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Abstract. Systems biology is a new discipline built upon the premise that an
understanding of how cells and organisms carry out their functions cannot be
gained by looking at cellular components in isolation. Instead, consideration
of the interplay between the parts of systems is indispensable for analyzing,
modeling, and predicting systems’ behaviour.Studying biological processes
under this premise, systems biology combines experimental techniques and
computational methods in order to constructpredictive models. Both in
building and utilizing models of biological systems, inverse problems arise at
several occasions,for example, (i) when experimental time series and steady
state data are used to construct biochemical reaction networks, (ii) when
model parameters are identified that capture underlying mechanisms or (iii)
when desired qualitative behaviour such as bistability or limit cycle oscillations
is engineered by proper choices of parameter combinations.In this paper we
review principles of the modelling process in systems biology and illustrate
the ill-posedness and regularization of parameter identification problems
in that context. Furthermore, we discuss the methodology of qualitative
inverse problems and demonstrate how sparsity enforcing regularization allows
the determination of key reaction mechanisms underlying the qualitative
behaviour.

Keywords. Systems biology, parameter identification, qualitative inverse
problems, reverse engineering, biochemical reaction networks, bifurcation
pattern, sparsity

1. Introduction and motivation

Systems biology is a relatively young biological discipline that claims to consider
cells and organisms as entities in a holistic way. At the same time it focuses
on the interplay of components from the molecular to the systemic level.
Quantitative measurements and recordings of biological processes are merged
with advanced mathematical methods to yield predictive theoretical, mostly
computational, models of biological systems. In this sense systems biology
introduces quantitative mathematical modeling into biology and bridges thereby
the gap between experimental and theoretical scientific methods. The systems
concept as such is not new and has already been approached long ago in physiology,
for example in modeling drug effects in medicine through pharmacokinetics and
pharmacodynamics, see, e.g., [129].

The experimental data base for systems biology comes from various high-throughput
technologies applied in fields usually ending in “-omics”. These experimental
technologies provide a global “snapshot” of particular cellular processes, such as
gene expression or metabolism, at a defined instant. For example all transcripts
present in a cell – termed the transcriptom – can be characterized simultaneously
using for instance DNA microarrays. Transcriptomics aims at the exploration
of the transcriptom and how it varies with cell type, stage of development or
environmental conditions. Metabolomics, in addition, deals with the quantification
of the time dependent composition of the set of organic molecules that constitutes
cellular metabolism. Included in the metabolism are the enzymes that catalyze the
interconversion of metabolites. In other words, the metabolism of the cell is the
set of several thousands of catalyzed biochemical reactions resulting in molecular
concentrations of a large number of substrates, products and enzymes as functions
of time. Data collection, data validation and model building are the great challenges
of systems biology for essentially two reasons:
(i) The almost one hundred years old conventional approach to dynamical
phenomena at the molecular level in biology is biochemical kinetics. It provides
accurate rate parameters determined under precisely defined conditions for in vitro
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assays. The transfer of these parameters to the conditions within living cells is
anything but trivial. Moreover, the fraction of rate parameters that was directly
determined by rigorous physical methods is rather small compared to the set of all
parameters needed in systems biology.
(ii) On the experimental side, present-day high-throughput technologies may reflect
directly the situation in the cell but are “snapshots” and allow for conclusions on
processes only if they can be repeated at sufficiently high frequency. Most of the
reliable information from current microarrays provide only qualitative – “yes” or
“no” – or at best semi-quantitative – “0”, “1”, . . ., “n” – data that have to be
converted into numerical quantities in order to be a useful basis for parameter
estimation. Data collected in this way are usually quite noisy, which is a special
challenge for the inverse problem of determining parameters; the mathematical
methods to be used for this purpose are a major topic in this review paper.
In order to create a sufficiently large data pool, systems biology requires
simultaneous experimental approaches like biochemical kinetics, microarray data
harvesting, and other techniques, for example time resolved high-resolution
spectroscopy. Efficient and optimal, the synergy of different techniques exploiting
tools are not yet available but under fast progressing development, see, e.g., [87,108].

The success of biochemical kinetics on enzyme reactions in vitro is certainly
responsible for the overwhelming fraction of biological models that are based on
ODEs. For physicists and chemists it would be desirable to use mass action
kinetics on the elementary step level. The complexity of biological signalling
and reaction networks, however, is prohibitive for the complete treatment and
simplifications have to be used. The conventional approach to enzyme catalyzed
reaction, for example, is Michaelis-Menten kinetics that subsumes the reaction
steps of an enzyme reaction under a single over-all reaction. Similarly, many-step
polymerization reactions as they occur in replication, transcription, and translation
may be represented by appropriate approximations through single-step reactions.
Ignoring initial reaction phases allows for the assumption of steady states and again
reduces the number of reaction steps and the number of variables in the over-all
kinetics.

One of the major goals of systems biology is to provide an understanding of
properties and behavior of cells or organisms emerging as consequence of the
interaction of large numbers of molecules, which organize themselves into highly
intricate reaction networks that span various levels of cellular or organismal
complexity. The number of nodes in metabolic networks amounts to several
thousand molecules. To illustrate this complexity by means of an example, the
bacterial cell of the species Escherichia coli has 4 460 genes giving rise to roughly
the same number of transcripts and translation products. The cell is robust against
changes in the surrounding and collects information on the environment. The
chemical reactions within the cell form a highly organized network controlled by
a genetic regulatory system. The available experimental data are far from being
complete in the sense that they cover all cellular processes and therefore highly
involved techniques are required to extract as much information as possible from
experiment and to identify parameters that are crucial for system behavior. A
higher level of complexity concerns, for example, the organization of the human
body with approximately 20 000 genes and 200 different cell types.

Here we present an overview on the application of inverse problem solving methods
to questions of systems biology. In particular, we shall distinguish two different
classes of problems: (i) parameter estimation from experimental data sets and (ii)
qualitative inverse problems that aim at reverse engineering of bifurcation patterns
and other types of desired qualitative behavior. Parameter estimation commonly
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aims at one of two goals: It provides values or at least upper and lower bounds
for unknown or difficult to determine parameters. Alternatively, it is important
to know insensitivities of data sets to certain parameters, which then are not
accessible from the given data and require additional experimental information for
their determination. Related to this problem is the question of sparsity in the
reaction matrix: Which are the parameters and the reaction variables that are
strongly coupled and essential to obtain the observed data? Inverse problems of
that type are discussed in Sections 2.2 and 3.1. Qualitative inverse problems are
used to explore the areas in parameter space that give rise to a given qualitative
behavior, e.g., multiple steady state solutions, oscillations, deterministic chaos, etc.
Typical engineering questions are: Which are the parameters that maximize or
minimize a stable closed orbit? An example is given in Section 3.2. How can the
bifurcation pattern of a given reaction network be influenced by changing certain
parameters? A practical implication would be, for example, the determination of
parameter sets that arrest the cell cycle of given cell types in a certain phase and
prohibit malignant proliferation thereby. How can one adjust the circadian rhythm
such that it responds fast and smoothly to a pace maker reset in order to avoid
negative consequences of jet lag? We come back to inverse problems for circadian
rhythms in Section 3.2.3.

2. Computational systems biology

In biology, a broad collection of measuring techniques ranging from single-molecular
fluorescence based methods to techniques that measure mean values over whole
cell populations (such as microarray and sequencing technology which characterizes
gene expression or mass spectroscopy which allows for access to metabolite levels) is
applied to collect the relevant data sets. In many cases the entities of interest must
be first “extracted” from the complex cellular matrix by multi-step experimental
protocols before they are amenable to quantification, thereby making it hard for one
to make general statements about the “typical” data error present in systems biology
data sets. Furthermore, some of the experimental techniques provide information
only at a qualitative or semi-quantitative level. To cope with noise, measurement
errors and missing data points, which are typical issues for biological data, in
building system biology models one would have to integrate experimental data from
diverse sources [119].

Depending on the quality of the biological data available a wide variety of
mathematical modeling approaches have been applied in systems biology. Often,
biological data is only available at a qualitative level. A good example for this type
of data are protein interaction networks [3]. Proteins are capable of interacting
with each other in a highly specific manner which can be formally represented
by a graph. However, in many cases the strength of interaction (graph edges)
and the precise composition of protein interaction complexes (graph nodes) are
unknown. Nevertheless, the analysis of the network topology of these types of
cellular networks have uncovered important functional organisation principles [8]
and underlying design principles [2]. Metabolic networks, which consist of enzyme
catalyzed reactions that transform organic molecules for the purpose of acquiring
energy and constructing complex compounds used in cellular functioning, are among
the best studied networks in biology. Although the topology of these networks and
the exact stoichiometry (i.e. the quantitative relationship between reactants and
products) of the individual chemical reactions are well known, only little information
is available on the functional form and the kinetic parameters of the enzymatic rate
laws. This lack of information renders the large scale modeling of the metabolite



Inverse Problems in Systems Biology 5

R1 : ∅ ⇋ A

R2 : ∅ ⇋ B

R3 : ∅ ← C

R4 : E + A ⇋ EA

R5 : E + B ⇋ EB

R6 : EA + B ⇋ EAB

R7 : EB + A ⇋ EAB

R8 : EAB → E + C
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A +1 0 0 −1 0 0 −1 0
B 0 +1 0 0 −1 −1 0 0
C 0 0 −1 0 0 0 0 +1
E 0 0 0 −1 −1 0 0 +1
EA 0 0 0 +1 0 −1 0 0
EB 0 0 0 0 +1 0 −1 0

EAB 0 0 0 0 0 +1 +1 −1
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Figure 1. Representation of a chemical reaction network as chemical equations
(left) and as stoichiometric matrix (right). The equations describe the
mechanism for an enzyme catalyzed reaction with unordered substrate binding
which is found in the cycline-dependent kinase-catalysed phosphorylation
reaction at the heart of the cell cycle. This example network is discussed
in more detail in Appendix A.

concentrations and their rates of change in terms of ODEs impossible. However, the
varying (mass)fluxes through the metabolic network depend on the laws of chemistry
which constrain the supply and demand of metabolites within the network such that
mass conservation, enzyme capacities and thermodynamics is respected. Functional
states of the metabolic network, i.e. a particular (mass)flux distribution through
the metabolic network, can be identified by a constraint-based convex analysis of
the stoichiometric matrix [122], which captures the essential structural features of
the metabolic network.

As illustrated above, different modeling paradigms capture biological phenomena
at different levels of description. However, they share the unifying concept of
(bio)chemical reaction networks (see Figure 2). Chemical reaction networks consist
of a set of chemical species (metabolites in the biochemical setting) and a system
of reactions that interconvert them. In chemical notation a reaction network is
described by a set of chemical equations (see Figure 1 left).

The topology of a chemical reaction network is largely embodied in the
stoichiometric matrix (see Figure 1 right). This matrix is organized such that every
column corresponds to a reaction and every row corresponds to a chemical species.
The entries of the matrix are stoichiometric coefficients, which are positive/negative
integers if the chemical species is produced/consumed during the reaction.

The first approaches towards a systematic understanding of chemical reaction
networks were based on the analysis of the stoichiometry in mass action-reaction
systems [22, 46, 66, 79, 80, 145]. Resulting theorems such as the zero-deficiency

theorem provide a link between network structure and reaction kinetics [45, 57, 71,
72]. Graph theoretical conditions can be very helpful in guiding the process of model
building in systems biology. Depending on the qualitative dynamic behavior (e.g.
bistability or oscillation) of the biological system under study, particular network
topologies that do not possess the potential to show the desired qualitative dynamics
irrespectively of the choice of the kinetic parameters, can be eliminated from the list
of potential candidates early on during model development. The MATLAB package
ERNEST [147], for instance, can be used for model discrimination along these lines.

The zero-deficiency theorem is based on properties of the graph of chemical
complexes (see Appendix A for details) and the concept of weak reversibility. A
reaction mechanism is said to be weakly reversible if for any two complexes in a
graph component which are connected by a directed path, there exists a directed
path connecting the two complexes in the reverse direction. The deficiency δ of
a reaction mechanism can be considered as a measure for the linear independence
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Figure 2. Graph representation of the chemical reaction network from
Figure 1. Species nodes are drawn as gray circles and reaction nodes as squares
(For clarity the in- and outflow reaction nodes (R1–R3) have been omitted).
Figures illustrating the major flux modes for this reaction network can be found
in Appendix A.

of “necessary” reactions and can be calculated from the reaction vectors building
up the stoichiometric matrix. In particular, if a reaction is a linear combination
of other reactions in the system, but cannot be eliminated to simplify the reaction
mechanism, then the deficiency of the mechanism will be greater than zero.

