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Journées Équations aux dérivées partielles
Biarritz, 3–7 juin 2012
GDR 2434 (CNRS)

Inverse Problems: Visibility and Invisibility

Gunther Uhlmann

Abstract

This survey article expands on the lectures given at Biarritz in June, 2012, on
“Inverse Problems: Visibility and Invisibility". The first inverse problem we consider
is whether one can determine the electrical conductivity of a medium by making volt-
age and current measurements at the boundary. This is called electrical impedance
tomography (EIT) and also Calderón’s problem since the famous analyst proposed
it in the mathematical literature [38]. The second is on travel time tomography.
The question is whether one can determine the anisotropic index of refraction of a
medium by measuring the travel times of waves going through the medium. This
can be recast as a geometry problem, the boundary rigidity problem. Can we de-
termine a Riemannian metric of a compact Riemannian manifold with boundary by
measuring the distance function between boundary points? These two inverse prob-
lems concern visibility, that is whether we can determine the internal properties of
a medium by making measurements at the boundary. The last topic of this paper
considers the opposite issue: invisibility: Can one make objects invisible to different
types of waves, including light?

1. Calderón’s Problem

1.1. Introduction

In 1980 A. P. Calderón published a short paper entitled “On an inverse boundary value
problem” [38]. This pioneer contribution motivated many developments in inverse prob-
lems, in particular in the construction of “complex geometrical optics” solutions of partial
differential equations to solve several inverse problems. We survey some these develop-
ments in this paper. In his talk at the ICM in Berlin in 1998 the author proposed 7 open
problems [202] on this subject. This section is to a large extent a report on the progress
made in solving these problems.

The problem that Calderón considered was whether one can determine the electrical
conductivity of a medium by making voltage and current measurements at the boun-
dary of the medium. This inverse method is known as Electrical Impedance Tomography

(EIT). Calderón was motivated by oil prospection. In the 40’s he worked as an engineer
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for Yacimientos Petroliferos Fiscales (YPF), the state oil company of Argentina, and he
thought about this problem then although he did not publish his results until many years
later. For use of electrical methods in geophysical prospection see [213]. Parenthetically
Calderón said in his speech accepting the “Doctor Honoris Causa" of the Universidad
Autónoma de Madrid that his work at YPF had been very interesting but he was not
well treated there; he would have stayed at YPF otherwise [39]. It goes without saying
that the bad treatment of Calderón by YPF was very fortunate for Mathematics! EIT
also arises in medical imaging given that human organs and tissues have quite different
conductivities [104]. One exciting potential application is the early diagnosis of breast
cancer [215]. The conductivity of a malignant breast tumor is typically 0.2 mho which is
significantly higher than normal tissue which has been typically measured at 0.03 mho.
Another application is to monitor pulmonary functions [95]. See the book [80] and the
issue of Physiological Measurement [81] for other medical imaging applications of EIT.
This inverse method has also been used to detect leaks from buried pipes [103]. We now
describe more precisely the mathematical problem. Let Ω ⊆ Rn be a bounded domain
with smooth boundary (many of the results we will describe are valid for domains with
Lipschitz boundaries). The electrical conductivity of Ω is represented by a bounded and
positive function γ(x). In the absence of sinks or sources of current the equation for the
potential is given by

∇ · (γ∇u) = 0 in Ω (1.1)

since, by Ohm’s law, γ∇u represents the current flux. Given a potential f ∈ H
1

2 (∂Ω) on
the boundary the induced potential u ∈ H1(Ω) solves the Dirichlet problem

∇ · (γ∇u) = 0 in Ω,

u
∣∣∣
∂Ω

= f.
(1.2)

The Dirichlet to Neumann map, or voltage to current map, is given by

Λγ(f) =

(
γ
∂u

∂ν

) ∣∣∣∣
∂Ω

(1.3)

where ν denotes the unit outer normal to ∂Ω. The inverse problem is to determine γ
knowing Λγ. It is difficult to find a systematic way of prescribing voltage measurements
at the boundary to be able to find the conductivity. Calderón took instead a different
route. Using the divergence theorem we have

Qγ(f) :=
∫

Ω
γ|∇u|2dx =

∫

∂Ω
Λγ(f)f dS (1.4)

where dS denotes surface measure and u is the solution of (1.2). In other words Qγ(f) is
the quadratic form associated to the linear map Λγ(f), and to know Λγ(f) or Qγ(f) for all

f ∈ H
1

2 (∂Ω) is equivalent. Qγ(f) measures the energy needed to maintain the potential
f at the boundary. Calderón’s point of view is that if one looks at Qγ(f) the problem is
changed to finding enough solutions u ∈ H1(Ω) of the equation (1.1) in order to find γ
in the interior. These are the complex geometrical optics (CGO) solutions considered in
section 1.3. A short summary of the contents of this section is as follows. In section 1.2 we
describe results about uniqueness, stability and reconstruction, for the boundary values
of a conductivity and its normal derivative. In section 1.3 we describe the construction by
Sylvester and Uhlmann [193], [171] of CGO solutions for the Schrödinger equation associ-
ated to a bounded potential. These solutions behave like Calderón’s complex exponential
solutions for large complex frequencies. In section 1.4 we use these solutions to prove, in
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dimension n ≥ 3, a global identifiability result, stability estimates and a reconstruction
method for the inverse problem. We also describe an extension of the identifiability result
to non-linear conductivities [185] and give other applications of CGO solutions. In section
1.5 we consider the partial data problem, that is the case when the DN map is measured
on a part of the boundary. We describe the results of [108] for the non-linear problem in
dimension three or larger. This uses a larger class of CGO solutions, having a non-linear
phase function that are constructed using Carleman estimates. We also review the article
[51] for the linearized problem with partial data. In section 1.6 we consider the two di-
mensional case. In particular we describe briefly the recent work of Astala and Päivärinta
proving uniqueness for bounded measurable coefficients, and the work of Bukhgeim prov-
ing uniqueness for a potential from Cauchy data associated to the Schrödinger equation.
Finally we consider the work of Imanuvilov, Uhlmann and Yamamoto on the partial
data problem in two dimensions [88], [89]. These sections deal with the case of isotropic

conductivities. In section 1.7 we consider the case of anisotropic conductivities, i.e. the
conductivity depends also on direction. In two dimensions that there has been substantial
progress in the understanding of anisotropic problems since one can usually reduce the
problem to the isotropic case by using isothermal coordinates. In dimension three the
problem as pointed out in [125] is of geometric nature. We review the results of [123], [53].

1.2. Boundary Determination

Kohn and Vogelius proved the following identifiability result at the boundary [114].

Theorem 1.1. Let γi ∈ C∞(Ω) be strictly positive. Assume Λγ1
= Λγ2

. Then

∂αγ1

∣∣∣∣
∂Ω

= ∂αγ2

∣∣∣∣
∂Ω
, ∀|α|.

This settled the identifiability question for the non-linear problem in the real-analytic
category. They extended the identifiability result to piecewise real-analytic conductivities
in [115].

Sketch of proof of Theorem 1.1. We outline an alternative proof to the one given by Kohn
and Vogelius of 1.1. In the case γ ∈ C∞(Ω) we know, by another result of Calderón [40],
that Λγ is a classical pseudodifferential operator of order 1. Let (x′, xn) be coordinates
near a point x0 ∈ ∂Ω so that the boundary is given by xn = 0. The function λγ(x

′, ξ′)
denotes the full symbol of Λγ in these coordinates. It was proved in [194] that

λγ(x
′, ξ′) = γ(x′, 0)|ξ′| + a0(x

′, ξ′) + r(x′, ξ′) (1.5)

where a0(x
′, ξ′) is homogeneous of degree 0 in ξ′ and is determined by the normal derivative

of γ at the boundary and tangential derivatives of γ at the boundary. The term r(x′, ξ′)

is a classical symbol of order −1. Then γ
∣∣∣∣
∂Ω

is determined by the principal symbol of

Λγ and ∂γ
∂xn

∣∣∣∣
∂Ω

by the principal symbol and the term homogeneous of degree 0 in the

expansion of the full symbol of Λγ. More generally the higher order normal derivatives
of the conductivity at the boundary can be determined recursively. In [125] one can find
a general approach to the calculation of the full symbol of the Dirichlet to Neumann
map that applies to more general situations. We note that this gives also a reconstruction

procedure. We first can reconstruct γ at the boundary since γ
∣∣∣∣
∂Ω

|ξ′| is the principal symbol
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of Λγ (see (1.5)). In other words in coordinates (x′, xn) so that ∂Ω is locally given by xn = 0
we have

γ(x′, 0)a(x′) = lim
s→∞

e−is<x′,ω′>1

s
Λγ(e

is<x′,ω′>a(x′))

with ω′ ∈ Rn−1 and |ω′| = 1 and a a smooth and compactly supported function. In

a similar fashion, using (1.5), one can find ∂γ
∂ν

∣∣∣∣
∂Ω

by computing the principal symbol

of (Λγ − γ
∣∣∣
∂Ω

Λ1) where Λ1 denotes the Dirichlet to Neumann map associated to the

conductivity 1. The other terms can be reconstructed recursively in a similar fashion.
We also observe, by taking an appropriate cut-off function a above, that this procedure
is local, that is we only need to know the DN map in an open set of the boundary to
determine the Taylor series of the conductivity in that open set. This method also leads
to stability estimates at the boundary [194].

Theorem 1.2. Suppose that γ1 and γ2 are C∞ functions on Ω ⊆ Rn satisfying

i) 0 < 1
E

≤ γi ≤ E

ii) ‖γi‖C2(Ω) ≤ E

Given any 0 < σ < 1
n+1

, there exists C = C(Ω, E, n, σ) such that

‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1
− Λγ2

‖ 1

2
,−1

2

(1.6)

and ∥∥∥∥∥
∂γ1

∂ν
− ∂γ2

∂ν

∥∥∥∥∥
L∞(∂Ω)

≤ C‖Λγ1
− Λγ2

‖σ1
2
,−1

2

. (1.7)

This result implies that we don’t need the conductivity to be smooth to determine the
conductivity and its normal derivative at the boundary. In the case γ is continuous on Ω
we can determine γ at the boundary by using the stability estimate (1.6) and an approxi-
mation argument. In the case that γ ∈ C1(Ω) we can determine, knowing the DN map, γ
and its normal derivative at the boundary using the estimate (1.7) above and an approx-
imation argument. For other results and approaches to boundary determination of the
conductivity see [5], [32], [136], [142]. In one way or another the boundary determination
involves testing the DN map against highly oscillatory functions at the boundary.

1.3. Complex geometrical optics solutions with a linear phase

Motivated by Calderón exponential solutions used in [38] in the study of the linearized
problem at a constant conductivity, Sylvester and Uhlmann [171, 193] constructed in
dimension n ≥ 2 complex geometrical optics (CGO) solutions of the conductivity equation
for C2 conductivities that behave like Calderón exponential solutions for large frequencies.
This can be reduced to constructing solutions in the whole space (by extending γ = 1
outside a large ball containing Ω) for the Schrödinger equation with potential. We describe
this more precisely below. Let γ ∈ C2(Rn), γ strictly positive in Rn and γ = 1 for |x| ≥ R,
R > 0. Let Lγu = ∇ · γ∇u. Then we have

γ− 1

2Lγ(γ
− 1

2 ) = ∆ − q (1.8)

where

q =
∆

√
γ

√
γ
. (1.9)
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Therefore, to construct solutions of Lγu = 0 in Rn it is enough to construct solutions of
the Schrödinger equation (∆− q)u = 0 with q of the form (1.9). The next result proven in
[171, 193] states the existence of complex geometrical optics solutions for the Schrödinger
equation associated to any bounded and compactly supported potential.

Theorem 1.3. Let q ∈ L∞(Rn), n ≥ 2, with q(x) = 0 for |x| ≥ R > 0. Let −1 < δ < 0.
There exists ǫ(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0

and
‖(1 + |x|2)1/2q‖L∞(Rn) + 1

|ρ| ≤ ǫ

there exists a unique solution to
(∆ − q)u = 0

of the form
u = ex·ρ(1 + ψq(x, ρ)) (1.10)

with ψq(·, ρ) ∈ L2
δ(R

n). Moreover ψq(·, ρ) ∈ H2
δ (Rn) and for 0 ≤ s ≤ 2 there exists

C = C(n, s, δ) > 0 such that

‖ψq(·, ρ)‖Hs
δ

≤ C

|ρ|1−s
. (1.11)

Here

L2
δ(R

n) = {f ;
∫

(1 + |x|2)δ|f(x)|2dx < ∞}
with the norm given by ‖f‖2

L2
δ

=
∫
(1 + |x|2)δ|f(x)|2dx and Hm

δ (Rn) denotes the corre-

sponding Sobolev space. Note that for large |ρ| these solutions behave like Calderón’s
exponential solutions ex·ρ. The equation for ψq is given by

(∆ + 2ρ · ∇)ψq = q(1 + ψq). (1.12)

The equation (1.12) is solved by constructing an inverse for (∆ + 2ρ · ∇) and solving the
integral equation

ψq = (∆ + 2ρ · ∇)−1(q(1 + ψq)). (1.13)

Lemma 1.4. Let −1 < δ < 0, 0 ≤ s ≤ 1. Let ρ ∈ Cn − 0, ρ · ρ = 0. Let f ∈ L2
δ+1(R

n).
Then there exists a unique solution uρ ∈ L2

δ(R
n) of the equation

∆ρuρ := (∆ + 2ρ · ∇)uρ = f. (1.14)

Moreover uρ ∈ H2
δ (Rn) and

‖uρ‖Hs
δ

(Rn) ≤
Cs,δ‖f‖L2

δ+1

|ρ|1−s

for 0 ≤ s ≤ 2 and for some constant Cs,δ > 0.

The integral equation (1.12) can then be solved in L2
δ(R

n) for large |ρ| since

(I − (∆ + 2ρ · ∇)−1q)ψq = (∆ + 2ρ · ∇)−1q

and ‖(∆ + 2ρ · ∇)−1q‖L2
δ
→L2

δ
≤ C

|ρ|
for some C > 0 where ‖ · ‖L2

δ
→L2

δ
denotes the operator

norm between L2
δ(R

n) and L2
δ(R

n). We will not give details of the proof of Lemma 1.4
here. We refer to the papers [171, 193] . We note that there has been other approaches
to construct CGO solutions for the Schrödinger equation [98], [74]. These constructions
don’t give uniqueness of the CGO solutions that are used in the reconstruction method
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of the conductivity from the DN map (see section 1.4.5). If 0 is not a Dirichlet eigenvalue
for the Schrödinger equation we can also define the DN map

Λq(f) =
∂u

∂ν
|∂Ω

where u solves

(∆ − q)u = 0; u|∂Ω = f.

More generally we can define the set of Cauchy data for the Schrödinger equation. Let
q ∈ L∞(Ω). We define the Cauchy data as the set

Cq =

{(
u
∣∣∣∣
∂Ω
,
∂u

∂ν

∣∣∣∣
∂Ω

)}
, (1.15)

where u ∈ H1(Ω) is a solution of

(∆ − q)u = 0 in Ω. (1.16)

We have Cq ⊆ H
1

2 (∂Ω) ×H− 1

2 (∂Ω). If 0 is not a Dirichlet eigenvalue of ∆ − q, then in fact
Cq is a graph, namely

Cq = {(f,Λq(f)) ∈ H
1

2 (∂Ω) ×H− 1

2 (∂Ω)}.
Complex geometrical optics for first order equations and systems under different regularity
assumptions of the coefficients have been constructed in [143], [145], [200], [164], [163]. For
the case of the magnetic Schrödinger operator unique identifiability of the magnetic field
and the electrical potential was shown in [105] assuming that both the electrical potential
and magnetic potential are both just bounded. We refer to the article a more up to date
developments on this topic and the references given there.

1.4. The Calderón problem in dimension n ≥ 3

In this section we summarize some of the basic theoretical results for Calderón’s problem
in dimension three or higher.

1.4.1. Uniqueness

The identifiability question was resolved in [171] for smooth enough conductivities. The
result is

Theorem 1.5. Let γi ∈ C2(Ω), γi strictly positive, i = 1, 2. If Λγ1
= Λγ2

then γ1 = γ2 in
Ω.

In dimension n ≥ 3 this result is a consequence of a more general result. Let q ∈ L∞(Ω).

Theorem 1.6. Let qi ∈ L∞(Ω), i = 1, 2. Assume Cq1
= Cq2

, then q1 = q2.

We now show that Theorem 1.6 implies Theorem 1.5. Using (1.8) we have

Cqi
=

{(
f,

(
1

2
γ−1
i

∣∣∣∣
∂Ω

∂γi
∂ν

∣∣∣∣
∂Ω

)
f + γ

− 1

2

i

∣∣∣∣
∂Ω

Λγi

(
γ− 1

2

∣∣∣∣
∂Ω
f
))

, f ∈ H
1

2 (∂Ω)

}
.

Then we conclude Cq1
= Cq2

using the the boundary identifiability result of Kohn and
Vogelius [114] and its extension [194].
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Proof of Theorem 1.6. Let ui ∈ H1(Ω) be a solution of

(∆ − qi)ui = 0 in Ω, i = 1, 2.

Then using the divergence theorem we have
∫

Ω
(q1 − q2)u1u2dx =

∫

∂Ω

(
∂u1

∂ν
u2 − u1

∂u2

∂ν

)
dS. (1.17)

Now it is easy to prove that if Cq1
= Cq2

then the LHS of (1.17) is zero
∫

Ω
(q1 − q2)u1u2dx = 0. (1.18)

Now we extend qi = 0 in Ωc. We take solutions of (∆ − qi)ui = 0 in Rn of the form

ui = ex·ρi(1 + ψqi
(x, ρi)), i = 1, 2 (1.19)

with |ρi| large, i = 1, 2, with

ρ1 =
η

2
+ i

(
k + l

2

)
(1.20)

ρ2 = −η

2
+ i

(
k − l

2

)

and η, k, l ∈ Rn such that

η · k = k · l = η · l = 0 (1.21)

|η|2 = |k|2 + |l|2.
Condition (1.21) guarantees that ρi · ρi = 0, i = 1, 2. Substituting (1.19) into (1.18) we
conclude

̂(q1 − q2)(−k) = −
∫

Ω
eix·k(q1 − q2)(ψq1

+ ψq2
+ ψq1

ψq2
)dx. (1.22)

Now ‖ψqi
‖L2(Ω) ≤ C

|ρi|
. Therefore by taking |l| → ∞ we obtain

̂χΩ(q1 − q2)(k) = 0 ∀ k ∈ Rn

concluding the proof. Theorem 1.5 has been extended to conductivities having 3/2 deriva-
tives in some sense in [153], [33]. Uniqueness for conormal conductivies in C1+ǫ was shown
in [64]. Recently Haberman and Tataru in a very nice article [76] have extended the unique-
ness result to C1 conductivities or small in the W 1,∞ norm. It is an open problem whether
uniqueness holds in dimension n ≥ 3 for Lipschitz or less regular conductivities. Theorem
1.6 was extended to potentials in Ln/2 and small potentials in the Fefferman-Phong class
in [42]. For conormal potentials with strong singularities so that the potential is not in
Ln/2, for instance almost a delta function of an hypersurface, uniqueness was shown in
[64].

