,

ak = (−1)k(k + 1)
∑

(i1,...,iK−1−k),ij 	=il

γi1 · · ·γiK−1−k
= (−1)(k + 1)bk+1.

The γis are the roots of the denominator polynomial
∑K

i=0 bkx
k . Therefore, if we

identify the bk variables, we have solved the inverse problem that consists in deter-
mining all residual bandwidths from the observations.
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We now show how to find the coefficients of the polynomial. Assume we have
K perfect measurements dj = D(xj ) of the mean delays for K different values
x1, . . . , xK of the probe rate (we will consider the situation with a number of phases
larger than K in Sect. 4.1). The method is hence moment-based and poly-phase. We
want to find (bk)k=0,...,K such that

∀j = 1, . . . ,K, dj =
∑K−1

k=0 akx
k
j

∑K
k=0 bkx

k
j

=
∑K−1

k=0 −(k + 1)bk+1x
k
j

∑K
k=0 bkx

k
j

. (11)

Rational fractions are defined up to a multiplicative factor: we can hence always
assume that bK = 1. The system is now equivalent to

∀j = 1, . . . ,K,

K−1
∑

k=0

djx
k
j bk +

K−1
∑

k=1

kxk−1
j bk = −djx

K
j − KxK−1

j , (12)

which can be written as the matrix equation Y = XB , where X is the K × K square
matrix

Xj,k = (

(k − 1)xk−2
j + djx

k−1
j

)

, j, k = 1, . . . ,K

and Y (resp. B) the column vector Yj = −KxK−1
j − djx

K
j (resp. Bj = bj−1). When

X is invertible, there is only one solution B = X−1Y .
We lack sufficient conditions for X to be invertible. The prober will therefore have

to continue adding phases until X becomes invertible.

Numerical illustration Table 1 gives some numerical results for this method. The
first column indicates the ground truth, i.e. the real values of (γ1, . . . , γK). The
second column specifies the probing intensities that were used, that is, the vec-
tor (x1, . . . , xK). The third column consists of the coefficients of the polynomial
∑K

i=0 bix
i , which we write as the vector Bt = (b0, . . . , bK−1). Finally, the last col-

umn gives the estimation of our method, i.e. the values of (γ̂1, . . . , γ̂K). The technique
was implemented using Maple, and provides accurate results in all the cases we tried.
However, with 7 (or even 5) stations, one can already notice some rounding errors in
the calculations. These errors, which stem both from the inversion of the matrix X

Table 1 Linear inversion in Kelly networks: numerical results

Ground truth Intensities Vector B Estimation

(10, 30, 70) (1, 2, 7) (−21000,3100,−110) (10, 30, 70)

(10, 25, (0.3, 1, (−3.15 × 107,6.43 × 106, (10, 25,

30, 60, 70) 2, 4, 7) −4.49 × 105,1390,−195) 29.99, 60.08, 69.92)

(10, 12, 25, (0.001, 0.3, 1, (−6 × 1010,1.76 × 1010,−1.97 × 109, (10, 12, 25.05,

30, 60, 2, 4, 1.08 × 108,−3.12 × 106, 29.84, 62.72,

85, 130) 7, 9.7) 4.74 × 104,−354) 78.78, 135.3)
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and the determination of the roots of the polynomial
∑K

k=0 bkx
k , grow as the number

of stations increases.

4 Noise-aware methods

To the best of our knowledge the methods introduced in this section are new in the
queueing theory context. They will all be exemplified on the Kelly network model.
The section starts with an adaptation of the method of Sect. 3.4.3 to the case of
error-prone (i.e., with noise) estimations of end-to-end delays (Sect. 4.1). The latter is
moment-based but poly-phase, and fails to find stable estimators. We then present in
Sect. 4.2 distribution-based but mono-phase inversion method using maximum likeli-
hood. The maximum likelihood method is then revisited in Sect. 4.3 using the Expec-
tation Maximization algorithm, which leads to an explicit iteration scheme. Finally,
we investigate in Sect. 4.4 the situation where an additive measurement noise has to
be taken into account.

4.1 Minimizing quadratic-like error in Kelly networks

The setting is that of Sect. 3.4.3, but we now take into account the fact that the variable
dj in (11) is some error-prone measurement of the stationary mean delays of the
probes of phase j . Assuming that the linear system is of full rank, (12) has still one
unique solution. However, as shown in Table 2, the method is extremely sensitive to
the presence of noise, and solutions are meaningless with as little as 1% error in the
measurements.

This sensitivity to noise is due to several reasons: first, the algorithm finds one
exact rational fraction, but this fraction interpolates the noised measurements (this is
the overfitting phenomenon). Second, the imprecision is multiplied when taking the
inverse of X and then when finding the roots of the polynomial. The concatenation
of these operations is quite unstable.

In order to prevent the overfitting phenomenon, we explored the classical solu-
tion consisting in increasing the number of measurements. Let us assume we have
N > K error-prone measures dj = D(xj ) of the mean delays for N different values
x1, . . . , xN of the probing rate.

Table 2 Numerical results for linear interpolation. Delays are measured with 1% error (half with 1%
more, half with 1% less). Intensities are similar to the ones used in Table 1

Ground truth Vector B Estimation

(10, 30, 70) (6564,−938,19.9) (−44.4, 10.9, 13.6)

(10, 25, 30, (−14405,3039, (−2.46 − 5.22i,−2.46 + 5.22i,

60, 70) −358,86,−15.82) 6.191 − 3.66i,6.191 + 3.66i,8.35)

(10, 12, 25, (1.55 × 106,−3.82 × 105, (−3.42,0.1 − 4i,0.1 + 4i,

30, 60, 3100,1186, 5.31 − 2.62i,5.31 + 2.62i,

85, 130) −891,232,−25.5) 8.21,9.91)
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Following the same lines as in Sect. 3.4.3, we arrive at the matrix equation
X̃B = Ỹ , where X̃ is the N × K matrix with (i, k) entry equal to (k − 1)xk−2

i +
dix

k−1
i , and where Ỹ is the N × 1 vector with i entry −KxK−1

i − dix
K
i .

This corresponds to a multiple linear regression, with more measurements than
parameters. There is often no unique solution to such a system. A common way to
circumvent this difficulty is to select the value ̂B that minimizes the sum of the square
errors in each equation:

̂B = min
B

(Ỹ − X̃B)t (Ỹ − X̃B) = min
(b0,...,bK−1,1)

N
∑

j=1

[

K
∑

k=0

(

kxk−1
j + djx

k
j

)

bk

]2

. (13)

The least-squares error solution to (13) is ̂B = (X̃t X̃)−1X̃t Ỹ .
Notice that finding the coefficients bk which minimize the sum in (13) is not

equivalent to minimizing the square of the differences between the left-hand side
and the right-hand side of (11). We have in fact multiplied the j th difference by
∑K

k=0 bkx
k
j = ∏K

i=1(γi − xj ) before looking for the minimum. The last product is
positive and decreasing as xj increases, so that we put more weight on less intru-
sive measures. There are several other ways of estimating B (e.g. through total least-
square methods [16]) and it would be interesting to compare them. We will not pursue
this line of thought as the last step of the inversion method (that consisting in deter-
mining the zeros of a polynomial from its coefficients) is in any case likely to be
unstable, as illustrated by the following numerical example.

Numerical illustration A Maple implementation indicates that the overfitting cor-
rection is not sufficient. We still get complex roots to the polynomial. We conjecture
that this is due to the instability when inverting the matrix X̃t X̃ and when finding
the roots of the polynomial. A small error in the measured delay is amplified by the
matrix inversion, and it is well known that a small difference in the coefficients of
a polynomial can have a huge impact on its roots. Table 3 provides a few numeri-
cal results for the 3-stations case. This instability motivates the maximum likelihood
methods studied in the next subsections.

Table 3 Least-squares linear regression in the 3-servers case. The ground truth is (10, 30, 70). Error in
mean delay is 1%

N Intensities Vector B Estimation

3 (1, 2, 7) (6563,−938,19.9) (−44.4,10.9,13.6)

5 (0.3, 1, 2, 4, 7) (−6075,914,−39.8) (9.8,14.99 − 19.9i,14.99 + 19.9i)

7 (0.001, 0.3, 1, 2, 4, 7, 9.7) (−9583,1417,−55.14) (9.88,22.6 − 21.4i,22.6 + 21.4i)

10 (0.001, 0.3, 0.5, 1, 2,

4, 4.3, 7, 8.7, 9.7) (−10766,1610,−62.7) (9.9,26.4 − 19.8i,26.4 + 19.8i)
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4.2 Maximum likelihood in Kelly networks

The network and its probes are as in Sect. 3.4. The observables are now a finite time
series of probe end-to-end delays and not an exact moment or distribution as in that
section. In this section, we will assume that all samples are identically distributed
(i.e. we assume stationarity) and independent. The latter assumption is of course not
true in general as samples collected at two epochs with a finite time difference are
in fact (Markov) correlated. However, if inter-probe times are chosen larger in mean
than the mixing time of the system, then it is justified to assume independence. The
case with dependent samples will be considered in Sect. 5.

