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Abstract
We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmet-
ric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero modulii).
The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature
of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the
Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior
across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a
Riemann Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally,
for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial
value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided
non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different
choice is made for the location of the branch cuts.
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1. Introduction

Integrable nonlinear evolution equations are physically relevant PDEs with a number of mathematically interesting
properties (e.g., see [1, 2] and references therein). For example, they are completely integrable infinite-dimensional
Hamiltonian systems; they have an infinite number of conserved quantities; they may be written as the compatibility
condition of a Lax pair; the associated initial value problem (IVP) is solvable by the inverse scattering transform (IST)
[3, 4]. One of the most notable examples is the nonlinear Schrödinger (NLS) equation: it is a universal model for
the evolution of the complex envelope of weakly nonlinear dispersive wave trains, and it appears in many different
physical contexts, such as deep water waves, optics, acoustics, Bose-Einstein condensation, etc.

The aim of this work is to develop a consistent IST formalism for the defocusing NLS equation

iqt + qxx − 2|q|2q = 0 (1.1)
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(where subscripts x, t denote partial differentiation) with fully asymmetric non-zero boundary conditions (NZBC):

lim
x→±∞

q(x, t) = q±(t) , (1.2)

with |q+(t)| , |q−(t)|, and with no condition on arg q±(t). Historically, most treatments of the NLS equation
study the cases of zero boundary conditions (ZBC, i.e., with q(x, t) → 0 as x → ±∞) or symmetric NZBC (i.e.,
q(x, t) → q±(t), with qo := |q+| = |q−| , 0). In particular, see [2, 5, 6, 7, 8, 9] and references therein for the
defocusing NLS with symmetric NZBC and [10, 11] for the focusing NLS with symmetric NZBC. However, in some
physical applications one can also consider situations where the background amplitude is not the same in the two
limits. For example, in nonlinear optics, asymmetric boundary conditions describe an input in which a continuous
wave laser transitions gradually from one power value to another. Unfortunately, such situations are outside the scope
of the traditional theory. A notable exception is a work by Boiti and Pempinelli [12], where the IST for the defocusing
NLS with asymmetric NZBC was first proposed. However, the problem was formulated on a four-sheeted Riemann
surface, which unnecessarily complicates the study. Moreover, no Riemann-Hilbert problem (RHP) was formulated
and no characterization of the spectral data or of the solutions was given.

When the spatial derivatives of q(x, t) vanish as x → ±∞, (1.1) implies |q±(t)| = |q±(0)|. Hence, without loss
of generality we write the boundary conditions (BC) as

q±(t) = A± eiα±−2iA2
±t , (1.3)

with α± ∈ R and A± > 0. Moreover, thanks to the symmetry x 7→ −x of the NLS equation, we may take
A− > A+ > 0 without loss of generality. For comparison purposes, we note that the BC considered in [12] included
asymptotic plane-wave “carriers” eiξ±x as x → ±∞. Importantly, however, in [12] the asymptotic carriers ξ± were
the same (i.e., ξ+ = ξ− = ξ), and in this case they could trivially be removed using the Galilean invariance of
the NLS equation. Hence there is no loss of generality in setting ξ = 0 and considering (1.3). Moreover, the BC
considered in [12] did not include a phase shift, i.e., they were limited to the case α± = 0. Consequently, the BC
considered in [12] are effectively a subset of (1.3).

The main result of this work is a constructive formalism to obtain the solution of the IVP for the defocusing
NLS equation with the given NZBC (1.3) in terms of the scattering eigenfunctions. In turn, these eigenfunctions are
obtained from the solution of an appropriate Riemann-Hilbert problem defined in terms of the scattering data. More
precisely, the representation of the solution is summarized in the following theorem:

Theorem 1. Let q(x, t) be the solution of the defocusing NLS equation (1.1) with NZBC (1.3), and assume that
(1 + | · |)(q(·, t) − q±(t)) ∈ L1(R±) and ∂xq(·, t) ∈ L1(R) for all t > 0. Given the solutions (2.8) of the first
half of the Lax pair (2.1), let ρ(k, t) be the corresponding reflection coefficient, determined for all t > 0 in terms the
initial datum q(x, 0) by (2.15) and (3.8); and let k j, for j = 1, . . . , J be the discrete eigenvalues, determined by (2.40),
with associated norming constants Cj(t), determined for all t > 0 in terms of the initial datum q(x, 0) by (2.41)
and (3.10). Then

q(x, t) = −2i lim
k→∞

k(N(x, t, k)E+(k, t))1,2 , (1.4)

where double subscripts denote the corresponding matrix entries, E+(k, t) is defined in (2.7), and N(x, t, k) is the
solution of the following matrix Riemann-Hilbert problem:

(i) N(x, t, k) is analytic for k ∈ C \ (Σ+ ∪ K), where Σ+ = (−∞,−A+] ∪ [A+, ∞) and K = {k1, . . . , k J} ⊂
(−A+, A+);

(ii) N(x, t, k) = I + O(1/k) as k→ ∞;
(iii) N(x, t, k) satisfies the jump condition

N+(x, t, k) = N−(x, t, k)Ṽ(x, t, k) , k ∈ Σ+ , (1.5)

where the jump matrix Ṽ(x, t, k) is defined in terms of ρ(k, t) in (4.22), and is continuous ∀k ∈ Σ+.
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(iv) For all j = 1, . . . , J, N(x, t, k) has a simple pole at k = k j and satisfies the following residue conditions at
k = k j:

Res
k=kj

[
N2(x, t, k)− iq+(t)

k + λ+(k)
N1(x, t, k)

]
= 0 , (1.6a)

Res
k=kj

[
N1(x, t, k) +

iq∗+(t)
k + λ+(k)

N2(x, t, k)
]
= Cj(t) ei(λ−,j−λ+,j)x

(
N2(x, t, k j)−

iq+
k j + λ+,j

N1(x, t, k j)

)
,

(1.6b)

where single subscripts 1 and 2 denote the matrix columns, λ±,j = λ±(k j) and λ±(k) are the unique, single-
valued functions defined for all k ∈ C \ Σ± by (2.5) with Im λ±(k) > 0;

(v) N(x, t, k) exhibits a square root singularity at k = ±A+, namely, N(x, t, k) = O(k∓ A+)1/2 as k → ±A+,
and is non-singular at k = ±A−.