Similar problems for higher order operators were considered in [98] and [119].

1.4.2. Non-linear conductivities

We now give an extension of this result to conductivities that depend on the voltage. Let
γ(x, t) be a function with domain Ω × R. Let α be such that 0 < α < 1. We assume

γ ∈ C1,α(Ω × [−T, T ]), ∀ T, (1.23)

γ(x, t) > 0, ∀ (x, t) ∈ Ω × R. (1.24)
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Given f ∈ C2,α(∂Ω), there exists a unique solution of the Dirichlet problem (see [61])

∇ · (γ(x, u)∇u) = 0 in Ω, (1.25)

u
∣∣∣∣
∂Ω

= f.

Then the Dirichlet to Neumann map is defined by

Λγ(f) = γ(x, f)
∣∣∣∣
∂Ω

∂u

∂ν

∣∣∣∣
∂Ω

(1.26)

where u is a solution to (1.25). Sun [185] proved the following result.

Theorem 1.7. Let n ≥ 3. Assume γi ∈ C1,1(Ω × [−T, T ]) ∀ T > 0 , i = 1, 2, and
Λγ1

= Λγ2
. Then γ1(x, t) = γ2(x, t) on Ω × R.

The main idea is to linearize the Dirichlet to Neumann map at constant boundary data
equal to the parameter t (then the solution of (1.25) is equal to t). Isakov [97] was the first
to use a linearization technique to study an inverse parabolic problems associated to non-
linear equations. The case of the Dirichlet to Neumann map associated to the Schrödinger
equation with a non-linear potential was considered in [86] under some assumptions on
the potential. We note that, in contrast to the linear case, one cannot reduce the study of
the inverse problem of the conductivity equation (1.25) to the Schrödinger equation with
a non-linear potential. The main technical lemma in the proof of Theorem 1.7 is

Lemma 1.8. Let γ(x, t) be as in (1.23) and (1.24). Let 1 < p < ∞, 0 < α < 1. Let us
define

γt(x) = γ(x, t). (1.27)

Then for any f ∈ C2,α(∂Ω), t ∈ R

lim
s→0

‖1

s
Λγ(t+ sf) − Λγt(f)‖

W
1− 1

p ,p
(∂Ω)

= 0. (1.28)

The proof of Theorem 1.7 follows immediately from the lemma. Namely (1.28) and
the hypotheses Λγ1

= Λγ2
⇒ Λγt

1
= Λγt

2
for all t ∈ R. Then using the linear result,

Theorem 1.5, we conclude that γt1 = γt2 proving the theorem. We remark that the reduction
from the non-linear problem to the linear is also valid in the two dimensional case [99].
Using the result of Astala and Päivärinta [11], which is reviewed in section 1.6, one can
extend Theorem 1.5 to L∞(Ω) conductivities in the two dimensional case. There are
several open questions when the conductivity also depends on ∇u, see [187] for a survey
of results and open problems in this direction.

1.4.3. Other applications

We give a short list of other applications to inverse problems using the CGO solutions
described above for the Schrödinger equation.

• Quantum Scattering. In dimension n ≥ 3 and in the case of a compactly supported
electric potential, uniqueness for the fixed energy scattering problem was proven
in [136], [146], [160]. In the earlier paper [147] this was done for small potentials.
For compactly supported potentials, knowledge of the scattering amplitude at fixed
energy is equivalent to knowing the Dirichlet-to-Neumann map for the Schrödinger
equation measured on the boundary of a large ball containing the support of the
potential (see [203], [205] for an account). Then Theorem 1.6 implies the result.
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Melrose [129] suggested a related proof that uses the density of products of scat-
tering solutions. Applications of CGO solutions to the 3-body problem were given
in [207].

• Optics. The DN map associated to the Helmholtz equation −∆ + k2n(x) with an
isotropic index of refraction n determines uniquely a bounded index of refraction
in dimension n ≥ 3.

• Optical tomography in the diffusion approximation. In this case we have ∇·D(x)∇u−
σa(x)u − iωu = 0 in Ω where u represents the density of photons, D the diffusion
coefficient, and σa the optical absorption. Using the result of [171] one can show in
dimension three or higher that if ω 6= 0 one can recover both D and σa from the
corresponding DN map. If ω = 0 then one can recover one of the two parameters.

• Electromagnetics. For Maxwell’s equations the analog of the DN map is the admit-
tance map that maps the tangential component of the electric field to the tangential
component of the magnetic field [176]. The admittance map for isotropic Maxwell’s
equations determines uniquely the isotropic electric permittivity, magnetic perme-
ability and conductivity [148]. This system can in fact be reduced to the Schrödinger
equation ∆ − Q with Q an 8 × 8 system and ∆ the Laplacian times the identity
matrix [149].

• Elasticity. For the isotropic elasticity system the problem of determining the Lamé
parameters from the analog of the DN map in this case which sends the displacement
at the boundary to the traction of the boundary has been solved if the Lamé
parameter µ is close to a constant [56], [143], [144].

• Determination of Inclusions and Obstacles. The CGO solutions constructed in The-
orem 1.3 have been applied to determine inclusions for Helmholtz equations in [85]
and Maxwell’s equations in [214] using the enclosure method [85].

• Coupled-Physics Inverse Problems. In these problems one tries to combine the best
features of two type of waves, one with high contrast and the other with high res-
olution to find the electromagnetic, optical or elastic properties of a medium. This
combination is done through some physical principle. Examples are Photoacoustic
and Thermoacoustic Tomography, Ultrasound Modulated Optical Tomography, Ul-
trasound Modulated Electrical Impedance Tomography, Magnetic Resonance Elas-
tography and Transient Elastography among others. See [13], [177] for a review
of some of these inverse methods. CGO solutions have been used in these hybrid
methods in [15], [16], [17], [43], [111].

1.4.4. Stability

The arguments used in the proofs of Theorems 1.5, 1.6, 1.1 can be pushed further to prove
the following stability estimates proven in [4].

Theorem 1.9. Let n ≥ 3. Suppose that s > n
2

and that γ1 and γ2 are C∞ conductivities
on Ω ⊆ Rn satisfying

i) 0 < 1
E

≤ γj ≤ E, j = 1, 2.
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ii) ‖γj‖Hs+2(Ω) ≤ E, j = 1, 2.

Then there exist C = C(Ω, E, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖γ1 − γ2‖L∞(Ω) ≤ C
(
| log ‖Λγ1

− Λγ2
‖ 1

2
,−1

2

|−σ + ‖Λγ1
− Λγ2

‖ 1

2
,−1

2

)
(1.29)

where ‖ ‖ 1

2
,−1

2

denotes the operator norm as operators from H
1

2 (∂Ω) to H− 1

2 (∂Ω).

Notice that this logarithmic type stability estimates indicates that the problem is se-
verely ill-posed. Mandache [128] has shown that this estimate is optimal up to the value
of the exponent. There is the question of whether under some additional a-priori condi-
tion one can improve this logarithmic type stability estimate. Alessandrini and Vessella
[7] have shown that this is indeed the case and one has a Lipschitz type stability esti-
mate if the conductivity is piecewise constant with jumps on a finite number of domains.
Rondi [161] has subsequently shown that the constant in the estimate grows exponen-
tially with the number of domains. It is conjectured, and this is supported by numerical
experiments, that the stability estimate should be “better" near the boundary and gets
increasingly worse as one penetrated deeper into the domain (Theorem 1.2 shows that at
the boundary we have Lipschitz type stability estimate.) This type of depth dependence
stability estimate has been proved in [139] for the case of some electrical inclusions. For a
recent review of stability issues in EIT see [6]. Theorem 1.9 is a consequence of Theorem
1.2 and the following result.

Theorem 1.10. Assume 0 is not a Dirichlet eigenvalue of ∆ − qi, i = 1, 2. Let s > n
2
,

n ≥ 3 and

‖qj‖Hs(Ω) ≤ M.

Then there exists C = C(Ω,M, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖q1 − q2‖H−1(Ω) ≤ C
(
| log ‖Λq1

− Λq2
‖ 1

2
,−1

2

|−σ + ‖Λq1
− Λq2

‖ 1

2
,−1

2

)
. (1.30)

1.4.5. Reconstruction

The complex geometrical optics solutions of Theorems 1.5 and 1.6 were also used by A.
Nachman [136] and R. Novikov [146] to give a reconstruction procedure of the conductivity
from Λγ. As we have already noticed in section 1.2 we can reconstruct the conductivity
at the boundary and its normal derivative from the DN map. Therefore if we know Λγ we
can determine Λq. We will then show how to reconstruct q from Λq. Once this is done, to
find

√
γ, we solve the problem

∆u− qu = 0 in Ω, (1.31)

u|∂Ω =
√
γ

∣∣∣∣
∂Ω
.

Let q1 = q, q2 = 0 in formula (1.17). Then we have
∫

Ω
quvdx =

∫

∂Ω
(Λq − Λ0)

(
v
∣∣∣
∂Ω

)
u
∣∣∣
∂Ω
dS (1.32)

where u, v ∈ H1(Ω) solve∆u − qu = 0, ∆v = 0 in Ω. Here Λ0 denotes the Dirichlet to
Neumann map associated to the potential q = 0. We choose ρi, i = 1, 2 as in (1.21) and
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(20). Take v = ex·ρ1 , u := uρ = ex·ρ2(1 + ψq(x, ρ2)) as in Theorem 1.3. By taking |l| → ∞
in (1.32) we conclude

q̂(−k) = lim
|l|→∞

∫

∂Ω
(Λq − Λ0)(e

x·ρ1

∣∣∣∣
∂Ω

)uρ

∣∣∣∣
∂Ω
dS.

So the problem is then to recover the boundary values of the solutions uρ from Λq. The

idea is to find uρ

∣∣∣∣
∂Ω

by looking at the exterior problem. Namely by extending q = 0

outside Ω, uρ solves

∆uρ = 0 in Rn − Ω (1.33)

∂uρ
∂ν

∣∣∣∣
∂Ω

= Λq(uρ

∣∣∣∣
∂Ω

).

Also note that
e−x·ρ2uρ − 1 ∈ L2

δ(R
n). (1.34)

Let ρ ∈ Cn − 0 with ρ · ρ = 0. Let Gρ(x, y) ∈ D′(Rn × Rn) denote the Schwartz kernel of
the operator ∆−1

ρ . Then we have that

gρ(x) = ex·ρGρ(x) (1.35)

is a Green’s kernel for ∆, namely
∆gρ = δ0. (1.36)

We write the solution of (1.33) and (1.34) in terms of single and double layer potentials
using this Green’s kernel. This is also called Faddeev Green’s kernel [57] who considered
it in the context of scattering theory. We define the single and double layer potentials

Sρf(x) =
∫

∂Ω
gρ(x− y)f(y)dSy, x ∈ Rn − Ω, (1.37)

Dρf(x) =
∫

∂Ω

∂gρ
∂ν

(x− y)f(y)dSy, x ∈ Rn − Ω (1.38)

Bρf(x) = p.v.
∫

∂Ω

∂gρ
∂ν

(x− y)f(y)dSy, x ∈ ∂Ω. (1.39)

Nachman showed that fρ = uρ

∣∣∣∣
∂Ω

is a solution of the integral equation

fρ = ex·ρ − (SρΛq −Bρ − 1

2
I)fρ. (1.40)

Moreover (1.40) is an inhomogeneous integral equation of Fredholm type for fρ and it has

a unique solution in H
3

2 (∂Ω). The uniqueness of the homogeneous equation follows from
the uniqueness of the CGO solutions in Theorem 1.6.

1.5. The Partial Data Problem

In several applications in EIT one can only measure currents and voltages on part of the
boundary. Substantial progress has been made recently on the problem of whether one
can determine the conductivity in the interior by measuring the DN map on part of the
boundary. We review here the articles [108] and [51]. The paper [36] used the method of
Carleman estimates with a linear weight to prove that, roughly speaking, knowledge of the
DN map in “half" of the boundary is enough to determine uniquely a C2 conductivity. The
regularity assumption on the conductivity was relaxed to C1+ǫ, ǫ > 0 in [109]. Stability
estimates for the uniqueness result of [36] were given in [77]. Stability estimates for the
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magnetic Schrödinger operator with partial data in the setting of [36] can be found in
[201]. The result [36] was substantially improved in [108]. The latter paper contains a
global identifiability result where it is assumed that the DN map is measured on any open
subset of the boundary of a strictly convex domain for all functions supported, roughly,
on the complement. We state the theorem more precisely below. The key new ingredient
is the construction of a larger class of CGO solutions than the ones considered in section
1.4. Let x0 ∈ R

n \ ch (Ω), where ch (Ω) denotes the convex hull of Ω. Define the front and
the back faces of ∂Ω by

F (x0) = {x ∈ ∂Ω; (x− x0) · ν ≤ 0}, B(x0) = {x ∈ ∂Ω; (x− x0) · ν > 0}.
The main result of [108] is the following:

Theorem 1.11. Let n > 2. With Ω, x0, F (x0), B(x0) defined as above, let q1, q2 ∈ L∞(Ω)

be two potentials and assume that there exist open neighborhoods F̃ , B̃ ⊂ ∂Ω of F (x0) and
B(x0) ∪ {x ∈ ∂Ω; (x− x0) · ν = 0} respectively, such that

Λq1
u = Λq2

u in F̃ , for all u ∈ H
1

2 (∂Ω) ∩ E
′(B̃). (1.41)

Then q1 = q2.

Here E
′(B̃) denotes the space of compactly supported distributions in B̃. The proof

of this result uses Carleman estimates for the Laplacian with limiting Carleman weights
(LCW). The Carleman estimates allow one to construct, for large τ , a larger class of CGO
solutions for the Schrödinger equation than previously used. These have the form

u = eτ(φ+iψ)(a+ r), (1.42)

where ∇φ · ∇ψ = 0, |∇φ|2 = |∇ψ|2 and φ is the LCW. Moreover a is smooth and non-
vanishing and ‖r‖L2(Ω) = O( 1

τ
), ‖r‖H1(Ω) = O(1). Examples of LCW are the linear phase

φ(x) = x ·ω, ω ∈ Sn−1, used previously, and the non-linear phase φ(x) = ln |x−x0|, where
x0 ∈ R

n \ ch (Ω) which was used in [108]. Any conformal transformation of these would
also be a LCW. Below we give a characterization of all the LCW in Rn, n > 2, see [53]. In
two dimensions any harmonic function is a LCW [209]. The CGO solutions used in [108]
are of the form

u(x, τ) = e
log |x−x0|+id(

x−x0
|x−x0|

,ω)
(a+ r) (1.43)

where x0 is a point outside the convex hull of Ω, ω is a unit vector and d( x−x0

|x−x0|
, ω) denote

distance. We take directions ω so that the distance function is smooth for x ∈ Ω.

1.5.1. Limiting Carleman weights

We only recall here the main ideas in the construction of the CGO solutions. We will
denote τ = 1

h
in order to use the standard semiclassical notation. Let P0 = −h2∆, where

h > 0 is a small semi-classical parameter. The weighted L2-estimate

‖eφ/hu‖ ≤ C‖eφ/hP0u‖
is of course equivalent to the unweighted estimate for a conjugated operator:

‖v‖ ≤ C‖eφ/hP0e
−φ/hv‖.

The semi-classical principal symbol of P0 is p(x, ξ) = ξ2, and that of the conjugated
operator eφ/hP0e

−φ/h is

p(x, ξ + iφ′(x)) = a(x, ξ) + ib(x, ξ),

XI–12



where

a(x, ξ) = ξ2 − φ′(x)2, b(x, ξ) = 2ξ · φ′(x).

Here we denote by φ′ the gradient of φ. Write the conjugated operator as A+ iB, with A
and B formally selfadjoint and with a and b as their associated principal symbols. Then

‖(A+ iB)u‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u).

The principal symbol of i[A,B] is h{a, b}, where {·, ·} denotes the Poisson bracket. In
order to get enough negativity to satisfy Hörmander’s solvability condition we require
that

a(x, ξ) = b(x, ξ) = 0 ⇒ {a, b} ≤ 0.

It is then indeed possible to get an a-priori estimate for the conjugated operator. We are
led to the limiting case since we need to have CGO solutions for both φ and −φ.

Definition 1.12. φ is a limiting Carleman weight (LCW) on some open set Ω if ∇φ(x)
is non-vanishing there and we have

a(x, ξ) = b(x, ξ) = 0 ⇒ {a, b}(x) = 0, x ∈ Ω.

We remark that if φ is a LCW so is −φ. In [53] we have classified locally all the LCW
in Euclidean space.

Theorem 1.13. Let Ω be an open subset of Rn, n ≥ 3. The limiting Carleman weights
in Ω are locally of the form

φ(x) = aφ0(x− x0) + b

where a ∈ R \ {0} and φ0 is one of the following functions:

〈x, ξ〉, arg〈x, ω1 + iω2〉,

log |x|, 〈x, ξ〉
|x|2 , arg

(
eiθ(x+ iξ)2

)
, log

|x+ ξ|2
|x− ξ|2

with ω1, ω2 orthogonal unit vectors, θ ∈ [0, 2π) and ξ ∈ Rn \ {0}.

As noted earlier, in two dimensions, any harmonic function with a non-vanishing gra-
dient is a limiting Carleman weight.

1.5.2. Construction of CGO Solutions with a non-linear phase

A key ingredient in the construction of a richer family of CGO solutions is the following
Carleman estimate.

Proposition 1.14. Let φ ∈ C∞(neigh (Ω)) be an LCW, P = −h2∆ + h2q, q ∈ L∞(Ω).
Then, for u ∈ C∞(Ω), with u|∂Ω

= 0, we have

−h3

C
((φ′

x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω− + h2

C
(‖eφ/hu‖2 + ‖eφ/hh∇u‖2) (1.44)

≤ Ch3((φ′
x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω+

+ ‖eφ/hPu‖2,

where norms and scalar products are in L2(Ω) unless a subscript A (like for instance
A = ∂Ω−) indicates that they should be taken in L2(A). Here

∂Ω± = {x ∈ ∂Ω; ±ν(x) · φ′(x) ≥ 0}.
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The proof of existence of solutions of the form (1.42) follows by using the Hahn-Banach
theorem for the adjoint equation e−φ/hPeφ/hu = v. Let φ be a LCW and write p(x, ξ +
φ′(x)) = a(x, ξ) + ib(x, ξ). Then we know that a and b are in involution on their common
zero set, and in this case it is well-known and exploited in [54] that we can find plenty of
local solutions to the Hamilton-Jacobi system

a(x, ψ′(x)) = 0, b(x, ψ′(x)) = 0 ⇔ ψ′2 = φ′2, ψ′ · φ′ = 0 (1.45)

We need the following more global statement:

Proposition 1.15. Let φ ∈ C∞(neigh (Ω)) be a LCW, where Ω is a domain in Rn

and define the hypersurface G = p−1(C0) for some fixed value of C0. Assume that each
integral curve of φ′ · ∇x through a point in Ω also intersects G and that the corresponding
projection map Ω → G is proper. Then we get a solution of (1.45) in C∞(Ω) by solving
first g′(x)2 = φ′(x)2 on G and then defining ψ by ψ|G

= g, φ′(x) · ∂xψ = 0. The vector
fields φ′ · ∂x and ψ′ · ∂x commute.