The zero-deficiency theorem makes two important statements about reaction
networks with deficiency δ = 0 that hold for any arbitrary choice of the kinetic
constants: (i) If the reaction network is weakly reversible it possesses a single steady
state which is asymptotically stable. (ii) If the reaction network is not weakly
reversible there exists neither a steady state where all species concentrations are
greater zero, nor is there a periodic trajectory in which all species concentrations
are positive. In essence the theorem states that only reaction networks with δ > 0
possess the potential to show “interesting” nonlinear dynamics such as oscillations.

Recent work along these lines resulted in further theorems connecting dynamic
behavior such as multistability, oscillations [25,111] or the bifurcation structure [112]
of mass-action reaction systems to properties of the underlying reaction network.
Furthermore graph-theoretical conditions for the detection of Turing bifurcations
in mass-action reaction diffusion systems [110] have been found.

It is not straightforward to define the notion of a “metabolic pathway”, especially if
the metabolic network under consideration is of genome scale. Intuitively a pathway
is a subset of reactions that is linked by common metabolites. The problem of
partitioning a reaction network into chemically meaningful pathways can be solved
by metabolic flux analysis [22,47,67,141]. Here the stoichiometry of the metabolic
network is investigated to find direct routes which connect mass flows entering
and exiting the metabolic network. A “flux mode” is a set of flux vectors which
describes such dominant reaction pathways through the metabolic network [142,144]
at steady-state conditions.
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Figure 3. The stoichiometric matrix S as linear transformation between the
reaction rate vector v and the vector of changes in species concentrations x. In
many cases entries in the reaction rate vector v cannot be measured directly
and hence must be inferred indirectly from biological data.

From the mathematical point of view the problem is to find the extremal rays of
a cone [48, 151] that is determined by the stoichiometric matrix. In particular the
(right) null space of the stoichiometric matrix contains the steady-state flux modes
through the reaction network. A convex representation of the (right) null space has
proven to be chemically and biologically meaningful where the individual extremal
rays spanning the convex cone correspond to dominating pathways through the
reaction network. Although metabolic flux analysis disregards the kinetics of the
reactions nevertheless biologically meaningful states of the reaction network can be
predicted which coincide nicely with experiments [74,148]. Many pathogens regulate
specific metabolic pathways to optimize their growth conditions inside the host cell.
A metabolic flux analysis can pinpoint such essential pathways as potential drug
targets.

Metabolic fluxes cannot be measured directly by experimental methods, but must
be inferred through model based data evaluation from the knowledge of the involved
reactions, the stable isotope labeling patterns in the reporter metabolites (e.g.
amino acids) and the imposed external fluxes [134]. Experimentally, glucose with
a 13C label at a particular position is provided as food to the micro-organism
under consideration. Over time the micro-organism metabolizes the glucose along
different metabolic routes and the original 13C label ends up at different positions
in the reporter metabolites (i.e. the isotope labeling pattern), depending on which
metabolic routes were active. Computationally, often an iterative approach is
used that minimizes the mismatch between the predicted isotope labeling pattern
generated for a particular choice of the flux distribution through the involved
reactions and the experimentally obtained labeling patterns [150]. The minimization
of the data mismatch is stopped when it reaches the range of the experimental
error. This is an example of the discrepancy principle which will be discussed in
section 3.1.5.

A typical feature of metabolic networks, which are among the best characterized
networks in systems biology, is the existence of network hubs, i.e. a few nodes which
are connected to a large number of other nodes in the network, while most of the
nodes in the network possess only a few connections to other nodes. The existence of
hubs is directly reflected in the sparsity of the corresponding stoichiometric matrix
and is for example one characteristic of scale-free networks [8].

Besides the stoichiometric matrix also the vector v of reaction rates, specifying
the fluxes through individual reactions, is crucial for the formulation of an ODE
model (see Figure 3). Parameters enter the ODE model via v. Parameter values
or even the whole functional form of enzymatic rate laws may be inaccessible
via experimental measurements or simply unknown, respectively. It has been
shown that enzymatic rate laws, which can be highly nonlinear due to allosteric
interactions, can differ considerably between in vivo and in vitro conditions [152]
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leading to large discrepancies between the in vivo and in vitro kinetic characteristics
of enzymes. Hence there is a need in systems biology for robust methods making it
possible to infer these important parameters from experimental data. The insight
gained from simulation results of properly parameterized models may stir the design
of further in vivo and in vitro experiments. The newly gathered data, in turn, boost
the development and refinement of the models to bring their description level closer
to physical and biological reality.

The efforts in systems biology to build accurate and predictive in silico models of
biological systems and the rapid development of experimental techniques paved the
ground for synthetic biology [4] which seeks, on the one hand, to engineer existing
biological systems and, on the other hand, to design de novo synthetic networks
from well characterized biological parts or non-natural components exhibiting a
desired qualitative dynamic behavior.

In analogy to electrical engineering, where complicated functional circuits are built
from a handful of well understood and standardized entities such as transistors,
resistors etc., efforts are currently under way to compile a similar standardized list
of biological objects [16], e.g., the BioBrick registry (http://partsregistry.org),
a database hosted at MIT’s registry of standardized biological parts, is such a
collection of genetically encoded functional parts that can be combined to build
synthetic biological devices and systems.

The goal of designing and constructing biological devices gives rise, from a
mathematical point of view, to multi-level inverse problems: (i) at the bottom level
the individual biological entities must be characterized in terms of parameters, (ii)
at the next level of assembling the biological device, parameters influencing the
coupling of the subsystems must be identified, (iii) finally, putting the biological
device into the cellular context will require parameter fine tuning to account for
additional interactions between the device and the complex cellular matrix.

2.1. The modeling process in systems biology

The modeling of biochemical systems consists of several steps [21]: (i) collection of
experimental data and information on network topology and regulatory interactions,
(ii) selection of a level of description and a particular mathematical formalism,
(iii) parameter identification and model analysis, and (iv) model validation and
refinement.

In step (i), the relevant data are obtained from experiments or data bases and
information on network structure and regulation is collected from the literature.
Typically, network topology and regulatory interactions are not fully known and
hence have to be inferred in the following steps. In step (ii), additional assumptions
and simplifications have to be made in order to define the components and
interactions of the system which should be included in the mathematical model.
A suitable formal framework is chosen – in many cases systems of ODEs – and
the symbolic equations are formulated. In step (iii), unknown parameters in the
symbolic model are identified, and a numerical model is obtained which is consistent
with the experimental data. The mathematical model is analyzed with respect
to steady-states, stability, parameter sensitivities, and bifurcations. In step (iv),
the model is tested with data which have not been used for model construction.
Additionally, all assumptions made in the previous steps are reconsidered and
refined, since modeling is a cyclic rather than a linear process. Upon completion of
the modeling process, predictions can be made, new hypotheses can be generated,
new experiments can be designed, and the biological system can be optimized.
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ODE model types prevalent in systems biology

In biochemical systems, the underlying processes are of a stochastic and spatial
nature and can take place at different time scales. For simplicity, ODE models
are frequently used to approximate these processes, but the validity of such
approximations has to be checked on an individual basis. For example, ODE
models may be appropriate for systems where diffusion and transport processes
are fast compared with chemical reactions and where molecular species are present
in high numbers. In order to state a general ODE model, assume there are n
molecular species present in quantities x ∈ R

n, and let there be l interactions
occurring at rates v(x) ∈ R

l. Typically, the rate laws also depend on parameters
such as kinetic constants, equilibrium constants, so-called Hill coefficients, and other
(known or unknown) empirical quantities. Hence, we replace v(x) by v(x, q) thereby
introducing m parameters q ∈ R

m. Now, the time evolution of the system can be
written as

dx

dt
= f(v(x, q)). (1)

The function f : R
l → R

n combines the contributions of the individual interactions
to the production or consumption of the individual species.

Mathematical models of metabolic networks capture both the stoichiometry and the
kinetics of chemical reactions. The stoichiometry of a pathway system determines
its topology and is represented by the stoichiometric matrix S. For metabolic
networks, eqn. (1) takes the form

dx

dt
= Sv(x, q). (2)

In this case, the function f is simply the stoichiometric matrix S and hence linear.
This assumption of linearity is also common beyond pathway systems, e.g. in models
of gene regulatory networks, see below. The generic nonlinearity of biochemical
systems is hidden in the rates v(x, q), which are determined by the kinetics of the
reactions.

Specific forms of the rate laws in eqn. (2) are used based on assumptions on the
underlying kinetics. The most common choices are: (i) mass-action kinetics, (ii)
Michaelis-Menten kinetics, and (iii) ad-hoc approaches such as convenience kinetics.
Models based on the law of mass action are typically used to describe networks of
elementary reactions. The rate of the jth reaction is given by

vj = kj

n
∏

i=1

x
gji

i , j = 1, . . . , l, (3)

where kj ∈ R
+ is the rate constant and gji ∈ N0, i = 1, . . . , n, are the

kinetic orders which correspond to the numbers of molecules consumed by this
reaction. Mass-action models can be derived from basic principles, however, most
biochemical reactions are catalyzed by enzymes and consist of several (possibly
many) elementary steps, some of which may even be unknown. Hence, for large
pathway systems it is advisable to use composite rate laws for enzymatic reactions
[24], and the most widely-used representative of this category is Michaelis-Menten
kinetics. This approach is based on the concept that substrate and enzyme form
one or more intermediate complexes before the product is released and the enzyme
is regenerated. Furthermore, it is assumed that concentrations of the intermediate
complexes are approximately constant over time (quasi-steady-state-assumption).
For basic enzyme mechanisms, the resulting rate laws are simple: for example, let
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the jth reaction follow the irreversible Michaelis-Menten mechanism [24]; then the
corresponding rate law amounts to

vj = Vj
xi

KM
j + xi

, (4)

where Vj is the limiting rate, KM
j the Michaelis constant, and xi the concentration

of the substrate converted by the reaction. For complex mechanisms, however, the
Michaelis-Menten rate laws contain many parameters which are difficult to interpret
in terms of the function of the enzyme and difficult to infer from experimental data.
In these cases, ad-hoc approaches come into play. Convenience kinetics, for example,
covers enzyme regulation by activators and inhibitors and can be derived from a
random-order enzyme mechanism. In order to ensure thermodynamic correctness,
rate laws are written in terms of thermodynamically independent parameters, such
as particular equilibrium constants, mean turnover rates, generalized Michaelis
constants, and parameters for activation and inhibition, see [101].

Using customized rate-laws for each (enzymatic) reaction can sometimes hide the
pattern of regulation (activation and inhibition), in particular in large pathway
systems. A good compromise that is capable of capturing the regulatory interactions
in a metabolic network while keeping the mathematical description relatively simple
is the use of so-called canonical models which have a pre-defined structure and
which differ only in their parameter values [21]. Due to their homogeneous
structure, canonical models are easily scalable and allow the development of
specialized techniques for symbolic and numerical analyses. The most prominent
representatives of canonical models are S-systems [135–137]. In these models,
production and consumption are approximated by products of power-law functions.
The ODE of the ith molecular species has the following form:

dxi

dt
= αi

n
∏

j=1

x
gij

j − βi

n
∏

j=1

x
hij

j , i = 1, . . . , n, (5)

where αi, βi ∈ R
+ are rate constants and gij , hij ∈ R (usually ∈ [−1,+2]) are

kinetic orders quantifying the effect that the jth species has on the production
or consumption of the ith species. A positive, negative, or zero kinetic order
corresponds to an activating, inhibitory, or no effect, respectively. Canonical
models have a number of advantageous features. They are characterized by a
correspondence between structural features and parameters. The models can be
set-up without knowledge of the underlying regulatory network, but if structural
features are known, then it is obvious which parameters in the model are affected,
and vice versa, if a parameter has been identified, then its interpretation in terms
of a structural feature is clear. For S-systems, steady-states can be computed
symbolically and specialized numerical methods have been proposed to identify
parameters [20].

