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ABSTRACT

A principal limitation on seismic resolution is the earth at-

tenuation, or Q-effect, including the energy dissipation of high-

frequency wave components and the velocity dispersion that

distorts seismic wavelets. An inverse Q-filtering procedure at-

tempts to remove the Q-effect to produce high-resolution seis-

mic data, but some existing methods either reduce the S/N ra-

tio, which limits spatial resolution, or generate an illusory high-

resolution wavelet that contains no more subsurface informa-

tion than the original low-resolution data. In this paper, seismic

inverse Q-filtering is implemented in a stabilized manner to

produce high-quality data in terms of resolution and S/N ratio.

Stabilization is applied to only the amplitude compensation op-

erator of a full inverse Q-filter because its phase operator is un-

conditionally stable, but the scheme neither amplifies nor sup-

presses high frequencies at late times where the data contain

mostly ambient noise. The latter property makes the process in

vertible, differentiating from some conventional stabilized in-

verse schemes that tend to suppress high frequencies at late

times. The stabilized inverse Q-filter works for a general earth

Q-model, variable with depth or traveltime, and is more accu-

rate than a layered approach, which involves an approximation

to the amplitude operator. Because the earth Q-model can now

be defined accurately, instead of a constant-Q layered structure,

the accuracy of the inverse Q-filter is much higher than for a

layered approach, even when implemented in the Gabor trans-

form domain. For the stabilization factor, an empirical relation

is proposed to link it to a user-specified gain limit, as in an ex-

plicit gain-controlling scheme. Synthetic and real data exam-

ples demonstrate that the stabilized inverse Q-filter corrects the

wavelet distortion in terms of shape and timing, compensates

for energy loss without boosting ambient noise, and produces

desirable seismic images with high resolution and high S/N

ratio.

INTRODUCTION

High-resolution seismic data are needed for detailed descrip-

tions of oil and gas reservoirs; for determination of spatial hetero-

geneities such as the spatial variation of porosity, gas content, or

pore pressure; and for monitoring temporal changes within a reser-

voir that result from production. While the development of new

methods for high-resolution seismic data acquisition are important,

maximum immediate benefit can be obtained by applying methods

that can improve the resolution of existing seismic data sets and

that can be used with new data sets acquired with existing systems.

This paper discusses one such resolution-enhancement technique,

the inverse Q-filter. Anelasticity and inhomogeneity in the sub-

surface dissipate high-frequency seismic energy, which decreases

seismic amplitudes; they also cause velocity dispersion, thus modi-

fying, delaying, and stretching the seismic wavelet �Kolsky, 1956;

Mason, 1958; Futterman, 1962; Trorey, 1962; Strick, 1967; Kjar-

tansson, 1979; Ben-Menahem and Singh, 1981�. The energy dissi-

pation and velocity dispersion of the seismic wave require suitable

treatment for higher-resolution subsurface reflectivity imaging.

This treatment is generally referred to as inverse Q-filtering.

When the Q of a medium is constant with respect to depth or

traveltime, a phase-only inverse Q-filter for eliminating velocity

dispersion can be implemented efficiently as a Stolt frequency

wavenumber migration �Hargreaves and Calvert, 1991�. If the sub-

surface is in a layered Q-structure, phase-only inverse Q-filtering

may be implemented in a layered fashion; within each layer, it is a

constant-Q, phase-only inverse filter �Bano, 1996�. These phase-

only inverse Q-filters correcting the phase distortion from velocity

dispersion are unconditionally stable �Robinson, 1979, 1982; Bick-

el and Natarajan, 1985� but neglect the amplitude effect from en-

ergy dissipation.

Full inverse Q-filtering that performs amplitude compensation

and phase correction simultaneously can have instability problems

and can result in undesirable artifacts in the seismic data. A stabi-
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lized method proposed by Wang �2002� can recover all frequency

components that in principle are recoverable and can intelligently

limit the compensation of a given high-frequency wave component

when its amplitude has been attenuated to a level below the ambi-

ent noise. Thus, it does not boost ambient noise. This feature is sig-

nificant because seismic resolution is not only a function of the fre-

quency bandwidth but is also a function of the S/N ratio. A formula

for measuring the change in seismic resolution can be found in

Wang �2003�.