This result will be applied with a new domain Ω that contains the original one.
Next consider the WKB-problem

P0(e
1

h
(−φ+iψ)a(x)) = e

1

h
(−φ+iψ)O(h2). (1.46)

The transport equation for a is of Cauchy-Riemann type along the two-dimensional inte-
gral leaves of {φ′ ·∂x, ψ′ ·∂x}. We have solutions that are smooth and everywhere 6= 0. (See
[54].) The existence result for eφ/hPe−φ/h mentioned in one of the remarks after Propo-
sition 1.14 permits us to replace the right hand side of (1.46) by zero; more precisely,
we can find r = O(h) in the semi-classical Sobolev space H1 equipped with the norm
‖r‖ = ‖〈hD〉r‖, such that

P (e
1

h
(−φ+iψ)(a+ r)) = 0. (1.47)

1.5.3. The uniqueness proof

We sketch the proof for the case that B̃ = ∂Ω. All the arguments in this section are
in dimension n > 2. The arguments are similar to those of [36] using the new CGO
solutions. Let φ be an LCW for which the constructions of section 1.5.2 are available. Let
q1, q2 ∈ L∞(Ω) be as in Theorem 1.11 with

Λq1
(f) = Λq2

(f) in ∂Ω−,ǫ0 , ∀f ∈ H
1

2 (∂Ω), (1.48)

where

∂Ω−,ǫ0 = {x ∈ ∂Ω; ν(x) · φ′(x) < ǫ0}
∂Ω+,ǫ0 = {x ∈ ∂Ω; ν(x) · φ′(x) ≥ ǫ0}.

Let
u2 = e

1

h
(φ+iψ2)(a2 + r2)

solve
(∆ − q2)u2 = 0 in Ω,

with ‖r2‖H1 = O(h). Let u1 solve

(∆ − q1)u1 = 0 in Ω, u1|∂Ω
= u2|∂Ω

.

Then according to the assumptions in the theorem, we have ∂νu1 = ∂νu2 in ∂Ω−,ǫ0 if
ǫ0 > 0 has been fixed sufficiently small and we choose φ(x) = ln |x− x0|.
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Put u = u1 − u2, q = q2 − q1, so that

(∆ − q1)u = qu2, u|∂Ω
= 0, supp (∂νu|∂Ω

) ⊂ ∂Ω+,ǫ0 . (1.49)

For v ∈ H1(Ω) with ∆v ∈ L2, we get from Green’s formula
∫

Ω
qu2vdx =

∫

Ω
(∆ − q1)uvdx (1.50)

=
∫

Ω
u (∆ − q1)vdx+

∫

∂Ω+,ǫ0

∂νuvdS.

Similarly, we choose

v = e− 1

h
(φ+iψ1)(a1 + r1),

with
(∆ − q1)v = 0.

Then ∫

Ω
qe

i
h

(ψ1+ψ2)(a2 + r2)(a1 + r1)dx =
∫

∂Ω+,ǫ0

∂νu e
− 1

h
(φ−iψ1)(a1 + r1)dS. (1.51)

Assume that ψ1, ψ2 are slightly h-dependent with

1

h
(ψ1 + ψ2) → f, h → 0.

The left hand side of (1.51) tends to
∫

Ω
qeifa2a1dx,

when h → 0. The modulus of the right hand side is

≤ ‖a1 + r1‖L2(∂Ω+,ǫ0
)

( ∫

∂Ω+,ǫ0

e−2φ/h|∂νu|2dS
) 1

2 .

Here the first factor is bounded when h → 0. In the Carleman estimate (1.44) we can
replace φ by −φ and make the corresponding permutation of ∂Ω− and ∂Ω+. Applying
this variant to the equation (1.49), we see that the second factor tends to 0, when h → 0.
Thus, ∫

Ω
eif(x)a2(x)a1(x)q(x)dx = 0.

Here we can arrange it so that f, a2, a1 are real-analytic and so that a1, a2 are non-
vanishing. Moreover if f can be attained as a limit of (ψ1 +ψ2)/h when h → 0, so can λf
for any λ > 0. Thus we get the conclusion

∫

Ω
eiλf(x)a2(x)a1(x)q(x)dx = 0. (1.52)

To show that q = 0 one uses arguments of analytic microlocal analysis [108]. In [9] it
was shown that if the potential is known in a neighborhood of the boundary and the
DN map is measured on any open subset with Dirichlet data supported in the same set,
the potential can be reconstructed from this data. It is an open problem whether this
is valid in the general case. Isakov [96] proved a uniqueness result in dimension three or
higher when the DN map is given on an arbitrary part of the boundary assuming that the
remaining part is an open subset of a plane or a sphere and the DN map is measured on
the plane or sphere. The case of partial data on a slab was studied in [127]. The DN map
with partial data for the magnetic Schrödinger operator was studied in [52], [110], [201],
[118]. The case of the polyharmonic operator was considered in [119]. We also mention
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that in [67] (resp. [102]) CGO approximate solutions are concentrated near planes (resp.
spheres) and provided some local results related to the local DN map. It would be very
interesting to extend the partial data result to systems. See [165] for Dirac systems, [41]
for Maxwell and [92] for elasticity. Using methods of hyperbolic geometry similar to [102]
it is shown in [83] that one can reconstruct inclusions from the local DN map using CGO
solutions that decay exponentially inside a ball and grow exponentially outside. These
are called complex spherical waves. A numerical implementation of this method has been
done in [83]. The construction of complex spherical waves can also be done using the CGO
solutions constructed in [108]. This was done in [208] in order to detect elastic inclusions,
in [209] to detect inclusions in the two dimensional case for a large class of systems with
inhomogeneous background, and in [166] for the case of inclusions contained in a slab. We
mention that methods of hyperbolic geometry have been also studied earlier in the works
[19], [59], [167].

1.5.4. The Linearized Calderón Partial Data Problem

It is an open problem in dimension n ≥ 3 that if the Dirichlet to Neumann map for
the conductivity or potential is measured on an open non-empty subset of the boundary
for Dirichlet data supported in that set we can determine uniquely the potential. In
this section we consider the linearized version of this problem, generalizing Calderón’s
approach. We add the constraint that the restriction of the harmonic functions to the
boundary vanishes on any fixed closed proper subset of the boundary. We show that the
product of these harmonic functions is dense. More precisely

Theorem 1.16. Let Ω be a connected bounded open set in Rn, n ≥ 2, with smooth
boundary. The set of products of harmonic functions on Ω which vanish on a closed proper
subset Γ ( ∂Ω of the boundary is dense in L1(Ω).

Sketch of the Proof. We take f ∈ L1(Ω). Assume
∫

Ω
fuvdx = 0, (1.53)

for all harmonic functions u, v with u|Γ = v|Γ = 0. First one proves a local result. Fix a
point x0 on the boundary. It is shown that if f = 0 in a neighborhood of x0 then f = 0 in
the whole domain. See [51] for the proof. We now extend f = 0 outside Ω. We reduce the
problem to the case where the point x0 has a hyperplane tangent to the boundary at the
point x0. We use Calderón’s exponential solutions for all the possible complex frequencies
ρ such that ρ · ρ = 0 (previously we used in sections 1.4 and 1.5.3 the cancellation of
the real parts when taking the products). Using these solutions and (1.53) one obtains a
decay of the Bargmann-Segal transform of f (see [174])

Tf(z) =
∫

Rn
e− 1

2h (z − y)2f(y)dy (1.54)

for certain complex directions. Using the watermelon approach [106], [175], one then shows
that there is an exponential decay of this transform for other directions implying that the
point (x0, ν), where ν is the normal to the the point x0, is not in the analytic wave front
set of f in contradiction to the microlocal version of Holmgren’s uniqueness theorem [82],
[174]. We explain below some of the details of the proof. One can assume that Ω \ {x0} is
on one side of the tangent hyperplane Tx0

(Ω) at x0 by making a conformal transformation.
Pick a ∈ Rn \ Ω which sits on the line segment in the direction of the outward normal to
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∂Ω at x0; there is a ball B(a, r) such that ∂B(a, r) ∩ Ω = {x0}, and there is a conformal
transformation

ψ : Rn \B(a, r) → B(a, r) (1.55)

which fixes x0 and exchanges the interior and the exterior of the ball B(a, r). The hy-
perplane H : (x − x0) · (a − x0) = 0 is tangent to ψ(Ω), and the image ψ(Ω) \ {x0} by
the conformal transformation lies inside the ball B(a, r), therefore on one side of H. The
fact that functions are supported on the boundary close to x0 is left unchanged. Since a
function is harmonic on Ω if and only if its Kelvin transform

u∗ = rn−2|x− a|−n+2u ◦ ψ
is harmonic on ψ(Ω), (1.53) becomes

0 =
∫

Ω

fuv dx =
∫

ψ(Ω)

r4|x− a|−4f ◦ ψ u∗v∗ dx

for all harmonic functions u∗, v∗ on ψ(Ω). If one can prove that if |x− a|−4f ◦ ψ vanishes
close to x0 then so does f . Moreover, by scaling one can assume that Ω is contained in a
ball of radius 1. Our setting will therefore be as follows: x0 = 0, the tangent hyperplane
at x0 is given by x1 = 0 and

Ω ⊂
{
x ∈ Rn : |x+ e1| < 1}, Γ =

{
x ∈ ∂Ω : x1 ≥ −2c

}
. (1.56)

The prime will be used to denote the last n− 1 variables so that x = (x1, x
′) for instance.

The Laplacian on Rn has p(ξ) = ξ2 as a principal symbol, if we still denote by p(ζ) = ζ2

the continuation of this principal symbol on Cn, we consider

p−1(0) =
{
ζ ∈ Cn : ζ2 = 0

}
.

In dimension n = 2, this set is the union of two complex lines

p−1(0) = Cγ ∪ Cγ

where γ = ie1 + e2 = (i, 1) ∈ C2. Note that (γ, γ) is a basis of C2: the decomposition of a
complex vector in this basis reads

ζ = ζ1e1 + ζ2e2 =
ζ2 − iζ1

2
γ +

ζ2 + iζ1

2
γ. (1.57)

Similarly for n ≥ 2, the differential of the map

s : p−1(0)× p−1(0) → Cn

(ζ, η) 7→ ζ + η

at (ζ0, η0) is surjective

Ds(ζ0, η0) : Tζ0
p−1(0) × Tη0

p−1 (0) → Cn

(ζ, η) 7→ ζ + η

provided Cn = Tζ0
p−1(0) + Tη0

p−1(0), i.e. provided ζ0 and η0 are linearly independent.
In particular, this is the case if ζ0 = γ and η0 = −γ; as a consequence all z ∈ Cn,
|z − 2ie1| < 2ε may be decomposed as a sum of the form

z = ζ + η, with ζ, η ∈ p−1(0), |ζ − γ| < Cε, |η + γ| < Cε (1.58)

provided ε > 0 is small enough. The exponentials with linear weights

e− i
h
x·ζ , ζ ∈ p−1(0)
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are harmonic functions. We need to add a correction term in order to obtain harmonic
functions u satisfying the boundary requirement u|Γ = 0. Let χ ∈ D(Rn) be a cutoff
function which equals 1 on Γ, and consider the solution w to the Dirichlet problem

∆w = 0 in Ω, w|∂Ω = −(e− i
h
x·ζχ)|∂Ω. (1.59)

The function

u(x, ζ) = e− i
h
x·ζ + w(x, ζ)

is harmonic and satisfies u|Γ = 0. We have the following bound on w:

‖w‖H1(Ω) ≤ C1‖e− i
h
x·ζχ‖

H
1
2 (∂Ω)

(1.60)

≤ C2(1 + h−1|ζ|) 1

2 e
1

h
HK(Imζ)

where HK is the supporting function of the compact subset K = suppχ ∩ ∂Ω of the
boundary

HK(ξ) = sup
x∈K

x · ξ, ξ ∈ Rn.

In particular, if we take χ to be supported in x1 ≤ −c and equal to 1 on x1 ≤ −2c then
the bound (1.60) becomes

‖w‖H1(Ω) ≤ C2(1 + h−1|ζ|) 1

2 e− c
h
Imζ1 e

1

h
|Imζ′| when Imζ1 ≥ 0. (1.61)

The starting point is the cancellation of the integral
∫

Ω

f(x)u(x, ζ)u(x, η) dx = 0, ζ, η ∈ p−1(0) (1.62)

which may be rewritten in the form
∫

Ω

f(x)e− i
h
x·(ζ+η) dx = −

∫

Ω

f(x)e− i
h
x·ζw(x, η) dx

−
∫

Ω

f(x)e− i
h
x·ηw(x, ζ) dx−

∫

Ω

f(x)w(x, ζ)w(x, η) dx.

This allows to give a bound on the left-hand side
∣∣∣∣∣

∫

Ω

f(x)e− i
h
x·(ζ+η) dx

∣∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e− i

h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+‖e− i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
.

Thus using (1.61)
∣∣∣∣∣

∫

Ω

f(x)e− i
h
x·(ζ+η) dx

∣∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|) 1

2 (1 + h−1|ζ|) 1

2

× e− c
h

min(Imζ1,Imη1) e
1

h
(|Imζ′|+|Imη′|)

when Imζ1 ≥ 0, Imη1 ≥ 0 and ζ, η ∈ p−1(0). In particular, if |ζ−aγ| < Cεa and |η+aγ| <
Cεa with ε ≤ 1/2C then

∣∣∣∣∣

∫

Ω

f(x)e− i
h
x·(ζ+η) dx

∣∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h .
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Take z ∈ Cn with |z − 2ae1| < 2εa and with ε small enough. Once rescaled the decompo-
sition (1.58) gives

z = ζ + η, ζ, η ∈ p−1(0), |ζ − aγ| < Cεa, |η + aγ| < Cεa,

and we therefore get the estimate
∣∣∣∣∣

∫

Ω

f(x)e− i
h
x·z dx

∣∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h (1.63)

for all z ∈ Cn such that |z−2aie1| < 2εa. This implies that the Bargmann-Segal transform
of f satisfies

|Tf(z)| ≤ C|f‖L∞(Ω)e
1

2h
(|Imz|2−|Rez|2− ca

2
) (1.64)

for some ǫ, a, c > 0 and for all z ∈ Cn such that |z − 2aie1| < 2εa. By the definition of
the analytic wave front set, the last estimate says that the point (0, 2ae1) is not in the
analytic wave front set of f. By Kashiwara’s watermelon theorem [175], [106], since f is
supported in the half space x1 ≤ 0, if 0 is in the support of f then (0, ν) with ν the unit
normal to the boundary is also in the analytic wave front set but this is a contradiction
since 2ae1 is also normal to x1 = 0. Therefore 0 is not in the support of f and f vanishes
in a neighborhood of 0.

1.6. The Calderón Problem in Two Dimensions

Astala and Päivärinta [11], in a seminal contribution, have recently extended significantly
the uniqueness result of [135] for conductivities having two derivatives in an appropriate
sense and the result of [34] for conductivities having one derivative in appropriate sense,
by proving that any L∞ conductivity in two dimensions can be determined uniquely from
the DN map. We remark that the method of [135] and [34] uses, besides CGO solutions,
the ∂ method introduced in one dimension by Beals and Coifman [21] and generalized
to several dimensions in [1], [137], [22], [199]. The ∂ method has been used in numerical
reconstruction procedures in two dimensions in [94], [173] among others. The proof of
[11] relies also on construction of CGO solutions for the conductivity equation with L∞

coefficients and the ∂ method. This is done by transforming the conductivity equation to
a quasi-regular map. Let D be the unit disk in the plane. Then we have

Lemma 1.17. Assume u ∈ H1(D) is real valued and satisfies the conductivity equation on
D. Then there exists a function v ∈ H1(D), unique up to a constant, such that f = u+ iv
satisfies the Beltrami equation

∂f = µ∂f, (1.65)

where µ = (1 − γ)/(1 + γ). Conversely, if f ∈ H1(D) satisfies (1.65) with a real-valued µ,
then u = Ref and v = Imf satisfy

∇ · γ∇u = 0 and ∇ · 1

γ
∇v = 0, (1.66)

respectively, where γ = (1 − µ)/(1 + µ).

Let us denote κ = ||µ||L∞ < 1. Then (1.65) means that f is a quasi-regular map. The
function v is called the γ-harmonic conjugate of u and it is unique up to a constant.
Astala and Päivärinta consider the µ-Hilbert transform Hµ : H1/2(∂Ω) → H1/2(∂Ω) that
is defined by

Hµ : u
∣∣∣
∂Ω

7→ v
∣∣∣
∂Ω
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and show that the DN map Λγ determines Hµ and vice versa. Below we use the complex
notation z = x1 + ix2. Moreover, for the equation (1.65), it is shown that for every k ∈ C
there are complex geometrical optics solutions of the Beltrami equation that have the
form

fµ(z, k) = eikzMµ(z, k), (1.67)

where

Mµ(z, k) = 1 + O
(

1

z

)
as |z| → ∞. (1.68)

More precisely, they prove that

Theorem 1.18. For each k ∈ C and for each 2 < p < 1 + 1/k the equation (1.65) admits
a unique solution f ∈ W 1,p

loc (C) of the form (1.67) such that the asymptotic formula (1.68)
holds true.

In the case of non-smooth coefficients the function Mµ grows sub-exponentially in k.
Astala and Päivärinta introduce the “transport matrix" to deal with this problem. Using
a result of Bers connecting pseudoanalytic functions with quasi-regular maps they show
that this matrix is determined by the Hilbert transform Hµ and therefore the DN map.
Then they use the transport matrix to show that Λγ determines uniquely γ. See [11] for
more details. Logarithmic type stability estimates for Hölder conductivities of positive
exponent have been given in [20].