The proof of the following lemma, which provides the direct equation to be used
what follows, can be found in Appendix 6.3.

Lemma 2 Let φ(d) denote the probability density function at d ≥ 0 of the stationary
delay D of a probe in the system. Then

φγ1,...,γK
(d) =

(

K
∏

i=1

γ ′
i

)

K
∑

i=1

e−γ ′
i d

∏

j 	=i (γ
′
j − γ ′

i )
, (14)

with γ ′
i = γi − x.

The problem can hence be viewed as a classical statistical problem, that of fitting
distributions of this class.

4.2.1 The one-station case

For K = 1, one can somewhat simplify the notation: the speed of the link is μ; the
cross-traffic intensity is λ and the probe intensity is x. The system is a FIFO M/M/1
queue. The distribution of the delay D of probes is exponential of parameter γ ′ =
μ − λ − x, namely it admits the density φγ (d) = γ ′e−γ ′d , for all d ≥ 0. Assume
we have several independent delay samples (d1, . . . , dn). Let d = (d1, . . . , dn). For
independent probe delays, the likelihood of the parameter γ is defined as

fd(γ ) =
n

∏

i=1

φγ (di) = γ ′ne−γ ′ ∑n
i=1 di .

The maximum likelihood estimator of the parameter γ̂ is the maximum of the
likelihood function. This function is positive, and has 0 as a limit when γ ′ tends to 0
or to ∞. At γ̂ , we have dfd(γ )

dγ
= 0, which is equivalent to

nγ̂ ′n−1e−γ̂ ′ ∑n
i=1 di − γ̂ ′n

n
∑

i=1

die
−γ̂ ′ ∑n

i=1 di = 0.

Hence

γ̂ ′ = n
∑n

i=1 di

= 1

d
. (15)
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The maximum of likelihood for the available bandwidth is hence: μ̂−̂λ = γ̂ = 1
d

+x.
This, together with the strong law of large numbers, shows asymptotic consistency:
i.e., the estimator converges to the ground truth when the number of probes tends to
infinity.

4.2.2 The two-station case

In what follows, we will use the notation γi to mean γ ′
i for the sake of notational

simplification.
We first evaluate the log-likelihood function and then pose the likelihood equa-

tion (18). The key results are: (i) the fact that (18) allows one to determine the MLE
estimator, and (ii) that the latter is asymptotically efficient (Theorem 2). This conver-
gence is illustrated by simulation results.

The end-to-end delay of a probe is the sum of two independent exponential random
variables of parameters γ1 and γ2 (see (14)). Its density at d > 0 is hence

φγ1,γ2(d) = γ1γ2
e−γ1d − e−γ2d

γ2 − γ1
. (16)

If γ2 = γ1 = γ (which has essentially no chance of occurring in practice), the density
becomes γ 2de−γ d , which coincides with the limit γ2 → γ1 of (16).

The likelihood function when we have n independent probe delays (d1, . . . , dn) =
d is

fd(γ1, γ2) =
n

∏

i=1

φγ1,γ2(di). (17)

We proceed as above by determining the values of the residual capacities that maxi-
mize the log-likelihood function logf :

logfd(γ1, γ2) = n
(

log(γ1) + log(γ2) − log(γ2 − γ1)
)

+
n

∑

i=1

log
(

e−γ1di − e−γ2di
)

.

At any local extremum, therefore at (γ̂1, γ̂2), we have:

∂ logfd(γ1, γ2)

∂γ1

∣

∣

∣

∣

γ̂1,γ̂2

= 0 = nγ̂2

γ̂1(γ̂2 − γ̂1)
−

n
∑

i=1

di

1 − e−(γ̂2−γ̂1)di
,

∂ logfd(γ1, γ2)

∂γ2

∣

∣

∣

∣

γ̂1,γ̂2

= 0 = −nγ̂1

γ̂2(γ̂2 − γ̂1)
+

n
∑

i=1

di

e(γ̂2−γ̂1)di − 1
.

(18)

This equation, which is instrumental in determining the MLE numerically, will be
referred to as the likelihood equation in what follows. Here are important observa-
tions: under the natural non-degeneracy assumption satisfied here, the value of γ̂1, γ̂2
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which maximizes the likelihood is a stationary point, namely a solution of the likeli-
hood equation. However, even in this simple two-station case, there may be spurious
solutions to this equation, like e.g. local maxima or minima or saddle points. So for
locating the global maximum (i.e. the ML estimator) one should first determine all
the solutions of the likelihood equation and then determine the solution with maxi-
mal likelihood. More can be said on the matter when the number of samples is large.
Setting X = γ̂1

γ̂2
and Y = (γ̂2 − γ̂1), (18) now reads:

1

X
= Y

n

n
∑

i=1

di

1 − e−diY
, X = Y

n

n
∑

i=1

di

ediY − 1
. (19)

Note that γ̂2 = Y
1−X

and γ̂1 = XY
1−X

. Multiplying both equations, we get that Y is a
solution of the fixed-point equation

Y = g(Y ) =
((

1

n

n
∑

i=1

di

1 − e−diY

)(

1

n

n
∑

i=1

di

ediY − 1

))− 1
2

. (20)

Notice that 0 is always a solution of (20), when extending the right-hand side by
continuity. Once a non-zero solution Y of (20) is obtained, X is derived from (19)
and this gives a non-degenerate solution to (18). In general, (20) can have either no
other solution (than 0), or several other solutions, depending on n and on the sequence
of random samples which are chosen. However, the situation simplifies significantly
when n is large. Assume that γ2 > γ1. Then, by the strong law of large numbers, for
all Y > 0,

lim
n→∞

1

n

n
∑

i=1

di

1 − e−diY
= E

(

D

1 − e−DY

)

= γ1γ2

γ2 − γ1

∫ ∞

0

t

1 − e−Y t

(

e−γ1t − e−γ2t
)

dt

= γ1γ2

γ2 − γ1

∑

k≥0

(

1

(γ1 + kY )2
− 1

(γ2 + kY )2

)

.

Similarly,

lim
n→∞

1

n

n
∑

i=1

e−diY di

1 − e−diY
= γ1γ2

γ2 − γ1

∑

k≥1

(

1

(γ1 + kY )2
− 1

(γ2 + kY )2

)

.

Hence, for n large, (20) is approximately equivalent to

1
γ1γ2

γ2−γ1

√
ξ(0)ξ(1)

− Y = 0 (21)

with ξ(i) = ∑

k≥i (
1

(γ1+kY )2 − 1
(γ2+kY )2 ). It is easy to show that (21) always admits

0 and γ2 − γ1 as solutions. The function on the L.H.S. of (21) is depicted in Fig. 1
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Fig. 1 Shape of the fixed-point equation: L.H.S. of (21)

where one sees that 0 and γ2 − γ1 are the only solutions. Hence, we argue that for n

large enough, spurious solutions will concentrate around 0 so that γ2 − γ1 will be the
only other solution.

The main result on this MLE approach is:

Theorem 2 The MLE (γ̂1, γ̂2) is asymptotically consistent. That is, (γ̂1, γ̂2) almost
surely converges to the true parameters (γ1, γ2) when the number of samples n tends
to infinity.

Proof The proof relies on Theorem 7.49 and Lemma 7.54 of [37] which state that if

(1) φψ1,ψ2(d) is continuous in (ψ1,ψ2) for every d ;
(2) ∀θ 	= (γ1, γ2),∃Nθ open set s.t. θ ∈ Nθ and

Eγ1,γ2

[

inf
ψ∈Nθ

log

(

φγ1,γ2(d)

φψ1,ψ2(d)

)]

> −∞;

(3) the parameter space Ω is a compact set,

then the MLE estimator (γ̂1, γ̂2) converges almost surely to the true parameters
(γ1, γ2). In the last expression and below, Eγ1,γ2 [g(d)] means integration of the func-
tion g(d) w.r.t. the density φγ1,γ2(·).

Let us show that our problem verifies the conditions of the theorem. The function
φγ1,γ2(d) is continuous in (γ1, γ2), so that property 1 is verified. By convexity of the
exponential function, for all a < b real, (b−a)xe−bx ≤ e−ax −e−bx ≤ (b−a)xe−ax.

Therefore,

γ1γ2de−γ2d ≤ φγ1,γ2(d) ≤ γ1γ2de−γ1d, (22)

up to a reordering of γ1 and γ2. Therefore, we have:

γ1γ2

ψ1ψ2
e(ψ1−γ2)d ≤ φγ1,γ2(d)

φψ1,ψ2(d)
.
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This implies

inf
ψ∈Nθ

(

log

(

γ1γ2

ψ1ψ2

)

+ (ψ1 − γ2)d

)

≤ inf
ψ∈Nθ

log
φγ1,γ2(d)

φψ1,ψ2(d)
.

Since Eγ1,γ2[d] = ( 1
γ1

+ 1
γ2

), we have

log

(

γ1γ2

supψ∈Nθ
ψ1 supψ∈Nθ

ψ2

)

−
(

γ2 − inf
ψ∈Nθ

ψ1

)

(

γ −1
1 + γ −1

2

)

≤ Eγ1,γ2

[

inf
ψ∈Nθ

log

(

φγ1,γ2(d)

φψ1,ψ2(d)

)]

.