Wang’s �2002� full inverse Q-filtering method is implemented

as a series of constant-Q inverse filters, corresponding to a stack of

constant-Q layers. Within a constant-Q layer, the 2D amplitude co-

mpensation operator is approximated optimally as the product of

two 1D functions depending on traveltime and frequency, respec-

tively. By doing so, inverse Q-filtering can be implemented in the

Fourier domain akin to the phase-only inverse Q-filter mentioned

above, which affords efficiency but introduces approximations.

One line of research and development in inverse Q-filtering ev-

olves from constant Q and phase only, layered Q and phase only,

layered Q and full inverse Q-filtering, and finally an algorithm of

full inverse Q-filtering for a continuous variable Q-model, such as

the one presented in this paper. This algorithm is an extension of

the layered algorithm presented in Wang �2002� with the following

differences.

• The earth Q-model can vary continuously along the subsurface

depth or two-way traveltime, while the layered approach needs

to approximate the Q-model using constant-Q layers. The latter

also involves approximations to the amplitude compensation

operator.

• An inverse Q-filter neither suppresses nor amplifies the data

components with high frequencies at late times. In real data

processing, we often need to redo the inverse Q-filtering with

updated Q-function at a later stage. If a data component has

been suppressed by inverse Q-filtering, it cannot be recovered

afterward.

• Stabilization is applied only to the amplitude compensation op-

erator in full inverse Q-filtering, as its phase correction operator

is unconditionally stable. Therefore, the phase component of a

full inverse Q-filter is accurate without any damping effect of

the stabilization.

To improve efficiency, an alternative but approximate imple-

mentation is presented in conjunction with the Gabor transform.

The Gabor transform decomposes a time-domain seismic trace

by performing localized Fourier transforms successively for a suite

of window positions down the seismic trace, generating the time-

variant Gabor spectrum �Gabor, 1946; Bastiaans, 1980; Feichtinger

and Strohmer, 1998�. Inverse Q-filtering can be achieved by modi-

fying the time-frequency-domain Gabor spectrum before trace re-

construction with an inverse Gabor transform.

Theoretically, the stabilization factor should be linked physi-

cally to the S/N ratio of the seismic data. Without quantitative prior

knowledge of the S/N ratio, I attempt in this paper to establish an

empirical relationship between the stabilization factor and a speci-

fied gain limit, as in an explicit gain-controlling scheme.

THE INVERSE Q-FILTERING ALGORITHM

Proper inverse Q-filtering is a prerequisite for true-amplitude

recovery for the purpose of, for example, amplitude inversion

and subsequent reservoir characterization. Also, by correcting the

phase distortion, seismic data with enhanced resolution provide

correct timings for lithological identification and well ties. To

achieve these benefits, stabilized inverse Q-filters are required to

produce optimal resultant data quality in terms of both resolution

and S/N ratio, as some existing methods either reduce the S/N ra-

tio, which limits spatial resolution, or generate an illusory high-

resolution wavelet that contains no more subsurface information

than did the original low-resolution starting point. This section de-

scribes such a stabilized inverse Q-filtering algorithm for an earth

model with a continuous variable Q-function.

Stabilized algorithm

For forward wave propagation, a plane wave U�x,�� with travel

distance �x is given by

U�x + �x,�� = U�x,��exp�− ik����x� , �1�

where i is the imaginary unit, � is the angular frequency, and k���
is the wavenumber. The earth Q-effect may be represented with a

complex wavenumber

k��� = �1 −
i

2Qr

��

vr

� �

�h

�−�

, �2�

where Qr and vr are the Q-value and the phase velocity at an arbi-

trary reference frequency; � = �1/��Qr
−1, following Kolsky �1953�

and Kjartansson �1979�; and �h is a tuning parameter related to the

highest possible frequency of the seismic band �Wang and Guo,

2004a�. Note that only positive frequencies are considered in equa-

tion 2.

An inverse Q-filter is then given by

U�x + �x,�� = U�x,��exp�ik����x� . �3�

Substituting the complex-valued wavenumber k��� into equation 3

and replacing the distance increment �x by traveltime increment

��, we obtain

U�� + ��,�� = U��,��exp�� �

�h

�−����

2Qr

�
� exp�i� �

�h

�−�

���� . �4�

This equation is the basis for an inverse Q-filtering algorithm in

which the two exponential operators compensate for the amplitude

effect �i.e., the energy absorption� and the phase effect �i.e., the ve-

locity dispersion�, respectively.