The IST for the defocusing NLS equations with step initial data was used in [13, 14] to study the semiclassical
limit and the short-time asymptotics of the solutions, respectively. (Similar problems for the focusing NLS equation
were studied in [15, 16], and the long-time asymptotics of an initial-boundary value problem was considered in [17].)
Note however that the case studied in [14] was with ZBC, and that the step IC considered in [13] are a special case of
the general IC studied here.

The outline of this work is the following. In Section 2 we present the direct problem. (In particular, in Sections 2.2,
2.3 and 2.4 we discuss respectively the symmetries, the behavior at the branch points and the discrete spectrum.)
In Section 3 we treat the time evolution. In Section 4 we formulate the inverse problem as a RHP and derive a
representation for its solution in terms of scattering data. For comparison purposes, in Appendix A we present a
formulation of the IST for the symmetric case with neither a uniformization variable nor a two-sheeted Riemann
surface. (In particular, in A.3 we show how the reconstruction formula for the potential reduces to the one obtained
with the uniformization variable). In Appendix B we present the solution of the same problem with a different choice
of branch cut for the eigenvalue parameter. In Appendix C, as a further application of the methods presented in
this work, we present the IST for the defocusing NLS equation with one-sided NZBC. In Appendix D we report
the computation of the asymptotic behavior of the eigenfunctions as the scattering parameter tends to infinity, and
in Appendix E we prove that the discrete eigenvalues are also simple in the case of asymmetric NZBC.

2. Direct problem

Recall that equation (1.1) is the compatibility condition of the Lax pair

Φx = X(x, t, k)Φ , Φt = T(x, t, k)Φ (2.1)

(the first of which is commonly referred to as the “scattering problem”), where

X(x, t, k) = −ikσ3 + Q(x, t) , T(x, t, k) = −2ik2σ3 + iσ3(Qx −Q2) + 2kQ , (2.2)

the potential and the Pauli matrices (introduced for later use) are

Q(x, t) =
(

0 q(x, t)
q∗(x, t) 0

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.3)

and the asterisk denotes complex conjugation. As x → ±∞, one expects the solutions of the first of (2.1) to tend
asymptotically to those of

Φx = X±(k, t)Φ , (2.4)

where

X±(k, t) = −ikσ3 + Q±(t) , Q±(t) =
(

0 q±(t)
q∗±(t) 0

)
.
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The eigenvalues of X±(k, t) are ±iλ±(k), where

λ2
± = k2 − A2

± . (2.5)

As expected, the eigenvalues have branching. In the symmetric case, λ := λ+ = λ−, and one can deal with this
problem as in [4] by introducing a two-sheeted genus-0 Riemann surface which can be mapped back onto the complex
plane via the uniformization variable z = k + λ. In the asymmetric case [i.e., A+ , A−] however, λ+(k) , λ−(k).
The authors of [12] introduced a four-sheeted Riemann surface. Here we avoid the introduction of a Riemann surface
altogether and define λ± as single-valued functions over a single copy of the complex plane. Of course these functions
are discontinuous across their respective branch cuts, which affects the whole development of the IST.

2.1. Eigenvalue branching, Jost solutions, analyticity and scattering matrix
It will be useful in what follows to introduce the notations

Σ± = (−∞,−A±] ∪ [A±, ∞) , Σo = [−A−,−A+] ∪ [A+, A−] . (2.6a)
We will also make use of the corresponding interiors

Σ̊± = (−∞,−A±) ∪ (A±, ∞) , Σ̊o = (−A−, A+) ∪ (A+, A−) . (2.6b)

We uniquely define the eigenvalues iλ±(k) as single-valued functions of k ∈ C using the same definition as [18].
Namely, we take the branch cuts for λ±(k) on Σ±; for all k ∈ Σ± we take λ±(k) to be the positive value of the real

square root
√

k2 − A2
±, and for all k ∈ C \ Σ± we define λ±(k) as the single-valued, analytic functions which are

continuous as k approaches Σ± from above (i.e., as Im k→ 0+). Moreover, we emphasize that all eigenfunctions and
scattering coefficients (to be defined below) that admit analytic extension from Σ± to the complex k-plane will have
continuous projection to Σ± from above. Note that Σ− ⊂ Σ+, Im λ±(k) > 0 for all k ∈ C, and that both λ± are
real-valued on Σ−.

Similarly to [9, 6], a convenient choice for the eigenvector matrices of X±(k, t) is

E±(k, t) = I − i
k + λ±(k)

σ3Q±(t) . (2.7)

We may then write two fundamental matrix solutions of the scattering problem as

Φ±(x, t, k) = E±(k, t) e−iλ±(k)xσ3(I + o(1)) , k ∈ Σ̊± , x → ±∞ . (2.8)

To emphasize, these Jost eigenfunctions are solutions of the scattering problem only; they are not solutions to both
parts of the Lax pair. It will be useful to define

d±(k) =
1

det E±(k, t)
=

k + λ±(k)
2λ±(k)

, (2.9)

[Please see figure at the end of the document]

Figure 1. The branch cuts Σ− and Σ+. The continuous spectrum coincides with Σ−.
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and to note that
E−1
± (k, t) = d±(k)[I + iσ3Q±(t)/(k + λ±(k))] .

It can be shown that the Jost eigenfunctions are well-defined for k ∈ Σ−, including at ±A−. These values comprise
the continuous spectrum of the scattering problem; they are the values of k for which both λ±(k) are real-valued.