Hence for all bounded open sets Nθ ,

Eγ1,γ2

[

inf
ψ∈Nθ

log

(

φγ1,γ2(d)

φψ1,ψ2(d)

)]

> −∞,

so that property 2 is verified. Finally, remember that the parameters are residual band-
width. Therefore, without losing any meaningful solution, we can restrict the natural
parameter space ]0;∞[2 to a space [ε,A]2, where ε is a very small capacity (for
example, 1 packet per year) and A is the highest capacity of existing routers. �

Remark that Theorem 7.49 of [37] is more general, and that property 3 can be
replaced by the following: ∃C ⊆ Ω compact set s.t. (γ1, γ2) ∈ C and

Eγ1,γ2

[

inf
ψ∈Ω\C log

(

φγ1,γ2(d)

φψ1,ψ2(d)

)]

> 0,

which would allow us to consider any positive value as an acceptable parameter. We
are confident that the general form of the theorem holds, and simulations were con-
sistent with this. We choose to use the restricted parameter space because when ε and
A are well chosen, the restricted parameter space includes all meaningful parameters
for the system we consider in practice. Therefore, restricting the parameter space is
equivalent to rejecting solutions that we know to be impossible. The question whether
the result still holds when taking Ω =]0;∞[2 is still open.

We now evaluate the MLE by simulation where delays are generated according
to the theoretical law. Residual capacity estimates are obtained using the following
technique inspired by the above: we numerically locate the first zero of (20) which
is not in the neighborhood of the origin. We use a stopping precision of 10−4 in the
procedure for finding this zero (a value of 10−8 produced the same estimator). In each
case, results are averaged over 1000 independent experiments.

Figure 2 plots γ̂1 and γ̂2 when (γ1, γ2) = (1,2.2) as a function of the number
of probes n. The results are quite satisfying: for 1000 samples 80% of estimates
have error below 10%, and this drops to 4% for 100,000 probes. It is clear that the
estimation variance drops, and the right-hand plot shows that it does so as O(1/n),
as expected. Notice that γ2 − γ1 is underestimated. The bias decreases with n also,
though this is less obvious in the plots since the decay is much slower than the decay
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Fig. 2 Precision of the estimated γ1 = 1 (left) and γ2 = 2.2 (middle), and variances (right, note log scale)
as a function of n

of variance. In other words, the MLE is dominated by the bias for large n. If instead
we use (γ1, γ2) = (1,7.4), we approximately obtain the same precision for γ̂2 and
improved precision for γ̂1.

It is well known, and to be expected, that the maximum likelihood estimator is
biased (although the consistency property implies that asymptotically it is not). For
example, in the case of a single server of residual capacity γ and a single probe, the
estimator γ̂ is simply the inverse of the probe delay D. By convexity of the function
f (x) = 1

x
, we get:

E[γ̂ ] = E

[

1

D

]

>
1

E[D] = γ.

4.2.3 More than two stations

This section is focused on the generalization to a path with K routers. We follow the
same approach as for the two-stations case. We still use γi in place of γ ′

i .
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According to (14), the likelihood function for n independent end-to-end probe
delays d1, . . . , dn is

fd(γ1, . . . , γK) =
n

∏

i=1

K
∑

j=1

(

∏

k 	=j

γk

γk − γj

)

γj e
−γj di

=
(

K
∏

p=1

γ n
p

)

n
∏

i=1

K
∑

j=1

(

∏

k 	=j

1

γk − γj

)

e−γj di .

Therefore, we get the following expression for the log-likelihood:

log
(

fd(γ1, . . . , γK)
) = n

K
∑

p=1

ln(γp) +
n

∑

i=1

log

(

K
∑

j=1

(

∏

k 	=j

1

γk − γj

)

e−γj di

)

, (23)

so that the likelihood equation reads:

∂ log(fd(γ1, . . . , γK))

∂γl

= n

γl

+
n

∑

i=1

1
∑K

j=1(
∏

k 	=j
1

γk−γj
)e−γj di

×
[(

e−γldi
∏

k 	=l

1

(γk − γl)

∑

k 	=l

1

(γk − γl)

)

−
(

die
−γldi

∏

k 	=l

1

(γk − γl)

)

−
(

∑

j 	=l

e−γj di

γl − γj

∏

k 	=j

1

γk − γj

)]

.

We found no closed-form solution to this system of equation, and instead turn to the
Expectation–Maximization algorithm considered below.

4.3 Expectation–maximization algorithm

The Maximum Likelihood estimator is very often analytically difficult or even im-
possible to derive. One way to overcome this difficulty is to use Expectation–
Maximization (E–M). Basically, the E–M algorithm uses additional unknown data
in order to find a sufficient statistic and so simplify the maximization problem. The
use of E–M algorithm for fitting general phase-type distributions was first described
by Asmussen et al. in [3]. The setting considered in the present paper, namely the fit-
ting of sums of independent exponential random variables, is much more specific and
this allows us to give explicit iteration formulas and also to prove the convergence
of the algorithm, which has not been done for general phase-type distributions to the
best of our knowledge.



86 Queueing Syst (2009) 63: 59–107

4.3.1 The two-stations case

In the two-links case, the incomplete data are the end-to-end delays di of probes,
i = 1, . . . , n. We complete them by the delay on the first link li for all probes, i =
1, . . . , n, and l = (l1, . . . , ln) denotes their vector. The section starts with the definition
of the E–M algorithm in this setting, and then shows that it converges to a solution of
the likelihood equation. This proof, which is one of the main mathematical results of
the paper, is structured in three lemmas (Lemmas 3 to 5).

The heuristic idea of the E–M algorithm is as follows: The MLE is defined by

(γ̂1, γ̂2) = argmax
θ1,θ2

log
(

fd(θ1, θ2)
)

,

with fd(θ1, θ2) defined in (17), which is not easy to compute. If we knew the complete
data (l,d), it would be quite easy to find

argmax
θ1,θ2

log
(

˜fl,d(θ1, θ2)
)

because this is equivalent to finding

argmax
θ1,θ2

log
(

˜fl,˜l(θ1, θ2)
)

,

where ˜fl,d(θ1, θ2) = φθ1,θ2(d1, l1, . . . , dn, ln) is the complete likelihood of the com-
plete data and ˜li = di − li is the delay on the second link, and because the latter is
simply

(

argmax
θ1

log
(

fl(θ1)
)

, argmax
θ2

log
(

f
˜l(θ2)

)

)

,

due to the independence between the vectors l and˜l.
Since the complete data are unknown, one estimates them; more precisely, one

starts from some estimate (γ
(k)
1 , γ

(k)
2 ) of the parameters and, for these parameters,

one computes the conditional density

φ
γ

(k)
1 ,γ

(k)
2

(l|d)

at l = (l1, . . . , ln) of the delays on the first links given the end-to-end delays
(d1, . . . , dn) = d. One then computes the expectation of the function

l → log
(

˜fl,d(θ1, θ2)
)

w.r.t. the last conditional density, and then maximizes the last expectation w.r.t.
(θ1, θ2). This gives a new estimate of the parameters, and one iterates this calcula-
tion.

More precisely, let

Qd(θ1, θ2|γ1, γ2) = Eφγ1,γ2 (l|d) log
(

˜fl,d(θ1, θ2)
)

. (24)
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The E–M-algorithm can be defined as follows:

E–M Algorithm: Take any random (γ
(0)
1 , γ

(0)
2 ) and for each positive integer k, do

the following:

– Expectation step: compute Qd(θ1, θ2|γ (k)
1 , γ

(k)
2 ).

– Maximization step: compute

(

γ
(k+1)
1 , γ

(k+1)
2

) = argmax
(θ1,θ2)

Qd
(

θ1, θ2|γ (k)
1 , γ

(k)
2

)

. (25)

The following lemma illustrates the tractability of this approach:

Lemma 3 In the two-routers case, for all k ≥ 0, (25) is equivalent to

1

γ
(k+1)
1

= 1

n

n
∑

i=1

die
(γ

(k)
2 −γ

(k)
1 )di

e(γ
(k)
2 −γ

(k)
1 )di − 1

− 1

γ
(k)
2 − γ

(k)
1

, (26)

and

1

γ
(k+1)
2

= 1

γ
(k)
2 − γ

(k)
1

− 1

n

n
∑

i=1

di

e(γ
(k)
2 −γ

(k)
1 )di − 1

. (27)

Proof We have

φγ1,γ2(l|d) = φγ1,γ2(l, d)

φγ1,γ2(d)
= γ1γ2e

−γ1le−γ2(d−l)

γ1γ2
e−γ1d−e−γ2d

γ2−γ1

= (γ2 − γ1)e
(γ2−γ1)l

e(γ2−γ1)d − 1
, (28)

so that

φγ1,γ2(l|d) = (γ2 − γ1)
ne(γ2−γ1)

∑n
i=1 li

∏n
i=1(e

(γ2−γ1)di − 1)
. (29)

The expectation step gives:

Qd(θ1, θ2|γ1, γ2)

=
n

∑

i=1

∫ di

0
log

(

θ1θ2e
−θ2di e(θ2−θ1)li

) (γ2 − γ1)e
(γ2−γ1)li

e(γ2−γ1)di − 1
dli

=
n

∑

i=1

log(θ1) + log(θ2) − θ2di − θ2 − θ1

γ2 − γ1
+ (θ2 − θ1)die

(γ2−γ1)di

e(γ2−γ1)di − 1
, (30)

so that

∂Qd(θ1, θ2|γ1, γ2)

∂θ1
= n

θ1
+ n

γ2 − γ1
−

n
∑

i=1

die
(γ2−γ1)di

e(γ2−γ1)di − 1
,



88 Queueing Syst (2009) 63: 59–107

and

∂Qd(θ1, θ2|γ1, γ2)

∂θ2
= n

θ2
− n

γ2 − γ1
+

n
∑

i=1

di

e(γ2−γ1)di − 1
.