The previous paragraphs reviewed ODE modeling approaches for metabolic
networks. Now, we turn our attention to gene regulatory networks. Besides a
variety of other formalisms (such as graphs, Boolean networks, Bayesian networks,
and generalized logical networks, cf. [29]) ODE systems are widely used to
analyze gene regulatory networks. The fundamental processes of regulator binding,
transcription, translation, and degradation can be modeled at various levels of
detail. Traditionally, ODEs are formulated for mRNAs and proteins; other
molecular species such as polymerases, nucleotides, ribosomes, and amino acids
are supposed to abound, and hence their concentrations need not enter the models.
Assume there are n genes, and let the mRNA and protein concentrations be xm

i
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and xp
i , i = 1, . . . , n. Then, the corresponding ODEs have the form

dxm
i

dt
= kts

i fi(x
p
1 , . . . , xp

n) − dm
i xm

i , (6a)

dxp
i

dt
= ktl

i xm
i − dp

i xp
i , (6b)

where kts
i , ktl

i are transcription and translation constants, respectively, and dm
i , dp

i

are degradation constants. The nonlinearity is hidden in the regulation functions
fi(x

p
1 , . . . , xp

n), which determine how one gene is activated or inhibited by the other
genes.

The most common regulation functions are: (i) customized functions, (ii) sigmoid
functions, and (iii) step functions [29]. In principle, regulator binding can be
modeled using mass-action kinetics and the quasi-steady-state-assumption for the
gene-regulator complexes, see above. The knowledge of both binding kinetics and
regulation logic allows the derivation of a customized function, which determines
the activation or inhibition of one gene by the other genes [115,160]. However, many
genes have several regulatory sites (such as in the case of cooperative binding) and
the resulting regulation functions may become very complicated. In these cases,
it is common to use sigmoid functions to model the typical switching behavior in
gene regulation. For example, let the ith gene be activated by the jth protein in
cooperative manner. Then, the regulation function is usually approximated by

fi(x
p
j ) = σ+(xp

j ,Ki, ni) =
(xp

j )ni

(xp
j )ni + (Ki)ni

, (7)

where Ki is the concentration of half-activation (determining the threshold of the
switch) and ni is the Hill coefficient (determining the steepness of the switch). This
formula can be regarded as purely empirical and the Hill coefficient need not be
integer. A further simplification can be made by replacing the continuous sigmoid
functions by discontinuous step functions (corresponding to the limit ni → ∞). This
assumption turns (6) into a system of piecewise-linear ODEs, more specifically, the
state space becomes divided into n-dimensional hypercubes in which the regulation
function is constant and degradation is linear. Each hyper-cube corresponds to a
qualitative state of the system, and the qualitative dynamics of the system can be
represented by a transition graph [50]. As a consequence, methods from qualitative
reasoning become applicable, in particular a formalism called qualitative differential
equations [90,91].

In case the regulation logic of a gene network is not known or the precise mechanisms
are inaccessible, S-systems can be used as base models for gene regulatory networks.
Due to their pre-defined structure, S-systems are also well suited for comparing the
functional effectiveness of different types of gene regulatory networks [138,139].

2.2. Parameter identification in systems biology

A challenging task in the mathematical modeling of biochemical systems is the
identification of parameter values. As stated above, parameter identification is
connected with other tasks such as the inference of network topology, the definition
of system components and interactions, and the choice of a mathematical formalism.
Clearly, size and complexity of the resulting model affect the difficulty of parameter
identification (and later analyses).

From a historical point of view, the quantity and quality of available experimental
data has determined the application and development of mathematical methods
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for parameter identification in systems biology. As an example, we consider the
case of metabolic networks: traditionally, biochemists studied individual enzymes
in vitro; they identified co-factors and effectors and measured initial rates for
different substrate and effector concentrations; with this data, they parameterized
mathematical models such as the Michaelis-Menten rate law by using linear
regression. Once models had been derived for the individual enzymatic processes,
this information could be merged into an integrative pathway model in a so-called
bottom-up strategy [21]. The major disadvantage of this strategy is that information
about individual enzymes is derived from diverse sources, i.e. experiments conducted
under different conditions or even for different organisms. Hence, many times the
integration of individual models is not successful and requires model refinement
and additional experimental data. Recent advances in technology allow for a
completely different approach to parameter identification using a so-called top-down

strategy. Modern high-throughput techniques provide time-series measurements of
genes, proteins, or metabolites on a cellular or even organismal level. Ideally, the
data are generated in-vivo and with minimal disturbance of the biological system.
This comprehensive data at the system level can be used to infer parameters at
the component level. However, the information on model parameters contained in
time-series measurements is only implicit and has to be extracted by using suitable
mathematical methods. This important inverse problem is one main focus of this
review.

Amongst the parameter identification methods traditionally used in systems biology,
the predominant strategy consists of finding parameter values that minimize the
data mismatch, i.e. the discrepancy between the experimental observations and
the simulated data. The underlying premise is that the optimal parameter set is
one which gives rise to simulated data that match the experimental observations
as well as possible. Computationally, the minimization of the objective function
may involve a combination of local (gradient-based) and global (mostly stochastic)
methods [113,126]. Since for certain parameters even the order of magnitude may be
unknown, it is important to complement the rapid convergence of local optimization
algorithms with the comprehensive nature of global search techniques.

Due to the difficulty of in-vivo measurements and the complexity of cellular
environments, data error is inevitable in the time-series measurements of
biochemical species. Faced with the noise present in biological data, one naturally
asks the question: how does the inaccuracy in the measurements propagate back
to errors in the inferred parameters [58, 76, 88, 127]? Many mathematical models
of biochemical networks exhibit a wide spectrum of parameter sensitivities with
eigenvalues distributed over several orders of magnitude [61]. This indicates the
ill-posedness of the parameter identification problem, in particular the instability
with respect to data noise. Ill-posed inverse problems have long been studied in
the mathematical literature, and regularization techniques have been developed
which control the impact of the data error, cf. [38]. For systems consisting of
many components, this issue becomes especially important since the instability of
the identification problem typically grows with the number of unknown parameters.
Thus, the development of strategies for identifying parameters in a reliable manner is
an important mathematical problem with significant practical implications [95]. In
Section 3.1, we present regularization techniques and demonstrate their significance
for systems biology by examining a benchmark problem that has been widely studied
in the noise-free case [78,113,126,164]. By adding noise to simulated data, we show
that such a benchmark parameter identification problem is in fact highly unstable.
Moreover, we demonstrate that Tikhonov regularization can be effectively used to
identify parameters in a stable way even in the presence of data noise.
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Finally, we address the inference of network topology which ideally precedes the
process of parameter identification. Whenever some interactions between system
components are unknown, even the formulation of the mathematical model becomes
unclear. Mathematical techniques for structure identification can be divided into
two groups. First, model-free methods depend only on the data. For example,
one can infer the Jacobian matrix of a system from transient responses to small
perturbations of a steady state [18] or read off the topological distances of the
network components from temporal responses to perturbations of arbitrary size
[157]. In another approach, time-lagged correlations between system components
are calculated from responses to large-amplitude noise. Using correlation metric
construction (CMC), the topology of the network as well as the strength of the
interactions can be reconstructed [5].

The second group consists of model-based methods. As stated above, it is not
clear a-priori which mathematical model is appropriate to account for unknown
interactions between system components. Additionally, the introduction of
hypothetical interactions may result in a combinatorial explosion of the number of
parameters, which in turn may cause the problem of over-fitting of the experimental
data. On the other hand, biochemical networks are typically sparse, i.e. genes,
proteins, or metabolites interact with only few other genes, proteins, or metabolites.
In fact, most biochemical species take part in less than four or five processes
each [77, 109]. Hence, one may add to the data mismatch a penalty term
discriminating against parameters which have only little effect on the system
dynamics. First studies were done for S-systems, which are characterized by a
one-to-one correspondence between network interactions (activation or inhibition
of production or consumption processes) and parameters (kinetic orders). In this
case, network inference becomes a parameter identification task. As a penalty
term, the sum over the absolute values of unknown kinetic orders [85] (l1-norm) or
the number of non-zero parameters [49] (l0-“norm”) have been used. The latter
approach has the disadvantage that it turns the minimization of the objective
function into a combinatorial problem. The use of different norms in the penalty
term has been intensively studied in the mathematical literature [28, 104,123,163].
In particular, it has been shown that the problematic l0-“norm” mentioned above
can be approximated by the lp-quasinorm with 0 < p < 1, which additionally has a
stabilizing effect on the ill-posed problem of parameter identification. Hence, this
approach is referred to as sparsity promoting regularization.

2.3. Qualitative Inverse Problems

2.3.1. Bifurcation analysis in cellular physiology In the modeling of genetic and
metabolic networks, from quantitative data and database knowledge, ODE models
of the form (1) are derived; refer to Appendix C for an example. With the parameter
values q corresponding to the given physiological conditions and input signals, the
time-course trajectory can be computed. In building models in biology, often the
desired quantitative data or even the knowledge of the network topology may
be incomplete. Hence, at the initial modeling stage one might ask the following
question: given the current state of knowledge in molecular biology as has been
captured in the mathematical model, can it be consistent with the known qualitative

features of the cell physiology? Such observed features might be the presence
of geometric patterning or the multi-stability of the cell state as reflected in its
path dependence [44]. After exploring a given model of a network for the range of
parameters that lead to qualitative dynamics consistent with that of the biological
system under consideration, parameter identification from time-course data could
be carried out, starting within the range thus obtained. While the particular
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Figure 4. Transition across a Saddle-Node Invariant Cycle (SNIC) bifurcation
as S varies: time courses

form of the system trajectory may determine the quantitative details of cellular
responses, there often exists a more direct relation between the cell physiology
with the qualitative dynamics of the ODE system as captured in the bifurcation

diagrams [54, 155]. In particular, at most parameter values as the parameters q
vary in a small neighbourhood, the qualitative behavior of the dynamical system
remains the same. At bifurcation points, the dynamical system loses its structural
stability: for instance, additional equilibria may emerge (as in the case of the saddle-

node bifurcation) or oscillations may appear from a stable equilibrium point as the
systems crosses a Hopf bifurcation [92].

In the context of cell physiology, bifurcations correspond to the presence of
thresholds across which the cell responds in qualitatively different ways with respect
to the input signal. In particular, the presence of bifurcations in systems biology
networks (including genetic, signal transduction, neuronal and developmental
networks) have important implications for its associated information-processing
functions [75,154,155]. For instance, in the context of signal transduction networks,
the bifurcation parameter would be the level of the ligand (or triggering) molecule,
and the system parameters would be kinetic constants that would determine the
type of dynamic response that is triggered; different tasks of direct and inverse
types arise in studying these problems.

We now illustrate via an example the link from bifurcation diagrams to the cell
physiology. Let us consider a sub-module of a regulatory system which exhibits
the following qualitative behavior: under a sufficiently low range of input signal, S,
the system exhibits a stable steady-state behavior, giving rise to a certain protein
concentration level that increases with the signal size; however, as the input signal
size crosses a threshold S0, long period oscillations begin to appear. As the signal
increases even higher, oscillations occur at an increasingly higher frequency; Figure 4
depicts this behavior. Given this qualitative information, one might ask if it could be
captured in a ODE model. In Figure 5 we show a sequence of phase portrait where
this dynamics would be realized: plot (a) shows that for low values of the signal
strength the system has a single stable steady-state (denoted as the filled circle),
which in (b) coalesces with an unstable state state as the signal increases towards the
threshold S0 and subsequently disappears, leaving a limit cycle solution shown in (c).
The depicted scenario is the Saddle-Node on Invariant Circle (SNIC) bifurcation
[92]; the limit cycle solution that appears subsequent to the SNIC bifurcation has
a long period; in fact the period scales asymptotically as ∼ 1√

S−S0

due to the effect

of the “shadow“ that remains in the vector field following the disappearance of the
saddle-node [92] (see the shaded region in Figure 5(b)). Therefore, in modeling a
system that has the above described phenomenon, one might wish to find molecular
interactions that could give rise to the bifurcation diagram shown in Figure 6; we
call problems of this type qualitative inverse problems, since the aim is to determine
parameter configurations that give rise to a specified qualitative behavior.
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(a) Signal S < S0 (b) Signal S = S0− (c) Signal S > S0

Figure 5. Transition across a Saddle-Node Invariant Cycle (SNIC) bifurcation
as S varies: phase portraits

Figure 6. Bifurcation diagram of a system undergoing Hopf and SNIC
bifurcations. Top figure: at low values of the signal, there exists a stable
steady state (solid line) which subsequently loses stability via the SNIC
bifurcation (the curve of unstable equilibrium is shown as a dashed line);
further along the curve, the equilibrum undergoes a Hopf bifurcation, from
which a stable limit cycle solution comes off (the curve of minima and maxima
of limit cycle is denoted by the solid blue lines). Bottom figure: the period
of oscillation for the limit cycle solution shows a blow-up ∼ 1√

S−S0

near the

SNIC bifurcation.
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Figure 7. The cell division cycle: In the Gap 1 (G1) phase cells grow in size,
preparing for the Synthesis (S) phase during which DNA duplication occurs; in
the Gap 2 (G2) phase cells continue to grow until Mitosis (M) phase is reached
and the cells divide.