Considering the earth Q-model as a 1D function Q��� varying

with traveltime � and performing wavefield downward continua-

tion using equation 4 from the surface �0 = 0 to the depth-time

level �, we can present the wavefield U��,�� as

U��,�� = U�0,��exp�	
0

� � �

�h

�−����� �

2Q����
d���

� exp�i	
0

� � �

�h

�−�����

�d��� , �5�
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where ���� = �1/��Q−1���. The amplitude operator, as shown in

equation 5, is an exponential function of frequency and traveltime;

a full inverse Q-filter including amplitude compensation will cause

instability and will generate undesirable artifacts in the seismic

data �Wang, 2002�. Therefore, stability is the major concern in any

scheme for inverse Q-filtering.

To stabilize the implementation, let us represent equation 5 as

���,��U��,�� = U�0,��exp�i	
0

� � �

�h

�−�����

�d��� ,

�6�

where

���,�� = exp�− 	
0

� � �

�h

�−����� �

2Q����
d��� . �7�

We then solve equation 6 as an inverse problem with stabilization,

producing the following stabilized formula:

U��,�� = U�0,�����,��exp�i	
0

� � �

�h

�−�����

�d��� ,

�8�

where

���,�� =
���,�� + 	2

�2��,�� + 	2
�9�

and 	2 is the stabilization factor.

Performing equation 8 for all different frequencies and then

summing these plane waves �i.e., the imaging condition�, we ob-

tain a time-domain seismic sample:

u��� =
1

�
	

0




U�0,�����,��

� exp�i	
0

� � �

�h

�−�����

�d���d� . �10�

This is the expression of stabilized full inverse Q-filtering.

Physical understanding of stabilization

Equation 10 must be performed successively at each time sam-

ple � and may be discretized as



u0

u1

]

uM

� = 

a0,0 a0,1 ¯ a0,N

a1,0 a1,1 ¯ a1,N

] ] ]

aM,0 aM,1 ¯ aM,N

�

U0

U1

]

UN

� , �11�

where �ui  u��i�� is the time-domain output data vector, �U j

 U�� j�� is the frequency-domain input data vector, and �ai,j� is

the inverse Q-filter �M � N� with an element defined as

ai,j =
1

N
���i,� j�exp�i	

0

�i �� j

�h

�−�����

� jd��� . �12�

To understand stabilization physically, we rewrite equation 11 as



u0

u1

]

uM

� = �
�

U���

a0

a1

]

aM

���� . �13�

That is, the inverse Q-filtered wavefield �u���� in the time domain

is a weighted superposition of all plane waves �U����. The weight-

ing coefficient series �ai� are time variant, and they act as a nonsta-

tionary filter applied to U���.
The weighting coefficients, in general, are an exponential func-

tion of time but are modified for stabilization. Expression 13 also

offers an intuitive understanding about stabilization. Considering

forward wave propagation, when a plane-wave component travels

beyond a certain time, its amplitude is attenuated to a level below

the ambient noise; accordingly, inverse Q-filtering limits the at-

tempt to compensate for it by modifying, the weighting coefficient

series. Thus, this series is also frequency dependent.

Stabilization only to amplitude component

Conventionally, one takes the following complex function

f��,�� = exp�− 	
0

� � 1

2Q����
+ i�� �

�h

�−�����

�d���
�14�

into the stabilization process, as in Wang �2002� and in Irving and

Knight �2003�. The complex function f��,�� in expression 14 con-

sists of full Q-effects, including amplitude attenuation and phase

distortion. However, because only the inverse of the real part of

f��,�� is unstable, I propose in equation 9 to stabilize only the in-

verse of the real exponential function ���,�� of equation 7. By do-

ing so, we accurately correct the phase.

Stabilization without high-�� suppression

In the stabilization formula 9, the stabilization factor 	2 is added

to the numerator. The presence of 	2 in the numerator means that

this stabilization scheme does not include the high-�� suppression

�Figure 1a�. Without high-�� suppression in stabilization, we can

accurately remove the amplitude compensation previously added

to the seismic data by inverse Q-filtering, if we need to do so. The

associated operator for removal is the inverse of the compensation
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operator, �̃��,�� = �−1��,��. In practice, we often require that

processing operations be removable so that we can easily optimize

the processing parameters later.