1.6.1. Bukhgeim’s Result

In a recent breakthrough, Bukhgeim [35] proved that a potential in W 2,p(Ω), p > 2 can be
uniquely determined from the set of Cauchy data as defined in (1.15). An earlier result
[189] gave this for a generic class of potentials. As before, if two potentials q1, q2 have the
same set of Cauchy data, we have

∫

Ω
(q1 − q2)u1u2dx = 0 (1.69)

where ui, i = 1, 2, are solutions of the Schrödinger equation. Assume now that 0 ∈ Ω.
Bukhgeim takes CGO solutions of the form

u1(z, k) = ez
2k(1 + ψ1(z, k)), u2(z, k) = e−z2k(1 + ψ2(z, k)) (1.70)

where z, k ∈ C and we have used the complex notation z = x1 + ix2. Moreover ψ1 and
ψ2 decay uniformly in Ω, in an appropriate sense, for |k| large. Note that the weight z2k
in the exponential is a limiting Carleman weight since it is a harmonic function but it is
singular at 0 since its gradient vanishes there. Substituting (1.70) into (1.69) we obtain

∫

Ω
e2iτx1x2(q1 − q2)(1 + ψ1 + ψ2 + ψ1ψ2)dx = 0.

Now using the decay of ψi in τ , i = 1, 2, and applying stationary phase (the phase function
x1x2 that has a non-degenerate critical point at 0) we obtain q1(0) = q2(0) = 0 in Ω. Of
course we can do this at any point of Ω proving the result. This result also shows that
complex conductivities can be determined uniquely from the DN map. Francini has shown
in [58] that this was the case for conductivities with small imaginary part. It also implies
unique determination of a potential from the fixed energy scattering amplitude in two
dimensions.
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1.6.2. Partial Data Problem in 2D

It is shown in [88] that for a two dimensional bounded domain the Cauchy data for the
Schrödinger equation measured on an arbitrary open subset of the boundary determines
uniquely the potential. This implies, for the conductivity equation, that if one measures
the current fluxes at the boundary on an arbitrary open subset of the boundary pro-
duced by voltage potentials supported in the same subset, one can determine uniquely
the conductivity. The paper [88] uses Carleman estimates with weights which are harmonic
functions with non-degenerate critical points to construct appropriate complex geometri-
cal optics solutions to prove the result. We describe this more precisely below. Let Ω ⊂ R2

be a bounded domain which consists of N smooth closed curves γj, ∂Ω = ∪N
j=γj. As before

we define the set of Cauchy data for a bounded potential q by:

Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣∣
∂Ω

)
| (∆ − q)u = 0 on Ω, u ∈ H1(Ω)

}
. (1.71)

Let Γ ⊂ ∂Ω be a non-empty open subset of the boundary. Denote Γ0 = ∂Ω \ Γ. The
main result of [88] gives global uniqueness by measuring the Cauchy data on Γ. Let
qj ∈ C2+α(Ω), j = 1, 2 for some α > 0 and let qj be complex-valued. Consider the
following sets of Cauchy data on Γ:

Cqj
=

{(
u|Γ,

∂u

∂ν

∣∣∣∣
Γ

)
| (∆ − qj)u = 0 in Ω, u|Γ0

= 0, u ∈ H1(Ω)

}
, j = 1, 2. (1.72)

Theorem 1.19. Assume Cq1
= Cq2

. Then q1 = q2.

Using Theorem 1.19 one concludes immediately, as a corollary, the following global
identifiability result for the conductivity equation (1.2). This result uses that knowledge
of the Dirichlet-to-Neumann map on an open subset of the boundary determines γ and
its first derivatives on Γ (see [113], [194]).

Corollary 1.20. With some α > 0, let γj ∈ C4+α(Ω), j = 1, 2, be non-vanishing func-
tions. Assume that

Λγ1
(f) = Λγ2

(f) on Γ for all f ∈ H
1

2 (Γ), supp f ⊂ Γ.

Then γ1 = γ2.

It is easy to see that Theorem 1.19 implies the analogous result to [108] in the two
dimensional case. Notice that Theorem 1.19 does not assume that Ω is simply connected.
An interesting inverse problem is whether one can determine the potential or conductivity
in a region of the plane with holes by measuring the Cauchy data only on the accessible
boundary. This is also called the obstacle problem. Let Ω, D be domains in R2 with smooth
boundaries such that D ⊂ Ω. Let V ⊂ ∂Ω be an open set. Let qj ∈ C2+α(Ω \D), for some
α > 0 and j = 1, 2. Let us consider the following set of partial Cauchy data

C̃qj
= {(u|V ,

∂u

∂ν
|V )|(∆ − qj)u = 0 in Ω \D, u|∂D∪∂Ω\V = 0, u ∈ H1(Ω \D)}.

Corollary 1.21. Assume C̃q1
= C̃q2

. Then q1 = q2.

A similar result holds for the conductivity equation.

Corollary 1.22. Let γj ∈ C4+α(Ω \D) j = 1, 2 be non vanishing functions. Assume

Λγ1
(f) = Λγ2

(f) on V ∀f ∈ H
1

2 (∂(Ω \D)), supp f ⊂ V
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Then γ1 = γ2.

The two dimensional case has special features since one can construct a much larger
set of complex geometrical optics solutions than in higher dimensions. On the other hand,
the problem is formally determined in two dimensions and therefore more difficult. The
proof of Theorem 1.19 is based on the construction of appropriate complex geometrical
optics solutions by Carleman estimates with degenerate weight functions.
Sketch of the Proof. For the partial data problem we need a more general class of CGO so-
lutions than the ones constructed by Bukhgeim, since we would like to have the imaginary
part of the phase vanish on Γ. So we consider more general holomorphic functions with
non-degenerate critical points as phases. Let the function Φ(z) = ϕ(x1, x2) + iψ(x1, x2) ∈
C2(Ω) be holomorphic in Ω and Im Φ|

∂Ω\Γ̃
= 0. Notice that this implies ∇ϕ · ν = 0 on

∂Ω \ Γ̃. We denote the set of critical points of Φ by

H = {z ∈ Ω|∂zΦ(z) = 0}.
We assume that Φ has a finite number of non-degenerate critical points in Ω, that is
∂2
zΦ(z) 6= 0, z ∈ H. We denote the critical points by H = {x̃1, ..., x̃ℓ} As in the partial

data problem considered in section 1.5 we construct appropriate CGO solutions by proving
a Carleman estimate.
Carleman estimate Let u ∈ H1

0 (Ω), real valued. Then for all large τ > 0:

τ‖ueτϕ‖2
L2(Ω)+ ‖ueτϕ‖2

H1(Ω) +

∥∥∥∥∥
∂u

∂ν
eτϕ

∥∥∥∥∥

2

L2(∂Ω\Γ̃)

+ τ 2

∥∥∥∥∥

∣∣∣∣∣
∂Φ

∂z

∣∣∣∣∣ue
τϕ

∥∥∥∥∥

2

L2(Ω)

≤ C


‖(∆u)eτϕ‖2

L2(Ω) + τ
∫

Γ̃

∣∣∣∣∣
∂u

∂ν

∣∣∣∣∣

2

e2τϕdσ




with σ the standard measure on ∂Ω. The Carleman estimate implies the existence of a
solution to the boundary value problem for the Schrödinger equation

(∆ − q)u = f in Ω; u|
∂Ω\Γ̃

= g (1.73)

and that it satisfies an estimate. More precisely we have

Proposition 1.23. Let q ∈ L∞(Ω). There exists τ0 > 0 such that for all |τ | > τ0 there
exists a solution of (1.72) such that

‖ue−τϕ‖L2(Ω) ≤ C
(
‖fe−τϕ‖L2(Ω)/τ + ‖ge−τϕ‖

L2(∂Ω\Γ̃)

)
.

We next find CGO solutions of

(∆ − q)u = 0 in Ω; u|
∂Ω\Γ̃

= 0 (1.74)

of the form

u(x) = eτΦ(z)(a(z) + a0(z)/τ) + eτΦ(z)(a(z) + a1(z)/τ) + eτϕu1 + eτϕu2. (1.75)

The functions a, a0, a1 ∈ C2(Ω) are holomorphic in Ω and Re a|
∂Ω\Γ̃

= 0. Moreover

‖uj‖L2(Ω) = o
(

1

τ

)
, τ → ∞, j = 1, 2. (1.76)

Now we take two potentials q1 and q2 satisfying the hypothesis of Theorem 1.19. We take
for the potential q1 a solution u of the corresponding Schrödinger equation of the form
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(1.75) and for the Schrödinger equation associated to q2 a solution v of the form

v(x) = e−τΦ(z)(a(z) + b0(z)/τ) + e−τΦ(z)(a(z) + b1(z)/τ) + e−τϕv1 + e−τϕv2 (1.77)

with v1, v2 satisfying the same decay for large τ as u1, u2. Using arguments similar to
those of section 1.4.1 we get ∫

Ω
(q1 − q2)uvdx = 0. (1.78)

Substituting (1.74) and (1.77) into this identity and applying stationary phase we conclude

Proposition 1.24. Let {x̃1, . . . , x̃ℓ} be the set of critical points of the function Im Φ. Then
for any potentials q1, q2 satisfying the hypotheses of Theorem 1.19 and for any holomorphic
function a, we have

2
ℓ∑

k=1

π((q1 − q2)|a|2)(x̃k)Re e2iτIm Φ(x̃k)

|(det Im Φ′′)(x̃k)|
1

2

= 0, τ > 0.

We can choose Φ such that

Im Φ(x̃k) 6= Im Φ(x̃j), j 6= k.

Let a(x̃k) 6= 0. Then Proposition 1.24 implies

q1(x̃k) = q2(x̃k).

We then show that the non-degenerate critical points of Φ can be chosen to be a dense
set concluding the sketch of the proof of the theorem.

1.7. Anisotropic Conductivities

Anisotropic conductivities depend on direction. Muscle tissue in the human body is an
important example of an anisotropic conductor. For instance cardiac muscle has a con-
ductivity of 2.3 mho in the transverse direction and 6.3 in the longitudinal direction. The
conductivity in this case is represented by a positive definite, smooth, symmetric matrix
γ = (γij(x)) on Ω. Under the assumption of no sources or sinks of current in Ω, the
potential u in Ω, given a voltage potential f on ∂Ω, solves the Dirichlet problem





n∑
i,j=1

∂
∂xi

(
γij ∂u

∂xj

)
= 0 on Ω

u|∂Ω = f.
(1.79)

The DN map is defined by

Λγ(f) =
n∑

i,j=1

νiγij
∂u

∂xj

∣∣∣∣
∂Ω

(1.80)

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is the solution of
(1.79). The inverse problem is whether one can determine γ by knowing Λγ. Unfortunately,
Λγ doesn’t determine γ uniquely. This observation is due to L. Tartar (see [113] for an
account). Let ψ : Ω → Ω be a C∞ diffeomorphism with ψ|∂Ω = Id where Id denotes the
identity map. We have

Λγ̃ = Λγ (1.81)

where

γ̃ =

(
(Dψ)T ◦ γ ◦ (Dψ)

|detDψ|

)
◦ ψ−1. (1.82)
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Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the composition
in (1.82) is to be interpreted as multiplication of matrices. We have then a large num-
ber of conductivities with the same DN map: any change of variables of Ω that leaves
the boundary fixed gives rise to a new conductivity with the same electrostatic boun-
dary measurements. The question is then whether this is the only obstruction to unique
identifiability of the conductivity. In two dimensions this has been shown for L∞(Ω) con-
ductivities in [12]. This is done by reducing the anisotropic problem to the isotropic one
by using isothermal coordinates [2], [191] and using Astala and Päivärinta’s result in the
isotropic case [11]. Earlier results were for C3 conductivities using the result of Nachman
[135] and for Lipschitz conductivities in [188] using the techniques of [34]. An extension
of some of these results to quasilinear anisotropic conductivities can be found in [190]. In
three dimensions, as was pointed out in [125], this is a problem of geometrical nature and
makes sense for general compact Riemannian manifolds with boundary. Let (M, g) be a
compact Riemannian manifold with boundary. The Laplace-Beltrami operator associated
to the metric g is given in local coordinates by

∆gu =
1√

det g

n∑

i,j=1

∂

∂xi

(√
det ggij

∂u

∂xj

)
(1.83)

where (gij) is the matrix inverse of the matrix (gij). Let us consider the Dirichlet problem
associated to (1.83)

∆gu = 0 on Ω, u|∂Ω = f. (1.84)

We define the DN map in this case by

Λg(f) =
n∑

i,j=1

νigij
∂u

∂xj

√
det g|∂Ω (1.85)

The inverse problem is to recover g from Λg. We have

Λψ∗g = Λg (1.86)

where ψ is any C∞ diffeomorphism of M which is the identity on the boundary. As usual
ψ∗g denotes the pull back of the metric g by the diffeomorphism ψ. In the case that M
is an open, bounded subset of Rn with smooth boundary, it is easy to see ([125]) that for
n ≥ 3

Λg = Λγ (1.87)

where

(gij) = (detγkl)
1

n−2 (γij)−1, (γij) = (det gkl)
1

2 (gij)
−1. (1.88)

In the two dimensional case there is an additional obstruction since the Laplace-Beltrami
operator is conformally invariant. More precisely we have

∆αg =
1

α
∆g

for any function α, α 6= 0. Therefore we have, for n = 2,

Λα(ψ∗g) = Λg (1.89)

for any smooth function α 6= 0 so that α|∂M = 1. Lassas and Uhlmann ([123]) proved that
(1.86) is the only obstruction to unique identifiability of the conductivity for real-analytic
manifolds in dimension n ≥ 3. In the two dimensional case they showed that (1.89) is the
only obstruction to unique identifiability for smooth Riemannian surfaces. Moreover these
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results assume that the DN map is measured only on an open subset of the boundary. We
state the two basic results. Let Γ be an open subset ∂M . We define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)|Γ.
Theorem 1.25 (n = 2). Let (M, g) be a compact Riemannian surface with boundary. Let
Γ ⊆ ∂M be an open subset. Then Λg,Γ determines uniquely the conformal class of (M, g).

Theorem 1.26 (n ≥ 3). Let (M, g) be a real-analytic compact, connected Riemannian
manifold with boundary. Let Γ ⊆ ∂M be real-analytic and assume that g is real-analytic
up to Γ. Then Λg,Γ determines uniquely (M, g) up to an isometry.

Einstein manifolds are real-analytic in the interior and it was conjectured by Lassas
and Uhlmann that they were uniquely determined up to isometry by the DN map. This
was proven in [69]. Notice that these results don’t assume any condition on the topology
of the manifold except for connectedness. An earlier result of [125] assumed that (M, g)
was strongly convex and simply connected and Γ = ∂M in both results. Theorem 1.26
was extended in [124] to non-compact, connected real-analytic manifolds with boundary.
These results were extended to differential forms in [117].

1.7.1. The Calderón Problem on Manifolds

The invariant form on a Riemannian manifold with boundary (M, g) for an isotropic
conductivity β is given by

divg(β∇g)u = 0 (1.90)

where divg (resp. ∇g) denotes divergence (resp. gradient) with respect to the Riemannian
metric g. This includes the case considered by Calderón with g the Euclidean metric,
the anisotropic case by taking gij = γijβ and β =

√
det g. It was shown in [188] for

bounded domains of Euclidean space in two dimensions that the isometric class of (β, g)
is determined uniquely by the DN map associated to (1.90). In two dimensions, when the
metric g is known, it is proven in [78] that one can uniquely determine the conductivity
β. Guillarmou and Tzou [71] have shown that a potential is uniquely determined for the
Schrödinger equation ∆g − q, with ∆g the Laplace-Beltrami operator associated to the
metric g, generalizing the result of [78]. In dimension n ≥ 3 it is an open problem whether
one can determine the isotropic conductivity β from the corresponding DN map associated
to (1.90). As before one can consider the more general problem of recovering the potential
q from the DN map associated to ∆g − q. We review below the progress that has been
made on this problem based on [53].

1.7.2. Complex geometrical optics on manifolds

We review the recent construction of complex geometrical optics construction for a class
of Riemannian manifolds based on [53]. In this paper those Riemannian manifolds which
admit limiting Carleman weights, were characterized. All such weights in Euclidean space
were listed in Theorem 1.13.

Theorem 1.27. If (M, g) is an open manifold having a limiting Carleman weight, then
some conformal multiple of the metric g admits a parallel unit vector field. For simply
connected manifolds, the converse is also true.
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Locally, a manifold admits a parallel unit vector field if and only if it is isometric to the
product of an Euclidean interval and another Riemannian manifold. This is an instance
of the de Rham decomposition [159]. Thus, if (M, g) has an LCW ϕ, one can choose local
coordinates in such a way that φ(x) = x1 and

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

where c is a positive conformal factor. Conversely, any metric of this form admits ϕ(x) = x1

as a limiting weight. In the case n = 2, limiting Carleman weights in (M, g) are exactly
the harmonic functions with non-vanishing differential. Let us now introduce the class of
manifolds which admit limiting Carleman weights and for which one can prove uniqueness
results. For this we need the notion of simple manifolds [168].

Definition 1.28. A manifold (M, g) with boundary is simple if ∂M is strictly convex,
and for any point x ∈ M the exponential map expx is a diffeomorphism from some closed
neighborhood of 0 in TxM onto M .

Definition 1.29. A compact manifold with boundary (M, g), of dimension n ≥ 3, is
admissible if it is conformal to a submanifold with boundary of R×(M0, g0) where (M0, g0)
is a compact simple (n− 1)-dimensional manifold.

Examples of admissible manifolds include the following:

1. Bounded domains in Euclidean space, in the sphere minus a point, or in hyperbolic
space. In the last two cases, the manifold is conformal to a domain in Euclidean
space via stereographic projection.

2. More generally, any domain in a locally conformally flat manifold is admissible,
provided that the domain is appropriately small. Such manifolds include locally
symmetric 3-dimensional spaces, which have parallel curvature tensor so their Cot-
ton tensor vanishes [55].

3. Any bounded domain M in Rn, endowed with a metric which in some coordinates
has the form

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

with c > 0 and g0 simple, is admissible.

4. The class of admissible metrics is stable under C2-small perturbations of g0.

The first inverse problem involves the Schrödinger operator

Lg,q = ∆g − q,

where q is a smooth complex valued function on (M, g). We make the standard assumption
that 0 is not a Dirichlet eigenvalue of Lg,q in M . Then the Dirichlet problem





Lg,qu = 0 in M,

u = f on ∂M

has a unique solution for any f ∈ H1/2(∂M), and we may define the DN map

Λg,q : f 7→ ∂νu|∂M .
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Given a fixed admissible metric, one can determine the potential q from boundary mea-
surements.

Theorem 1.30. Let (M, g) be admissible, and let q1 and q2 be two smooth functions on
M . If Λg,q1

= Λg,q2
, then q1 = q2.

This result was known previously in dimensions n ≥ 3 for the Euclidean metric [171]
and for the hyperbolic metric [101]. It has been generalized to Maxwell’s equations in
[107].