In dynamical processes observed in biology, the time-course trajectory can often be
divided into phases of different qualitative behaviors. For instance, in models of
the cell division cycle [155], as the mass of the cell increases, the system transitions
(via a SNIC bifurcation) from one having a bistable state to one with a limit cycle
attractor. Such bifurcation diagrams containing various arrangements of saddle-
node, Hopf and SNIC bifurcations as in Figure 6 can be observed in models of
gene networks containing coupled negative and positive feedback regulatory motifs

[120,156]. The regulatory function of the gene network can, in turn, be understood
by reading off the bifurcation structure. For instance, for a periodic regulator which
has the bifurcation diagram shown Figure 6, the decrease in the oscillation period
away from the SNIC bifurcation could go towards compensating a variable rate
of signal growth; such a feedback mechanism goes towards ensuring the balanced
growth and division that is of crucial importance in cell cycle models [26,155] that
describe the sequence of events that leads to the division and replication of cells;
refer to Figure 7 for the sequence of events that occur from the Gap 1 (G1), to
Synthesis (S), Gap 2 (G2) and Mitosis (M). As an illustration of the role of gene
networks controlling the cellular state, we look at the bifurcation diagram shown in
Figure 8, of a bistable switch model governing the G1/S transition in mammalian
cell cycle [149]; the full ODE model is given in Appendix C. The solid lines in
Figure 8 correspond to different physiological states: the G1 and the S phases.
The transitions between the phases correspond to transcritical (TC) and saddle-
node (SN) bifurcations in the model. Different physiological conditions may lead to
shifts in the parameters in the regulatory system and may change the bifurcation
diagram. For instance, the triggering of a check-point mechanism [155] would lead
to a delay in the switching point to a higher level of the input signal; see the top
diagram in the right of Figure 9.

We remark that saddle-node and Hopf bifurcations are examples of co-dimension
1 bifurcations [92]; there are bifurcations of co-dimension 2 and higher, which act
as organizing centers around which the various one-parameter bifurcation diagrams
are possible. Shown in Figure 10 is an illustration of a cusp singularity, showing
that lines of saddle-node (or fold) singularities emerge from it.

So far, we have looked at example systems where the gene regulatory system
responds to a given input signal and the associated bifurcations of equilibria have
physiological significance in terms of transitioning between the states of the cell.
An important class of phenomena prevalent in biology is the presence of oscillatory
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Figure 8. Bifurcation diagram of a model underlying G1/S transition [149]

Figure 9. Possible transformations of bifurcation diagram for a bistable switch

Figure 10. Cusp singularity and fold curves that come off it

phenomena occurring at multiple time-scales. These dynamical phenomena could
be understood either via the bifurcation diagram in the interplay between fast and
slow variables, or arise as bifurcations of limit cycles. For instance, Figure 11 shows
bursting dynamics commonly observed in some cell types, including neurons and
endocrine cells [44,75]. Bursting dynamics as shown in Figure 11 can be dissected as
an alternation between two disparate time-scales: the fast, spiking phase in between
the slow, recovery phase. The trajectory of the combined fast-slow variables and the
nullclines of the fast subsystem are represented in Figure 12(a). As the slow variable
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Figure 11. Bursting dynamics: an interplay of fast and slow time scales

(a) State trajectory of bursting dynamics
superimposed on the nullclines for the fast
subsystem

(b) Trajectory of the fast subsystem, sliced
at various values of the slow variable

Figure 12. Trajectory of system and phase portraits

changes, the fast sub-system is taken through the sequence of phase portraits shown
in Figure 12(b), which undergo bifurcations at the start and end of each spiking
phase. Therefore, by studying the bifurcation diagram of the fast subsystem one
can gain an understanding into the roles the underlying physiological mechanisms
giving rise to the bursting behavior.

Oscillations are prevalent in biology, the most prominent of which is that of the
circadian rhythm clock [97], whose free-running period is close to 24 hours and plays
an important role in the orchestration of various biological processes. However,
in addition to the circadian rhythm, there are periodic processes occurring at
significantly smaller or larger time scales. For instance, metabolic oscillations
with periods of around 40 minutes have been observed in yeast, in which cells
undergo reductive and oxidative phases [86] and dynamic effects such as modulated
oscillations or period-doubling bifurcation have been observed in metabolic data
[100]. The periodic arousal events observed in hibernating arctic squirrels provide
an example of regular oscillations occuring at a time scale significantly longer than
a day [161,162]. In particular, Figure 1 of [161] shows arousal events which appear
regularly, with a period of approximately 20 days; it is hypothesized that these
arousal episodes are necessary to avoid brain damage in the arctic squirrel. While
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(a) Limit cycle solution using nominal
parameter set

(b) Modulated oscillation using a perturbed
parameter set

Figure 13. Time-course of the 3-loop circadian rhythm system proposed
in [102]

Figure 14. Bifurcation diagram of the 3-loop circadian rhythm system
proposed in [102]

it has been observed that a peak in the activity of circadian rhythm genes appears
early in the arousal events [161], it remains unclear which molecular mechanisms
underlie such periodic arousal events. Methods as described in Section 3.2 might
be helpful in addressing such questions. Whether and how different rhythms may
influence one another across time scales is a question that remains to be addressed.

As an illustration of the possibility for a system to exhibit oscillations at multiple
time scales, we look at a circadian rhythm model for Arabidopsis [102]. Shown
in Figure 13(a) is the limit cycle oscillations obtained for nominal parameter
values. By choosing parameters such that the system undergoes the Neimark-

Sacker bifurcation of limit cycles, the behavior shown in Figure 13(b) is obtained,
showing modulated oscillations whereby a slower, oscillatory envelope appears. A
bifurcation diagram of the system is shown in Figure 14, showing that the limit
cycle solution undergoes such a bifurcation [92]. Subsequent to this bifurcation, the
trajectory of the system changes from having a loop-like trajectory (Figure 15(a))
into one that traces out a torus structure (Figure 15(b)).

2.3.2. From bifurcation phenotype to mechanisms Given the above described
examples illustrating the role of qualitative dynamics in governing cell phenotypes,
many qualitative inverse problems arise. In contrast to the standard
forward bifurcation analysis which maps molecular interactions to physiological



Inverse Problems in Systems Biology 20

(a) Loop-like structure for limit cycle
solution

(b) Torus-like structure after undergoing the
Neimark-Sacker bifurcation

Figure 15. State-trajectories of the 3-loop circadian rhythm system proposed
in [102]

consequences, inverse bifurcation analysis aims to map desired or observed
phenotypic characteristics to molecular interactions [104, 105]; applications of such
inverse problems range from reverse-engineering the dynamics of gene networks, the
design of qualitative behavior for therapeutic treatments (for instance, correcting
dynamics diseases) or synthetic biology (for instance, a bistable switch out of
BioBrick [146] components). In many of these applications, the sparsity of solution
is of practical importance, since it allows for obtaining the desired goal with as few
changes in the parameters as possible.

Reverse-engineering of gene networks An important question that arises in the
modeling of circadian clocks in organisms such as Drosophila, is figuring out
the reasons for the robustness of oscillation period against variations to poorly
controlled parameters (such as degradation rates) or environmental conditions such
as temperature. Physiologically, this dynamical property is important in order to
ensure that the proper ordering of biological processes that occur throughout the day
in spite of changing environmental conditions [96, 98]. To address such questions,
computational analyses can be a useful tool in characterizing dynamical properties
of circadian clocks and how they arise from the system architecture [124, 125];
see also an numerical example in Section 3.2.3 examining robustness with respect
to a specific parameter. On the topic of what are the causes of temperature
compensation, a number of competing hypotheses have been proposed, for instance
through balanced control coefficients [131] or a resetting mechanism as in many of
the previously proposed cell cycle models [70]. In an effort to help answer these
inverse problems computational optimization was used to examine possible ways of
tuning model parameters to obtain a temperature-compensated model [1, 132].

Diseases and therapeutic treatments As we have shown in the previous examples,
the presence of certain bifurcations and/or the geometric relations between
bifurcation points may be needed for the correct physiological functioning. Via
genetic mutations or other factors, changes may be brought to gene regulatory
networks such that they no longer function normally. This could lead to a dynamical

disease, which was coined by Glass and Mackey [51] as one that occurs in an intact

physiological control system operating in a range of control parameters that leads to

abnormal dynamics and human pathology. For instance, in the context of circadian
rhythm, dysfunctions can lead to a number of physiological disorders such as
Familian Advanced Sleep Phase Syndrome (FASPS), Delayed Sleep Phase Syndrome
(DSPS) [99]. Finding the combination of factors that causes a dysfunctional
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bifurcation diagram is an application of inverse qualitative analysis [104].

Synthetic biology Synthetic biology is an emerging field with the goal of developing
engineering-like approaches for piecing together molecular components so as to carry
out certain pre-defined functions, in much the same spirit as electrical circuits are
built from elements such as capacitors and resistors. For instance, one could study
the question of how to design a robust circadian oscillator, from the catalogue of
parts available in BioBrick [146]. Such design problems give rise to the mathematical
and computational challenges of not only the forward but also of the inverse type
[36]. Given the physiological implications of qualitative dynamical characteristics,
in the design problems arising in biotechnology and pharmaceutical contexts it
is of much interest to infer mechanisms that could alter bifurcation diagrams of
gene networks [17,36]. The long-term applications of inverse qualitative techniques
could include controlling the differentiation points of stem cells or the construction
of robust synthetic switches that are activated by the presence of certain chemicals
[17,83].

In all the application areas mentioned above, there would most likely exist many
solutions to the stated inverse problem. However, within the complex networks
encountered in biology, one typically wishes to look for the simplest mechanisms,
or tunable ’knobs’, underlying the observed or desired dynamical effects. This
leads us to consider the use of sparsity-promoting regularization in our work: by
attributing the data or effects to a few genes or specific interactions, the identified
solution would have the advantage of being much more useful within the biological
setting [27,104] or easier to implement as a design task.

3. Methodology

3.1. Parameter identification

3.1.1. Problem Formulation and Ill-Posedness As mentioned above, parameter
identification is an essential modeling step in the field of systems biology and is
frequently addressed in the respective literature and both in commercial and freely
available systems biology toolboxes. Most of the techniques used there are driven
by the underlying premise that the optimal parameter solution is one which closes
the gap between numerical simulations and experimental observations as much as
possible. However, in doing so, the ill-posedness inherent to parameter identification
and well studied in the mathematical literature on regularization of nonlinear inverse
problems is ignored such that large error propagations from the data to the solution
have to be expected. In biological applications, where the data error is especially
large and may in fact dominate over the data, error amplification may have severe
consequences in terms of way-off parameter estimates. This effect, which is stronger
the higher the number of unknown parameters is, makes the use of regularization
methods necessary in order to obtain stable results. In this section we present some
standard techniques as well as recent results on sparsity enforcing regularization
that were partially motivated by our work in systems biology.

In order to illustrate the above mentioned effects of ill-posedness in context of
parameter identification in systems biology we consider the metabolic pathway
model described in Appendix B. The inverse problem studied is to identify the
36 model parameters from time courses of the 8 species concentrations involved,
observed at various time instants under 16 different experimental conditions. In
fact, this task has become a benchmark problem for testing parameter identification
tools for systems biology, however, mostly for the purpose of comparing the
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Figure 16. Exponential decay of the eigenvalues of the matrix F ′(q∗)∗F ′(q∗),
indicating the severe instability of the inverse problem. (Note the logarithmic
scaling.)

computational efficiency of algorithms, [113]. If we denote by q the parameter
vector to be determined and by yδ the available noisy data (later on δ will play the
role of a bound on the data noise), then the inverse problem can be formulated as
a system

F (q) = yδ (8)

of nonlinear equations. Here, F = G ◦ S represents the so-called parameter-to-
output map that is defined as the concatenation of the ODE solution operator S
that maps a given parameter vector q (out of a set of admissible parameters Q)
onto the solution vector x of the underlying ODE system (1) (where different ODE
systems arise in case of different experimental settings) and the observation operator
G that evaluates x at those time points the experimental observations are taken.