Conventionally, a stabilization formula is given by

�c��,�� =
���,��

�2��,�� + 	2
, �15�

which is used extensively in the inverse problem �Berkhout, 1982�.

In the context of inverse Q-filtering, a justification may be given as

follows: When a plane wave with frequency � propagates through

a subsurface medium after a certain traveltime �, its energy is ab-

sorbed completely. Using this stabilized operator, inverse filtering

with an accurate Q-model suppresses the high-frequency noise in

the seismic data. Thus, equation 15 may be referred to as a stabili-

zation scheme with high-�� suppression.

To compare these two schemes, I plot the amplitude coeffi-

cients as a function of the product of � and � �Figure 1�. For the

first stabilization scheme without high-�� suppression, high-fre-

quency data components are not boosted by the inverse Q-filter

and are not altered in subsequent forward Q-modeling. For the sec-

ond scheme with high-�� suppression, the data are filtered simul-

taneously with a time-variant low-pass filter, designed naturally ac-

cording to the earth Q-model. But this second stabilized operator is

not invertible. I propose to define the associated amplitude attenu-

ation operator by

�̃c��,�� =
�c��,��

�c
2��,�� + �	�

, �16�

where the stabilization factor is �	� instead of 	2. By doing so, as

shown in Figure 1b, the amplitudes within the range �0, 300�� can

be recovered accurately. At �� = 300�, ���,�� = 1. At about ��

= 370�, a peak indicates the curve �the dotted line� beyond this

point has been damped and otherwise would be increasing expo-

nentially. If 	2 were used in equation 16, the amplitudes within the

range �150�,300�� would not have been recovered accurately

and, instead, would have been damped toward zero. Note that both

�c��,�� and �	� in equation 16 are dimensionless.

IMPLEMENTATION WITH GABOR TRANSFORM

As mentioned before, full inverse Q-filtering �expression 10�

with time-dependent Q-function must be performed successively

for each time sample. To improve efficiency, this section describes

an implementation in the Gabor transform domain.

We start the derivation with equation 8. Assuming a medium

with Q−1 = 0, the wavefield recorded at depth-time level � can be

obtained from equation 8 as

Ũ��,�� = U�0,��exp�i��� . �17�

Using Ũ��,��, equation 8 becomes

U��,�� = Ũ��,�����,��

� exp�i	
0

� �� �

�h

�−�����

− 1��d��� . �18�

Both U��,�� and Ũ��,�� are the wavefield recorded at the depth-

time level �, but the latter has no inverse Q-filtering.

Equation 18 is the central equation for the Gabor transform-

based inverse Q-filtering algorithm. I now describe, given a time-

domain seismic trace u�t�, how to compute Ũ��,�� and, after in-

verse Q-filtering, how to reconstruct u�t� from U��,�� by using the

Gabor transform.

The forward Gabor transform is defined as

Ũ��,�� = 	
−





u�t�w�t − ��exp�− i�t�dt , �19�

where w�t� is the Gabor analysis window and � is the location of

the window center. Defining a Gabor slice as

ũ��,t� = u�t�w�t − �� , �20�

we see the Gabor transform of u�t� is the Fourier transform of the

Gabor slices for all possible � locations with respect to time t:

Ũ��,�� = F�ũ��,t�� . �21�

The Gabor analysis window is a Gaussian window:

w�t� = �
2

T��
exp�− 4� t

T
�2� , for − T � t � T ,

0, otherwise,
�

�22�

where T is referred to as the �half� width of the window. The Ham-

ming window can also be used as the Gabor analysis window, but a

simple boxcar function without tapering cannot be used because

when a segment of digital signal is transformed into the frequency

domain, it may have a side-lobe effect in the spectrum. Such spec-

tral errors are severely amplified by inverse Q-filtering.

Figure 1. Two stabilization schemes �a� without and �b� with high-
�� suppression. The solid lines are the amplitude-compensation
coefficients of an inverse Q-filter. The dashed lines are the associ-
ated amplitude coefficients needed for compensation removal.
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Applying inverse Q-filtering to Ũ��,�� using equation 18, pro-

duces a modified Gabor transform spectrum U��,��. In the layered

implementation �Wang, 2002�, the imaging condition �summing

over the frequency axis� was applied to U��,�� to produce the final

seismic trace in the time domain. In the Gabor transform method,

after inverse Q-filtering on the wavefield, an inverse Gabor trans-

form is used to reproduce the time-domain trace.