As in the case with zero BC at infinity, we remove the oscillations by introducing modified eigenfunctions

µ±(x, t, k) = Φ±(x, t, k) eiλ±(k)xσ3 . (2.10)

The (modified) eigenfunctions can be rigorously defined as the unique solutions of the following integral equations:

µ−(x, t, k) = E−(k, t) +
x∫
−∞

E−(k, t) e−iλ−(k)(x−y)σ3 E−1
− (k, t)∆Q−(y, t) µ−(y, t, k) eiλ−(k)(x−y)σ3 dy , (2.11a)

µ+(x, t, k) = E+(k, t)−
∞∫
x

E+(k, t) e−iλ+(k)(x−y)σ3 E−1
+ (k, t)∆Q+(y, t) µ+(y, t, k) eiλ+(k)(x−y)σ3 dy , (2.11b)

where ∆Q± := Q(x, t)−Q±(t), and analogously ∆q± := q(x, t)− q±(t).
It is convenient to consider these integral equations columnwise, defining µ±,1(x, t, k) and µ±,2(x, t, k) to be the

first and second column of µ±(x, t, k), respectively. Using a Neumann series for the integral equations for these
columns, one can show that if (1+ |x|)(q(x, t)− q−(t)) ∈ L1(R−) with respect to x for all t > 0, then µ−,1(x, t, k)
is well-defined on Σ− and analytic in C \ Σ−. Similarly, if (1 + |x|)(q(x, t)− q+(t)) ∈ L1(R+) with respect to
x for all t > 0, then µ+,2(x, t, k) is well-defined on Σ+ and analytic in C \ Σ+. Since the proof of these results
is similar to the one in the symmetric case [7, 9], it is omitted here for brevity. We should mention, however, that
the condition (q(x, t) − q±(t)) ∈ L1(R±) is sufficient to guarantee analyticity of µ−,1(x, t, k) and µ+,2(x, t, k)
in C \ Σ±, respectively, and that the extra decay of the potential as x → ±∞ is only required in order for the
eigenfunctions to be well-defined at the branch points. Specifically, note that at the branch points k = ±A±, one
has λ±(k) = 0, and det E±(k, t) = 0, which means that E±(k, t) have no inverse at k = ±A±. However, if
(1 + |x|)(q(x, t)− q±(t)) ∈ L1(R±), the integral equations have well-defined limits as λ±(k) → 0. To see this,
observe that, for λ−(k) , 0,

E−(k, t)e−iλ−(k)(x−y)σ3 E−1
− (k, t) =

1
λ−(k)

sin(λ−(k)(x− y))X−(k, t) + cos(λ−(k)(x− y))I .

As k→ ±A−, the limit of the right hand side is (x− y)X−(±A−, t) + I, implying

µ−(x, t,±A−) = I ∓ σ3Q−(t)/A− +

x∫
−∞

[
(x− y)X−(±A−, t) + I

]
∆Q−(y, t) µ−(y, t,±A−)dy .

This is why the further condition that x∆q−(x, t) ∈ L1(R−) is needed in order for the above integral equation to
admit a solution. An analogous argument holds for µ+(x, t, k) at k = ±A+. The integral equations (2.11) will also
be used to compute the asymptotics of the eigenfunctions for large k in Appendix D.

Since tr X(x, t, k) = 0, Abel’s formula implies that det Φ±(x, t, k) is independent of x. Evaluating it in the limit
x → ±∞, we obtain

det Φ±(x, t, k) = det µ±(x, t, k) = 1/d±(k) .

For k ∈ Σ̊−, both Φ±(x, t, k) are fundamental matrix solutions of the scattering ODE, and there exists a matrix
S(k, t), independent of x, such that

Φ−(x, t, k) = Φ+(x, t, k) S(k, t) , k ∈ Σ− , (2.12)

with
det S(k, t) = d+(k)/d−(k) . (2.13)
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Importantly, note that det S(k, t) , 1, unlike the case of ZBC and symmetric NZBC. Note also that the scattering
relation (2.12) also holds at k = ±A−, because Φ−(x, t,±A−) is well-defined and Φ+(x, t,±A−) is still a fun-
damental matrix solution of the scattering problem. On the other hand, det S(±A−, t) = 0. (See Section 2.3 for
further details.) The scattering coefficients, i.e., the entries si j(k, t) of the scattering matrix S(k, t), may be expressed
as Wronskians:

s11(k, t) = d+(k)Wr(Φ−,1, Φ+,2)(x, t, k) , s12(k, t) = d+(k)Wr(Φ−,2, Φ+,2)(x, t, k) , (2.14a)
s21(k, t) = d+(k)Wr(Φ+,1, Φ−,1)(x, t, k) , s22(k, t) = d+(k)Wr(Φ+,1, Φ−,2)(x, t, k) . (2.14b)

The reflection coefficients we will use in the inverse problem are

ρ(k, t) := s21(k, t)/s11(k, t) , ρ̄(k, t) := s12(k, t)/s22(k, t) , k ∈ Σ− . (2.15)

Using the Wronskian definitions (2.14), we may analytically continue s11(k, t) off the continuous spectrum. Specifi-
cally, s11(k, t) is analytic for k ∈ C \ Σ+. Moreover, since Φ−,1(x, t, k) may be analytically extended to C \ Σ− and
Φ+,1(x, t, k) is defined on Σ+, we may extend the definition of s21(k, t) pointwise to Σ̊+. In fact, the first column of
the scattering relation (2.12) continues to hold on Σ̊+. However, in Section 2.3 we will show that generically s11(k, t)
and s21(k, t) have singularities at k = ±A+ [where d+(k) has a square root singularity]. On the other hand, we will
also show that ρ(k, t) has finite limits as k→ ±A+.

2.2. Symmetries

We now consider the symmetries of the eigenfunctions and scattering data. There are two kinds of symmetries,
corresponding to the involutions k 7→ k∗ and λ±(k) 7→ −λ±(k), respectively.