As solvability of (8) in the strict sense cannot be expected due to data errors and
model imperfections, the system (8) is frequently replaced by a nonlinear least
squares problem. In our operator formalism the above mentioned pursuit of the
”optimal” parameter solution then amounts to solving the minimization problem

‖yδ − F (q)‖2
Y → min

q∈Q
, (9)

where ‖ · ‖Y is an appropriate norm for measuring the discrepancy between data
and simulated output. In our example, the noisy data was generated by numerical
integration of the ODE system given in Table 1(a) of Appendix B using the initial
values given in Table 1(b), the ”true“ parameter values q∗ given in Table 1(c) and
the experimental settings given in Table 1(d). Subsequently, this ”exact” data
y ≡ F (q∗) was perturbed such that the resulting relative error of yδ was 1%. The
bound for the local absolute condition number of the first order necessary condition

F ′(q)∗(yδ − F (q)) = 0 (10)

for a minimizer of (9) is proportional to λmax/λmin, where λmax and λmin denote
the largest and smallest eigenvalue of the matrix

F ′(q∗)
∗F ′(q∗). (11)

In the example considered we have λmax/λmin ≈ 106 and hence expect an ill-
conditioned problem. The high data instability of the problem is also underlined
by the exponential decay of the eigenvalues of F ′(q∗)∗F ′(q∗) shown in Figure 16,
from which strong error amplifications of noise components over a wide range of
frequencies have to be expected.
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Figure 17. Typical behavior of an iterative method if applied to an ill-posed
problem F (q) = yδ with noisy data. While the output error ‖yδ−F (qk)‖ drops
monotonically, the solution error ‖qk − q∗‖ starts to increase after an initial
decrease due to data error propagation. Hence, in order to yield a reliable
solution, the iteration has to be stopped at the right time.

This error amplification is illustrated in Figure 17 where the course of an iterative
minimization of the least squares functional in (9) is plotted. While the residual
norm ‖yδ − F (qk)‖Y monotonically drops as the iteration number k increases, the
error ‖qk − q∗‖Q between the iterate qk and the true parameter q∗ shows the semi-
convergence behavior that is typical for ill-posed problems: though the error initially
decreases, after some iteration steps the data noise propagation prevails and causes
the parameter iterate qk to diverge from the true solution q∗. This clearly shows the
danger that comes along with the approach (9) to solve the parameter identification
problem. With the output residual ‖yδ−F (qk)‖Y being the only accessible quantity
during the minimization - of course, the parameter error ‖qk − q∗‖Q only is at hand
in contrived examples - its monotone behavior suggests to iterate sufficiently long
in order to strive for the ”optimal” solution. But in fact this strategy would lead
to an increase of the error in qk with every additional iteration step due to the
ill-posedness, see Figure 17. By the use of regularization methods to be outlined in
the following such data error propagation effects can be avoided.

3.1.2. Variational and Iterative Regularization Though we have introduced (8)
in context of the finite dimensional benchmark problem it also shall serve in the
following discussion as abstract description of a general nonlinear inverse and ill-
posed problem arising in systems biology. In this context, the operator F represents
the map from the solution q onto the output y - to be compared with the available
data yδ - but now also might act between infinite dimensional spaces Q and Y . For
inverse problems, the transition from finitely to infinitely many degrees of freedom
is usually accompanied by a change from a continuous dependence of the solution
on the data with large but still finite data error amplification to a discontinuous
dependence with arbitrarily large error propagation. Even, in applications as
described above one can easily think of sources for infinite dimensionality, e.g.,
if parameter constants of the ODE model are replaced by parameter functions
depending on temperature, species concentrations or pH-value, or if continuous
time course recordings instead of discrete time course data are considered. As a
further example, (8) arises in an infinite dimensional setting if also spatial modeling
aspects are taking into account by a description of the biological system in terms
of partial differential equations.

If the inverse problem (8) is ill-posed in the sense that its solution (in the least
squares sense) does not depend continuously on the data, algorithms tailored for
well-posed problems fail if they do not address the instability, since data as well
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Figure 18. Course of an iterative minimization of the Tikhonov functional
with α = 10−5. As opposed to the unregularized situation displayed in Figure
17, the parameter error ‖qk − q∗‖ decreases and stays bounded.

as round-off errors may be amplified by an arbitrarily large factor. In order to
overcome these instabilities one has to use regularization methods, which in general
terms replace an ill-posed problem by a family of neighboring well-posed problems.
Among the most popular techniques are variational regularization methods where
one strives for minimizers qδ

α of functionals like

‖yδ − F (q)‖2 + αR(q, q0) (12)

and where the purpose of the regularizing term R with positive regularization
parameter α is to enforce stable dependency of qδ

α on the noisy data yδ. Here,
q0 represents an a-priori guess for the solution. Examples for common choices of R
are

Tikhonov regularization: R(q, q0) = ‖q − q0‖2
Q, (13a)

maximum entropy regularization: R(q, q0) =

∫

Ω

q(t) log
q(t)

q0(t)
dt, (13b)

bounded variation regularization: R(q, q0) =

∫

Ω

|∇q(t)| dt, (13c)

see [40,41,117], [35,42,94] and [116,130,140], where the choice of R is influenced by
expected or desired properties of the solution, see also below. Note that by choosing
the regularization term R a bias may be introduced. In case of a wrongly chosen R,
(12) may lead to the best approximation of the data still compatible with R though
the true properties of q∗ are not at all reflected in the computed solution qδ

α. The
question of correctly choosing R cannot be solved by mathematical considerations,
its answer requires practical insight into the problem.

The minimization of (12) is usually realized via iterative methods. Figure 18
illustrates the course of an iterative minimization of the Tikhonov functional, i.e.,
(12) with R as in (13a), with α = 10−5 for our benchmark parameter identification
problem. As in the unregularized situation shown in Figure 17 the residual norm
‖yδ − F (qk)‖ monotonically decreases. But now, also the error in the parameter
‖qk − q∗‖ monotonically drops due to the use of the penalty term R which
demonstrates that the data error propagation can be avoided by regularization.

Other preferred techniques for solving nonlinear ill-posed problems are iterative
methods, see [43, 82] for a comprehensive survey. Linearization of (8) at a current
iterate qk motivates the linear equation

F ′(qk)(q − qk) = yδ − F (qk), (14)
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whose solution qk+1 then should serve as a better approximation according to
Newton’s method. However, in the ill-posed case the operator F ′(qk) is not
continuously invertible so that Newton’s method cannot be applied, and (14) needs
to be regularized. Tikhonov regularization applied to (14) yields the Levenberg
Marquardt method (see [62]) which defines qk+1 via

qk+1 = qk + (F ′(qk)∗F ′(qk) + αkI)−1F ′(qk)∗(yδ − F (qk)), (15)

where αk is a sequence of positive numbers by which the continuous invertibility
of F ′(qk)∗F ′(qk) + αkI is guaranteed. In the finite dimensional context, (15) with
αk = 0 corresponds to an equation for qk+1 − qk involving the matrix (11). Closely
related is the iteratively regularized Gauss-Newton method (see [6, 13])

qk+1 = qk + (F ′(qk)∗F ′(qk) + αkI)−1[F ′(qk)∗(yδ − F (qk)) − αk(qk − q0)], (16)

which is obtained by augmenting (15) by the term

−(αkI + F ′(qk)∗F ′(qk))−1αk(qk − q0)

for additional stabilization. Replacing F ′(qk)∗F ′(qk) + αkI in (15) by the identity
mapping I (in the quasi-Newton spirit) yields the Landweber iteration

qk+1 = qk + F ′(qk)∗(yδ − F (qk)), (17)

a method that is slower but easier to handle, see [64]. It can also be considered
as fixed point iteration applied to equation (10). More details on iterative
regularization methods based on fixed point arguments can be found in [7]. For
the construction of Newton-type methods based on invariance principles and on
some multi-level aspects see [31].

3.1.3. Regularization Parameter In case of an ill-posed problem, an iterative
method for its solution needs to be stopped “at the right time”, i.e., only for a
suitable stopping index k∗, the iterate qδ

k∗
yields a stable approximation to q∗.

Otherwise, the typical semi-convergence behavior is obtained, where even as the
output decreases as the iteration number increases, the error ‖qδ

k − q∗‖ starts to
increase after an initial decay due to the data error propagation, see our example
in Figure 17.

As indicated by this example, one of the major concerns in regularization theory
is how to choose the regularization parameter appropriately since its choice always
reflects a compromise between accuracy and stability, see [38]. For instance, if α in
(12) is chosen too large, the influence of the initial guess q0 is too strong, leading to
a poor approximation of q∗. On the other hand, if α is chosen too small, data errors
may already get amplified too strongly. Hence, there always is an optimal range
of regularization parameters such that with α chosen out of it an acceptable total
error ‖qδ

α − q∗‖ can be obtained. This is also illustrated in Figure 19 for the above
mentioned benchmark parameter identification problem, where the error between
q∗ and qδ

α obtained by Tikhonov regularization for various values of α (but fixed
data yδ) is plotted.

In order to demonstrate the benefit of regularization with a regularization parameter
within the optimal range, we have chosen α = 10−5 (close to the best choice as
suggested by Figure 19) to obtain the results illustrated in Figure 18. Figure 20 gives
a comparison of the corresponding regularized solution qδ

α with the unregularized
q̃ obtained by a pure minimization of (9). While q̃ shows large deviations in its
components from the true solution q∗, the regularized solution qδ

α yields a stable,
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Figure 20. Individual relative errors of the identified parameters. Left:
solution q̃ obtained via pure minimization of the data mismatch, i.e. without
regularization. The relative error of parameter 32 is 3085.45 (not shown
here due to the cut-off at 10). Right: solution qδ

α obtained via Tikhonov
regularization.

hence reliable approximation of q∗. Clearly, these figures only serve the purpose of
illustration, since in practical problems the solution q∗ for exact data is unknown and
hence plots of this kind are not available. Hence, parameter choice rules have to be
used in order to determine a regularization parameter which is close to the optimal
one. Such strategies can be derived from theoretical analysis of the particular
method under consideration.

3.1.4. Convergence Analysis and Error Concepts All regularization methods have
in common that their convergence analysis is based on some knowledge about the
quality of the available data yδ. Besides stable dependency of the approximation
qδ
α (or qδ

k∗
) on yδ, the key attribute of regularization is a convergence property of

the type

qδ
α → q∗ as the quality of the data gets perfect, i.e., δ → 0. (18)

Though in the actual application the data quality is limited and cannot be driven to
perfectness, theoretical (asymptotic) validation of the method is provided by (18)
and guidelines for the choice of the regularization parameters can be drawn from
such convergence considerations. In the deterministic, functional analysis based
theory of inverse problems, see [38], the necessary data information is assumed to
be given in terms of a noise level δ serving as norm bound on the data error, i.e.,

‖yδ − y‖Y ≤ δ. (19)
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Then, under additional smoothness assumptions on q∗ - so-called source conditions
- the goal is to derive convergence rates for the norm error between qδ

α and q∗ of
the type

‖qδ
α − q∗‖Q = O(f(δ))

with f(δ) → 0 as δ → 0. These estimates are of a worst case type in the sense
that they are valid for all noisy data compatible with (19). In many situations this
is a much too restrictive way of assessing uncertainty. In particular, in biological
applications information about the distribution of the data error rather than an
estimate of the form (19) might be available. Motivated by statistical estimation
theory, one then usually aims at estimates for the expected value of the squared
norm of the deviation. For instance, if the variance E(‖yδ−y‖2

Y ) for the data error is
available, one strives for estimates for the solution error expectation E(‖qδ

α−q∗‖2
Q).

For stochastic convergence concepts in connection with inverse problems, we refer
to [10, 12, 69]. For finite dimensional problems, the statistical approach to inverse
problems also covers questions about confidence intervals or regions in order to
determine how reliable a computed solution is. For instance, under the assumption
of additive and normally distributed data noise with constant variance σ, a region
around the minimizer qδ

0 ∈ R
m of (9) can be defined in which the true solution

q∗ lies with a certain probability (1 − β). Based on the Fisher information matrix
1

σ2 F ′(qδ
0)

∗F ′(qδ
0), this (1 − β) confidence region is determined by the inequality

(qδ
0 − q∗)

∗ (

F ′(qδ
0)

∗F ′(qδ
0)

)

(qδ
0 − q∗) ≤

m‖yδ − F (qδ
0)‖2

Y

N − m
Fβ(m,N − m),

where F ′(qδ
0) ∈ R

N×m and Fβ(m,N−m) is the upper β part of Fisher’s distribution
with m and N − m degrees of freedom, see [9] for details.