The announced result then follows from the maximization step. �

Two important remarks are in order:

– For all k, 1
γ

(k+1)
1

> 0 and 1
γ

(k+1)
2

> 0. This follows from the fact that

e(γ
(k)
2 −γ

(k)
1 )di − 1 <

(

γ
(k)
2 − γ

(k)
1

)

die
(γ

(k)
2 −γ

(k)
1 )di .

Therefore,

die
(γ

(k)
2 −γ

(k)
1 )di

e(γ
(k)
2 −γ

(k)
1 )di − 1

>
1

γ
(k)
2 − γ

(k)
1

and (26) show that 1
γ

(k+1)
1

> 0. Similarly,

e(γ
(k)
2 −γ

(k)
1 )di − 1 >

(

γ
(k)
2 − γ

(k)
1

)

di.

Therefore,

di

e(γ
(k)
2 −γ

(k)
1 )di − 1

<
1

γ
(k)
2 − γ

(k)
1

and (27) imply 1
γ

(k+1)
2

> 0.

– For all k ≥ 0,

1

γ
(k+1)
1

+ 1

γ
(k+1)
2

= 1

n

n
∑

i=1

di . (31)

This is immediate when adding up (26) and (27).

Here are now the main results on the E–M algorithm in this case.

Lemma 4 The sequence logfd(γ
(k)
1 , γ

(k)
2 ) is increasing and converges to a finite

limit.

An obvious corollary of this lemma is that the sequence fd(γ
(k)
1 , γ

(k)
2 ) is also

increasing and converges to a finite limit. The proof, which is based on a classical
information theoretic inequality, can be found in e.g. [37]; we recall the main steps
in Appendix 6.4.1 as some parts of this proof are needed in what follows.

The fact that the sequence fd(γ
(k)
1 , γ

(k)
2 ) converges does not prove yet that

(γ
(k)
1 , γ

(k)
2 ) converges, and even if it does so, it could converge to some value which

is not a solution of the likelihood equation. However, for this particular case:
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Lemma 5 The sequence (γ
(k)
1 , γ

(k)
2 ) converges to a finite limit (γ ∗

1 , γ ∗
2 ) which is a

solution of the likelihood equation.

Proofs for each of these statements appear in Appendix 6.4. Note that we pro-
vide an original proof based on a continuity argument, because the natural sufficient
conditions adapted from [13] for the convergence of (γ

(k)
1 , γ

(k)
2 ) do not hold here.

As a direct corollary of these lemmas, if the likelihood equation has a unique solu-
tion which is a maximum, then this is the maximal likelihood estimator and the E–M
algorithm converges to it, which itself converges to the ground truth as n increases
(Theorem 2).

4.3.2 More than two stations

Denote by lj,i the time spent by probe i on link j . If there is only one probe, we just
write lj for the time it spends on link j . Hence

φγ1,...,γK
(l1, . . . , lK−1|d) = φγ1,...,γK

(l1, . . . , lK−1, d)

φγ1,...,γK
(d)

= γ1 · · ·γKe−γ1l1 · · · e−γK−1lK−1e−γK(d−l1−···−lK−1)

γ1 · · ·γK

∑K
j=1(

∏

k 	=j
1

γk−γj
)e−γj d

= e−γKd
∏K−1

j=1 e(γK−γj )lj

∑K
j=1(

∏

k 	=j
1

γk−γj
)e−γj d

=
∏K−1

j=1 e(γK−γj )lj

∑K
j=1(

∏

k 	=j
1

γk−γj
)e(γK−γj )d

. (32)

Then, for a sample of n independent probe delays, we have (with the same notation
as above):

Qd(θ1, . . . , θK |γ1, . . . , γK) =
n

∑

i=1

E
[

log
(

˜f(l(1,i),...,l(K−1,i),di )(θ1, . . . , θK)
)]

where the expectation bears on the variables l(1,i), . . . , l(K−1,i) and is with respect to
the conditional density

φγ1,...,γK
(l(1,i), . . . , l(K−1,i)|di).

This leads to the following integral expression:

Qd(θ1, . . . , θK |γ1, . . . , γK)

=
n

∑

i=1

∫ di

l(1,i)=0

· · ·
∫ di−∑K−2

j=1 l(j,i)

l(K−1,i)=0

∏K−1
j=1 e(γK−γj )l(j,i)

∑K
j=1(

∏

k 	=j
1

γk−γj
)e(γK−γj )di
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× log

(

θ1 · · · θKe−θKdi

K−1
∏

j=1

e(θK−θj )l(j,i)

)

dl(1,i) · · · dl(K−1,i)

=
n

∑

i=1

αi(di)

∫ di

l(1,i)=0

· · ·
∫ di−∑K−2

j=1 l(j,i)

l(K−1,i)=0

K−1
∏

j=1

e(γK−γj )l(j,i)

×
(

log(θK) − θKdi +
K−1
∑

j=1

(

log(θj ) + (θK − θj )l(j,i)
)

)

dl(1,i) · · · dl(K−1,i),

with

αi(di) = 1
∑K

j=1(
∏

k 	=j
1

γk−γj
)e(γK−γj )di

. (33)

These integrals show that Qd(θ1, . . . , θK |γ1, . . . , γK) is an affine function of the vari-
ables θj and log θj ∀1 ≤ j ≤ K . This means that taking its partial derivative with re-
spect to any θj and setting it to zero will give a simple equation of the form a

θj
+b = 0

to solve, which will provide the solution of the maximization step in closed form. Let
us illustrate this by:

Lemma 6 For the three-routers case, for all k ≥ 0, (25) is equivalent to
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(k)
3 − γ

(k)
2

γ
(k)
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and

1

γ
(k+1)
3

= 1

n

n
∑

i=1

di − 1

γ
(k+1)
2

− 1

γ
(k+1)
1

. (36)

Proof The proof can be found in Appendix 6.5. �

Table 4 provides simulation results for the 3-stations case.

4.4 Additive measurement noise

We consider now the case with additive noise in measurements. We return to the
single-station case but we now assume that all delays have some measurement noise
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Table 4 Precision of estimator (γ̂1, γ̂2, γ̂3) for various ground truths. Experiments have 104 probes and
are repeated 200 times

Ground truth Mean 10% percentile 90% percentile Variance

(1, 10, 100) (1, 9.99, 101) (0.98, 9.11, 78.9 ) (1.02, 10.9, 129) (1.5 × 10−4, 0.43, 320)

(1, 10, 20) (1, 9.83, 22.2) (0.99, 7.93, 15.7) (1.02, 11.9, 30.6) (1.5 × 10−4, 2.3, 35)

(1, 10, 11) (1, 8.35, 14.4) (0.99, 6.83, 11.02) (1.02, 9.87, 18.5) (1.5 × 10−4, 1.35, 9.43)

(1, 100, 110) (1, 68.7, 188) (0.99, 59.4, 165) (1.01, 77.7, 213) (1.1 × 10−4, 52.5, 418)

(1, 2, 100) (1, 2.01, 91.4) (0.97, 1.88, 72.1) (1.04, 2.15, 111) (7 × 10−4, 0.01, 223)

(1, 1.2, 100) (1, 1.2, 89,7) (0.93, 1.1, 72.2) (1.08, 1.32, 107) (3.3 × 10−3, 6.8 × 10−3, 212)

(1, 1.2, 10) (1.07, 1.09, 13) (1.05, 1.07, 9.85) (1.08, 1.1, 17.1) (1.4 × 10−4, 1.7 × 10−4, 8.19)

(1, 1.2, 1.4) (1.04, 1.105, 1.48) (1, 1.04, 1.36) (1.1, 1.2, 1.67) (1.2 × 10−3, 3 × 10−3, 0.015)

which consists in adding an independent random variable which is uniform in [0, a].
The density of the noised delay D is then

φγ (d) =
{

∫ d

0
1
a
γ ′e−γ ′(d−x) dx = 1−e−γ ′d

a
if 0 ≤ d < a,

∫ a

0
1
a
γ ′e−γ ′(d−x) dx = e−γ ′d (eγ ′a−1)

a
if d ≥ a.

The likelihood to measure n delays d1 ≤ d2 ≤ · · · ≤ dk−1 < a ≤ dk ≤ · · · ≤ dn is:

fd(γ ) = 1

an
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.