First symmetry. The first symmetry, corresponding to the involution k 7→ k∗, is analogous to the one in the case
of ZBC. If a 2 × 2 matrix v(x, t, k) solves the scattering problem, so does v̂(x, t, k) := σ1 v∗(x, t, k∗) σ1, where
the asterisk denotes complex conjugation and not the matrix adjoint. Considering the above relation for k ∈ R and
comparing asymptotic behaviors as x → ±∞, we have:

Φ±(x, t, k) = σ1 Φ∗±(x, t, k) σ1 , k ∈ Σ± . (2.16)

(To avoid any possible confusion, we emphasize that the above relation is evaluated pointwise for k ∈ Σ± ⊂ R,
where the corresponding eigenfunctions are defined. In other words, the matrix Φ∗±(x, t, k) appearing in the right
hand side does not equal limk→R Φ∗±(x, t, k∗). In fact, since only one of the columns of the matrix Φ±(x, t, k) can
be analytically extended off the real axis, the Schwarz conjugate inside the above limit does not exist in general.)
Substituting the previous equations into (2.12), we have S(k, t) = σ1S∗(k, t)σ1 for k ∈ Σ−. That is,

s11(k, t) = s∗22(k, t) , s21(k, t) = s∗12(k, t) , k ∈ Σ− , (2.17)

which in turn implies
ρ̄(k, t) = ρ∗(k, t) , k ∈ Σ− . (2.18)

Note also that (2.13) implies

|s11(k, t)|2 − |s21(k, t)|2 = d+(k)/d−(k) , k ∈ Σ− . (2.19)

Since d+(k)/d−(k) > 0 for k ∈ Σ̊−, we conclude that s11(k, t) has no zeros on Σ̊− (recall Σ̊± and Σ̊o were defined
in (2.6)). We will also show in Section 2.3 that at k = ±A− one has |s11(±A−, t)| = |s21(±A−, t)| , 0. For future
reference, we note that (2.19) can also be written in terms of the reflection coefficient as follows:

|s11(k, t)|2 = (1− |ρ(k, t)|2)−1d−(k)/d+(k) , k ∈ Σ− . (2.20)
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We also consider k 7→ k∗ for k < Σ+. Again, if v(x, t, k) is a vector solution to the scattering problem, then
σ1v∗(x, t, k∗) is as well. Looking at the asymptotic behavior of σ1Φ∗−,1(x, t, k∗) as x → −∞ for k < Σ+, we have

σ1Φ∗−,1(x, t, k∗) =
−iq−(t)

k− λ−(k)
Φ−,1(x, t, k) , k < Σ+ . (2.21a)

Similarly, looking at the behavior as x → ∞,

σ1Φ∗+,2(x, t, k∗) =
iq∗+(t)

k− λ+(k)
Φ+,2(x, t, k) , k < Σ+ . (2.21b)

Finally, using the Wronskian expressions (2.14) we may determine s∗11(k
∗, t) when k < Σ+:

s∗11(k
∗, t) =

q−(t)
q+(t)

k− λ+(k)
k− λ−(k)

s11(k, t) , k < Σ+ . (2.22)

Second symmetry. The second symmetry corresponds to the involution λ±(k) 7→ −λ±(k), To derive this symmetry,
note that in defining λ±(k), we could have taken the opposite sign of the complex square roots. The integral equations
for the Jost eigenfunctions are formally independent of this choice. However, the resulting eigenfunctions do depend
on the choice of sign. With some abuse of notation, let us temporarily express the dependence of the Jost eigenfunc-
tions on the choice of sign explicitly. From the above discussion we have that if Φ±(x, t, k, λ±(k)) solves the first of
the Lax pair (2.2), then so does Φ̃±(x, t, k) := Φ±(x, t, k,−λ±(k)).

Alternatively, one could introduce the eigenfunctions Φ̃±(x, t, k) without considering the change λ±(k) 7→
−λ±(k) by defining them as the solution of the scattering problem such that

Φ̃±(x, t, k) =
(

I − i
k− λ±(k)

σ3Q±(t)
)

eiλ±(k)xσ3(1 + o(1)) as x → ±∞. (2.23)

Since Φ±(x, t, k) and Φ̃±(x, t, k) are fundamental matrix solutions of the scattering problem for all k ∈ Σ̊±, one can
express one set of solutions in terms of the other via a matrix independent of x. Comparing asymptotics as x → ±∞,
we have:

Φ̃±(x, t, k) = Φ±(x, t, k)
−i

k− λ±(k)
σ3Q±(t) , k ∈ Σ̊± , (2.24a)

Φ±(x, t, k) = Φ̃±(x, t, k)
−i

k + λ±(k)
σ3Q±(t) , k ∈ Σ̊± . (2.24b)

Denoting by S̃(k, t) the scattering matrix for Φ̃±(x, t, k), we have

S(k, t) =
k− λ−(k)
k− λ+(k)

σ3Q+(t)S̃(k, t)Q−1
− (t)σ3 , k ∈ Σ− . (2.25a)

Or, componentwise,

s22(k, t) =
q∗+(t)
q∗−(t)

k− λ−(k)
k− λ+(k)

s̃11(k, t) , s21(k, t) = −
q∗+(t)
q−(t)

k− λ−(k)
k− λ+(k)

s̃12(k, t) , k ∈ Σ− . (2.25b)

As we show next, these relations will be useful when considering the limits of the analytic columns of the Jost
solutions as k approaches the branch cuts from below.