The inverse Gabor transform that recovers signal u�t� from the

Gabor transform spectrum U��,�� is defined as

u�t� = h�t�	
−



 	
−





U��,��exp�i�t�d�d� , �23�

where h�t� is the Gabor synthesis window. It consists of an inverse

Fourier transform with respect to the fre-

quency

u��,t� = F
−1�U��,��� , �24�

which reproduces the Gabor slice and

then the data synthesis integral:

u�t� = h�t�	
−





u��,t�d� . �25�

The Gabor synthesis window h�t�, which

can be derived by substituting equation

20 into equation 25, may be expressed as

h�t� = �	
−





w�t − ��d��−1

.

�26�

The synthesis window here is expressed in terms of the Gabor

analysis window w�t� to mitigate the potential numerical errors

caused by digitization on the Gabor analysis window and the edge

effect when moving the analysis window toward the two ends of a

seismic trace.

The Gabor transform implementation is still an approximation

but should be much more accurate than the layered implementation

in Wang �2002�. For a window center at the time sample �, since

the inverse Q-filter is calculated using a Q-value at �, the upper

half-window trace segment �time ��� tends to be overcompen-

sated and the lower half-window trace segment �time �� tends to

be undercompensated. In the layered implementation, the trace

segment within the whole window, corresponding to a layer, is

stored as the output. In the Gabor transform implementation, how-

ever, an undercompensated half-window segment, and an over-

compensated half-window segment of the two neighboring win-

dows, are mixed �i.e., data synthesis integral, equation 25� to

generate the final output. This gives greater accuracy and also

overcomes the potential artifacts in the inverse Q-filtered traces

from the discontinuity in the layered Q-model.

Figure 2 compares synthetic seismic traces �Q = 88� and the as-

sociated Gabor transform spectra before and after inverse

Q-filter-ing. The Gabor transform spectra clearly show that fre-

quency content changes with time and changes with/without in-

verse Q-filter-ing. Figure 3 shows that when a high-frequency

plane wave has been attenuated completely from the input seismic

data, the stabi-lized inverse Q-filtering procedure automatically

limits the attempt to recover it. It also shows that the phase after in-

verse Q-filtering becomes zero phase within the frequency range

�0,62� Hz.

STABILIZATION FACTOR VERSUS GAIN LIMIT

In this section, I attempt to derive an empirical relationship be-

tween the stabilization factor 	2 and a specified gain limit to con-

Figure 2. Synthetic seismic traces �Q = 88� and their Gabor transform spectra �a� before and
�b� after inverse Q-filtering.

Figure 3. The amplitude and phase spectra of a single wavelet �Q
= 88, time = 4 s� �a� before and �b� after inverse Q-filtering. If a
plane wave with high frequency ��62 Hz� has been attenuated
completely from the input seismic data, stabilized inverse
Q-filtering automatically limits the attempt to recover it. Within the
frequency range �0,62 Hz� where amplitude spectra are greater
than −80 dB, the phase of the wavelet has been fully recovered by
inverse Q-filtering, and the wavelet appears to be zero phased.

Stabilized inverse Q-filter V55

Downloaded 28 Apr 2009 to 155.198.98.115. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



trol explicitly the amplitude gain in inverse Q-filtering. The em-

pirical formula is given as

	2 = exp�− �0.23Glim + 1.63�� �27�

or, equivalently, Glim = −7.087 − 4.348 ln 	2, where Glim is the

specified gain limit in decibels.

To derive the stabilization factor, let us define a variable �

 �� and represent the stabilized amplitude operator �equation 9�

as

���� =
���� + 	2

�2��� + 	2
. �28�

In practice, one may prefer to set a threshold to control the ampli-

tude gain in inverse Q-filtering as

�̂��� = �g��� , for � � �q,

glim, for �  �q,
� �29�

where glim = exp�Glim/20� and �q is the critical point where the

gain curve is cut off �Figure 4�. Here, assuming a constant Q along

a seismic trace, ���� and g��� functions in equations 28 and 29 are

given as ���� = exp�−�/�2Q�� and g��� = exp��/�2Q��, respec-

tively.