Direct calculations give that
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Hence, the maximum likelihood estimator γ̂ , which verifies the relation

∂ logfd(γ )

∂γ
(γ̂ ) = 0,

is such that

k−1
∑

i=1

di
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1 − e−γ̂ ′a =
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di. (37)

The function

γ̂ ′ →
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∑

i=1

di

1 − e−γ̂ ′di
+ (n − k + 1)
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1 − e−γ̂ ′a
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is increasing. There is therefore only one solution to (37), which can easily be found
using numerical techniques. It is easy to check that

Eγ ′
[

D

1 − e−γ ′D 1D<a

]

+ a

1 − e−γ ′a Pγ ′(D ≥ a)

=
∫ a

0

t

1 − e−γ ′t
1 − e−γ ′t

a
dt + a

1 − e−γ ′a

∫ ∞

a

e−γ ′t (eγ ′a − 1)

a
dt

=
∫ a

0

t

a
dt + e−γ ′a

∫ ∞

a

e−γ ′t dt = a

2
+ 1

γ ′ = Eγ ′ [D]. (38)

Hence (38) is equivalent to (37) when the number of probes n tends to infinity. This
shows the asymptotic consistency of MLE estimator for one station and uniform
noise.

In practice, timestamps are measured at the departure and the arrival of packets.
Assuming that timestamps suffer from a uniformly distributed noise, the measured
delay is the real delay plus two independent uniform noise variables. The design of
maximum likelihood techniques for such noise structures and working for several
station in series is an interesting open question.

5 Optimal probing strategies

We have already pointed out that in the error-prone case, once statistical estimators
of parameters have been derived based on a given probing stream, one could consider
going further by asking how their performance can be optimized by taking advantage
of the free parameters of active probing. The difficulty here is that exploring richer
probing streams, for example moving away from Poisson probing, implies dealing
with more complex direct equations.

In this section we show how taking a more general point of view can lead to insight
into the nature of probing streams which are likely to lead to good properties for the
associated estimators, such as low estimation variance. To simplify the problem, we
focus on the case of non-intrusive probes which have no impact on the system, namely
the network and its cross-traffic.

Section 5.1, which builds upon ideas discussed in [5], bears on a question which is
often referred to as the sampling bias problem and which in fact addresses the issue
of the asymptotic consistency of empirical mean estimators.

Section 5.2 bears on the minimization of variance within this context. The main
ideas stem from [6].

Section 5.3 discusses a few open problems in the case of maximum likelihood
estimators.

5.1 Sampling bias

Consider the following non-intrusive variant of the problem considered in Sect. 4.2.1.
The network consists of a single station with cross-traffic consisting in a Poisson point



Queueing Syst (2009) 63: 59–107 93

process (with intensity λ) of exponentially sized packets (with mean service time μ).
One wants to estimate the residual bandwidth μ − λ.

For this, one sends probes of zero size to this system according to some stationary
point process which is not necessary Poisson. Let N = {Tn}n denote the points of this
point process and let {W(t)}t denote the stationary workload process in the station
(since probes have 0 size, this workload is also the ground-truth workload). We will
assume this stochastic process to be right-continuous. For all n, let Dn = W(Tn).
Since the system is FIFO and all probes have 0 size, Dn is the end-to-end delay
measured from probe n. If N and {W(t)}t are jointly stationary, then the sequence
{Dn}n is stationary too. If in addition N and {W(t)}t are jointly ergodic, then the
pointwise ergodic theorem implies that

lim
n→∞

1

n

n
∑

i=1

Dn = E
0
N

[

W(0)
]

, a.s. (39)

In the last equation, E0
N denotes expectation w.r.t. the Palm probability P 0

N of the
point process N (see [4]). But if N and {W(t)}t are independent, then E0

N [W(0)] =
E[W(0)], namely probe averages see time averages. Hence, under our assumptions,

lim
n→∞

1

n

n
∑

i=1

Dn = 1

μ − λ
(40)

a.s., so that we then always have an asymptotically consistent estimator for the resid-
ual bandwidth.

Assume now that the network and its cross-traffic form a G/G/1 queue with a
server with speed 1 and packets with size distributed according to some probability
law F on the positive real line. Let {W(t)} denote the workload process in this queue.
Assume one sends non-intrusive probes according to the point process N . If we have
joint stationarity and ergodicity of the two last processes, then

lim
n→∞

1

n

n
∑

i=1

1(Dn = 0) = P 0
N

[

W(0) = 0
]

, (41)

a.s. If N and {W(t)} are independent, then P 0
N [W(0) = 0] = P [W(0) = 0]. But for all

G/G/1 queues, P [W(0) = 0] = 1−ρ, where ρ is the load factor of the queue. Hence,
under the foregoing assumptions, we have an asymptotically consistent estimator for
the load factor, which holds for all G/G/1 systems.

Until relatively recently, whenever the ground truth was some time average (or
some function of a time average as in the above where the available bandwidth is the
inverse of the mean stationary workload), it was recommended to use Poisson probes,
namely probes sent at the epochs of a Poisson point process [33, 39]. The rationale
for that was that since Poisson Arrivals See Time Averages [4], the samples of the
metrics estimated by Poisson probes allow one to estimate this ground truth.

The arguments used above show that there is in fact no fundamental reason for
using Poisson probes in the non-intrusive case and that a wide variety of other prob-
ing strategies share the same ‘lack of sampling bias’, or more precisely asymptotic
consistency property.
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Let us list and discuss the key assumptions of the last derivation so as to reach
a general statement. We consider some system with a continuous time state {W(t)}t
assumed to be stationary and ergodic and where the unknown parameters can be
determined from the knowledge of E[W(0)]. If the prober chooses some probing-
point process N = {Tn} which is

(1) non-intrusive;
(2) stationary;
(3) independent of {W(t)};
(4) jointly ergodic with {W(t)},
and if he can observe the quantities Dn = W(Tn), then the empirical mean of the
observations is an asymptotically consistent estimator of E[W(0)] and hence of the
unknown parameters.

All the above assumptions are necessary. For instance, in the G/G/1 queue exam-
ple, assumption 3 does not hold when N is the point process of all or some selected
arrivals of the cross-traffic. In this case (which could be seen as an embodiment of
passive measurement), the empirical mean converges but to E0

N [W(0)] which is then
different from E[W(0)] in general. As for assumption 4, if for instance N and {W(t)}
are both periodic, then there is no joint ergodicity (we have a phase lock) and empir-
ical averages converge to random variables that depend on some random phase. In
none of theses cases do we have an asymptotically consistent estimator of E[W(0)].

It is easy for the prober to build a stationary point process independent of {W(t)},
for instance by making use of a stationary renewal process. A simple way to guarantee
assumption 4 is to require that this point process be mixing. Indeed, the product of a
mixing and an ergodic shift is ergodic [35].

Hence the general NIMASTA recommendation: Non-Intrusive and Mixing probing
Arrivals See Time Averages. Poisson processes are mixing and there is no harm using
such processes within this setting. But the class of ‘good’ probing-point processes is
much larger as we see.

The property that the sampling of an ergodic stochastic process at the epochs of
a mixing and independent point process leads to no sampling bias was first proved
in [15].

We conclude this section with a few observations:

– Consider the above framework. If {W(t)} is known to be mixing, then all stationary
ergodic point processes which are independent of {W(t)} lead to an empirical mean
estimator of the mean value E[W(0)] which is asymptotic consistent.

– In the intrusive case and when the inversion method is based on the empirical mean
estimator of the mean value E[Dx(0)] of some characteristic of the system with
its cross-traffic and its probes, Poisson probing is a natural choice as it guarantees
asymptotic consistency, as a consequence of the PASTA property.

5.2 Variance

The setting is the same as that of the last subsection, with N a stationary point process
with intensity μ. We denote the mean value to be estimated by p = E[W(0)] and we
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denote the auto-covariance function of {W(t)}t by

R(τ) = E
[

W(t)W(t + τ)
] − p2.

We assume that the function τ → R(τ) exists and is convex for τ ≥ 0.
The sample mean estimator of p using K samples is

p̂1 = 1

K

∑

i

W(Ti). (42)

The underlying probability is the Palm probability of N . So T0 = 0 by convention
and Ti is the sum of i inter-sample times which, due to stationarity, each have law F

with mean μ−1. Hence Ti has mean iμ−1, and we denote its law by fi .
Using the independence assumptions, we get that the variance of p̂1 (which coin-

cides with its mean square error as the estimator is unbiased) is given by

Var[p̂1] = 1

K2

(

KE
[

W(0)2] + 2
∑

i 	=j

E
[

W(Ti)W(Tj )
]

)

− p2

= 1

K2

(

KE
[

W(0)2] + 2
∑

i 	=j

∫

R(τ)f|i−j |(dτ)

)

+ p2
(

1 − 2

K

)

. (43)

As a special case of (42), we pick out the estimator based on periodic samples of
period μ−1, namely

p̂2 = 1

K

∑

i

W
(

iμ−1), (44)

for which the integral
∫

R(τ)f|i−j |(dτ) in (43) degenerates to R(|i − j |μ−1).

Theorem 3 Under the above convexity assumption, Var[p̂1] ≥ Var[p̂2].