In the modeling of biological phenomena, stochasticity may not only arise through
the data noise but also through the model itself: frequently, one does not look for
a specific quantity for a specific individual but for the distribution of the quantity
over a larger population. Then, uncertainties both in the data and the unknowns
can be modelled and error estimates for regularization methods can be given using
the Ky Fan or the Prokhorov metric, see [39, 68]. They allow to measure distances
between random variables and their distributions, respectively. Those metrics can
also be used for deriving analogies to confidence intervals in an infinite-dimensional
setting. Furthermore, they allow to derive convergence results for Bayesian inversion
methods, see [118]. In this theory, the Bayes formula is used to derive, from
available prior information and measured data, the solution of the inverse problem
as posterior distribution, see [81].

3.1.5. Parameter Choice Strategies Returning to the actual question of
regularization parameter choice, there are two general classes of strategies. While a-
priori rules only involve the information about the quality of the data, a-posteriori
techniques use, in addition, the actual data yδ. Since optimal a-priori rules also
require knowledge hardly accessible in applications, a-posteriori techniques, that
only use available information, often are more practical. A prominent example
for the latter is the discrepancy principle. In context of a deterministic analysis of
variational regularization (12) it defines α = α(δ, yδ) as the solution of the nonlinear
equation

‖F (qδ
α) − yδ‖ = τδ (20)

for some τ > 1. In context of iterative methods, the discrepancy principle
determines the regularization parameter k∗ = k∗(δ, yδ) according to

‖yδ − F (qδ
k∗)‖ ≤ τδ < ‖yδ − F (qδ

k)‖, 0 ≤ k < k∗, (21)
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for some τ slightly larger than one. Hence, the iteration is stopped as soon as the
residual ‖yδ−F (qδ

k)‖ is in the order of the data error, which is somehow the best one
should expect. For solving an ill-posed problem when only noisy data yδ are given,
it would make no sense to ask for an approximate solution q̃ with ‖yδ−F (q̃)‖ << δ,
the price to pay would be instability, see Figure 17. While (20) requires to solve
a nonlinear equation for α, with the associated theoretical questions concerning
the solvability and possibly high computational effort, (21) is easy to realize. This
is one reason for the attractiveness of iterative methods compared to variational
regularization.

One can show (see [38]) that error-free strategies, where α = α(yδ) (or k∗ = k∗(yδ)
does not depend on δ, cannot lead to convergence as δ → 0 in the sense that
lim
δ→0

qδ
α = q∗ for all yδ satisfying (19). Since this is only an asymptotic statement,

these techniques may still occasionally work well for a fixed noise level δ > 0, see [63].
However, the knowledge and use of a bound δ for the data error - either deterministic
or stochastic - is necessary for the construction of regularization methods based
on a sound theoretical foundation. The error-free strategies include the popular
methods of generalized cross-validation [159] and the L-curve method [65]; for its
non–convergence, see [37,158].

3.1.6. Sparsity Enforcing Regularization Finally, we focus on the issue of sparsity
enforcing regularization, as already mentioned in Section 2.2, which recently turned
into an active field of research in the area of inverse problems. With respect to an
underlying basis for the space Q, the principal goal is to find stable solutions qδ

α to
the inverse problem that show as few as possible deviations in its components from
some reference q0 or are sparse themselves, i.e., only possesses as few as possible
components different from zero, i.e., q0 = 0. In systems biology, one goal could
be the infer the sparsest reaction network still compatible with the experimental
data, where the components of qδ

α then represent connections between two nodes of
the network, see [89] for a study of the Chlorite Iodide reaction network. Though
of chemical nature, this reaction is known to show a rich repertoire of dynamical
features also encountered in biological systems such as oscillations and bistability,
see [84]. Furthermore, experimental data are easier to obtain for chemical systems
which makes them an attractive test case. Parameter identification in models from
chemistry has been addressed earlier in the literature, [14,15,121], however, due to
the acceptable quality of the data in the applications considered (in comparison to
data in biology) the emphasis was not put on regularization.

As another example of sparsity, one might wish to influence a biological system by
as few as possible interventions while achieving the desired qualitative behavior, see
the examples of Section 2.3. If the system in its current state is modelled in terms
of tunable reference parameters q0, then the task is to obtain the desired system
characteristics by performing as few as possible changes in q0, see Section 3.2 for a
more comprehensive discussion.

For the solution space Q = lp, questions of that type can be addressed by variational
regularization using the penalty term

R(q, q0) = ‖q − q0‖p
lp

=
∑

i

(q − q0)
p
i , 0 < p ≤ 2, (22)

where the setting q0 = 0 would correspond to striving for sparsity of qδ
α. The smaller

the value of p, the closer R(q, q0) approximates

|||q − q0||| := ♯ of components of (q − q0) different from zero, (23)
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the penalty correctly reflecting sparsity. However, since (23) is not even continuous
in q, it is frequently replaced by (22) in order to avoid the high computational
costs due to the use of combinatorial algorithms. For the case p ≥ 1 several results
both on theoretical and algorithmic aspects can be found in the literature, see,
e.g., [28, 55, 56, 123], however, the approximation of (23) then is rather poor. The
latter is improved for the choice p < 1, however, additional challenges in the analysis
(22) then arise due to the non-convexity, the non-differentiability and the lack of
norm properties of ‖ · ‖lp for p < 1. Still, the regularization properties of (22) can
be guaranteed, see [163], by using the superposition operator

Np,r : q 7→ ϕp,r(q(·)) with ϕp,r : s → sign(s) |s| r
p

for 0 < p ≤ 1 and 1 ≤ r ≤ 2 and the transformation

q̃ = N−1
p,r (q) with ‖q‖p

lp
= ‖Np,r(q̃)‖p

lp
= ‖q̃‖r

lr .

That way the problem formulation

‖yδ − F ◦ Np,r(q̃)‖2 + α ‖q̃ − q̃0‖r
lr → min

q̃∈lr
(24)

equivalent to (12) with (22) can be derived, to which standard regularization theory
applies using similar proof techniques as in [41]. Current research topics include
the efficient numerical solution of the minimization problem (24) and the design of
iterative regularization methods that enforce sparse solutions.

3.2. Qualitative Inverse Problems

Algorithms and numerical implementations of (forward) bifurcation analysis have
been developed over the past few decades and there currently exist several mature
software packges in various programming languages, from FORTRAN [34], C [53,92] to
Matlab [32,54]. In computing the bifurcation diagram, the equilibrium continuation
is carried out using methods such as pseudoarclength continuation, on which
bifurcation points are located via the zeros of certain test functions [54, 92]. In
the state-of-the-art implementations [52, 92], limit cycle solutions are formulated
as a boundary value problem (BVP) on a unit circle with the period T being a
variable,

ẋ(t) − Tf(x(t), q) = 0, t ∈ [0, 1]

x(0) = x(1),Ψ[x] = 0
(25)

where Ψ[·] is a scalar functional that enforces a phase condition in order to remove
the rotational degree of freedom. Numerical methods for the solution of limit cycle
and the detection of their bifurcations have been developed, by discretizing using the
collocation method [52,93]. Once (co-dimension 1) bifurcations have been found on
curves of equilibria and limit cycles, additional parameters can be freed to continue
these located bifurcation points and obtain two-parameter bifurcation diagrams.
The numerical continuation of bifurcations is carried out in an analogous manner, for
instance by applying the pseudo-arclength method to augmented systems involving
their respective defining conditions.

In application areas where nonlinear dynamics and bifurcations have traditionally
played an important role, methods for the design and control of qualitative dynamics
have been developed. Driven by electrical and chemical engineering problems,
methods for the design of robust systems have been proposed [33, 114]: the
methodology consists of finding tunable parameters that widen the regime in
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the uncertain or uncontrollable parameters that maintain the same qualitative
dynamical behavior. In other words, by moving the undesired bifurcation points
outside the regions of operation, the stability of the system is therefore not
threatened by a possible change in the qualitative dynamics. This approach has
been applied to applications including avoiding voltage collapse in the electric
power system [33] and improving parametric robustness in chemical reactors [114].
Methodologically, the algorithms find the closest bifurcation points and rely on
gradient-based methods to place them at the desired locations. In particular,
expressions for normal vectors to saddle-node and Hopf bifurcations have been
derived [33, 114] as well as for bifurcations of higher co-dimensions (cusp, isola)
[114]. Based on the computed vectors normal to the bifurcation manifolds,
iterative methods have been derived to locate the closest bifurcation points [33]
as well as provide gradient information for optimization algorithms that move these
bifurcation points.

In systems biology applications, one is interested not only in questions of robustness
(for instance, maximizing the parameter range that leads to oscillations about
a desired period) but more generally in exploring model behavior and relating
observed or desired dynamic characteristics to mechanisms. For instance, at the
initial modeling stage, one may wish to explore the possibility of a given model
to exhibit bistability or oscillations. Methods of computationally searching the
parameter space for different qualitative dynamics have been proposed, using either
genetic algorithms [19] or carrying out lift-and-project iterations for the respective
inverse eigenvalue problems [103]. We note that in many modeling applications, one
wishes not only to probe the possibility of a model to exhibit a particular behavior
but also to identify the underlying mechanisms; for addressing such questions, the
use of sparsity enforcing regularization is crucial [103,104].

At the initial modeling stage, the task of placing bifurcation points at specific
locations is of practical importance as well. As an example from circadian rhythm
modeling [23], using the initial parameter estimates it was found (by carrying out
a bifurcation analysis with respect to the Hill coefficient n) that oscillations can
only occur at an unrealistically high value of n = 32. The question is then: can
one identify a set of parameters such that the Hopf bifurcation occurs at the value
n = 4? Using genetic algorithm, this problem has been addressed in [23].

In this section, we consider qualitative inverse problems under sparsity enforcing
regularization formulated as the following constrained minimization problem,

‖y − F (q)‖2 + αlp,ǫ(
q − q0

q0
) → min

q
, g(q) ≥ 0, (26)

where g(q) denote possible inequality constraints that may arise, α the
regularization parameter and

lp,ǫ(x) =
∑

i

(x2
i + ǫ)p/2 (27)

is the sparsity enforcing penalty with a smoothing parameter ǫ; refer to Figure 21
for an illustration. We note that the functional is only convex within the box
{x : |x| ≤ √

ǫ}; thus, the value of
√

ǫ could serve as a threshold for classifying
parameters as having been identified by the algorithm. In all the numerical examples
shown in this section, we have chosen ǫ = 10−2. We remark that an evaluation of
the forward operator, F (q), entails computing the bifurcation diagram of the system
of interest with respect to some chosen bifurcation parameter(s). Computationally,
this would entail carrying out pseudo-arclength continuation using Newton’s method
and/or solving the BVP (25). In the numerical examples below, the misfit term
‖y − F (q)‖ might represent the distance of some bifurcation points to their desired
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Figure 21. Smoothed sparsity enforcing penalty (27): p = 0.1, ǫ = 10−4

(a) Initial oscillatory domain in (α, β)-plane (b) Widened oscillatory domain

Figure 22. Design of an oscillatory domain

locations, or some performance measure of the dynamic characteristics such as the
deviation of the period of the limit cycle oscillation from the desired value.

As a simple instance, consider the situation where one has a model which gives
rise to the desired dynamic behavior but one would like to widen the parameter
regime which leads to the same qualitative dynamics. In this case, the term
‖y − F (q)‖ measures the distance of the nearest bifurcation manifold from the
nominal parameters, y. We take as the model system the 3-gene repressilator [115]
in which the interaction graph of the genes forms a ring whereby each gene represses
the next one, modelled by the following ODE system:

ẋi = βi(yi − xi)

ẏi = αi

(

1 − δi

1 + xhi

(i−1)| mod 3

+ δi

)

− yi, i = 0, · · · , 2.

In Figure 22, we show that by applying the algorithm developed for solving (26)
to the repressilator system, the oscillatory domain in the (α, β)-plane can be
maximized [105]. As another example on increasing robustness, we discuss in
Section 3.2.3 a problem involving a circadian rhythm model where the goal is to
maintain constancy of period over a range parameter values.

In the following subsections, we show a number of qualitative inverse problems which
can be formulated as (26), illustrating some possible applications in designs and
therapeutics. In Section 3.2.1, we look at transformations of the bifurcation diagram
as shown in Figure 8 as a way to reverse-engineer the network and deduce the



Inverse Problems in Systems Biology 32

important interactions underlying the observed bifurcation phenotype. In solving
such reverse-engineering problems, sparsity-promoting regularization is important
in order to derive solutions that are more useful in the biological context [104]. As
an example of the inverse qualitative problems that arise in identifying mechanisms
for possible therapeutic treatments, we discuss in Section 3.2.2 an example involving
a Hypothalamic-Pituitary-Adrenal (HPA) axis model, showing how sparsity penalty
can be used to identify important interactions in the network which could serve as
possible drug targets. Lastly, in Section 3.2.3 we show a design example where we
would like to tune parameters in a circadian rhythm model such that the period of
oscillation is robust with respect to a loosely regulated parameter.