Limits of the eigenfunctions and scattering coefficients from below the branch cuts. Recall that λ±(k) are analytic in
C \ Σ± and discontinuous across their respective branch cuts. In particular, λ±(k) were defined to be continuous as
k→ Σ± from above, namely

λ+
±(k) := lim

ε↓0
λ±(k + iε) = λ±(k) . (2.26)

7



E. Fagerstrom / Physica D 00 (2016) 1–35 8

Conversely, we have the following limits as k approaches Σ± from below:

λ−±(k) := lim
ε↑0

λ±(k + iε) = −λ±(k) , k ∈ Σ− , (2.27a)

whereas
λ−−(k) := lim

ε↑0
λ−(k + iε) = λ−(k) , k ∈ Σo , (2.27b)

λ−+(k) := lim
ε↑0

λ+(k + iε) = −λ+(k) , k ∈ Σo . (2.27c)

Similarly, Φ−,1(x, t, k) is analytic for k ∈ C \ Σ− and is continuous to Σ− from above, and Φ+,2(x, t, k) is analytic
for k ∈ C \ Σ+ and is continuous to Σ+ from above. Conversely, we have the following limits as k → Σ± from
below:

Φ−−,1(x, t, k) := lim
ε↑0

Φ−,1(x, t, k + iε) = Φ̃−,1(x, t, k) , k ∈ Σ− , (2.28a)

Φ−+,2(x, t, k) := lim
ε↑0

Φ+,2(x, t, k + iε) = Φ̃+,2(x, t, k) , k ∈ Σ− , (2.28b)

Φ−−,1(x, t, k) := lim
ε↑0

Φ−,1(x, t, k + iε) = Φ−,1(x, t, k) , k ∈ Σo (2.28c)

Φ−+,2(x, t, k) := lim
ε↑0

Φ+,2(x, t, k + iε) = Φ̃+,2(x, t, k) , k ∈ Σo . (2.28d)

In other words, the above columns of Φ̃±(x, t, k) evaluated on the branch cuts coincide with the limit of the ana-
lytic columns of Φ±(x, t, k) as they approach the branch cuts from below. In particular, using the symmetry rela-
tions (2.24), we have

Φ−−,1(x, t, k) =
iq∗−(t)
k− λ−

Φ−,2(x, t, k) , k ∈ Σ− , (2.29a)

Φ−+,2(x, t, k) =
−iq+(t)
k− λ+

Φ+,1(x, t, k) , k ∈ Σ+ . (2.29b)

Since Φ−,1(x, t, k) and Φ+,2(x, t, k) may be analytically extended in k to C \ Σ+, s11(k, t) may be extended as well
using the Wronskian definitions (2.14). We can then use the above relations to compute the limits of s11(k, t) as k
approaches Σ± from below:

s−11(k, t) := lim
ε↑0

s11(k + iε, t) =
q+(t)
q−(t)

k + λ−(k)
k + λ+(k)

s22(k, t) , k ∈ Σ− (2.30a)

s−11(k, t) := lim
ε↑0

s11(k + iε, t) = − iq+(t)
k + λ+(k)

s21(k, t) , k ∈ Σ̊o . (2.30b)

The limits to the branch cuts from below of µ−,1(x, t, k) and µ+,2(x, t, k), which will be used in the inverse problem,
are obtained from (2.27), (2.28), and (2.29) using the definition (2.10).

2.3. Behavior of the scattering coefficients at the branch points

In the IVP with symmetric NZBC, each of the scattering coefficients has a square root singularity at each of the
two branch points, and at the same time all the scattering coefficients become proportional (since the determinant of
the scattering matrix vanishes in the limit). In the IVP with asymmetric NZBC, as we have seen, there are two sets of
branch points, ±A− and ±A+, and these features are decoupled in general.

We have seen in Section 2.1 that, at k = ±A−, both Φ+(x, t, k) and Φ−(x, t, k) are well defined and the scattering
relation (2.12) still holds, since Φ+(x, t,±A−) is still a fundamental matrix solution. As a consequence, all entries of
the scattering matrix S(k, t) are well defined at k = ±A−. Since 1/d−(k)→ 0 as k→ ±A−, however, the columns
of Φ−(x, t,±A−) are linearly dependent, so det S(±A−, t) = 0, and the scattering coefficients at k = ±A−

8
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are therefore not independent from each other. Specifically, comparing the asymptotics of Φ−,1(x, t,±A−) and
Φ−,2(x, t,±A−) as x → −∞, we have

s11(±A−, t) = ±ie−iα−+2iA2
−ts12(±A−, t) , s21(±A−, t) = ±ie−iα−+2iA2

−ts22(±A−, t) , (2.31)

with α− defined in (1.3). Note also that from (2.17) and (2.31) it follows that

|s11(±A−, t)| = |s21(±A−, t)| , 0 . (2.32)

[This is because, if one of the scattering coefficients were zero, they would all be zero due to their symmetries,
implying Φ−(x, t,±A−) ≡ 0 ∀x ∈ R, in contradiction with (2.8)]. Thus, it follows that

|ρ(±A−, t)| = 1 . (2.33)

Note that, unlike the case of symmetric NZBC, (2.33) is consistent with the fact that s11(±A−, t) is finite, thanks to
the factor d−(k) in (2.20).

The situation is different at k = ±A+, since the Jost eigenfunctions Φ+(x, t, k) are continuous there, but only one
of the columns of Φ−(x, t, k) [namely, Φ−,1(x, t, k)] is defined there. Also recall that only the scattering coefficients
s11(k, t) and s21(k, t) are defined for k ∈ Σ̊o. To compute their limits as k→ ±A+, note first that

d+(k) =
(±A+)1/2

2
√

2(k∓ A+)1/2
+

1
2
+ O(k∓ A+)

1/2 , k→ ±A+ . (2.34)

The Wronskian relations (2.14) then imply that, generically, s11(k, t) and s21(k, t) have square root singularities, since

s11(k, t) = d+(k) (Wr(Φ−,1, Φ+,2)(x, t,±A+) + o(1)) , k→ ±A+ , (2.35a)
s21(k, t) = d+(k) (Wr(Φ+,1, Φ−,1)(x, t,±A+) + o(1)) , k→ ±A+ . (2.35b)

On the other hand, the reflection coefficient ρ(k, t), which is still defined for all k ∈ Σ̊o via (2.15), remains finite as
k→ ±A+. Indeed, comparing the asymptotics of Φ+,1(x, t,±A+) and Φ+,2(x, t,±A+) as x → ∞, we have

lim
k→±A+

ρ(k, t) = ∓ie−iα++2iA2
+t , (2.36)

implying |ρ(±A+, t)| = 1, as with the behavior as k→ ±A−.