2. Travel Time Tomography and Boundary Rigidity

2.1. Introduction

The question of determining the sound speed or index of refraction of a medium by
measuring the first arrival times of waves arose in geophysics in an attempt to determine
the substructure of the Earth by measuring at the surface of the Earth the travel times
of seismic waves. An early success of this inverse method was the estimate by Herglotz
[79] and Wiechert and Zoeppritz [212] of the diameter of the Earth and the location
of the mantle, crust and core. The assumption used in those papers is that the index of
refraction (inverse proportional to the speed) depends only on the radius. A more realistic
model is to assume that it depends on position. The inverse kinematic problem can be
formulated mathematically as determining a Riemannian metric on a bounded domain
(the Earth) given by ds2 = 1

c2(x)
dx2, where c is a positive function, from the length of

geodesics (travel times) joining points in the boundary. More recently it has been realized,
by measuring the travel times of seismic waves, that the inner core of the Earth might
exhibit anisotropic behavior, that is the speed of waves depends also on direction there
with the fast direction parallel to the Earth’s spin axis [45]. Given the complications
presented by modeling the Earth as an anisotropic elastic medium we consider a simpler
model of anisotropy, namely that the wave speed is given by a symmetric, positive definite
matrix g = (gij)(x), that is, a Riemannian metric in mathematical terms. The problem
is to determine the metric from the lengths of geodesics joining points in the boundary
(the surface of the Earth in the motivating example). It is useful to consider a more
general and geometric formulation of the problem. Let (M, g) be a compact Riemannian
manifold with boundary ∂M . Let dg(x, y) denote the geodesic distance between x and y,
two points in the boundary. This is defined as the infimum of the length of all sufficiently
smooth curves joining the two points. The function dg measures the first arrival time
of waves joining points of the boundary. One of the inverse problems we discuss in this
section is whether we can determine the Riemannian metric g knowing dg(x, y) for any
x ∈ ∂M , y ∈ ∂M . This problem also arose in rigidity questions in Riemannian geometry
[130], [46], [68]. The metric g cannot be determined from this information alone. We have
dψ∗g = dg for any diffeomorphism ψ : M → M that leaves the boundary pointwise fixed,
i.e., ψ|∂M = Id, where Id denotes the identity map and ψ∗g is the pull-back of the metric
g. The natural question is whether this is the only obstruction to unique identifiability of
the metric. It is easy to see that this is not the case. Namely one can construct a metric
g and find a point x0 in M so that dg(x0, ∂M) > sup x,y∈∂Mdg(x, y). For such a metric,
dg is independent of a change of g in a neighborhood of x0. The hemisphere of the round
sphere is another example. Therefore it is necessary to impose some a-priori restrictions
on the metric. One such restriction is to assume that the Riemannian manifold (M, g)

XI–27



is simple, i.e., M is simply-connected, any geodesic has no conjugate points and ∂M is
strictly convex. ∂M is strictly convex if the second fundamental form of the boundary
is positive definite in every boundary point. R. Michel conjectured in [130] that simple
manifolds are boundary distance rigid, that is dg determines g uniquely up to an isometry
which is the identity on the boundary. This is known for simple subspaces of Euclidean
space (see [68]), simple subspaces of an open hemisphere in two dimensions (see [131]
), simple subspaces of symmetric spaces of constant negative curvature [27], simple two
dimensional spaces of negative curvature (see [47] or [150]). If one metric is close to the
Euclidean metric boundary rigidity was proven in [122] that was improved in [37]. We
remark that simplicity of a compact manifold with boundary can be determined from
the boundary distance function. Michel’s conjecture was proven in generality in [156] in
two dimensions and we describe the details of the proof in section 2.2. In the case that
both g1 and g2 are conformal to the Euclidean metric e (i.e., (gk)ij = αkδij, k = 1, 2 with
δij the Kronecker symbol), as mentioned earlier, the problem we are considering here is
known in seismology as the inverse kinematic problem. In this case, it has been proven
by Mukhometov in two dimensions [132] that if (M, gi), i = 1, 2 is simple and dg1

= dg2
,

then g1 = g2. More generally the same method of proof shows that if (M, gi), i = 1, 2, are
simple compact Riemannian manifolds with boundary and they are in the same conformal
class then the metrics are determined by the boundary distance function. More precisely
we have:

Theorem 2.1. Let (M, gi), i = 1, 2 be simple compact Riemannian manifolds with boun-
dary of dimension n ≥ 2. Assume g1 = ρg2 for a positive, smooth function ρ, ρ|∂M = 1
and dg1

= dg2
then g1 = g2.

This result and a stability estimate were proven in [132]. We remark that in this case
the diffeomorphism ψ that is present in the general case must be the identity if the metrics
are conformal to each other. For related results and generalizations see [28], [26], [46], [60],
[134].

In section 2.2 we consider the boundary rigidity in the two dimensional case and in
section 2.3 in the higher dimensional case. In section 2.4 we discuss some results on the
non-simple case where the measurements are given by the scattering relation. Roughly
speaking one measures the point of exit and direction of exit of a geodesic for which we
know the point of entrance and direction of entrance besides this we also know the travel
time, that is the length of that geodesic.

2.2. Boundary Rigidity in Two Dimensions

We will sketch in this section the proof of the following result.

Theorem 2.2. Let (M, gi), i = 1, 2 be two dimensional simple compact Riemannian man-
ifolds with boundary. Assume

dg1
(x, y) = dg2

(x, y) ∀(x, y) ∈ ∂M × ∂M.

Then there exists a diffeomorphism ψ : M → M , ψ|∂M = Id, so that

g2 = ψ∗g1.

The proof of Theorem 2.2 involves a connection between the scattering relation and the
Dirichlet-to-Neumann map (DN) associated to the Laplace-Beltrami operator discussed
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in section 1.7. In section 2.2.1 we define the scattering relation which quantizes the scat-
tering operator. In Section 2.2.2 we discuss the geodesic X-ray transform and compute the
commutator of the fiberwise Hilbert transform and geodesic flow (see Theorem 2.7 and
Theorem 2.8). In Section 2.2.3 we discuss the main step of the proof of Theorem 2.2 which
consists in showing that, under the assumptions of the theorem, we can determine the
Dirichlet-to-Neumann map if we know the scattering relation. We also sketch the proof
of Theorem 2.9. In section 2.2.4 we use the connection indicated in section 2.2.1, to give
a characterization of the range of the geodesic X-ray transform in terms of the scattering
relation and we give Fredholm type inversion formulas for the geodesic X-ray transform
acting on scalar functions and vector fields.

2.2.1. The scattering relation

Suppose we have a Riemannian metric in Euclidean space which is the Euclidean metric
outside a compact set. The inverse scattering problem for metrics is to determine the
Riemannian metric by measuring the scattering operator (see [73]). A similar obstruction
to the boundary rigidity problem occurs in this case with the diffeomorphism ψ equal
to the identity outside a compact set. It was proven in [73] that from the wave front
set of the scattering operator, one can determine, under some non-trapping assumptions
on the metric, the scattering relation on the boundary of a large ball. This uses high
frequency information of the scattering operator. In the semiclassical setting Alexandrova
has shown for a large class of operators that the scattering operator associated to potential
and metric perturbations of the Euclidean Laplacian is a semiclassical Fourier integral
operator quantized by the scattering relation [8]. The scattering relation maps the point
and direction of a geodesic entering the manifold to the point and direction of exit of the
geodesic. We proceed to define in more detail the scattering relation and its relation with
the boundary distance function. Let ν denote the unit-inner normal to ∂M. We denote
by S (M) → M the unit-sphere bundle over M :

S(M) =
⋃

x∈M

Sx, Sx = {ξ ∈ Tx(M) : |ξ|g = 1}.

S(M) is a (2 dim M − 1)-dimensional compact manifold with boundary, which can be
written as the union ∂Ω (M) = ∂+S (M) ∪ ∂−S (M)

∂±S (M) = {(x, ξ) ∈ ∂S (M) , ± (ν (x) , ξ) ≥ 0 }.
The manifold of inner vectors ∂+S (M) and outer vectors ∂−S (M) intersect at the set of
tangent vectors

∂0S (M) = {(x, ξ) ∈ ∂S (M) , (ν (x) , ξ) = 0 }.
Let (M, g) be an n-dimensional compact manifold with boundary. We say that (M, g)
is non-trapping if each maximal geodesic is finite. Let (M, g) be non-trapping and the
boundary ∂M is strictly convex. Denote by τ(x, ξ) the length of the geodesic γ(x, ξ, t), t ≥
0, starting at the point x in the direction ξ ∈ Sx. This function is smooth on S(M) \
∂0S(M). The function τ 0 = τ |∂S(M) is equal to zero on ∂−S(M) and is smooth on ∂+S(M).
Its odd part with respect to ξ

τ 0
−(x, ξ) =

1

2

(
τ 0(x, ξ) − τ 0 (x,−ξ)

)

is a smooth function.
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Definition 2.3. Let (M, g) be non-trapping with strictly convex boundary. The scattering
relation α : ∂S (M) → ∂S (M) is defined by

α(x, ξ) = (γ(x, ξ, 2τ 0
−(x, ξ)), γ̇(x, ξ, 2τ 0

−(x, ξ))).

The scattering relation is a diffeomorphism ∂S (M) → ∂S (M) . Notice that α|∂+S(M) :
∂+S (M) → ∂−S (M) , α|∂−S(M) : ∂−S (M) → ∂+S (M) are diffeomorphisms as well.
Obviously, α is an involution, α2 = id and ∂0S (M) is the hypersurface of its fixed points,
α(x, ξ) = (x, ξ), (x, ξ) ∈ ∂0S (M) . A natural inverse problem is whether the scattering
relation determines the metric g up to an isometry which is the identity on the boundary.
This information takes into account all the travel times not just the first arrivals. In the
case that (M, g) is a simple manifold, and we know the metric at the boundary (and this
is determined if dg is known, see [130], knowing the scattering relation is equivalent to
knowing the boundary distance function ([130]) so that we concentrate on studying the
scattering relation. We introduce the operators of even and odd continuation with respect
to α:

A±w(x, ξ) = w(x, ξ), (x, ξ) ∈ ∂+S (M) ,

A±w(x, ξ) = ± (α∗w) (x, ξ), (x, ξ) ∈ ∂−S (M) .

The scattering relation preserves the measure |(ξ, ν)|dΣ, (dΣ is the measure of the boun-
dary ∂S(M) induced by the metric g) and therefore the operators A± : L2

µ(∂+S(M)) →
L2

|µ| (∂S (M)) are bounded, where L2
|µ| (∂S (M)) is the real Hilbert space with scalar prod-

uct

(u, v)L2

|µ|
(∂S(M)) =

∫

∂S(M)

|µ|uvdΣ, µ = (ξ, ν).

and L2
µ (∂+S (M)) is the real Hilbert space with scalar product

(u, v)L2
µ(∂+S(M)) =

∫

∂+S(M)

µuvdΣ.

The adjoint of A± is a bounded operator A∗
± : L2

|µ| (∂S (M)) → L2
µ(∂+S(M)) given by

A∗
±u = (u± u ◦ α)|∂+S(M).

2.2.2. The geodesic X-ray transform

The X-ray transform integrates a function along lines. Radon found in 1917 an inversion
formula in two dimensions to determine a function knowing the X-ray transform. This
formula is non-local in the sense that in order to find the function at a point x one needs to
know the integral of the function along lines far from the point. Radon’s inversion formula
has been implemented numerically using the filtered backprojection algorithm which is
used today in CT scans. Another important transform in medical imaging and other
applications is the Doppler transform which integrates a vector field along lines. The
motivation is ultrasound Doppler tomography. It is known that blood flow is irregular
and faster around tumor tissue than in normal tissue and Doppler tomography attempts
to reconstruct the blood flow pattern. Mathematically the problem is to what extend a
vector field is determined from its integral along lines. In this paper we consider the case of
integrating functions and vector fields along geodesics of a Riemannian metric. This arises
in geophysics since the ray paths are no longer straight lines. We obtain inversion formulas
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for the constant curvature case and Fredholm type formulas in general which are non-

local. We define next the geodesic X-ray transform for any compact Riemannian manifold
(M, g) with boundary of any dimension. We embed (M, g) into a compact Riemannian

manifold (M̃, g) with no boundary. Let ϕt be the geodesic flow on S(M̃) and H = d
dt
ϕt|t=0

be the geodesic vector field. Let uf be the solution of the boundary value problem

Hu = −f, u|∂−S(M) = 0,

which can be written as

uf (x, ξ) =

τ(x,ξ)∫

0

f(ϕt(x, ξ))dt, (x, ξ) ∈ S(M).

In particular
Hτ = −1.

The trace
If = uf |∂+S(M)

is called the geodesic X-ray transform of the function f . If the manifold (M, g) is non-
trapping and has a strictly convex boundary the operator I : C∞(S(M)) → C∞(∂+S(M)).
Clearly a function f is not determined by its geodesic X-ray transform alone, since it
depends on more variables than If . We consider the geodesic X-ray transform acting on
symmetric tensor fields. We denote by fm(x, ξ) an homogeneous polynomial of degree m
with respect to ξ, induced by the symmetric tensor field f on (M, g) of m degree :

fm(x, ξ) = fi1...im (x) ξi1 ...ξim .

The operator Im, defined by
Imf = Ifm

is called the geodesic X-ray transform of the symmetric tensor field. If the manifold
(M, g) is non-trapping and the boundary ∂M is strictly convex Im : C∞(M,Sm(M)) →
C∞(∂+S(M)), where Sm(M) denotes the bundle of symmetric tensors over (M, g). It
is known that any symmetric smooth enough tensor field f may be decomposed in a
potential and solenoidal part [168]:

f = dp+ h, p|∂M = 0, δh = 0, (2.1)

where δ denotes the divergence and d = σ∇ is the symmetric part of covariant derivative.
It is easy to see that the geodesic X-ray transform of the potential part dp is zero. We
denote by C∞

sol(M,Sm(M)) the space of smooth solenoidal symmetric tensor fields. The
case of the geodesic X-ray transform acting on functions independent of ξ and the geodesic
X-ray transform acting on vector fields which, following the notation above, are denoted
by I0 and I1 respectively. It is known that I0 is injective on simple manifolds [132] and that
I1 is injective acting on solenoidal vector fields on simple manifolds [10] and for tensors
of order two in [169]. Recently in [151] it has been proven injectivity of Im for all m for
simple two-dimensional manifolds. We mention also that the transform I2 arises in the
linearization of the boundary rigidity problem (see [168]). We define ψ : S(M) → ∂−S(M)
by

ψ(x, ξ) = ϕ−τ(x,−ξ)(x, ξ), (x, ξ) ∈ S(M).

So, ϕ is a retract which maps vector (x, ξ) along geodesic γ(x, ξ, t) in back direction into
incoming vector. The solution of the boundary value problem for the transport equation

Hu = 0, u|∂+S(M) = w
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can be written in the form

u = wψ = w ◦ ψ.
The adjoint of the operator Im is the bounded operator I∗

m : L2
µ (∂+S (M)) → L2 (M,Sm(M))

which is given by

(I∗
mw)i1...im (x) =

∫

Sx

wψ(x, ξ)ξi1 ...ξimdSx.

The Hilbert space L2 (M,Sm(M)) may be considered as subspace of L2(S(M)) of homo-
geneous polynomials with respect to ξ of degree m. The field I∗

mw is solenoidal in the
sense of the theory of distributions. Notice, that the adjoint of the bounded operator
I : L2(S(M)) → L2

µ (∂+S (M)) is given by

I∗w = wψ.

We also remark that by the fundamental theorem of calculus we have

IHf = (f ◦ α− f)|∂+S(M) = −A∗
−f

0, f0 = f |∂S(M). (2.2)

The space C∞
α (∂+S (M)) is defined by

C∞
α (∂+S (M)) = {w ∈ C∞ (∂+S (M)) : wψ ∈ C∞ (S (M))}.

In [156] the following characterization of the space of smooth solutions of the transport
equation was given

Lemma 2.4.

C∞
α (∂+S(M)) = {w ∈ C∞(∂+S(M)) : A+w ∈ C∞(∂S(M))}.

In the scalar case the following result holds on the solvability of I∗
0 [156].

Theorem 2.5. Let (M, g) be a simple, compact Riemannian manifold with boundary.
Then the operator I∗

0 : C∞
α (∂+S(M)) → C∞(M) is onto.

The analog result for vector fields was proven in [50].

Theorem 2.6. Let (M, g) be a simple, compact Riemannian manifold with boundary.
Then for any field v ∈ C∞

sol(M,T (M)) there exists a function w ∈ C∞
α (∂+S(M)) such that

v = I∗
1w.

Now we define the Hilbert transform in the ξ variable:

Hu(x, ξ) =
1

2π

∫

Sx

1 + (ξ, η)

(ξ⊥, η)
u(x, η)dSx(η), ξ ∈ Sx,

where the integral is understood as a principle value integral. Here ⊥ means a 90o degree
rotation. In coordinates (ξ⊥)i = εijξ

j, where

ε =
√

det g

(
0 1

−1 0

)
.

The Hilbert transform H transforms even (respectively odd) functions with respect to ξ
to even (respectively odd) ones. If H+ (respectively H−) is the even (respectively odd)
part of the operator H:

H+u(x, ξ) =
1

2π

∫

Sx

(ξ, η)

(ξ⊥, η)
u(x, η)dSx(η),

XI–32



Hu−(x, ξ) =
1

2π

∫

Sx

1

(ξ⊥, η)
u(x, η)dSx(η)

and u+, u− are the even and odd parts of the function u, then H+u = Hu+, H−u = Hu−.
We introduce the notation H⊥ = (ξ⊥,∇) = −(ξ,∇⊥), where ∇⊥ = ε∇ and ∇ is the

covariant derivative with respect to the metric g. The following commutator formula for
the geodesic vector field and the Hilbert transform, is a crucial ingredient in the proofs
of the main theorems surveyed in this paper (see [156]).

Theorem 2.7. Let (M, g) be a two dimensional Riemannian manifold. For any smooth
function u on S(M) we have the identity

[H,H]u = H⊥u0 + (H⊥u)0

where

u0(x) =
1

2π

∫

Sx

u(x, ξ)dSx

is the average value.

We define

P− = A∗
−H−A+, P+ = A∗

−H+A+.

If the manifold (M, g) is simple, the following factorizations hold:

Theorem 2.8.

P− = − 1

2π
Iδ⊥I

∗
1 , P+ = − 1

2π
I1∇⊥I

∗
0 . (2.3)

2.2.3. The scattering relation and the Dirichlet-to-Neumann Map

The DN map for the Laplace-Beltrami operator was defined in section 1.7. The connection
in two dimensions between the DN map and the scattering relation is given by

Theorem 2.9. Let (M, gi), i = 1, 2, be compact, simple two dimensional Riemannian
manifolds with boundary. Assume that αg1

= αg2
. Then Λg1

= Λg2
.