Proof Equation (43) holds for all processes. So, to compare the variances it is
enough to compare, for all i 	= j , the cross-terms, namely

∫

R(τ)f|i−j |(dτ) and
R(|i − j |μ−1). But, if R(τ) is convex, Jensen’s inequality says that

∫

R(τ)fk(dτ) ≥ R

(∫

τfk(dτ)

)

= R
(

kμ−1), (45)

for all k. �

We see that under the foregoing assumptions, no other sampling process has a
variance which is lower than that of periodic sampling. As just one example, by
taking F to be exponential in p̂1 and inter-sample times to be independent, we learn
that Poisson sampling yields a higher variance than periodic. However, the result is
much more powerful than this. It shows that, if R(τ) is convex, no kind of train or
other structure, no matter how sophisticated, can do better than periodic.
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Unfortunately, periodic sampling has a disadvantage already discussed: it is not
mixing, which makes it vulnerable to phase locking effects. Assuming that R(τ)

is convex, we now determine sampling schemes that offer the best of both worlds:
mixing to guarantee asymptotic consistency, but with variance close to that offered
by periodic sampling.

For this, we will consider sampling using renewal processes with inter-probe times
that are Gamma-distributed, namely with density

�α,λ(x) = λ

�(α)
(λx)α−1e−λx, (46)

on x > 0, where �(·) is the familiar Gamma function. Its mean is μ−1 = α/λ and
its variance σ 2 = α/λ2. Gamma laws are well known to be stable with respect to the
shape parameter α, that is, if {Ti ∼ �αi,λ} are independent, then

∑

i Ti ∼ �∑

i αi ,λ.
The exponential law corresponds to the 1-parameter sub-family �1,λ. Another spe-
cial sub-family are distributions with the Erlang law. These have only integral shape
values.

We will need one more technical result regarding Gamma laws, the proof of which
we leave to the Appendix.

Lemma 7 Let T ∼ �α,λ, Z ∼ �β,λ be independent, and set Y = T + Z. Then C =
E[T |Y ] = αY/(α + β) has density �α+β,(α+β)λ/α , with mean E[C] = a/λ = E[T ].

We can now prove the following:

Theorem 4 The family of renewal sampling processes G(β), parameterized by
β > 0, with inter-sample time density �β,βλ(x), provides, at constant mean sampling
rate λ, sampling variance for p̂1 that monotonically decreases with β . The variance
is larger (equal or smaller) than Poisson sampling as β is smaller (resp. equal or
larger) than 1, and tends to that of periodic sampling in the limit β → ∞.

Proof We assume an underlying probability space on which the family of inter-
sample variables are defined for each β > 0. Equation (43) holds for each inter-
sample law G(β). As the means for each are equal to μ = β/(βλ) = 1/λ, prov-
ing the variance result reduces to showing that, for each k > 0,

∫

R(τ)fk,1(dτ) ≥
∫

R(τ)fk,2(dτ) for any β values β1, β2 satisfying β2 > β1, where fk,i is the density
of the sum Tk,i of k inter-sample times, each with law G(βi). We can apply Jensen’s
inequality to show that

E
[

E
[

R(Tk,1)
∣

∣Yk,1
]] ≥ E

[

R
(

E[Tk,1|Yk,1]
)] = E

[

R(Tk,2)
] =

∫

R(τ)fk,2(dτ)

where to show E[Tk,1|Yk,1] = Tk,2, we identified (T ,Y,α,β,λ) with
(

Tk,1, Yk,1, kβ1, k(β2 − β1), β1λ
)

and used Lemma 7. Since this holds for any β1, β2 with β2 > β1, we have monotonic-
ity of the variance in β . As β tends to infinity, there is weak convergence of



Queueing Syst (2009) 63: 59–107 97

�β,βλ(x)(dx) to a Dirac measure at 1/λ, as is easily seen using Laplace transforms.
Since the function R is convex, it is continuous, and as it is also bounded (as a second-
order process), the property

lim
β→∞

∫

R(x)�β,βλ(x)(dx) =
∫

R(x)δ1/λ(dx)

follows from the very definition of weak convergence. This shows that the limit of the
variances of the Gamma renewal estimators is that of the deterministic probe case,
namely the optimal variance. �

This result provides a family of sampling processes with the desired properties.
By selecting β > 1, we can ensure lower (more precisely, no higher) variance than
Poisson sampling. By selecting β large, we obtain sampling variance close to the
lowest possible, whilst still using a mixing process. The important point is that the
parameter β can be used to continuously tune for any desired trade-off, and to set the
sampling variance arbitrarily close to the optimal case.

There is therefore a need to better understand what classes of queueing sys-
tems/networks lead to second-order state processes enjoying the above convexity
property beyond the few classes quoted below.

5.2.1 Known convex examples

A natural question is, how likely is it that networks of interest satisfy the convex-
ity property for delay and/or loss? There are simple systems for which exact results
are known. For example, Ott [30] showed that convexity holds for the virtual work
process (equal to the delay of probes with x = 0) of the M/G/1 queue.

We now show that the loss process I (t) of the M/M/1/B queue (namely the
indicator function that the number of customers is B , i.e. the set of periods where
arriving packets are lost) has a convex auto-covariance function. Denote by λ and μ

the arrival and the service rates and by ρ = λ/μ the load factor. From [40] (p. 13,
Theorem 1), the probability that the number of customers in the queue is B at time t ,
given that it is B at time 0, is

PB,B(t) = 1 − ρ

1 − ρB+1
ρB + 2

B + 1

B
∑

j=1

exp(−(λ + μ)t + 2t
√

λμ cos(πj/(B + 1))

1 − 2
√

ρ cos(πj/(B + 1)) + ρ

× (

sin
(

Bjπ/(B + 1)
) − √

ρ sin(jπ)
)2 (47)

in the case when ρ 	= 1, and

PB,B(t) = 1

1 + B
+ 1

B + 1

B
∑

j=1

exp(−(2λ)t + 2λt cos(πj/(B + 1))

1 − cos(πj/(B + 1))

× (

sin
(

Bjπ/(B + 1)
) − sin(jπ)

)2 (48)
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in the case ρ = 1. In both cases, the auto-covariance function of Ix(t), which is
equal to π(B)PB,B(t) (with π(B) the stationary probability that the queue has B

customers) is a convex combination of convex decreasing functions of t and is hence
itself convex and decreasing in t .

5.3 Maximum likelihood

Consider some network with a non-intrusive probing process N where the unknown
parameters are obtained by some maximal likelihood method. An example of such a
system would be that of Sect. 4.2 when the sequence of end-to-end delays idealized as
i.i.d. seen by intrusive probes considered there is replaced by the sequence {W(Tn)},
where W(t) is the virtual end-to-end delay in the network at time t . Hence W(Tn) is
the end-to-end delay seen by the nth (stealthy) probe. Here, {W(t)} is a continuous
time Markov chain and if N is an independent renewal process, then the sequence
{W(Tn)} is Markov. If one knows the transition kernel Pt of the continuous-time
Markov chain {W(t)}, then one can compute the likelihood function associated with
the samples W(Tn), 1 ≤ n ≤ m, through a formula that involves Pt and the stationary
law of {W(t)}. Here are a few open problems within this setting:

– What renewal point processes are asymptotically efficient within this setting? We
conjecture that if {W(t)} is mixing, then all renewal point processes are asymptot-
ically efficient.

– For m fixed, what renewal point process gives the MLE with the smallest variance
among the set of all renewal point processes with intensity μ? Is the deterministic
point process again optimal in terms of variance?

Acknowledgements The authors thank David McDonald and Patrick Thiran for their useful comments
on this paper.

Appendix

6.1 Packet pairs in the M/M/1 queue

Consider an M/M/1 queue in steady state with the usual notation. Assume one sends
to this system two additional customers at time 0 and t > 0 respectively, both with
size x. Below we assume that t is small and that x > t . Let us denote by V0 the
system time of the first customer and by Wt that of the second. We are interested in
the quantity E(V0Wt). Let S be an exponential random variable with parameter μ.
Conditioned on the fact that the first customer finds an empty system, the latter is

(1 − λt)
(

x(2x − t)
) + λtE

(

x(2x + S − t)
) + o(t) = x(2x − t) + txρ + o(t).

Let A(n) be the sum of n independent random variables, all exponential with parame-
ter μ. Conditioned on the fact that the first customer finds n customers in the system,
the quantity of interest is

(1 − λt)E
[(

A(n) + x
)(

A(n) + 2x − t
)]

+ λtE
[(

A(n) + x
)(

A(n) + 2x + S − t
)] + o(t)
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= x(2x − t) + E
[

A(n)2] + (3x − t)
n

μ
+ λt

(

n

μ
+ x

)

1

μ
+ o(t)

= x(2x − t) + n
2

μ2
+ n(n − 1)

1

μ2
+ (3x − t)

n

μ
+ λt

(

n

μ
+ x

)

1

μ
+ o(t).