2.4. Discrete spectrum

We have seen that values of k ∈ Σ− constitute the continuous spectrum of the scattering problem. Any values
of k < Σ− for which L2 eigenfunctions exist will constitute the discrete spectrum of the scattering problem. Since
the scattering operator is self-adjoint, any discrete eigenvalues must be real, and must therefore lie in the segment
(−A−, A−). In addition, in the development of the inverse problem one must also take into account any so-called
“spectral singularities”, namely, values of k for which the jump matrix of the Riemann-Hilbert problem is singular.
Such values correspond to zeros of one of the scattering coefficients. Next we discuss the possible locations of such
zeros.

Specifically, recall that in the previous sections we have shown that s11(k, t) , 0 ∀k ∈ Σ−, which ensures that
no spectral singularities can arise in this region (similarly to the case of symmetric NZBC, but now also including
the points k = ±A−). For k < Σ−, either or both of λ±(k) are not real, and the solutions of the scattering problem
are in general unbounded over the whole real x-axis. As in the case with ZBC, bounded solutions exist when the
Jost eigenfunction that vanishes as x → −∞ [namely, Φ−,1(x, t, k)] is proportional to an eigenfunction that vanishes
or is bounded as x → ∞; namely, Φ+,1(x, t, k) for k ∈ Σ̊o or Φ+,2(x, t, k) for k ∈ [−A−, A−]. The Wronskian
relations (2.14) imply that this occurs when s21(k, t) = 0 or s11(k, t) = 0, respectively.

9
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Non-existence of discrete eigenvalues in Σ̊o. For k ∈ Σ̊o, one has λ−(k) ∈ iR+ but λ+(k) ∈ R. Thus, even if
Φ−,1(x, t, ko) and Φ+,2(x, t, ko) were proportional for some ko in this region [corresponding to s11(ko) = 0], one
would not obtain a bound state, since Φ+,2(x, t, ko) does not tend to zero as x → ∞. Nonetheless, any such zeros
would need to be taken into account in the inverse problem. Importantly, however, we next show that

s11(k, t)s21(k, t) , 0 ∀k ∈ Σ̊o . (2.37)

To prove (2.37), note first that, for any two solutions u(x, t, k) and v(x, t, k) of the scattering problem,

∂

∂x
(
u† σ3 v

)
= 0 , (2.38)

where † denotes conjugate transpose. Recalling the pointwise symmetry (2.16) we have, ∀k ∈ Σ+, Φ+,1(x, t, k) =
σ1Φ∗+,2(x, t, k) and Φ+,2(x, t, k) = σ1Φ∗+,1(x, t, k). Then, setting u = v = Φ+,1(x, t, ko) or u = v = Φ+,2(x, t, ko)

for arbitrary ko ∈ Σ̊o, using the above symmetries and evaluating u†σ3v as x → ∞ we obtain

Φ†
+,j(x, t, ko)σ3Φ+,j(x, t, ko) = 1/d+(ko) ∀x ∈ R , ko ∈ Σ̊o , j = 1, 2 . (2.39)

Now suppose that s11(ko) = 0 or s21(ko) = 0. The Wronskian relations (2.14) imply, respectively, Φ+,2(x, t, ko) =
coΦ−,1(x, t, ko) or Φ+,1(x, t, ko) = coΦ−,1(x, t, ko) for some non-zero constant co ∈ C. On the other hand,
Φ−,1(x, t, k) → 0 as x → −∞ ∀k ∈ (−A−, A−) ⊃ Σ̊o. Therefore, the left-hand side of (2.39) also tends to 0
as x → −∞, resulting in a contradiction, since 1/d+(ko) , 0 ∀ko ∈ Σ̊o. Thus s11(k, t) and s21(k, t) must both be
non-zero for all k ∈ Σ̊o.

Importantly, it follows from (2.37) that ρ(k, t) and 1/ρ(k, t) [as defined in (2.15)] have no zeros or poles in Σ̊o,
which will ensure that the jump matrix of the RHP is always non-singular. Also, the same result implies that it is
impossible to have ρ(k, t) ≡ 0 for all k ∈ Σ̊o, i.e., no pure reflectionless solutions are possible in the IVP with
asymmetric NZBC. Of course one could still have situations in which ρ(k, t) ≡ 0 for all k ∈ Σ−. Such cases do not
lead to pure soliton solutions, however, because the inverse problem would still have a contribution arising from the
jump across k ∈ Σ̊o.

Discrete eigenvalues in (−A+, A+). As we have shown above, s11(k, t) , 0 ∀k ∈ Σ̊+. Also, as shown in Sec-
tion 2.3, generically it has a square root singularity at k = ±A+. Thus, any zeros of s11(k, t) lie in (−A+, A+),
for which λ±(k) are both purely imaginary. Throughout the rest of this work, we will assume that there are a finite
number of such zeros. A sufficient condition for this to happen is that s11(±A+, t) , 0. [Recall that s11(k, t) is
analytic in a region containing (−A+, A+). If s11(k, t) had an infinite number of zeros in that interval, there would
be an accumulation point of zeros in the closure of the interval. Such an accumulation point cannot be in the inte-
rior of the interval, however, because otherwise s11(k, t) would be identically zero. Thus, the only possibility for
s11(k, t) to have an infinite number of zeros is if either s11(A+, t) or s11(−A+, t) are zero. In the symmetric case,
the situation when s11(k, t) = 0 at either branch point is called a virtual level [8].] Note, however, that the condition
s11(±A+, t) , 0 is sufficient but not necessary to ensure a finite number of zeros. [E.g., all reflectionless solutions of
the symmetric case correspond to virtual levels.]