3.2.1. Numerical example: G1/S transition In this example, we go back to the
example first shown in Section 2.3.1, whose full ODE system is shown in Appendix
D. We ask: given that the location of the saddle-node bifurcation points has
important physiological implications, what network components (or ’knobs’) could
tuned to give rise to the geometric transformations as depicted in Figure 9?

To solve such inverse bifurcation problems, we formulate them as constrained
optimization problems of the following form: over the set of system parameters
qs, minimize the non-convex penalty function lp,ǫ(·) under the constraints on the
location of the saddle-node bifurcation points:

min
qs

lp,ǫ

(

qs − q∗s
q∗s

)

subject to

{

SN1(qs) = SN∗
1,

SN2(qs) = SN∗
2.

(28)

In particular, we considered the 3 modes of bifurcation phenotype given in Figure 9.
Using the sparsity-promoting penalty, the computational results point to a core part
of the network, consisting of 2 genes, that control the bifurcation phenotype of the
network [104]. The effect of the choice of penalty term is illustrated in Figure 23:
while both solutions give rise to the same specified shift in the bifurcation points,
the l2 result would be much more challenging to interpret in the biological context.

3.2.2. Numerical example: stress response in HPA axis In this example, we
examine a model of the Hypothalamic-Pituitary-Adrenal (HPA) axis [60], which
play an important role in maintaining body homeostasis in response to various
stresses. For some parameter values, the model predicts the bistability in the
solution: once a sufficiently high stress level has been reached, the systems lies
permanently in an elevated response state even after the stress level has been
removed. Physiologically, this could correspond to a chronic stress condition. A
simulation of the model that corresponds to such a condition is shown in the
middle column of Figure 24: once the amplitude of the stress pulse (shown as gray
blocks) goes above 0.25, the system does not go back to the low response state.
Given this behavior, we ask the following question: which mechanisms could delay
the onset of chronic stress condition, to a higher stress level? The corresponding
inverse bifurcation problem is to shift the saddle-nodes (or limit-points) as shown
in Figure 25. Using the sparsity-promoting penalty, a change in 2 parameters has
been identified, giving rise to the model behavior shown in the right column of
Figure 24: we see that the HPA response remains reversible for the stress level 0.25,
successfully delaying the chronic condition to a higher input stress level. Finally, we
note that the use of sparsity promoting penalty is important for obtaining results
that are more easily interpretable in the biological context: Figure 26 shows that
in comparison, the result obtained using a sparsity enforcing penalty lp,ǫ, see (27),
is more useful than the standard l2-penalty because it identifies a few especially
relevant parameters.
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(a) Sparsity-promoting lp,ǫ functional
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(b) Standard l2 functional

Figure 23. Identified parameters leading to elongating saddle-nose using lp
and l2 penalty functions

Figure 24. Delay of chronic stress in the HPA axis model: the irreversible
system response in the left column is delayed to a higher stress level, as shown
in the right column
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Figure 25. Shifting the saddle-node in the HPA axis model
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(b) Standard l2 functional

Figure 26. Identified stress-relieving parameters using different penalty
functions

3.2.3. Numerical example: circadian rhythm As is mentioned in Section 2.3.2,
period robustness is an important dynamical feature of circadian rhythm models.
Here, we look at a circadian rhythm model in Drosophila proposed by Leloup and
Goldbeter [97]; see Appendix D for the full system of equations). In particular,
we formulate an inverse problem regarding period robustness under parametric
variation. In many gene regulatory systems, the degradation rates of mRNA and
proteins are not regulated and can undergo large fluctuations. In the following
test case, we consider the maximum degradation rate of the TIM mRNA, vmT

(highlighted in the ODE system shown in Appendix D) and ask if one can fine-tune
the model such that it exhibits robust oscillation period within some range of values
of vmT . Show in Figure 27 is the bifurcation diagram of the model with respect
to vmT , showing that within the parameter window 0.4 ≤ vmT ≤ 1 there exists a
stable limit cycle solution whose period of oscillations (bottom plot) exhibits some
variation from 24-hour. As a measure of period robustness, the total variation

functional may be an appropriate choice. Hence, to identity parameters resulting
in period robustness, we formulate the following minimization problem:

min
q

J(q) = TV (period(q) − 24hr) + αlp,ǫ

(

q − q∗

q∗

)
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Figure 27. Bifurcation diagram in the circadian rhythm model with respect
to the parameter vmT : original parameter settings

s.t. LPCleft(q) ≥ LPCL

LPCright(q) ≤ LPCU ,

where constraints are imposed on the lower and upper values of the Limit Point of
Cycles (LPC) so as to ensure that oscillations occur within the desired window of
values for vmT . We solve the above minimization problem with the regularization
parameter value of α = 10−4, obtaining the solution shown in Figure 28. It can be
seen that the period variation within the high-lighted window has been essentially
eliminated. Furthermore, the use of sparsity regularization again gives a sparser
result compared to that obtained using the l2 regularization; see Figure 29. The
species involved in the identified mechanisms are highlighted in Figure 30.

4. Outlook

In this paper we illustrated the importance of regularization for the stable treatment
both of parameter identification and of qualitative inverse problems originating from
systems biology. The illustrating examples – and similar problems we so far worked
on – are of a much lower dimension than in realistic systems biology applications,
where the number of variables in the ODEs might be several thousands. Also, the
number of parameters might be of the same order of magnitude if not even higher,
which increases the instability of the inversion problems. This situation will require
both upscaling and new strategies: for the inverse problems, multi-level approaches
taking into account already known modular structures will be useful. On the other
hand, sparsity enforcing techniques may be suitable for finding unknown modular
structures, providing thereby alternative appproaches to other techniques reducing
the number of variables, for examples stationarity of intermediates or reduction
of complex reaction mechanisms, see [128]. Also, (mathematical) model reduction,
where a large (differential equation) system is replaced by a smaller surrogate model,
use inverse problems techniques for determining the parameters in the latter, see,
e.g., [11] and [30].
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Figure 28. Bifurcation diagram in the circadian rhythm model with respect
to the parameter vmT : optimized parameters

Figure 29. Effectiveness of sparsity-promoting regularization in the circadian
rhythm example

Cells and organisms have also rich spatial structures that are largely neglected by
ODE models. Both experimental and mathematical techniques have to be further
developed to cope with this aspect. Finally, stochastic effects play a role because
of low particle numbers or environmental fluctuations. For dealing with these
challenges, appropriate forward models and solvers will have to be developed further;
for large scale inverse problems, an optimal interplay and coupling between forward,
adjoint and inverse solvers is decisive for computational tractability and efficiency.
Guidance might be taken from techniques and results for the identification of
distributed parameters in partial differential equations where the (discretized)
inverse problems are high-dimensional by nature.
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Figure 30. Species involved in the identified mechanisms from the circadian
rhythm example
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Appendix A

In this appendix, we elaborate on the simple reaction network which is used in the
introduction to explain the concepts of metabolic pathway analysis and chemical

reaction network theory. This mechanism lies at the heart of the cell cycle model,
discussed in further detail in Appendix C.

We consider a reaction network involving 7 chemical species and 8 chemical re-
actions: S = {A,B,C,E,EA,EB,EAB} and R = {R1, R2, R3, R4, R5, R6, R7, R8},
where

R1 : ∅ ⇋ A

R2 : ∅ ⇋ B

R3 : ∅ ← C

R4 : E + A ⇋ EA

R5 : E + B ⇋ EB

R6 : EA + B ⇋ EAB

R7 : EB + A ⇋ EAB

R8 : EAB → E + C

Reactions R1 − R3 denote the exchange of species A,B,C with the environment,
whereas R4 − R8 are internal. Most reactions are reversible, whereas R3, R8 are
irreversible.

This system can be seen as a (small) metabolic pathway, which transforms A,B into
C via several enzymatic reactions. As the notation suggests, the system can also
be seen as a mechanism for a single enzyme with unordered substrate binding. In
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this view, enzyme E has substrates A,B and product C and can form the enzyme-
substrate-complex EAB in two different orders: via EA or EB.

In the metabolic pathway approach, the stoichiometric matrix S of a reaction
network is assumed to be known, whereas the corresponding rate laws v(x, q) are
unknown. The resulting ODE system is written as ẋ = Sv(x, q). In our example,
we have:

d

dt
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B

B

B

B

B

B

B

B
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v1(xA, q)
v2(xB , q)
v3(xC , q)

v4(xA, xE , xEA, q)
v5(xB , xE , xEB , q)

v6(xB , xEA, xEAB , q)
v7(xA, xEB , xEAB , q)

v8(xEAB , q)
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C

C

C

C

C

C

C

C

C

A

Remark: Of course, there could be stoichiometric coefficients other than ±1. E.g.,
a reaction A + 2B ⇋ C would yield a column (−1,−2,+1, 0, 0, 0, 0)T in the
stoichiometric matrix.

Lacking information on the rate laws, one cannot analyze the dynamical behavior
of the system. However, one may ask what steady states are accessible to the
system. A steady state flux v is characterized by 0 = Sv and vi ≥ 0 if Ri is
irreversible. More specifically one may ask what are the elementary flux modes.
An elementary flux mode e fulfills the steady state condition, i.e. 0 = Se, and
the feasibility condition, i.e. ei ≥ 0 if Ri is irreversible. Another condition, called
non-decomposability, guarantees a minimal (and unique) set of elementary flux
modes [143,144]. As a consequence, any steady state flux can be written (in a non-
unique way) as a nonnegative combination of elementary flux modes: v =

∑

j αje
j ,

αj ≥ 0. Mathematically speaking, the admissible fluxes are restricted to a convex
polyhedral cone whose generating vectors (extreme rays) are contained in the set of
elementary flux modes. The concept of extreme pathways is another variant of this
approach [141].

In our example, the elementary flux modes can be computed to be:

e1 =
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(29)

Pathway analysis aims at decomposing large reaction networks into smaller
functional modules. Elementary flux modes represent all routes that enable a
reaction network (e.g. a metabolism) to transform certain substrates into a product.
In our example, flux modes e1 and e2 correspond to the sub-networks {R4, R6, R8}
and {R5, R7, R8} (combined with the exchange reactions {R1, R2, R3}). On
the other hand, flux modes e3 and e4 involve only the internal sub-network
{R4, R5, R6, R7} and do not transform substrates into product. They are so-
called futile cycles and do not perform a biochemically meaningful function. (The
corresponding species-reaction graphs are depicted in Figure 31.)

Remark: When the reaction network is viewed as an enzyme mechanism for
unordered substrate binding, the result of pathway analysis just confirms the fact
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Figure 31. The two major elementary flux modes through the example
network (top left and right panel) and the futile cycle (lower panel). Note
that the futile cycle can operate in both directions.

that the internal overall reaction A+B → C is a combination of the two mechanisms
for ordered substrate binding E + A + B ⇋ EA + B ⇋ EAB → E + C and
E + A + B ⇋ EB + A ⇋ EAB → E + C. For the study of enzyme mechanisms,
but also of metabolic, genetic, or signal-transduction networks, the approach of
chemical reaction network theory may yield more significant results.

As opposed to metabolic pathway analysis, chemical reaction network theory
(CRNT) does not consider overall enzymatic reactions with unknown rate laws.
In CRNT, reactions are assumed to be elementary and rate laws are determined by
mass-action kinetics. However, the values of the rate constants need not be known.
Still, one can do useful analysis of the dynamical system. For example one may ask,
if there are rate constants – represented by the parameter vector q – such that the
dynamical system ẋ = Sv(x, q) admits multiple steady states, i.e. if there exist q
and x1 6= x2 such that 0 = Sv(x1, q) and 0 = Sv(x2, q). This problem is particularly
interesting since the existence of multiple steady states in a dynamical model of a
biological cell is believed to capture the phenomenon of cell differentiation [153], i.e.
the ability of a cell to operate in different modes depending on its history and its
environment. One may also ask, if there are rate constants such that the dynamical
system is able to oscillate.