Hence

E(V0Wt) = x(2x − t) + txρ + 1

μ2

(

2ρ2

(1 − ρ)2
+ ρ

1 − ρ

)

+ ρ

1 − ρ

(

3x − t

μ
+ 1

μ2
+ ρt

1

μ

)

+ o(t)

= E(V0W0) − t

(

(1 − ρ)x + ρ
1

μ

)

,

with

E(V0W0) = 2x2 + 1

μ2

(

2ρ2

(1 − ρ)2
+ ρ

1 − ρ

)

+ ρ

1 − ρ

(

3x

μ
+ 1

μ2

)

.

6.2 Realism of the Kelly model

This section discusses quickly the divergence between a Kelly model and a real IP
backbone network. We refer to [22] for the impact of these differences on the estima-
tors.

An instance of Internet path with two routers is depicted in Fig. 3. Actual routers
may follow complex scheduling disciplines, and real packets experience delays on the
incoming side and contention across the backplane, in addition to the output buffer
queueing that the commonly used FIFO model nominally represents. However, it
was shown in [20] that an output port in an IP router behaves like a single server
FIFO queue. Traversing an IP network on the path from Source to Destination can
hence be represented as some deterministic propagation delay, plus a random delay
corresponding to traversing a series of single server FIFO queues with cross-traffic
as exemplified in this figure.

Fig. 3 Example of path with two routers with non-persistent cross traffic streams (black dotted and red
dashed), whereas the probes (blue) pass end-to-end
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The main restrictive assumption is that cross-traffic is Poisson, and that packets
have an exponentially distributed sizes which are independently drawn at each hop.
Here are a few comments on the matter.

It is of course well known that Internet traffic is not Poisson (e.g. [34]); for exam-
ple, both the packet and TCP flow arrival processes exhibit long-range dependence.
Although Poisson may nonetheless be a good assumption below some timescale
(say 1 second [10, 19]) due to the ‘noising’ effect of multiplexing tens of thousands
of largely independent flows.

It is well known (e.g. [11]) that the distribution of IP packets is strongly dis-
crete, and can even be modeled as trimodal. For example, S ∈ {40,576,1500}
bytes, with probabilities (0.5,0.1,0.4), captured its rough shape well in many cases.
This is very far from exponential; however, its coefficient to mean ratio Cov[S] =√

Var[S]/E[S] ≈ 1.05, which is very close to the 1 of the exponential case.
In real networks, packets have a size which, in terms of bytes (ignoring effects

like changes in encapsulation), does not change as it traverses the network. In Kelly
networks, packet sizes are modeled by service times which are chosen independently
at each station. So, the parametric inversion methods based on Kelly networks will not
work when ‘persistent’ traffic dominates (by persistent traffic, we mean cross-traffic
which traverses more than one node of the monitored path).

6.3 Distribution of end-to-end delays in Kelly networks

Let us now consider the system when a tagged probe leaves the system. Since the
queueing discipline is FIFO, the number of probes N in the system at that time is
equal to the number of probes arrived during the time D the probe spent in the system.
So denoting by φ(t) the density of D at t ≥ 0, we get:

P(N = k) =
∫ ∞

0
φ(t)P(N = k|D = t) dt =

∫ ∞

0
φ(t)e−xt (xt)k

k! dt.

So the generating function ψN(z) of the number of probes in the system at a probe
departure epoch verifies:

ψN(z) =
∑

k≥0

zk
P(N = k) =

∑

k≥0

∫ ∞

0
φ(t)e−xt (xtz)k

k! dt

=
∫ ∞

0
φ(t)e−x(1−z)t dt = ̂D

(

x(1 − z)
)

,

where ̂D(z) is the Laplace transform of D. Hence, setting s = x(1 − z) the Laplace
transform of the end-to-end delay D is

̂D(s) = ψN

(

1 − s

x

)

=
K
∏

j=1

γj − x

γj − x + s
, (49)

where we used the fact that ψN coincides with the steady-state distribution of the
number of probes in the system (7), so that ψN(z) is given by (8). Note that this is a
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function of residual capacities, but not the service or arrival rates, showing that only
the γj are accessible by this technique.

Note that (49) is the product of the Laplace transform of exponential variables
of parameters γj − x. By injectivity of the Laplace transform of random variables
admitting a density, this proves that the end-to-end delay of probes is the sum of
independent exponential random variables of parameters γj − x. The mean value is
hence D = ∑

j
1

γj −x
. Using the Laplace inversion formula and the residue theorem,

and setting γ ′
i = γi − x,

φ(t) = 1

2πi

∫ α+i·∞

α−i·∞
est

̂D(s)ds =
∑

Res

(

est

K
∏

i=1

γ ′
i

γ ′
i + s

)

,

so that using α = 0 and then the curve going from −i∞ to i∞ and back on a half-
circle of infinite radius in the left half-plane, we get (14).

6.4 Proofs of the lemmas on E–M

6.4.1 Proof of Lemma 4

We have

φθ1,θ2(l,d) = φθ1,θ2(l|d)φθ1,θ2(d).

Hence

Qd(θ1, θ2|γ1, γ2) = E
[

log
(

φθ1,θ2(l|d)
)] + log

(

fd(θ1, θ2)
)

(50)

where the expectation (here and below) is w.r.t. the density

φγ1,γ2(l|d)

defined above. The log-likelihood function verifies:

logfd(θ1, θ2) = Qd(θ1, θ2|γ1, γ2) − E
[

log
(

φθ1,θ2(l1, . . . , ln|d)
)]

. (51)

Using Jensen’s inequality, it is easy to see that, for all (γ1, γ2) and (θ1, θ2),

E
[

log
(

φθ1,θ2(l|d)
)] ≤ E

[

log
(

φγ1,γ2(l|d)
)]

with equality iff

φθ1,θ2(l|d) = φγ1,γ2(l|d),

almost everywhere (this is in fact the information inequality). Using this last equality,
(51) and (25), we get:

logfd
(

γ
(k+1)
1 , γ

(k+1)
2

) − logfd
(

γ
(k)
1 , γ

(k)
2

)

= Qd
(

γ
(k+1)
1 , γ

(k+1)
2

) − Qd
(

γ
(k)
1 , γ

(k)
2

)
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− E
[

log
(

φ
γ

(k+1)
1 ,γ

(k+1)
2

(l|d)
)] + E

[

log
(

φ
γ

(k)
1 ,γ

(k)
2

(l|d)
)]

. (52)

The sum of the first two terms is positive due to optimality. The sum of the last two
terms is positive as seen above. Hence

logfd
(

γ
(k+1)
1 , γ

(k+1)
2

) − logfd
(

γ
(k)
1 , γ

(k)
2

) ≥ 0, (53)

with equality iff

φ
γ

(k+1)
1 ,γ

(k+1)
2

(l|d) = φ
γ

(k)
1 ,γ

(k)
2

(l|d)

almost everywhere, and

Qd
(

γ
(k+1)
1 , γ

(k+1)
2 |γ (k)

1 , γ
(k)
2

) = Qd
(

γ
(k)
1 , γ

(k)
2 |γ (k)

1 , γ
(k)
2

)

.

According to (53), the sequence logfd(γ
(k)
1 , γ

(k)
2 |d1, . . . , dn) increases, and it is

bounded by a constant. Therefore it converges.

6.4.2 Proof of Lemma 5

The proof relies on the following lemmas, which will be proved at the end of this
section. Lemma 8 is technical and corresponds to a classical property of limit points
of a sequence. It will be used only to prove Lemma 9, which will be the basic block
of the result.

Lemma 8 Let (xn)n∈N be a sequence with values in R, s.t. (xn+1 − xn) converges to
zero. Assume that a and b are both limit points of (xn). Then every point c in [a, b]
is also a limit point of (xn).

Lemma 9 Let (xn) be a sequence with values in R and f a continuous function
from R to R. Assume that the sequence (f (xn))n∈N is convergent, and that (xn) is
bounded. Assume further that the following relation holds:

f (xk+1) − f (xk) ≥ g(xk+1 − xk), (54)

where g(·) is a positive continuous function, null at and only at zero. Then the se-
quence (xn) is also convergent.

First, using (31), let express γ
(k)
2 as a function of h(·) of γ

(k)
1 ), where

h(x) =
(∑n

i=1 di

n
− 1

x

)−1

.

Let us evaluate

�k = Qd
(

γ
(k+1)
1 , γ

(k+1)
2

∣

∣γ
(k)
1 , γ

(k)
2

) − Qd
(

γ
(k)
1 , γ

(k)
2

∣

∣γ
(k)
1 , γ

(k)
2

)

.

Using (30) we get

�k = n logγ
(k+1)
1 + n logγ

(k+1)
2 − n logγ

(k)
1 − n logγ

(k)
2
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− γ
(k+1)
1

∑

di + γ
(k)
1

∑

di

− n
γ

(k+1)
2 − γ

(k+1)
1

γ
(k)
2 − γ

(k)
1

+ n
γ

(k)
2 − γ

(k)
1

γ
(k)
2 − γ

(k)
1

+ ((

γ
(k+1)
2 − γ

(k+1)
1

) − (

γ
(k)
2 − γ

(k)
1

))
∑

i

di

e(γ
(k)
2 −γ

(k)
1 )di − 1

.