To estimate 	2 empirically, let us now set up a criterion: The in-

tegrals up to the crosspoint �a �as shown in Figure 4� of two indi-

vidual gain curves are equivalent. That is, we estimate 	2 by solv-

ing the following two equations simultaneously:

� ���a� = �̂��a�

	
0

�a

����d� = 	
0

�a

�̂���d�� . �30�

Using stabilization formula 28 and gain-limited formula 29, we

have the following expressions:

���a� =

exp�−
�a

2Q
� + 	2

exp�−
�a

Q
� + 	2

, �31a�

�̂��a� = glim, �31b�

	
0

�a

����d� =
2Q

	2 
tan−1� 1

	2� − tan−1� exp�−
�a

2Q
�

	2 �
+

	2

2
ln�1 + 	2 exp��a

Q
�

1 + 	2 �� , �31c�

and

	
0

�a

�̂���d� = 2Q�exp� �q

2Q
� − 1� + ��a − �q�glim.

�31d�

Substituting expressions 31 into equation system 30, we can solve

the stabilization factor 	2 numerically. Fitting a group of 	2 for

given gain limits between 10 and 100 dB produces the empirical

formula 27. For a given gain limit, the 	2 conversion is indepen-

dent of Q-values.

Figure 4 displays the amplitude compensation curves for various

Q-values of the stabilization scheme using 	2 �solid lines� and the

explicit gain-controlling scheme with Glim = 20 dB �dotted lines�.

A gain-limited scheme attempts to boost amplitude all the way

down to the end of the seismic trace, though the gain is controlled

by Glim. However, a plane wave with specific frequency � is atten-

uated completely after it propagates beyond a certain traveltime �

and has left no information in the seismic record. The conventional

gain-limited inverse Q-filtering scheme will boost ambient noise.

The stabilized inverse Q-filter recognizes this fact by reducing the

gain coefficient gradually and neatly.

SYNTHETIC EXAMPLES

Figure 5a displays five synthetic traces with different Q-values

�Q = 400, 200, 100, 50, and 25� constant with depth in each case.

The basic downward-continuation scheme �equation 5� is applied

to this group of noise-free traces. The result �Figure 5b� clearly re-

veals the numerical instability of inverse Q-filtering. For traces

with Q = 400 and 200, the process restores the Ricker wavelet

Figure 4. Comparison of the gain curves of inverse Q-filtering with
an explicit gain-controlling scheme �dotted lines� and the stabilized
scheme �solid lines�. The horizontal coordinate is �  ��, where
� and � are frequency and traveltime, respectively. The corner po-
sition �q corresponds to the cutoff gain limit �Glim = 20 dB, for ex-
ample�, whereas �a is a point where the accumulations of two indi-
vidual gain curves are equivalent.
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with correct phase and amplitude. However, there are strong arti-

facts as the Q-value decreases and the imaging time increases,

even though the input signal is noise free. The appearance of noise

in the output signal is a consequence of the basic inverse Q-filter

procedure: A plane wave is attenuated gradually, and beyond a cer-

tain distance the signal is below the ambient noise level; but the

amplification required to recover the signal amplifies the ambient

noise. In the data-noise-free case here, the background noise is the

numerical errors from finite machine precision. The cause of strong

artifacts is referred to as the numerical instability of the inverse

Q-filter.

Figures 5c and 5d display the results of the gain-limited and sta-

bilized inverse Q-filtering schemes, respectively. From these two

figures, we can make two observations. First, both methods over-

come the instability problem in inverse Q-filtering and success-

fully suppress the numerical artifact appearing in Figure 5b. Sec-

ond, stabilized inverse Q-filtering produces a superior result, as the

amplitudes of more high-frequency components have been com-

pensated. It has recovered all frequency components that are, in

principle, recoverable and has intelligently limited the attempt to

amplify ambient noise. The difference between these two results

seems marginal when accounting for all possible approximations

involved in the seismic data processing flow. However, if these two

algorithms are applied to a noisy data set, we see a significant dif-

ference between them.

I now apply the gain-limited and stabilized schemes to a group

of traces with added weak random noise �Figure 6a�. The added

noise is so weak that it is hardly visible on the plot. Over the five

synthetic traces, the ratio of the maximum noise amplitude and the

maximum signal amplitude is only 2%. Even with such weak noise

in the input, the gain-limited inverse Q-filter has boosted the noise

�Figure 6b�. The smaller the Q-value, the stronger the noise is

boosted by inverse Q-filtering. The gain limit here is set at �q

= 2Q/� �Wang, 2002�, which is equivalent to Glim = 8.69 dB.