The proof of Theorem 2.2 is reduced then to the proof of Theorem 2.9. In fact from
Theorem 2.9 and Theorem 1.25 we obtain that we can determine the conformal class of
the metric up to an isometry which is the identity on the boundary. Now by Theorem
2.1 we have that the conformal factor must be one proving that the metrics are isometric
via a diffeomorphism which is the identity at the boundary. In other words dg1

= dg2

implies that αg1
= αg2

. By Theorem 2.9 Λg1
= Λg2

. By Theorem 1.25, there exists a
diffeomorphism ψ : M −→ M , ψ|∂M = Identity and a function β 6= 0, β|∂M = identity
such that g1 = βψ∗g2. By Mukhometov’s theorem β = 1 showing that g1 = ψ∗g2 proving
Theorem 2.2. Before starting the proof of Theorem 2.9 we recall that Michel [131] has
proven that for two dimensional Riemannian manifolds with strictly convex boundary one
can determine from the boundary distance function, up to the natural obstruction, all the
derivatives of the metric at the boundary. This result was generalized to any dimensions
in [122]. The proof of Theorem 2.9 consists in showing that from the scattering relation
we can determine the traces at the boundary of conjugate harmonic functions, which
is equivalent information to knowing the DN map associated to the Laplace-Beltrami
operator.
Sketch of the proof of Theorem 2.9 Let (h, h∗) be a pair of conjugate harmonic functions
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on M ,

∇h = ∇⊥h∗, ∇h∗ = −∇⊥h.

Notice, that δ∇ = △ is the Laplace-Beltrami operator and δ∇⊥ = 0. Let I∗
0w = h. Since

I1H⊥h = I1Hh∗ = −A∗
−h

0
∗, where h0

∗ = h∗|∂M , we obtain from the second identity (2.3)

2πA∗
−H+A+w = −A∗

−h
0
∗. (2.4)

The following theorem gives the key to obtain the DN map from the scattering relation.

Theorem 2.10. Let M be a 2-dimensional simple manifold. Let w ∈ C∞
α (∂+S(M)) and h∗

the harmonic continuation of function h0
∗. Then the equation (2.4) holds iff the functions

h = I∗
0w and h∗ are conjugate harmonic functions.

In summary we have the following procedure to obtain the DN map from the scattering
relation. For a given smooth function h0

∗ on ∂M we find a solution w ∈ C∞
α (∂+S(M)) of

the equation (2.4). Then the functions h0 = 2π(A+w)0 (notice, that 2π(A+w)0 = I∗
0w|∂M)

and h0
∗ are the traces of conjugate harmonic functions. It is easy to see that this gives the

DN map.

2.2.4. Range and inversion of the geodesic X-ray transform

Let T (M) be the tangent bundle of M. We denote by δ the divergence operator δ :
C∞(M,TM)) → C∞(M). In local coordinates this is given by δu = gkj∇kuj using Ein-
stein’s summation convention. We define the operator δ⊥ : C∞ (M,T (M)) → C∞ (M)
by

δ⊥u = −δu⊥.

Then

δ⊥∇⊥f = δ∇f = ∆f, δ⊥∇f = −δ∇⊥f = 0.

We now give the characterization of the range of I0 and I1 in terms of the scattering
relation only. We have that these are the projections of the operators P−, P+ respectively.
For the details see [158].

Theorem 2.11. Let (M, g) be simple two dimensional compact Riemannian manifold
with boundary. Then i) The maps

δ⊥I
∗
1 : C∞

α (∂+S (M)) → C∞ (M) ,

∇⊥I
∗
0 : C∞

α (∂+S (M)) → C∞
sol (M,T (M))

are onto. ii). A function u ∈ C∞ (∂+S (M)) belong to Range I0 iff u = P−w, w ∈
C∞
α (∂+S (M)) . iii). A function u ∈ C∞ (∂+S (M)) belong to Range I1 iff u = P+w, w ∈

C∞
α (∂+S (M)) .

Proposition 2.12. The operator W : C∞
0 (M) → C∞(M), defined by

Wf = (H⊥u
f )0

can be extended to a smoothing operator W : L2(M) → C∞(M).

We remark that in the case of constant Gaussian curvature W = 0 and this does
not depend on whether the metric has conjugate points so that the inversion formulas
of Theorem 2.13 hold for all two dimensional manifolds with boundary with constant
curvature. The inversion formulas are (see [158])
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Theorem 2.13. Let (M, g) be a two-dimensional simple manifold. Then we have

f +W 2f =
1

2π
δ⊥I

∗
1w, w =

1

2
α∗H(I0f)−|∂+S(M), f ∈ L2 (M) ,

h+ (W ∗)2 h =
1

2π
I∗

0w, w =
1

2
α∗H(I1H⊥h)+|∂+S(M), h ∈ H1

0 (M) ,

where W,W ∗ : L2 (M) → C∞ (M) . In the case of a manifold of constant curvature
W = 0, W ∗ = 0.

2.2.5. Remarks

The Hilbert transform for 2-dimensional Riemannian manifolds is the map that relates
the restrictions on the boundary of conjugate harmonic functions. In this sense the Hilbert
transform, up to a constant, is just the Dirichlet-to-Neumann (DN) map. In section 2.2 we
fixed a point x and started with the microlocal Hilbert transform on the circle Sx in the
tangent space with Euclidean metric and we ended with the global Hilbert transform (the
DN map). The scattering relation and the boundary distance function are determined by
the singularities of the DN map associated to the wave equation for the Laplace-Beltrami
operator, the so-called hyperbolic (or dynamic) Dirichlet-to-Neumann map [204]. We have
found, in two dimensions, a connection between the scattering relation and the elliptic

Dirichlet-to-Neumann map which led to a solution of the boundary rigidity problem in
two dimensions. Is there a similar connection in higher dimensions?

2.3. Boundary Rigidity and Tensor Tomography in Dimensions
n ≥ 3

In [179], it was proven a local result for metrics in a small neighborhood of the Euclidean
one. This result was used in [122] to prove a semiglobal solvability result assuming that
one metric is close to the Euclidean and the other has bounded curvature. As it was
mentioned earlier it is known [168], that a linearization of the boundary rigidity problem
near a simple metric g is given by the following integral geometry problem: recover a
symmetric tensor of order 2, which in any coordinates is given by f = (fij), by the
geodesic X-ray transform

Igf(γ) =
∫
fij(γ(t))γ̇i(t)γ̇j(t) dt

known for all geodesics γ in M . In this section we denote by Ig the geodesic X-ray
transform of tensors of order two. It can be easily seen that Igdv = 0 for any vector field
v with v|∂M = 0, where dv denotes the symmetric differential

[dv]ij =
1

2
(∇ivj + ∇jvi) , (2.5)

and ∇kv denote the covariant derivatives of the vector field v. This is the linear version
of the fact that dg does not change on (∂M)2 := ∂M × ∂M under an action of a diffeo-
morphism as above. The natural formulation of the linearized problem is therefore that
Igf = 0 implies f = dv with v vanishing on the boundary. We will refer to this property
as s-injectivity of Ig. More precisely, we have.

Definition 2.14. We say that Ig is s-injective in M , if Igf = 0 and f ∈ L2(M) imply
f = dv with some vector field v ∈ H1

0 (M).
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Any symmetric tensor f ∈ L2(M) admits an orthogonal decomposition f = f s+dv into
a solenoidal and potential parts with v ∈ H1

0 (M), and f s divergence free, i.e., δf s = 0,
where δ is the adjoint operator to −d given by [δf ]i = gjk∇kfij [168]. Therefore, Ig is
s-injective, if it is injective on the space of solenoidal tensors. The inversion of Ig is a
problem of independent interest in integral geometry, also called tensor tomography. We
first survey the recent results on this problem. S-injectivity, respectively injectivity for
1-tensors (1-forms) and functions is known, see [168] for references. S-injectivity of Ig
was proved in [155] for metrics with negative curvature, in [168] for metrics with small
curvature and in [171] for Riemannian surfaces with no focal points. A conditional and
non-sharp stability estimate for metrics with small curvature is also established in [168].
In [180], stability estimates for s-injective metrics (see (2.9) below) were shown and sharp
estimates about the recovery of a 1-form f = fjdx

j and a function f from the associated
Igf which is defined by

Igf(γ) =
∫
fi(γ(t))γ̇i(t)) dt.

The stability estimates proven in [180] were used to prove local uniqueness for the boun-
dary rigidity problem near any simple metric g with s-injective Ig. Similarly to [198], we
say that f is analytic in the set K (not necessarily open), if it is real analytic in some
neighborhood of K. The results that follow in this section are based on [182]. The first
main result we discuss is about s-injectivity for simple analytic metrics.

Theorem 2.15. Let g be a simple, real analytic metric in M . Then Ig is s-injective.

Sketch of the proof. Note that a simple metric g in M can be extended to a simple metric
in some M1 with M ⋐ M1. A simple manifold is diffeomorphic to a (strictly convex)
domain Ω ⊂ R

n with the Euclidean coordinates x in a neighborhood of Ω and a metric
g(x) there. For this reason, it is enough to prove the results of this section for domains
Ω in R

n provided with a Riemannian metric g. The proof of Theorem 2.15 is based on
the following. For smooth metrics, the normal operator Ng = I∗

g Ig is a pseudodifferential
operator with a non-trivial null space which is given by

(Ngf)kl(x) =
2√

det g

∫ f ij(y)

dg(x, y)n−1

∂dg
∂yi

dg
∂yj

∂dg
∂xk

∂dg
∂xl

det
∂2(d2

g/2)

∂x∂y
dy, x ∈ Ω. (2.6)

In the case that the metric g is real-analytic, Ng is an analytic pseudodifferential oper-
ator with a non-trivial kernel. We construct an analytic parametrix, using the analytic
pseudodifferential calculus in [198], that allows us to reconstruct the solenoidal part of
a tensor field from its geodesic X-ray transform, up to a term that is analytic near Ω.
If Igf = 0, we show that for some v vanishing on ∂Ω, f̃ := f − dv must be flat at ∂Ω

and analytic in Ω̄, hence f̃ = 0. This is similar to the known argument that an analytic
elliptic pseudodifferential operator resolves the analytic singularities, hence cannot have
compactly supported functions in its kernel. In our case we have a non-trivial kernel, and
complications due to the presence of a boundary, in particular a lost of one derivative.
For more details see [182]. �

As shown in [180], the s-injectivity of Ig for analytic simple g implies a stability estimate
for Ig. In next theorem we show something more, namely that we have a stability estimate
for g in a neighborhood of each analytic metric, which leads to stability estimates for
generic metrics. As above, let M1 ⋑ M be a compact manifold which is a neighborhood
of M and g extends as a simple metric there. We always assume that our tensors are
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extended as zero outside M , which may create jumps at ∂M . Define the normal operator
Ng = I∗

g Ig, where I∗
g denotes the operator adjoint to Ig with respect to an appropriate

measure. We showed in [180] that Ng is a pseudo-differential operator in M1 of order −1.
We introduce the norm ‖·‖

H̃2(M1)
of Ngf in M1 ⊃ M in the following way. Choose χ ∈ C∞

0

equal to 1 near ∂M and supported in a small neighborhood of ∂M and let χ =
∑J
j=1 χj

be a partition of χ such that for each j, on suppχj we have coordinates (x′
j, x

n
j ), with xnj

a normal coordinate. Set

‖f‖2
H̃1

=
∫ J∑

j=1

χj

(
n−1∑

i=1

|∂xi
j
f |2 + |xnj ∂xn

j
f |2 + |f |2

)
dx, (2.7)

‖Ngf‖
H̃2(M1)

=
n∑

i=1

‖∂xiNgf‖
H̃1 + ‖Ngf‖H1(M1). (2.8)

In other words, in addition to derivatives up to order 1, ‖Ngf‖
H̃2(M1)

includes also second

derivatives near ∂M but they are realized as first derivatives of ∇Ngf tangent to ∂M . The

reason to use the H̃2(M1) norm, instead of the stronger H2(M1) norm, is that this allows
us to work with f ∈ H1(M), not only with f ∈ H1

0 (M), since for such f , extended as 0

outside M , we still have that Ngf ∈ H̃2(M1), see [180]. On the other hand, f ∈ H1(M)

implies Ngf ∈ H̃2(M1) despite the possible jump of f at ∂M . Our stability estimate for
the linearized inverse problem is as follows:

Theorem 2.16. There exists k0 such that for each k ≥ k0, the set Gk(M) of simple
Ck(M) metrics in M for which Ig is s-injective is open and dense in the Ck(M) topology.
Moreover, for any g ∈ Gk(M),

‖f s‖L2(M) ≤ C‖Ngf‖
H̃2(M1)

, ∀f ∈ H1(M), (2.9)

with a constant C > 0 that can be chosen locally uniform in Gk(M) in the Ck(M) topology.

Of course, Gk(M) includes all real analytic simple metrics in M , according to Theo-
rem 2.15.

Sketch of the proof. The proof of the basic estimate (2.9) is based on the following ideas.
For g of finite smoothness, one can still construct a parametrix Qg of Ng as above that
allows us to reconstruct f s from Ngf up to smoothing operator terms. This is done in a
way similar to that in [180] in two steps: first we invert Ng modulo smoothing operators
in a neighborhood M1 of M , and that gives us f sM1

, i.e., the solenoidal projection of f
but associated to the manifold M1. Next, we compare f sM1

and f s and show that one can
get the latter from the former by an operator that loses one derivative. This is the same
construction as in the proof of Theorem 2.15 above but the metric is only Ck, k ≫ 1.
After applying the parametrix Qg, the equation for recovering f s from Ngf is reduced to
solving the Fredholm equation

(Sg +Kg)f = QgNgf, f ∈ SgL2(M) (2.10)

where Sg is the projection to solenoidal tensors, similarly we denote by Pg the projection
onto potential tensors. Here, Kg is a compact operator on SgL2(M). We can write this as
an equation in the whole L2(M) by adding Pgf to both sides above to get

(I +Kg)f = (QgNg + Pg)f. (2.11)

Then the solenoidal projection of the solution of (2.11) solves (2.10). A finite rank mod-
ification of Kg above can guarantee that I + Kg has a trivial kernel, and therefore is
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invertible, if and only if Ng is s-injective. The problem then reduces to that of invertibil-
ity of I + Kg. The operators above depend continuously on g ∈ Ck, k ≫ 1. Since for
g analytic, I + Kg is invertible by Theorem 2.15, it would still be invertible in a neigh-
borhood of any analytic g, and estimate (2.9) is true with a locally uniform constant.
Analytic (simple) metrics are dense in the set of all simple metrics, and this completes
the sketch of the proof of Theorem 2.16. For more details see [182]. �

The analysis of Ig can also be carried out for symmetric tensors of any order, see e.g.,
[168] and [170]. Since we are motivated by the boundary rigidity problem, and to simplify
the exposition, we study only tensors of order 2. Theorem 2.16 and especially estimate
(2.9) allow us to prove the following local generic uniqueness result for the non-linear
boundary rigidity problem.

Theorem 2.17. Let k0 and Gk(M) be as in Theorem 2.16. There exists k ≥ k0, such that
for any g0 ∈ Gk, there is ε > 0, such that for any two metrics g1, g2 with ‖gm−g0‖Ck(M) ≤
ε, m = 1, 2, we have the following:

dg1
= dg2

on (∂M)2 implies g2 = ψ∗g1 (2.12)

with some Ck+1(M)-diffeomorphism ψ : M → M fixing the boundary.

Sketch of the proof. We prove Theorem 2.17 by linearizing and using Theorem 2.16, and
especially (2.9), see also [180]. This requires first to pass to special semigeodesic coordi-
nates related to each metric in which gin = δin, ∀i. We denote the corresponding pull-backs
by g1, g2 again. Then we show that if g1 and g2 have the same distance on the boundary,
then g1 = g2 on the boundary with all derivatives. As a result, for f := g1 − g2 we get
that f ∈ C l

0(Ω̄) with l ≫ 1, if k ≫ 1; and fin = 0, ∀i. Then we linearize to get

‖Ng1
f‖L∞(Ω1) ≤ C‖f‖2

C1 ,

where Ω1 ⊃ Ω̄ is as above. Combine this with (2.9) and interpolation estimates, to get
∀µ < 1,

‖f s‖L2 ≤ C‖f‖1+µ
L2 .

One can show that tensors satisfying fin = 0 also satisfy ‖f‖L2 ≤ C‖f s‖H2 , and using
this, and interpolation again, we get

‖f‖L2 ≤ C‖f‖1+µ′

L2 , µ′ > 0.

This implies f = 0 for ‖f‖ ≪ 1. Note that the condition f ∈ C l
0(Ω̄) is used to make sure

that f , extended as zero in Ω1 \ Ω, is in H l
0(Ω), and then use this fact in the interpolation

estimates. Again, for more details see [182]. �

Finally, in [182] it is proven a conditional stability estimate of Hölder type. A similar
estimate near the Euclidean metric was proven in [211] based on the approach in [179].

Theorem 2.18. Let k0 and Gk(M) be as in Theorem 2.16. Then for any µ < 1, there
exits k ≥ k0 such that for any g0 ∈ Gk, there is an ε0 > 0 and C > 0 with the property that
that for any two metrics g1, g2 with ‖gm − g0‖C(M) ≤ ε0, and ‖gm‖Ck(M) ≤ A, m = 1, 2,
with some A > 0, we have the following stability estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖dg1
− dg2

‖µC(∂M×∂M)

with some diffeomorphism ψ : M → M fixing the boundary.
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Sketch of the proof. To prove Theorem 2.18, we basically follow the uniqueness proof
sketched above by showing that each step is stable. The analysis is more delicate near
pairs of points too close to each other. An important ingredient of the proof is stability
at the boundary, that is also of independent interest:

Theorem 2.19. Let g0 and g1 be two simple metrics in Ω, and Γ ⊂⊂ Γ′ ⊂ ∂Ω be two
sufficiently small open subsets of the boundary. Then for some diffeomorphism ψ fixing
the boundary,

∥∥∥∂kxn(ψ∗g1 − g0)
∥∥∥
Cm(Γ̄)

≤ Ck,m
∥∥∥d2

g1
− d2

g0

∥∥∥
Cm+2k+2

(
Γ′×Γ′

),

where Ck,m depends only on Ω and on a upper bound of g0, g1 in Cm+2k+5(Ω̄).

Theorem 2.18 can be used to obtain stability near generic simple metrics for the inverse
problem of recovering g from the hyperbolic Dirichlet-to-Neumann map Λh

g . It is known
that g can be recovered uniquely from Λg, up to a diffeomorphism as above, see e.g. [24].
This result however relies on a unique continuation theorem by Tataru [197] and it is
unlikely to provide Hölder type of stability estimate as above. By using the fact that dg
is related to the leading singularities in the kernel of Λh

g , it was proven a Hölder stability
estimate under the assumptions above, relating g and Λg. We refer to [181] for details. �

2.4. Lens Rigidity

For non-simple manifolds in particular, if we have conjugate points or the boundary is
not strictly convex, we need to look at the behavior of all the geodesics and the scattering
relation encodes this information. We proceed to define in more detail the scattering
relation for non-convex manifolds and the lens rigidity problem and state our results. We
note that we will also consider the case of incomplete data, that is when we don’t have
information about all the geodesics entering the manifold. More details can be found in
[183], [184].