Denoting by k1, . . . , k J the zeros of s11(k, t) in (−A+, A+), we write λ±,j := λ±(k j). At k = k j, we have

Φ−,1(x, t, k j) = bj(t)Φ+,2(x, t, k j) , j = 1, . . . , J , (2.40)

for some constants bj. In the inverse problem we make use of the norming constants

Cj(t) = bj(t)/s′11(k j, t) , (2.41)

where prime denotes differentiation with respect to k. Note that, as in the case of symmetric NZBC [8], one can show
that any zeros of s11(k, t) are simple, i.e., s11(k j, t) = 0 implies s′11(k j, t) , 0 (see Appendix E for a proof).

Recalling (2.21) produces the relation

bj(t) = −
q∗+(t)
q−(t)

k j − λ−,j

k j − λ+,j
b∗j (t) , j = 1, . . . , J ,

10
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and applying (2.22), we may write

[s′11(k j, t)]∗ =
q−(t)
q+(t)

k j − λ+,j

k j − λ−,j
s′11(k j, t) , j = 1, . . . , J . (2.42)

Thus the norming constants satisfy the constraint

C∗j (t) = −Cj(t)[q+(t)/q∗+(t)] , j = 1, . . . , J .

3. Time evolution

Recall that in the symmetric case (where A+ = A− = qo) the time dependence of the boundary conditions can
be eliminated by performing the rescaling q(x, t) = q̃(x, t) exp(−2iq2

ot) which adds the term +2q2
oq to (1.1). This

has the advantage that one can easily define the Jost eigenfunctions to be simultaneous solutions of both parts of the
Lax pair, which in turn makes the scattering data independent of time and therefore allows one to take into account
the time evolution of the problem in a simpler way (e.g., see [6]).

In the asymmetric case, such a rescaling is not possible. In light of this, the asymptotic behavior for the Jost
solutions was chosen to be fixed and independent of time [apart from a trivial parametric dependence via E±(k, t)].
As a result, Φ−(x, t, k) and Φ+(x, t, k) are not solutions of the second half of the Lax pair. Nevertheless the NLS
equation is the compatibility condition of the Lax pair, so simultaneous solutions Ψ(x, t, k) of both parts of the Lax
pair must exist. Since Φ±(x, t, k) are both fundamental matrix solutions of the scattering problem for all k ∈ Σ̊±, we
can express Ψ(x, t, k) in terms of them via matrices C±(k, t) independent of x. That is,

Ψ(x, t, k) = Φ±(x, t, k)C±(k, t) , k ∈ Σ̊± . (3.1)

Differentiating (3.1) with respect to time, we have

(C±)t = R±C± , k ∈ Σ̊± , (3.2)

with
R±(k, t) = Φ−1

± [TΦ± − (Φ±)t] , k ∈ Σ̊± . (3.3)

Since R±(k, t) and C±(k, t) are independent of x, we may evaluate them in the limit as x → ±∞ via (2.8):

R±(k, t) = lim
x→±∞

Φ−1
±
(
TΦ± − (Φ±)t

)
= i f±(k)σ3 , k ∈ Σ̊± , (3.4)

where f±(k) = A2
± + 2kλ±(k). Conversely, from (3.3) we can obtain the time evolution of the Jost solutions as

(Φ±)t = TΦ± −Φ±R± , k ∈ Σ± . (3.5)

[Note (3.5) can be extended to the corresponding branch points since all quantities involved admit a continuous limit.]
Differentiating the scattering relation (2.12) and using (3.4) we then obtain the evolution equation for the scattering
matrix S:

St = R+S− SR− , k ∈ Σ̊− . (3.6)

Substituting (3.4) into (3.6) yields the time evolution of the scattering coefficients. In particular, we have

s11(k, t) = s11(k, 0) exp[it( f+(k)− f−(k))] , k ∈ Σ̊− , (3.7a)

s21(k, t) = s21(k, 0) exp[−it( f+(k) + f−(k)]] , k ∈ Σ̊− . (3.7b)

As before, (3.7a) may be extended where s11(k, 0) is analytic, while (3.7b) can similarly be extended to k ∈ Σ̊+

using (3.5) and the Wronskian definition (2.14) of s21(k, t). As a result, the reflection coefficient satisfies

ρ(k, t) = ρ(k, 0) exp[−2it f+(k)] , k ∈ Σ+ . (3.8)
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Moreover, (3.7a) also implies that, at the discrete eigenvalues,

s′11(k j, t) = s′11(k j, 0) exp[it( f+(k j)− f−(k j))] , j = 1, . . . , J , (3.9)

where again prime denotes differentiation with respect to k.
It now remains to determine the time evolution of the norming constants. To this end, note that (3.5) yields

(Φ−,1)t = TΦ−,1 − i f−(k)Φ−,1 , (Φ+,2)t = TΦ+,2 + i f+(k)Φ+,2 , k ∈ Σ̊− .

Importantly, since all the terms involved admit analytic continuation off Σ̊−, the above equations remain valid even
for k off Σ̊−. Substituting these into (2.40) and simplifying gives the evolution of the bj(t):

bj(t) = bj(0) exp[−i( f+(k j) + f−(k j))t] , j = 1, . . . , J .

Combining the previous equation with (3.9) gives the evolution of the norming constants:

Cj(t) = Cj(0) exp[−2i f+(k j)t] , j = 1, . . . , J . (3.10)

We emphasize that, unlike the case of ZBC and symmetric NZBC, here s11(k, t) is not independent of time. Note
also that Im[ f±(k)] , 0 for all k < Σ−. This affects the behavior of s11(k, t) as t → ∞. That is, for any fixed value
of k one may have sectors where s11(k, t) → 0 and others where s11(k, t) → ∞ as t → ∞. It is also important to
note, however, that the asymptotic behavior of s11(k, t) as k → ∞ for any fixed value of t is not affected by this time
dependence. This is because

λ±(k) = k−
A2
±

2k
+ O(1/k3) , k→ ∞ ,

which implies
f+(k)− f−(k) = A2

+ − A2
− + 2k(λ+(k)− λ−(k)) = O(1/k2) , k→ ∞ .