To suppress the noise in Figure 6b, a band-pass filter to cut off

the high-frequency noise at late time must be applied �Bickel and

Natarajan, 1985�. Figure 6c is the filtered result of Figure 6b by ap-

plying a Butterworth filter with a 65-Hz cutoff frequency. Even do-

ing so, traces with small Q-values still have strong low-frequ-

ency noise. Conversely, as shown in Figure 6d, stabilized inverse

Q-filtering produces a result with a much higher S/N ratio. Follow-

ing equation 27, the stabilization factor 	2 = 2.66% is used in Fig-

ure 6d.

Gain limit plus high-cut filter is not equivalent to the stabilized

scheme. Figure 7 shows the amplitude operators of the gain-

limited �dotted line� and stabilized �solid line� schemes. The gain

curve is the compensation coefficients of all frequency components

at a specified time sample—in this case, at � = 1 or 2 s. Summing

all weighted frequency components �imaging condition� generates

only one sample at time �. In Figure 6c, however, the high-cut filter

is applied to the entire inverse Q-filtered trace �Figure 6b�, not to

the gain curve, and thus is not equivalent to applying a Butterworth

filter to the gain-limited curve in Figure 7.

Certainly, stabilized inverse Q-filtering is noise-level dependent,

and the stabilization factor 	2 needs to be adjusted accordingly. In

the discussion here, let us assume that, in practice, the noise level

in the input is very weak, as one might have applied some ad-

vanced random noise attenuation techniques prior to inverse Q-fil-

tering �Wang, 1999�.

REAL DATA EXAMPLES

I now compare the stabilized inverse Q-filter with the following

conventional inverse Q-filter �Hale,1981,1982; Varela et al., 1993�:

Figure 5. Noise-free synthetic traces and the result of two inverse
Q-filtering algorithms. �a� Synthetic seismic traces show the effect
of earth Q-filtering with different Q-values. �b� The inverse Q-filt-
ered �compensating for both phase and amplitude� result clearly in-
dicates the numerical instability. �c� The result of gain-limited inv-
erse Q-filtering. �d� The result of a stabilized inverse Q-filtering ap-
proach; it has recovered all frequency components that are in prin-
ciple recoverable and has intelligently limited the attempt to com-
pensate a given high-frequency wave component when its ampli-
tude has been attenuated to a level below the ambient noise level.

Figure 6. Noise-added synthetic traces and the result of two inverse
Q-filtering algorithms. �a� Synthetic seismic traces added with weak
random noise �over the five traces, the ratio of the maximum noise
amplitude to the maximum signal amplitude is only 2%�. �b� Gain-
limited inverse Q boosts the noise. �c� The gain-limited result after
applying the Butterworth high-cut filter with a 65-Hz cutoff fre-
quency. �d� Stabilized inverse Q-filtering produces a result with a
much higher S/N ratio, compared to the gain-limited inverse Q-
filtering results in �b� and �c�.
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A��,�� = exp��� + iH����
�

2Q
� , �32�

where H is the Hilbert transform. This conventional algorithm is

derived straightforwardly from the inverse of the earth Q-filter. To

control the enthusiasm of such an inverse Q-process, one often de-

fines a Butterworth spectrum in terms of a high cutoff frequency

and a slope. In practice, one often designs a series of inverse Q-

filters for given times with given Q-values and associated Butter-

worth high-cut characteristics and then applies these filters to the

seismic trace in a linear piecewise fashion to simulate continuously

varying Q-compensation.

Figure 8 shows a line of marine seismic reflection data with a

very high S/N ratio, compared to a land seismic data section. The

results of conventional and stabilized inverse Q-filtering are shown

in Figures 9 and 10, respectively. Without knowledge of the Q-

value, Q = 100 is set in the test. Such a modest Q-value is adopted

here mainly to minimize the noise after conventional inverse Q-

filtering. Conventional inverse Q-filtering boosts ambient noise

and degrades the S/N ratio of the output section. In comparison, the

stable inverse Q-filtering method produces a superior result by in-

creasing the frequency bandwidth without degrading the S/N ratio,

thereby improving the interpretability of the seismic section.