The scattering relation
Σ : ∂−SM → ∂+SM (2.13)

is defined by Σ(x, ξ) = (y, η) = Φℓ(x, ξ), where Φt is the geodesic flow, and ℓ > 0
is the first moment, at which the unit speed geodesic through (x, ξ) hits ∂M again. If
such an ℓ does not exists, we formally set ℓ = ∞ and we call the corresponding initial
condition and the corresponding geodesic trapping. This defines also ℓ(x, ξ) as a function
ℓ : ∂−SM → [0,∞]. Note that Σ and ℓ are not necessarily continuous. This coincides with
the scattering relation α defined in section 2.2 for strictly convex manifolds.

It is convenient to think of Σ and ℓ as defined on the whole ∂SM with Σ = Id and ℓ = 0
on ∂+SM . We parametrize the scattering relation in a way that makes it independent of
pulling it back by diffeomorphisms fixing ∂M pointwise. Let κ± : ∂±SM → B(∂M) be the
orthogonal projection onto the (open) unit ball tangent bundle that extends continuously
to the closure of ∂±SM . Then κ± are homeomorphisms, and we set

σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M). (2.14)

According to our convention, σ = Id on ∂(B(∂M)) = S(∂M). We equip B(∂M) with
the relative topology induced by T (∂M), where neighborhoods of boundary points (those
in S(∂M)) are given by half-neighborhoods, i.e., by neighborhoods in T (∂M) intersected
with B(∂M). It is possible to define σ in a way that does not require knowledge of
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g|T (∂M) by thinking of any boundary vector ξ as characterized by its angle with ∂M and

the direction of its tangential projection. Let D be an open subset of B(∂M). A priori,
the latter depends on g|T (∂M). By the remark above, we can think of it as independent of
g|T (∂M) however. The lens rigidity problem we study is the following: Given M and D, do

σ and ℓ, restricted to D, determine g uniquely, up to a pull back of a diffeomorphism that
is identity on ∂M? The answer to this question, even when D = B(∂M), is negative, see

[49]. The known counter-examples are trapping manifolds. The boundary rigidity problem
and the lens rigidity one are equivalent for simple metrics.

2.5. Main assumptions

Definition 2.20. We say that D is complete for the metric g, if for any (z, ζ) ∈ T ∗M
there exists a maximal in M , finite length unit speed geodesic γ : [0, l] → M through z,
normal to ζ, such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D, (2.15)

there are no conjugate points on γ. (2.16)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point.
Topological Condition (T): Any path in M connecting two boundary points is homo-
topic to a polygon c1 ∪γ1 ∪ c2 ∪γ2 ∪· · ·∪γk ∪ ck+1 with the properties that for any j, (i) cj
is a path on ∂M ; (ii) γj : [0, lj] → M is a geodesic lying in M int with the exception of its
endpoints and is transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D; Notice

that (T) is an open condition w.r.t. g, i.e., it is preserved under small C2 perturbations
of g. To define the CK(M) norm below in a unique way, we choose and fix a finite atlas
on M .

2.5.1. Results about the linear problem

We refer to [183] for more details about the results in this section. It turns out that a
linearization of the lens rigidity problem is again the problem of s-injectivity of the ray
transform I. Here and below we sometimes drop the subscript g. Given D as above, we
denote by ID (or Ig,D) the ray transform I restricted to the maximal geodesics issued from
(x, ξ) ∈ κ−1

− (D). The first result of this section generalizes Theorem 2.15.

Theorem 2.21. Let g be an analytic, regular metric on M . Let D be complete and open.
Then ID is s-injective.

Sketch of the proof. Since we know integrals over a subset of geodesics only, this creates
difficulties with cut-offs in the phase variable that cannot be analytic. For this reason,
the proof of Theorem 2.21 is different from that of Theorem 2.15. Let g be an analytic
regular metrics in M , and let M1 ⋑M be the manifold where g is extended analytically.
There is an analytic atlas in M , and ∂M can be assumed to be analytic, too. In other
words, now (M,∂M, g) is a real analytic manifold with boundary. We denote by A(M)
(respectively A(M1)) the set of analytic functions on M (respectively M1). Next, f sM1

denotes the solenoidal part of the tensor f , extended as zero to M1, in the manifold M1.
The main step is to show that IDf = 0 implies f s ∈ A(M). In order to do that one shows
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that f sM1
∈ A(M1). Let us first notice, that in M1 \M , f sM1

= −dvM1
, where vM1

satisfies
δdvM1

= 0 in M1 \M , v|∂M1
= 0 since f = 0 in M1 \M . Therefore, vM1

is analytic up to
∂M1. Therefore, we only need to show that f sM1

is analytic in the interior of M1. Below,
WFA(f) stands for the analytic wave front set of f , see [174, 198]. The crucial point is
the following microlocal analytic regularity result.

Proposition 2.22. Let γ0 be a fixed maximal geodesic in M with endpoints on ∂M ,
without conjugate points, and let Igf(γ) = 0 for γ ∈ neigh(γ0). Let g be analytic in
neigh(γ0). Then

N∗γ0 ∩ WFA(f sM1
) = ∅. (2.17)

Sketch of the proof. Set f = f sM1
. Let Uε be a tubular neighborhood of γ0, and x = (x′, xn)

be semigeodesic coordinates in it such that x′ = 0 on γ0. Fix x0 ∈ γ0 ∩M . We can assume
that x0 = 0 and gij(0) = δij. Then we can assume that Uε = {−l1 −ε < xn < l2 +ε, |x′| <
ε} with the part of γ0 corresponding to xn 6∈ [−l1, l2] outside M . Fix ξ0 = ((ξ0)′, 0) with
ξ0
n = 0. We will show that

(0, ξ0) 6∈ WFA(f). (2.18)

We choose a local chart for the geodesics close to γ0. Set first Z = {xn = 0; |x′| < 7ε/8},
and denote the x′ variable on Z by z′. Then z′, θ′ (with |θ′| ≪ 1) are local coordinates
in neigh(γ0) determined by (z′, θ′) → γ(z′,0),(θ′,1) where the latter denotes the geodesic
through the point (z′, 0) in the direction (θ′, 1). Let χN(z′) be a smooth cut-off function
equal to 1 for |z′| ≤ 3ε/4 and supported in Z, also satisfying |∂αχN | ≤ (CN)|α|, |α| ≤ N .
Set θ = (θ′, 1), |θ′| ≪ 1, and multiply

If
(
γ(z′,0),θ

)
= 0

by χN(z′)eiλz′·ξ′
, where λ > 0, ξ′ is in a complex neighborhood of (ξ0)′, and integrate w.r.t.

z′ to get ∫∫
eiλz′·ξ′

χN(z′)fij
(
γ(z′,0),θ(t)

)
γ̇i(z′,0),θ(t)γ̇

j
(z′,0),θ(t) dt dz′ = 0. (2.19)

Set x = γ(z′,0),θ(t). If θ′ = 0, we have x = (z′, t). By a perturbation argument, for θ′ fixed
and small enough, (t, z′) are analytic local coordinates, depending analytically on θ′. In
particular, x = (z′ + tθ′, t) + O(|θ′|) but this expansion is not enough for the analysis
below. Performing a change of variables in (2.19), we get

∫
eiλz′(x,θ′)·ξ′

aN(x, θ′)fij(x)bi(x, θ′)bj(x, θ′) dx = 0 (2.20)

for |θ′| ≪ 1, ∀λ, ∀ξ′, where, for |θ′| ≪ 1, the function (x, θ′) 7→ aN is positive for x in
a neighborhood of γ0, vanishing for x 6∈ Uε, and satisfies the same estimate as χN . The
vector field b is analytic, and b(0, θ′) = θ, aN(0, θ′) = 1. To clarify the approach, note that
if g is Euclidean in neigh(γ0), then (2.20) reduces to

∫
eiλ(ξ′,−θ′·ξ′)·xχfij(x)θiθj dx = 0,

where χ = χ(x′ −xnθ′). Then ξ = (ξ′,−θ′ · ξ′) is perpendicular to θ = (θ′, 1). This implies
that ∫

eiλξ·xχfij(x)θi(ξ)θj(ξ) dx = 0 (2.21)

for any function θ(ξ) defined near ξ0, such that θ(ξ) · ξ = 0. This has been noticed
and used before if g is close to the Euclidean metric (with χ = 1), see e.g., [179]. We
will assume that θ(ξ) is analytic. A simple argument (see e.g. [168, 179]) shows that a
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constant symmetric tensor fij is uniquely determined by the numbers fijθ
iθj for finitely

many θ’s (actually, for N ′ = (n + 1)n/2 θ’s); and in any open set on the unit sphere,
there are such θ’s. On the other hand, f is solenoidal. To simplify the argument, assume
for a moment that f vanishes on ∂M . Then ξif̂ij(ξ) = 0. Therefore, combining this with
(2.21), we need to choose N = n(n − 1)/2 vectors θ(ξ), perpendicular to ξ, that would

uniquely determine the tensor f̂ on the plane perpendicular to ξ. To this end, it is enough
to know that this choice can be made for ξ = ξ0, then it would be true for ξ ∈ neigh(ξ0).

This way, ξif̂ij(ξ) = 0 and the N equations (2.21) with the so chosen θp(ξ), p = 1, . . . , N ,
form a system with a tensor-valued symbol elliptic near ξ = ξ0. The C∞ ΨDO calculus
easily implies the statement of the lemma in the C∞ category, and the complex stationary
phase method below, or the analytic ΨDO calculus in [198] with appropriate cut-offs in ξ,
implies the lemma in this special case (g locally Euclidean). The general case is considered
in [183], and is based on an application of a complex stationary phase argument [174] to
(2.20) as in [108]. �

Proposition 2.22 makes it possible to prove that f s ∈ A(M). We combine this with a
boundary determination theorem for tensors, a linear version of Theorem 2.28 below, to
conclude that then f = 0. �

Next, we formulate a stability estimate in the spirit of Theorem 2.16. We need first to
parametrize (a complete subset of) the geodesics issued from D in a different way that
would make them a manifold. The parametrization provided by D is inconvenient near the
directions tangent to ∂M . Let Hm be a finite collection of smooth hypersurfaces in M int

1 .
Let Hm be an open subset of {(z, θ) ∈ SM1; z ∈ Hm, θ 6∈ TzHm}, and let ±l±m(z, θ) ≥ 0
be two continuous functions. Let Γ(Hm) be the set of geodesics

Γ(Hm) =
{
γz,θ(t); l

−
m(z, θ) ≤ t ≤ l+m(z, θ), (z, θ) ∈ Hm

}
, (2.22)

that, depending on the context, is considered either as a family of curves, or as a point
set. We also assume that each γ ∈ Γ(Hm) is a simple geodesic (no conjugate points).
If g is simple, then one can take a single H = ∂M1 with l− = 0 and an appropriate
l+(z, θ). If g is regular only, and Γ is any complete set of geodesics, then any small enough
neighborhood of a simple geodesic in Γ has the properties listed in the paragraph above
and by a compactness argument one can choose a finite complete set of such Γ(Hm)’s,
that is included in the original Γ. Given H = {Hm} as above, we consider an open set
H′ = {H′

m}, such that H′
m ⋐ Hm, and let Γ(H′

m) be the associated set of geodesics
defined as in (2.22), with the same l±m. Set Γ(H) = ∪Γ(Hm), Γ(H′) = ∪Γ(H′

m). The
restriction γ ∈ Γ(H′

m) ⊂ Γ(Hm) can be modeled by introducing a weight function αm in
Hm, such that αm = 1 on H′

m, and αm = 0 otherwise. More generally, we allow αm to be
smooth but still supported in Hm. We then write α = {αm}, and we say that α ∈ Ck(H),
if αm ∈ Ck(Hm), ∀m. We consider Iαm

= αmI, or more precisely, in the coordinates
(z, θ) ∈ Hm,

Iαm
f = αm(z, θ)

∫ lm(z,θ)

0

〈
f(γz,θ), γ̇

2
z,θ

〉
dt, (z, θ) ∈ Hm. (2.23)

Next, we set

Iα = {Iαm
}, Nαm

= I∗
αm
Iαm

= I∗|αm|2I, Nα =
∑

Nαm
, (2.24)

where the adjoint is taken w.r.t. the measure dµ := |〈ν(z), θ〉| dSz dθ on Hm, dSz dθ being
the induced measure on SM , and ν(z) being a unit normal to Hm. S-injectivity of Nα is
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equivalent to s-injectivity for Iα, which in turn is equivalent to s-injectivity of I restricted
to suppα.

Theorem 2.23. (a) Let g = g0 ∈ Ck, k ≫ 1 be regular, and let H′ ⋐ H be as above with
Γ(H′) complete. Fix α = {αm} ∈ C∞ with H′

m ⊂ suppαm ⊂ Hm. Then if Iα is s-injective,
we have

‖f s‖L2(M) ≤ C‖Nαf‖
H̃2(M1)

. (2.25)

(b) Assume that α = αg in (a) depends on g ∈ Ck, so that Ck(M1) ∋ g → C l(H) ∋ αg
is continuous with l ≫ 1, k ≫ 1. Assume that Ig0,αg0

is s-injective. Then estimate (2.25)
remains true for g in a small enough neighborhood of g0 in Ck(M1) with a uniform constant
C > 0.

The theorem above allows us to formulate a generic result:

Theorem 2.24. Let G ⊂ Ck(M) be an open set of regular Riemannian metrics on M such
that (T) is satisfied for each one of them. Let the set D′ ⊂ ∂SM be open and complete
for each g ∈ G. Then there exists an open and dense subset Gs of G such that Ig,D′ is
s-injective for any g ∈ Gs.

Of course, the set Gs includes all real analytic metrics in G.

Corollary 2.25. Let R(M) be the set of all regular Ck metrics on M satisfying (T)
equipped with the Ck(M1) topology. Then for k ≫ 1, the subset of metrics for which the
X-ray transform I over all simple geodesics through all points in M is s-injective, is open
and dense in R(M).

2.6. Results about the non-linear lens rigidity problem

Using the results above, we prove the following about the lens rigidity problem on mani-
folds satisfying the assumptions in Section 2.5. More details can be found in [184]. The-
orem 2.26 below says, loosely speaking, that for the classes of manifolds and metrics we
study, the uniqueness question for the non-linear lens rigidity problem can be answered
locally by linearization. This is a non-trivial implicit function type of theorem however
because our success heavily depends on the a priori stability estimate that the s-injectivity
of ID implies; see Theorem 2.23; and the latter is based on the hypoelliptic properties of
ID. We work with two metrics g and ĝ; and will denote objects related to ĝ by σ̂, ℓ̂, etc.

Theorem 2.26. Let (M, g0) satisfy the topological assumption (T), with g0 ∈ Ck(M) a
regular Riemannian metric with k ≫ 1. Let D be open and complete for g0, and assume
that there exists D′ ⋐ D so that Ig0,D′ is s-injective. Then there exists ε > 0, such that for
any two metrics g, ĝ satisfying

‖g − g0‖Ck(M) + ‖ĝ − g0‖Ck(M) ≤ ε, (2.26)

the relations
σ = σ̂, ℓ = ℓ̂ on D

imply that there is a Ck+1 diffeomorphism ψ : M → M fixing the boundary such that

ĝ = ψ∗g.

By Theorem 2.24, the requirement that Ig0,D′ is s-injective is a generic one for g0.
Therefore, Theorems 2.26 and 2.24 combined imply that there is local uniqueness, up to
isometry, near a generic set of regular metrics.
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Corollary 2.27. Let D′ ⋐ D, G, Gs be as in Theorem 2.24. Then the conclusion of
Theorem 2.26 holds for any g0 ∈ Gs.

2.6.1. Boundary determination of the jet of g

The first step of the proof of Theorem 2.26 is to determine all derivatives of g on ∂M .
The following theorem is interesting by itself. Notice that g below does not need to be
analytic or generic.

Theorem 2.28. Let (M, g) be a compact Riemannian manifold with boundary. Let (x0, ξ0) ∈
S(∂M) be such that the maximal geodesic γx0,ξ0

through it is of finite length, and assume
that x0 is not conjugate to any point in γx0,ξ0

∩ ∂M . If σ and ℓ are known on some neigh-
borhood of (x0, ξ0), then the jet of g at x0 in boundary normal coordinates is determined
uniquely.