In our example, the ODE system under the assumption of mass action kinetics
amounts to:

d
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For example, the rate law of the reversible reaction R4 is given by
v4(xA, xE , xEA, q) = k4 · xE · xA − k−4 · xEA, which is the difference of the mass
action terms for the forward and backward direction.
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But there is even more structure in the ODE system for a chemical reaction
network with mass-action kinetics. To see this, we introduce the concept of
chemical complexes, which are the left-hand-sides and right-hand-sides of the
chemical reactions. The set of complexes may include the zero complex, individual
chemical species, or sums of species. In our example, we have 12 complexes:
C = {∅,A,B,C,EA,EB,EAB,E + A,E + B,EA + B,EB + A,E + C}.
The graph of chemical complexes depicts which complexes are connected by a
reaction. In our example, we have:

C

↓
A ⇌ ∅ ⇋ B

E + A ⇋ EA EB ⇌ B + E

EA + B ⇋ EAB ⇌ A + EB

↓
E + C

Using this concept, the dynamical system can be written in the form ẋ = ΓAqΨ(x),
where Ψ : R

S → R
C is a non-linear mapping from the vector space of chemical

species R
S to the vector space of chemical complexes R

C and where Aq : R
C → R

C

and Γ : R
C → R

S are linear mappings. To be more specific, Ψ assigns to a
species vector the corresponding “occupation numbers” of the chemical complexes,
the square matrix Aq (with rate constants as entries) determines the interactions
between complexes, and Γ assigns to a complex vector the stoichiometric coefficients
of the chemical species involved.

In our example, we have:
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Aq =
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Remark: The interaction matrix has zero row sum. More specifically, every diagonal
entry is the negative sum of the other entries in this column.

Now, we return to the question of multiple steady states. From ẋ = ΓAqΨ(x)
we see that steady states may be solutions of either 0 = AqΨ(x) or 0 6= AqΨ(x)
and 0 = ΓAqΨ(x). The deficiency of a reaction network quantifies the extent of
the second possibility. It is defined as δ = dim(Ker Γ ∩ Im Aq). Under certain
conditions [59], it can be shown that δ = m − l − s, where m is the number of
chemical complexes, l is the number of linkage classes (connected components in the
graph of chemical complexes), and s is the number of linear independent reactions
(the rank of the stoichiometric matrix).

In particular, one is interested in positive steady states, i.e. vectors with only
positive components. The deficiency zero theorem states that chemical reaction
networks with deficiency zero have at most one positive steady state, which – if it
exists – is asymptotically stable. For networks with deficiency zero, the theorem
rules out the possibility of multiple positive steady states and also oscillations. The
theorem is particularly important, since many natural as well as engineered systems
have deficiency zero. See e.g. [133].

In our example, the deficiency amounts to δ = 12 − 4 − 6 = 2, since we have
12 chemical complexes, 4 linkage classes in the graph, and 6 linear independent
reactions. Hence, the deficiency zero condition is not met, and bistability is not ruled
out. In fact, it can be shown that there is a parameter vector q such that the reaction
network has two positive steady states, i.e. the system can be bistable [25].

Appendix B

In the following, we present the metabolic pathway model depicted in Figure 32,
which has been used as a benchmark problem in [113,126]. The model describes the
transformation of substrate S into product P via the intermediate metabolites M1,
M2. The enzymes E1, E2, E3 catalyzing the transformation (and the corresponding
mRNAs G1, G2, G3) are produced by 3 genes, which in turn are regulated by the
metabolites. The regulation involves activation as well as inhibition.

The ODE system describing the dynamics of the model contains 8 variables, 36
parameters, and 2 experimental settings. It is given in Table 1(a). The 8 ODE
variables are the concentrations of the mRNAs, enzymes, and metabolites. Using
the notation of Section 2.1, we write x = (G1, G2, G3, E1, E2, E3,M1,M2). The
corresponding initial values are given in Table 1(b). The 36 parameters can be
divided into the following classes: transcription/translation rates V , equilibrium
constants K, Hill coefficients n, degradation rates k, and catalytic constants
kcat. We write q = (V1,Ki1, ni1,Ka1, na1, k1, . . . , kcat3,Km5,Km6). Their true
values (used for generating the experimental data) are listed in Table 1(c). The
concentrations of substrate and product are constant in time, but they serve as
experimental settings. 4 concentrations of S and P , respectively, have been used
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(a) ODE system
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=
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Km5
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1 + M2

Km5

+ P
Km6

(b) Initial values

G1 0.66667
G2 0.57254
G3 0.41758
E1 0.4
E2 0.36409
E3 0.29457
M1 1.419
M2 0.93464

(c) Parameters
# name q∗ qlb qub

0 V1 1 10−6 10+6

1 Ki1 1 10−6 10+6

2 ni1 2 10−1 10+1

3 Ka1 1 10−6 10+6

4 na1 2 10−1 10+1

5 k1 1 10−6 10+6

6 V2 1 10−6 10+6

7 Ki2 1 10−6 10+6

8 ni2 2 10−1 10+1

9 Ka2 1 10−6 10+6

10 na2 2 10−1 10+1

11 k2 1 10−6 10+6

12 V3 1 10−6 10+6

13 Ki3 1 10−6 10+6

14 ni3 2 10−1 10+1

15 Ka3 1 10−6 10+6

16 na3 2 10−1 10+1

17 k3 1 10−6 10+6

18 V4 0.1 10−6 10+6

19 K4 1 10−6 10+6

20 k4 0.1 10−6 10+6

21 V5 0.1 10−6 10+6

22 K5 1 10−6 10+6

23 k5 0.1 10−6 10+6

24 V6 0.1 10−6 10+6

25 K6 1 10−6 10+6

26 k6 0.1 10−6 10+6

27 kcat1 1 10−6 10+6

28 Km1 1 10−6 10+6

29 Km2 1 10−6 10+6

30 kcat2 1 10−6 10+6

31 Km3 1 10−6 10+6

32 Km4 1 10−6 10+6

33 kcat3 1 10−6 10+6

34 Km5 1 10−6 10+6

35 Km6 1 10−6 10+6

(d) Experimental settings

S 0.1 0.46416 2.1544 10
P 0.05 0.13572 0.3684 1

Table 1. Three-step metabolic pathway. (a) ODE system for the
concentrations of mRNAs G1, G2, G3, enzymes E1, E2, E3, and metabolites
M1, M2. (b) Initial values of the ODE variables. (c) List of parameters: true
values, q∗, for generating the experimental data; lower and upper bounds, qlb

and qub. (d) Experimental settings: 4 concentrations of substrate and product,
S and P respectively, for generating 4 × 4 = 16 experimental data sets.
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Figure 32. Three-step metabolic pathway (reproduced from [113]). Solid
arrows represent mass flow, and dashed arrows represent regulation, where
→ denotes activation and ⊣ denotes inhibition. Three genes are producing
mRNAs G1, G2, G3 and enzymes E1, E2, E3 to regulate the transformation
of substrate S into product P via the intermediate metabolites M1, M2.

for generating 4 × 4 = 16 experimental data sets, cf. Table 1(d).

For the standardized description of biochemical reaction networks (as in Figure 32)
a Systems Biology Markup Language (SBML) has been developed as a community
effort [73]. Starting from SBML models the software package SOSlib [107] which
we used for our computations generates and solves the ODEs and also contains a
parameter identification module; for the fast computation of gradients with respect
to unknown parameters, adjoint methods are used [106].

Appendix C

In this Appendix, we present the G1/S transition model of the cell cycle [149], which
is used in the inverse bifurcation analysis of Section 3.2.1. The model includes the
following proteins that are involved in the progression from the G1 to S phase of
the cell cycle:

• pRB, pRBp, pRBpp: retinoblastoma and its phosphorylated forms

• E2F1: transcription factor that target genes regulating cell cycle progression

• CycDa, CycDi, CycEi, CycEa: cyclin complexes whose concentrations undergo
cyclic variations within the cell cycle

The ODE system given below models the interaction of genes involved in the G1/S
module. One major step in the cell cycle is a phosphorylation reaction catalyzed by
the CycDa-dependent kinase, whereby a phosphate group is transferred from ATP
to pRB. In the framework presented in Appendix A, pRB and ATP play the role
of substrates A and B, whereas CycDa (when complexed with a kinase) plays the
role of enzyme E. The catalyzed reaction yields pRBp, i.e. the product C.

Under the assumption that ATP and kinase are available in abundance, the reaction
rate can be approximated by the term k16 · pRB(t) · CycDa(t), i.e. by the use
of second-order kinetics. This approximation is preferred since using a detailed
reaction mechanism and mass-action kinetics for every reaction step – as outlined
in Appendix A – results in either a complicated (Michaelis-Menten type) expression
for the rate law or a substantial increase in the number of ODEs.
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d

dt
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(t) − k61pRBp(t) − k67CycEa(t)pRBp(t)

+ k76pRBpp(t) − φpRBp
pRBp(t)

d

dt
pRBpp(t) = k67CycEa(t)pRBp(t) − k76pRBpp(t) − φpRBpp

pRBpp(t)

d

dt
CycEi(t) =

E2F1(t)J18J68k28

(pRB(t) + J18)
`

J68 + pRBp(t)
´

+ k98CycEa(t) −
k89CycEa(t)CycEi(t)

Km9 + CycEa(t)
− φCycEi

CycEi(t)

d

dt
CycEa(t) = −k98CycEa(t) +

k89CycEi(t)CycEa(t)

Km9 + CycEa(t)
− φCycEa

CycEa(t)

Appendix D

The following is the ODE system of the circadian rhythm model [149] which is used
in the inverse analysis of Section 3.2.3.

d

dt
Cc(t) = −k1Cc(t) − k4Cc(t) − kdCCc(t) + k2Cn(t) + k3P2(t)T2(t)

d

dt
Cn(t) = k1Cc(t) − k2Cn(t) − kdNCn(t)

d

dt
Mp(t) =

VsPKn
IP

Kn
IP

+ Cn(t)n
− kdMp(t) −

vmPMp(t)

KmP + Mp(t)

d

dt
Mt(t) =

vsTKn
IT

Kn
IT

+ Cn(t)n
− kdMt(t) −

vmTMt(t)

KmT + Mt(t)

d

dt
P0(t) = ksPMp(t) − kdP0(t) −

VP P0(t)

KP + P0(t)
+

V2P P1(t)

K2P + P1(t)

d

dt
P1(t) =

VP P0(t)

KP + P0(t)
− kdP1(t) −

V2P P1(t)

K2P + P1(t)
−

V3P P1(t)

K3P + P1(t)
+

V4P P2(t)

K4P + P2(t)

d

dt
P2(t) = k4Cc(t) − kdP2(t) − k3P2(t)T2(t) +

V3P P1(t)

K3P + P1(t)
−

VdPP2(t)

KdP + P2(t)
−

V4P P2(t)

K4P + P2(t)

d

dt
T0(t) = ksTMt(t) − kdT0(t) −

VT T0(t)

KT + T0(t)
+

V2T T1(t)

K2T + T1(t)

d

dt
T1(t) =

VT T0(t)

KT + T0(t)
− kdT1(t) −

V2T T1(t)

K2T + T1(t)
−

V3T T1(t)

K3T + T1(t)
+

V4T T2(t)

K4T + T2(t)

d

dt
T2(t) = k4Cc(t) − kdT2(t) − k3P2(t)T2(t) +

V3T T1(t)

K3T + T1(t)
−

VdTT2(t)

KdT + T2(t)
−

V4T T2(t)

K4T + T2(t)
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[107] R. Machné, A. Finney, S. Müller, J. Lu, S. Widder, and C. Flamm. The SBML ODE Solver
Library: a native API for symbolic and fast numerical analysis of reaction networks.
Bioinformatics, 22(11):1406–7, 2006.

[108] F. Marcus. Bioinformatics and Systems Biology. Springer-Verlag, Berlin, 2008.
[109] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:

simple building blocks of complex networks. Science, 298(5594):824–7, 2002.
[110] M. Mincheva and M. R. Roussel. A graph-theoretical method for detecting potential turing

bifurcations. J. Chem. Phys., 125:204102, 2006.
[111] M. Mincheva and M. R. Roussel. Graph-theoretic methods for the analysis of chemical and

biochemical networks. I. Multistability and oscillations in ordinary differential equation
models. J Math Biol, 55(1):61–86, Jul 2007.

[112] M. Mincheva and M. R. Roussel. Graph-theoretic methods for the analysis of chemical and
biochemical networks. II. Oscillations in networks with delays. J Math Biol, 55(1):87–104,
Jul 2007.

[113] C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways:
a comparison of global optimization methods. Genome Res, 13(11):2467–74, 2003.



Inverse Problems in Systems Biology 49
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