A fundamental difference between the conventional and the

stabilized inverse Q-filtering procedures is that the conventional

method applies a low-pass filter as a damage controller to suppress

the noise caused by inverse Q-filtering while the stabilized ap-

proach attempts to find a stable operator for inverse Q-filtering. In

Figure 9, a Butterworth filter is designed with a high-cut frequency

of 65 Hz and a slope of 60 dB per octave. In Figure 10, a stabiliza-

tion factor 	2 = 0.5% is used for such a data set with high S/N ra-

tio. It is equivalent to Glim = 15.9 dB.

Finally, Figures 11 and 12 show another example of stabilized

inverse Q-filtering on a land seismic data set, which usually has a

low S/N ratio. In this example, I estimate Q-values from the stack

section and then use them for inverse Q-filtering. The Q-analysis

method described in Wang �2004b� consists of four steps:

1� Measure time–frequency-dependent attenuation from seismic

data.

2� Generate a compensation curve based on the attenuation.

3� Fit the compensation curve with a function in the least-

squares sense to invert for the average Q-function.

4� Calculate the interval Q-values.

Figure 7. The amplitude operators of gain-limited �dotted line� and
stabilized �solid line� inverse Q-filtering schemes at sample time �
of �a� 1 and �b� 2 s for Q = 100.

Figure 8. A seismic section with a very high S/N ratio. Its inverse
Q-filtering results are shown in Figures 9 and 10.

Figure 9. A seismic section after conventional inverse Q-filtering

�Q = 100�, in which a Butterworth filter is designed with a 65-Hz
high-cut frequency and a 60-dB/octave slope. Conventional in-
verse Q-filtering boosts the ambient noise and degrades the S/N ra-
tio of the output section.
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The interval Q-values obtained from such a Q-analysis procedure

are listed in Table 1.

Note that in Figure 11 a time-squared gain recovery is applied to

boost the weak amplitudes for an easy visual comparison to the in-

verse Q-filtered result shown in Figure 12. Any improvement in

continuity of the events in Figure 12 should be reliable because the

inverse Q-filtering algorithm works trace by trace �i.e., it is not a

multichannel process�. The example section is selected arbitrarily

from a 3D land seismic cube. We would expect that if inverse Q-

filtering were applied to the whole 3D stack database, it would en-

hance the 3D migration process, which would benefit from the

higher bandwidth. For application in the prestack domain, Wang

and Guo �2004b� suggest performing seismic inverse Q-filtering

and migration simultaneously.

CONCLUSIONS

The inverse Q-filtering algorithm presented in this paper works

for a general earth Q-model variable with depth or traveltime. It is

more accurate than a layered approach proposed previously be-

cause �a� the earth Q-model can be more accurately defined, in-

stead of constant Q-layered structure, and �b� the implementation

is more accurate, as the exact solution does not involve the ampli-

tude operator approximation. Even if using Gabor transform im-

plementation, the accuracy is much higher than the layered imple-

mentation.

In the full inverse Q-filter that includes phase and amplitude op-

erators, we apply stabilization to the amplitude component only,

recognizing the phase operator in inverse Q-filtering is uncondi-

tionally stable. By doing so, we have an exact solution for the

phase correction. In the stabilization, the amplitude compensation

gain curve approaches 0 dB for high frequencies — that is, it

leaves the high-frequency components untouched, neither amplify-

Table 1. The interval Q-values obtained from the Q-analysis
procedure described in Wang (2004).

Time �s� Q

0.1–1 47.5

1–1.5 47.5

1.5–2 65.8

2–2.5 83.0

2.5–3 95.8

3–3.5 108.0

3.5–4 128.0

Figure 10. Seismic section after stabilized inverse Q-filtering �Q
= 100, 	2 = 0.5%�. The stabilized scheme improves the interpret-
ability of the seismic section by increasing the frequency band-
width without degrading the S/N ratio.

Figure 11. A land seismic stack section for inverse Q-filtering. In
this plot, a time-squared gain recovery is applied to boost the weak
amplitudes for an easy visual comparison to the inverse Q-filtered
result shown in Figure 12.

Figure 12. The land seismic section after inverse Q-filtering. Any
improvement in the continuity of the events should be reliable be-
cause the inverse Q-filtering algorithm works trace by trace �i.e., is
not a multichannel process�.
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ing nor suppressing. This property is different from a conventional

stabilized inverse problem, which tends to suppress high frequen-

cies. In this paper I have also derived an empirical relationship that

links the stabilization factor to a specified gain limit given in prac-

tice.
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