Sketch of the proof of Theorem 2.28. To make the arguments below more transparent, as-
sume that the geodesic γ0 issued from (x0, ξ0) hits ∂M for the first time transversally at
γ0(l0) = y0, l0 > 0. Then y0 is the only point on ∂M reachable from (x0, ξ0), and x0, y0

are not conjugate points on γ0 by assumption. Assume also that γ0 is tangent of finite
order at x0. Then there is a half neighborhood V of x0 on ∂M visible from y0. The latter
is not always true if γ0 is tangent to ∂M of infinite order at x0. Choose local boundary
normal coordinates near x0 and y0, and let g0 be the Euclidean metric in each of them
w.r.t. to the so chosen coordinates. We can then consider a representation of Σ, denoted
by Σ♯ below, defined locally on Rn−1 × Sn−1, with values on another copy of the same
space. If (x, θ) ∈ Rn−1 × Sn−1, then the associated vector at x ∈ ∂M is ξ = θ/|θ|g;
and Σ♯(x, θ) = Σ(x, ξ). The same applies to the second component of Σ♯(x, θ). Namely,
if (y, η) = Σ(x, ξ), then we set ω = η/|η|g0

, then Σ♯ : (x, θ) 7→ (y, ω). Similarly, we
set ℓ♯(x, θ) = ℓ(x, ξ). Let also θ0 and ω0 correspond to ξ0 and η0, respectively, where
Σ(x0, ξ0) = (y0, η0). Set τ(x) := τ(x, y0), where τ is the smooth travel time function local-
ized near x = x0 such that τ(x0, y0) = l0. Then τ is well defined in a small neighborhood of
x0 by the implicit function theorem and the assumption that x0 and y0 are not conjugate
on γ0. In the normal boundary coordinates x = (x′, xn) near x0, gin = δin, ∀i. Since x0

and y0 are not conjugate, for η ∈ Sy0
M close enough to η0, the map η 7→ x ∈ ∂M is a

local diffeomorphism as long as the geodesic connecting x and y0 is not tangent to ∂M at
x. Moreover, that map is known, being the inverse of Σ. Similarly, the map Sn−1 ∋ ω 7→ x
is a local diffeomorphism and is also known. Then we know (x,−θ) = Σ♯(y0,−ω), and
we know ℓ♯(y0,−ω) = ℓ♯(x, θ) = τ(x). Then we can recover grad′ τ = −θ′/|θ|g, where
the prime stands for tangential projection as usual. Taking the limit ω → ω0, we recover
|θ0|2g = gαβθ

α
0 θ

β
0 . We use again the fact that a symmetric n×n tensor fij can be recovered

by knowledge of fijp
i
kp
j
k for N = n(n + 1)/2 “generic” vectors pk, k = 1, . . . , N ; and

such N vectors exist in any open set on Sn−1, see e.g. [184]. Thus choosing appropriate
n(n− 1)/2 perturbations of θ0’s, we recover g(x0). Thus, we recover g in a neighborhood
of x0 as well; we can assume that V covers that neighborhood. Note that we know all
tangential derivatives of g in V ∋ x0. Then τ solves the eikonal equation

gαβτxατxβ + τ 2
xn = 1. (2.27)

Next, in V , we know τxα , α ≤ n− 1, we know g, therefore by (2.27), we get τ 2
xn . It is easy

to see that τxn ≤ 0 on the visible part, so we recover τxn there. We therefore know the
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tangential derivatives of τxn on ∂M near x0. Differentiate (2.27) w.r.t. xn at x = x0 to get
[
dgαβ

dxn
τxατxβ + 2gαβτxαxnτxβ + 2τxnxnτxn

] ∣∣∣∣∣
x=x0

= 0. (2.28)

Since γ0 is tangent to ∂M at x0, we have τxn(x0) = 0 by (2.27). The third term in the l.h.s.
of (2.28) therefore vanishes. Therefore the only unknown term in (2.28) is γαβ := dgαβ/dxn

at x = x0. Since τxα(x0) = −ξ0, using the fact that grad τ(x0) = −ξ0 again, we get

that we have to determine γαβ from γαβξ
α
0 ξ

β
0 . This is possible if as above, we repeat the

construction and replace ξ0 by a finite number of vectors, close enough to ξ0. So we get
an explicit formula for ∂g/∂xi|∂M in fact. Next, for x ∈ V but not on ∂V , we can recover
τxnxn(x) by (2.28) because τxn(x) < 0. By continuity, we recover τxnxn(x0), therefore
we know τxnxn near x0, and all tangential derivatives of the latter. We differentiate (2.28)
w.r.t. xn again, and as above, recover d2g/d(xn)2|∂M near x0. Then we recover d3τ/d(xn)3,
etc. In the general case, we repeat those arguments with ξ0 replaced by ξ0 + εν, where ν
is the interior unit normal, and take the limit ε → 0. �

Sketch of the proof of Theorem 2.26. We first find suitable metric ĝ1 isometric to ĝ, and
then we show that ĝ1 = g. First, we can always assume that g and ĝ have the same
boundary normal coordinates near ∂M . By [48], there is a metric h isometric to ĝ so
that h is solenoidal w.r.t. g. Moreover, h = ĝ + O(ε). By a standard argument, by a
diffeomorphism that identifies normal coordinates near ∂M for h and g, and is identity
away from some neighborhood of the boundary, we find a third ĝ1 isometric to h (and
therefore to ĝ), so that ĝ1 = ĝ near ∂M , and ĝ1 = h away from some neighborhood of ∂M
(and there is a region that ĝ1 is neither). Then ĝ1 − h is as small as g− h, more precisely,

‖ĝ1 − h‖Ck−3 ≤ C‖g − h‖Ck−1 , k ≫ 1. (2.29)

Set
f = h− g, f̃ = ĝ1 − g. (2.30)

Estimate (2.29) implies

‖f̃ − f‖Cl−3 ≤ C‖f‖Cl−1 , ∀l ≤ k. (2.31)

By (2.26), (2.31),

‖f‖Ck−1 ≤ Cε, ‖f̃‖Ck−3 ≤ Cε. (2.32)

By Theorem 2.28,

∂αf̃ = 0 on ∂M for |α| ≤ k − 5. (2.33)

It is known [168] that 2dv is the linearization of ψ∗
τg at τ = 0, where ψτ is a smooth family

of diffeomorphisms, and v = dψτ/dτ at τ = 0. Next proposition is therefore a version of
Taylor’s expansion:

Proposition 2.29. Let ĝ and g be in Ck, k ≥ 2 and isometric, i.e.,

ĝ = ψ∗g

for some diffeomorphism ψ fixing ∂M . Set f = ĝ − g. Then there exists v vanishing on
∂M , so that

f = 2dv + f2,

and for g belonging to any bounded set U in Ck, there exists C(U) > 0, such that

‖f2‖Ck−2 ≤ C(U)‖ψ − Id‖2
Ck−1 , ‖v‖Ck−1 ≤ C(U)‖ψ − Id‖Ck−1 .
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We will sketch now the rest of the proof of Theorem 2.26. We apply Proposition 2.29
to h and ĝ1 to get

f̃ = f + 2dv + f2, ‖f2‖Cl−3 ≤ C‖f‖2
Cl−1 , ∀l ≤ k. (2.34)

In other words, f̃ s = f up to O(‖f‖2). We can assume that g is extended smoothly on
M1 ⋑ M . Next, with g extended as above, we extend ĝ1 so that ĝ1 = g outside M . This
can be done in a smooth way by Theorem 2.28. The next step is to reparametrize the
scattering relation. We show that one can extend the maximal geodesics of g, respectively
ĝ1, outside M (where g = ĝ1), and since the two metrics have the same scattering relation
and travel times, they will still have the same scattering relation and travel times if we
locally push ∂M a bit outside M . Then we can arrange that the new pieces of ∂M are
transversal to the geodesics close to a fixed one, which provides a smooth parametrization.
By a compactness argument, one can do this near finitely many geodesics issued from point
on D, and still have a complete set. This puts as in the situation of Theorem 2.23, where
the set of geodesics is parametrized by α = {αj}. Next, we linearize the energy functional
near each geodesic (in our set of data) related to g. Using the assumption that g and ĝ1

have the same scattering relation and travel times, we deduct

‖Nαj
f̃‖L∞ ≤ C‖f̃‖2

C1 , ∀j. (2.35)

Using interpolation inequalities, and the fact that the extension of f̃ outside M is smooth
enough across ∂M as a consequence of the boundary recovery, we get by (2.35), and
(2.31),

‖Nαf̃‖
H̃2(M1)

≤ C‖f̃‖3/2
C3 ≤ C ′‖f‖3/2

C5 . (2.36)

Since Ig0,D′ is s-injective, so is Nα, related to g0, by the support properties of α. Now,
since g is close enough to g0 with s-injective Nα by (2.26), Nα (the one related to g) is
s-injective as well by Theorem 2.23. Therefore, by (2.36) and (2.25),

‖f s‖L2(M) ≤ C‖Nαf̃‖
H̃2 ≤ C ′‖f‖3/2

C5 . (2.37)

A decisive moment of the proof is that by Proposition 2.29, see (2.34), f̃ s = f + f s2 , the
latter being the solenoidal projection of f2. Therefore,

‖f̃ s‖L2(M) ≥ ‖f‖L2(M) − C‖f‖2
C2 .

Together with (2.37), this yields

‖f‖L2(M) ≤ C
(
‖f‖2

C2 + ‖f‖3/2
C5

)
≤ C ′‖f‖3/2

C5

because the C5 norm of f is uniformly bounded when ε ≤ 1. Using interpolation again,
we easily deduct ‖f‖L2(M) ≥ 1/C if f 6= 0. This contradicts (2.32) if ε ≪ 1. Now,
f = 0 implies h = g, therefore, g and ĝ are isometric. This concludes the sketch proof of
Theorem 2.26. �

3. Invisibility for Electrostatics

We discuss here only invisibility results for electrostatics. For similar results for electro-
magnetic waves, acoustic waves, quantum waves, etc., see the review papers [62], [63]
and the references given there. The fact that the boundary measurements do not change,
when a conductivity is pushed forward by a smooth diffeomorphism leaving the boundary
fixed (see section 1.7), can already be considered as a weak form of invisibility. Different
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media appear to be the same, and the apparent location of objects can change. However,
this does not yet constitute real invisibility, as nothing has been hidden from view. In
invisibility cloaking the aim is to hide an object inside a domain by surrounding it with
a material so that even the presence of this object can not be detected by measurements
on the domain’s boundary. This means that all boundary measurements for the domain
with this cloaked object included would be the same as if the domain were filled with a
homogeneous, isotropic material. Theoretical models for this have been found by apply-
ing diffeomorphisms having singularities. These were first introduced in the framework of
electrostatics, yielding counterexamples to the anisotropic Calderón problem in the form
of singular, anisotropic conductivities in Rn, n ≥ 3, indistinguishable from a constant
isotropic conductivity in that they have the same Dirichlet-to-Neumann map [65, 66].
The same construction was rediscovered for electromagnetism in [154], with the intention
of actually building such a device with appropriately designed metamaterials; a modified
version of this was then experimentally demonstrated in [172]. (See also [126] for a some-
what different approach to cloaking in the high frequency limit.) The first constructions
in this direction were based on blowing up the metric around a point [124]. In this con-
struction, let (M, g) be a compact 2-dimensional manifold with non-empty boundary, let
x0 ∈ M and consider the manifold

M̃ = M \ {x0}
with the metric

g̃ij(x) =
1

dM(x, x0)2
gij(x),

where dM(x, x0) is the distance between x and x0 on (M, g). Then (M̃, g̃) is a complete,

non-compact 2-dimensional Riemannian manifold with the boundary ∂M̃ = ∂M . Essen-
tially, the point x0 has been “pulled to infinity”. On the manifolds M and M̃ we consider
the boundary value problems

{
∆gu = 0 in M ,
u = f on ∂M ,

and





∆g̃ũ = 0 in M̃ ,

ũ = f on ∂M̃ ,

ũ ∈ L∞(M̃).

These boundary value problems are uniquely solvable and define the DN maps

ΛM,gf = ∂νu|∂M , Λ
M̃ ,̃g

f = ∂ν ũ|
∂M̃

where ∂ν denotes the corresponding conormal derivatives. Since, in the two dimensional
case, functions which are harmonic with respect to the metric g stay harmonic with respect
to any metric which is conformal to g, one can see that ΛM,g = Λ

M̃ ,̃g
. This can be seen

using e.g. Brownian motion or capacity arguments. Thus, the boundary measurements
for (M, g) and (M̃, g̃) coincide. This gives a counter example for the inverse electrostatic
problem on Riemannian surfaces – even the topology of possibly non-compact Riemannian
surfaces can not be determined using boundary measurements (see Fig. 1). The above
example can be thought as a “hole” in a Riemann surface that does not change the
boundary measurements. Roughly speaking, mapping the manifold M̃ smoothly to the
set M \ BM(x0, ρ), where BM(x0, ρ) is a metric ball of M , and by putting an object
in the obtained hole BM(x0, ρ), one could hide it from detection at the boundary. This
observation was used in [65, 66], where “undetectability" results were introduced in three
dimensions, using degenerations of Riemannian metrics, whose singular limits can be
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Figure 3.1: Blowing up a metric at a point, after [124]. The electrostatic
boundary measurements on the boundary of the surfaces, one compact and
the other noncompact but complete, coincide.

considered as coming directly from singular changes of variables. The degeneration of

Figure 3.2: A typical member of a family of manifolds developing a singu-
larity as the width of the neck connecting the two parts goes to zero.

the metric (see Fig. 2) can be obtained by considering surfaces (or manifolds in the
higher dimensional cases) with a thin “neck” that is pinched. At the limit the manifold
contains a pocket about which the boundary measurements do not give any information.
If the collapsing of the manifold is done in an appropriate way, we have, in the limit, a
singular Riemannian manifold which is indistinguishable in boundary measurements from
a flat surface. Then the conductivity which corresponds to this metric is also singular
at the pinched points, cf. the first formula in (3.3). The electrostatic measurements on
the boundary for this singular conductivity will be the same as for the original regular
conductivity corresponding to the metric g. To give a precise, and concrete, realization
of this idea, let B(0, R) ⊂ R3 denote the open ball with center 0 and radius R. We use
in the sequel the set N = B(0, 2), the region at the boundary of which the electrostatic
measurements will be made, decomposed into two parts, N1 = B(0, 2) \ B(0, 1) and
N2 = B(0, 1). We call the interface Σ = ∂N2 between N1 and N2 the cloaking surface.
We also use a “copy” of the ball B(0, 2), with the notation M1 = B(0, 2), another ball
M2 = B(0, 1), and the disjoint union M of M1 and M2. (We will see the reason for
distinguishing between N and M .) Let gjk = δjk be the Euclidian metrics in M1 and
M2 and let γ = 1 be the corresponding isotropic homogeneous conductivity. We define a
singular transformation

F1 : M1 \ {0} → N1, F1(x) = (
|x|
2

+ 1)
x

|x| , 0 < |x| ≤ 2. (3.1)

We also consider a regular transformation (diffeomorphism) F2 : M2 7→ N2, which for
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Figure 3.3: Map F1 : B(0, 2) \ {0} → B(0, 2) \B(0, 1)

simplicity we take to be the identity map F2 = Id. Considering the maps F1 and F2

together, F = (F1, F2), we define a map F : M \ {0} = (M1 \ {0}) ∪ M2 → N \ Σ. The
push-forward g̃ = F∗g of the metric g in M by F is the metric in N given by

(F∗g)jk (y) =
n∑

p,q=1

∂F p

∂xj
(x)

∂F q

∂xk
(x)gpq(x)

∣∣∣∣∣∣
x=F−1(y)

. (3.2)

This metric gives rise to a conductivity σ̃ in N which is singular in N1,

σ̃ =

{
|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2.

(3.3)

Thus, F forms an invisibility construction that we call “blowing up a point". Denoting by
(r, φ, θ) 7→ (r sin θ cosφ, r sin θ sinφ, r cos θ) the spherical coordinates, we have

σ̃ =




2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1


 , 1 < |x| ≤ 2. (3.4)

Note that the anisotropic conductivity σ̃ is singular degenerate on Σ in the sense that it is
not bounded from below by any positive multiple of I. (See [112] for a similar calculation.)
The Euclidian conductivity δjk in N2 (3.3) could be replaced by any smooth conductivity
bounded from below and above by positive constants. This would correspond to cloaking
of a general object with non-homogeneous, anisotropic conductivity. Here, we use the
Euclidian metric just for simplicity. Consider now the Cauchy data of all solutions in the
Sobolev space H1(N) of the conductivity equation corresponding to σ̃, that is,

C1(σ̃) = {(u|∂N , ν· σ̃∇u|∂N) : u ∈ H1(N), ∇· σ̃∇u = 0},
where ν is the Euclidian unit normal vector of ∂N .

Theorem 3.1. ([66]) The Cauchy data of all H1-solutions for the conductivities σ̃ and γ
on N coincide, that is, C1(σ̃) = C1(γ).

This means that all boundary measurements for the homogeneous conductivity γ =
1 and the degenerated conductivity σ̃ are the same. The result above was proven in
[65, 66] for the case of dimension n ≥ 3. The same basic construction works in the two
dimensional case [112]. Fig. 3.4 portrays an analytically obtained solution on a disc with
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Figure 3.4: Analytic solutions for the currents

conductivity σ̃. As seen in the figure, no currents appear near the center of the disc, so
that if the conductivity is changed near the center, the measurements on the boundary
∂N do not change. The above invisibility result is valid for a more general class of singular
cloaking transformations. A general class, sufficing at least for electrostatics, is given by
the following result from [66]:

Theorem 3.2. Let Ω ⊂ Rn, n ≥ 3, and g = (gij) a smooth metric on Ω bounded
from above and below by positive constants. Let D ⊂⊂ Ω be such that there is a C∞-
diffeomorphism F : Ω \ {y} → Ω \D satisfying F |∂Ω = Id and such that

dF (x) ≥ c0I, det (dF (x)) ≥ c1 dist
Rn (x, y)−1 (3.5)

where dF is the Jacobian matrix in Euclidian coordinates on Rn and c0, c1 > 0. Let ĝ be
a metric in Ω which coincides with g̃ = F∗g in Ω \D and is an arbitrary regular positive
definite metric in Dint. Finally, let σ and σ̂ be the conductivities corresponding to g and
ĝ, cf. (1.88). Then,

C1(σ̂) = C1(σ).

The key to the proof of Theorem 3.2 is a removable singularities theorem that implies
that solutions of the conductivity equation in Ω \ D pull back by this singular transfor-
mation to solutions of the conductivity equation in the whole Ω. Returning to the case
Ω = N and the conductivity given by (3.3), similar types of results are valid also for a more
general class of solutions. Consider an unbounded quadratic form, A in L2(N, |g̃|1/2dx),

Aσ̃[u, v] =
∫

N
σ̃∇u· ∇v dx

defined for u, v ∈ D(Aσ̃) = C∞
0 (N). Let Aσ̃ be the closure of this quadratic form and say

that

∇· σ̃∇u = 0 in N
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is satisfied in the finite energy sense if there is u0 ∈ H1(N) supported in N1 such that
u− u0 ∈ D(Aσ̃) and

Aσ̃[u− u0, v] = −
∫

N
σ̃∇u0· ∇v dx, for all v ∈ D(Aσ̃).

Then the Cauchy data set of the finite energy solutions, denoted by

Cf.e.(σ̃) =
{

(u|∂N , ν· σ̃∇u|∂N) |u is a finite energy solution of ∇· σ̃∇u = 0
}
,

coincides with the Cauchy data Cf.e.(γ) corresponding to the homogeneous conductivity
γ = 1, that is,

Cf.e.(σ̃) = Cf.e.(γ). (3.6)

Kohn, Shen, Vogelius and Weinstein [112] in an interesting article have considered the case
when instead of blowing up a point one stretches a small ball into the cloaked region. In
this case the conductivity is non-singular and one gets “almost" invisibility with a precise
estimate in terms of the radius of the small ball.

3.1. Quantum Shielding

In [64], using CGO solutions, uniqueness was proven for the Calderón problem for Schrödinger
operators having a more singular class of potentials, namely potentials conormal to sub-
manifolds of Rn, n ≥ 3. However, for more singular potentials, there are counterexamples
to uniqueness. It was constructed in [64] a class of potentials that shield any information
about the values of a potential on a region D contained in a domain Ω from measurements
of solutions at ∂Ω. In other words, the boundary information obtained outside the shielded
region is independent of q|D. On Ω\D, these potentials behave like q(x) ∼ −Cd(x, ∂D)−2−ǫ

where d denotes the distance to ∂D and C is a positive constant. In D, Schrödinger’s cat
could live forever. From the point of view of quantum mechanics, q represents a poten-
tial barrier so steep that no tunneling can occur. From the point of view of optics and
acoustics, no sound waves or electromagnetic waves will penetrate, or emanate from, D.
However, this construction should be thought of as shielding, not cloaking, since the po-
tential barrier that shields q|D from boundary observation is itself detectable.
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