Using optimality (27) to re-express the sum
∑

i
di

e
(γ

(k)
2 −γ

(k)
1 )di −1

in terms of γ
(k)
1 , γ

(k)
2

and γ
(k+1)
2 , and using (31) to re-express the sum

∑

i di in terms of γ
(k+1)
1 and γ

(k+1)
2 ,

direct calculations reduce this to

�k = ng

(

γ
(k)
1

γ
(k+1)
1

)

+ ng

(

γ
(k)
2

γ
(k+1)
2

)

≥ ng

(

γ
(k)
1

γ
(k+1)
1

)

,

with g(x) = x − 1 − log(x).
Let μ

(k)
1 = log(γ

(k)
1 ). Hence

�k ≥ g∗(μ(k)
1 − μ

(k+1)
1

)

(55)

with g∗(x) = n(ex − 1 − x). The last function is continuous, null at 0 and strictly
positive elsewhere.

Let define now f ∗(x) = logfd(ex, h(ex)). We can therefore rename the sequence
logfd(γ

(k)
1 , γ

(k)
2 ) as f ∗(μ(k)

1 ).

Lemma 4 shows that the sequence f ∗(μ(k)
1 ) is convergent. The sequence (μ

(k)
1 )

can be bounded by construction (see the proof of Theorem 2). Finally, (55) and (52)
show that f ∗(μ(k+1)

1 ) − f ∗(μ(k)
1 ) ≥ g∗(μ(k)

1 − μ
(k+1)
1 ). h and f ∗ are continuous at

any point greater than log n
∑

di
, which will be the case after the first iteration. There-

fore, Lemma 9 can be applied, the sequences (μ
(k)
1 ) and (γ

(k)
1 ) = (eμ

(k)
1 ) converge.

As h is a continuous function, the sequence (γ
(k)
2 ) = (h(γ

(k)
2 )) is also convergent,

and this will be the case for the sequence (γ
(k)
1 , γ

(k)
2 ).

We now prove that the limit is a solution of the likelihood equation. At any fixed
point we have γ

(k+1)
1 = γ

(k)
1 = γ ∗

1 and γ
(k+1)
2 = γ

(k)
2 = γ ∗

2 . Therefore, using (26)
and (27):

γ ∗
2

(γ ∗
2 − γ ∗

1 )γ ∗
1

= 1

n

n
∑

i=1

die
(γ ∗

2 −γ ∗
1 )di

e(γ ∗
2 −γ ∗

1 )di − 1

and

γ ∗
1

(γ ∗
2 − γ ∗

1 )γ ∗
2

= 1

n

n
∑

i=1

di

e(γ ∗
2 −γ ∗

1 )di − 1
,

the same equations as the likelihood equation, which means that any fixed point of
the E–M algorithm is also a solution of the likelihood equation.
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Proof of Lemma 8 Let c be a point in [a, b], and let construct a sub-sequence of (xn)

that converges toward c. By definition, a and b are limit points of (xn), hence we can
assume that c 	= a and c 	= b.

Let ε = min( c−a
2 , b−c

2 ) be a positive number. (xn+1 − xn) converges toward zero.
Hence, ∀k,∃Nk s.t. ∀j > Nk, xj+1 −xj < ε

k
. By definition of a limit point, ∃i0 ≤ N1,

s.t. xi0 ∈]a−ε, a+ε[. Similarly, ∃j0 > i0, s.t. xj0 ∈]b−ε, b+ε[. Recursively, we can
construct two integer sequences (ik) and (jk), such that ∀k,Nk+1 ≤ ik < jk < ik+1,
ik ∈]a − ε, a + ε[ and jk ∈]b − ε, b + ε[.

We are now in position to conclude. For all k, we have that xik < a + ε ≤ c − ε
k

<

c + ε
k

≤ b − ε < xjk
. Furthermore, ik < jk , and ∀n > ik, (xn+1 − xn) ≤ ε

k
. This is

enough to conclude that there exists ik < φ(k) < jk such that xφ(k) ∈]c − ε
k
, c + ε

k
[.

Since jk < ik+1, the function φ(.) is strictly growing, and (xφ(n)) is a sub-sequence
of (xn) convergent toward c. �

Proof of Lemma 9 By assumption, the sequence (xn) is bounded. Therefore, it con-
verges if and only if it admits one unique limit point.

Assume, by contradiction, that there are two distinct limit points a and b, with
a < b. The sequence f (xn) is convergent, therefore (f (xn+1) − f (xn)) converges
toward zero. Using (54), we get that g(xn+1 − xn) is convergent toward zero.
By contradiction, if (xn+1 − xn) admits one limit point c 	= 0, then the sequence
g(xn+1 − xn) admits g(c) > 0 as a limit point, which contradicts to the fact that
it converges to 0. Hence, (xn+1 − xn) admits no non-zero limit point, and as it is
bounded, converges to 0.

Using Lemma 8, we get that ∀c ∈ [a, b], c is a limit point of (xn), and hence f (c)

is a limit point of f (xn). As f (xn) converges toward l, it admits one unique limit
point, and ∀c ∈ [a, b], f (c) = f (a) = f (b) = l. Let ε = b−a

3 be a positive number,
and let now N be such that ∀n ≥ N, |xn+1 − xn| < ε. As a and b are limit points
of (xn), there exist n1 ≥ N and n2 ≥ n1 such that |xn1 − a| < ε and |xn2 − b| < ε.
Then ∃n3 s.t. n1 ≤ n3 < n3 + 1 ≤ n2, xn3 	= xn3+1, xn3 ∈]a, b[ and xn3+1 ∈]a, b[.
On the one hand, (54) leads to f (xn3+1) > f (xn3). On the other hand, f (xn3) =
f (xn3+1) = l. We get a contradiction. �

6.5 Proof of Lemma 6

For the three-routers case, for all k ≥ 0, (25) is equivalent to

Q(θ1, θ2, θ3|γ1, γ2, γ3)

=
n

∑

i=1

α(di)

∫ di

l1=0

∫ di−l1

l2=0

(

log(θ1θ2θ3) − θ3di + (θ3 − θ1)l1 + (θ3 − θ2)l2
)

× e(γ3−γ1)l1e(γ3−γ2)l2 dl2 dl1 (56)

with α defined in (33). We have

∫ d

l1=0

∫ d−l1

l2=0
(a + bl1 + cl2)e

αl1eβl2 dl2 dl1 = aca + bcb + dcd
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with

ca = β(eαd − 1) − α(eβd − 1)

αβ(α − β)
,

cb = αβ(α − β)deαd − β(2α − β)eαd + α2eβd − (α − β)2

α2β(α − β)2
,

cc = α(α − 2β)eβd − αβ(α − β)deβd + β2eαd − (α − β)2

αβ2(α − β)2
.

In order to evaluate (56) we have to take α = γ3 −γ1, β = γ3 −γ2, a = log(θ1θ2θ3)−
θ3di , b = (θ3 − θ1) and c = (θ3 − θ2) (note that α − β = γ2 − γ1). In addition,

α(di) = αβ(α − β)

βeαd − αeβd + β − α
= 1

ca

.

Finally

Q(θ1, θ2, θ3|γ1, γ2, γ3)

=
n

∑

i=1

α(di)
[

ca log(θ1θ2θ3) − cbθ1 − ccθ2 + (cb + cc − dica)θ3
]

= n log(θ1θ2θ3) +
n

∑

i=1

(

cb + cc

ca

− di

)

θ3 − cb

ca

θ1 − cc

ca

θ2,

and therefore

∂Q(θ1, θ2, θ3|γ1, γ2, γ3)

∂θ1
= n

θ1
−

n
∑

i=1

cb

ca

.

The expressions given in the lemma are then directly obtained from

∂Q(γ
(k+1)
1 , γ

(k+1)
2 , γ

(k+1)
3 |γ (k)

1 , γ
(k)
2 , γ

(k)
3 )

∂γ
(k+1)
1

= 0

and other relations of the same type.

6.6 Proof of Lemma 7

Let T ∼ �α,λ, Z ∼ �β,λ be independent, and set Y = T + Z. Then C = E[T |Y ] =
αY/(α + β) has density �α+β,(α+β)λ/α , with mean E[C] = a/λ = E[T ].
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Proof From the scaling property of Gamma, Y ∼ �α+β,λ. Since T and Z are inde-
pendent, the density of (T |Y = y) is

P(T = x|Y = y) = P(T = x,Y = y)

P (Y = y)
= P(T = x,Z = y − x)

P (Y = y)

= �α,λ(x)�β,λ(y − x)

�α+β,λ(y)

= �(α + β)

�(α)�(β)
xα−1(y − x)β−1y1−(α+β).

Recall the Beta function B(x, y) = �(α)�(β)/�(α + β). The required conditional
expectation is given by

E[T |Y = y] = y1−(α+β)

B(α,β)

∫ y

0
xα(y − x)β−1 dx

= y1−(α+β)

B(α,β)
yα+βB(α + 1, β)

= α y

α + β
(57)

using the integral identity 3.191(1) from [17]. Now viewing y as a sample of Y , we
have C = E[T |Y ] = αY/(α + β), which is Gamma as stated by the scaling prop-
erty. �
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