As a consequence, the normalization of the RHP (which is obtained by considering the limit k → ∞ with t fixed) is
unaffected by the time dependence. Still, the limit as t → ∞ with k fixed and the limit as k → ∞ with t fixed do
not commute, and one can expect that the non-uniformity of the behavior of s11(k, t) may affect the calculation of the
long time asymptotics of the solutions.

4. Inverse problem

As usual, the inverse problem consists of reconstructing the eigenfunctions and the potential in terms of the
scattering data (i.e., the reflection coefficient, the discrete spectrum, and the norming constants). We first formulate
the inverse problem in terms of an open RHP. We then reduce the RHP to a standard set of linear integral equations
(coupled to an algebraic system in the case of a non-empty discrete spectrum).

4.1. Formulation of the Riemann-Hilbert problem
The jump matrix for the RHP in the asymmetric case has a different expression in each of the regions that compose

the jump, according to the cuts of λ±. More precisely, we need to distinguish the ranges k ∈ Σ− and k ∈ Σo. The
first of these ranges corresponds to the continuous spectrum of the scattering problem, allowing us to take advantage
of the scattering relation in obtaining the jump matrix. Recalling the analyticity properties of the Jost eigenfunctions
and scattering coefficients, we introduce the meromorphic matrix

M(x, t, k) =
(µ−,1(x, t, k)

s11(k, t)
, µ+,2(x, t, k)

)
, k < Σ+ . (4.1)

Note that, unlike the cases of ZBC and symmetric NZBC with a uniformization variable, the jumps of the RHP occur
on an open contour. Therefore, in this case the meromorphic matrix has a unique representation over the whole cut
plane. What is different are the projections of M(x, t, k) to the cut from above/below. Specifically,

M+(x, t, k) := lim
ε↓0

M(x, t, k + iε) =
(µ−,1(x, t, k)

s11(k, t)
, µ+,2(x, t, k)

)
, k ∈ Σ+ , (4.2a)
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whereas

M−(x, t, k) := lim
ε↑0

M(x, t, k + iε) =
(µ−−,1(x, t, k)

s−11(k, t)
, µ−+,2(x, t, k)

)
, k ∈ Σ− , (4.2b)

M−(x, t, k) := lim
ε↑0

M(x, t, k + iε) =
(µ−,1(x, t, k)

s−11(k, t)
, µ−+,2(x, t, k)

)
, k ∈ Σo , (4.2c)

where all of the above limits are assumed to be non-tangential, and where the continuity properties of the various
columns of µ±(x, t, k) in the various ranges of k follow trivially from those of Φ±(x, t, k). In other words, the
projection of M(x, t, k) from above is the same for both ranges of k, but the projection from below changes when
moving from Σ− to Σo because µ−,1(x, t, k) is continuous across Σo, but not across Σ−. Correspondingly, we need
to write conditions that express the jump of M(x, t, k) across the two ranges of k, namely:

M+(x, t, k) = M−(x, t, k)V(x, t, k) , k ∈ Σ+ , (4.3)
with

V(x, t, k) =

{
VΣ−(x, t, k) k ∈ Σ− ,
VΣo (x, t, k) k ∈ Σo .

(4.4)

It should be clear from (4.1) and the properties of the eigenfunctions and scattering coefficients [discussed in Sec-
tion 2.3] that on one hand M(x, t, k) is continuous as k → ±A−, but on the other hand M(x, t, k) has a square root
singularity as k→ ±A+. That is,

M(x, t, k) = O(1) k→ ±A− , (4.5a)

M(x, t, k) =
(

O(k∓ A+)
1/2, O(1)

)
, k→ ±A+ . (4.5b)

We next compute the jump matrices VΣ− and VΣo separately. Importantly, we will show that V(x, t, k) is continuous
both as k→ ±A− and as k→ ±A+.

Jump Matrix for k ∈ Σ−. Recall that this range corresponds to the continuous spectrum of the scattering problem.
Thus we begin by looking at (2.12) columnwise. What is not standard is that only half of the eigenfunctions appearing
in these relations are analytic. We need to modify the above equations to obtain relations between the limits of the
analytic Jost eigenfunctions from above and below the branch cut. Explicitly, we use (2.29) to express Φ−,2(x, t, k)
and Φ+,1(x, t, k) in terms of Φ̃−,1(x, t, k) and Φ̃+,2(x, t, k), so that

Φ−,1(x, t, k) = s11(k, t)
iq∗+(t)

k + λ+(k)
Φ̃+,2(x, t, k) + s21(k, t)Φ+,2(x, t, k) , k ∈ Σ− ,

− iq−(t)
k + λ−(k)

Φ̃−,1(x, t, k) = s12(k, t)
iq∗+(t)

k + λ+(k)
Φ̃+,2(x, t, k) + s22(k, t)Φ+,2(x, t, k) , k ∈ Σ− .

Rearranging, using (2.28) and putting in matrix form, we have(Φ−,1(x, t, k)
s11(k, t)

, Φ+,2(x, t, k)
)
=
(Φ−−,1(x, t, k)

s−11(k, t)
, Φ−+,2(x, t, k)

) 1
i(k + λ+(k))

σ3Q+(t)Vρ(k, t) , (4.7)

where

Vρ(k, t) =
(

1− |ρ(k, t)|2 −ρ∗(k, t)
ρ(k, t) 1

)
, k ∈ Σ− , (4.8)

and where we used the fact that ρ̄(k, t) = ρ∗(k, t) for k ∈ Σ− [cf. (2.18)]. Writing the jump condition in terms of the
modified eigenfunctions, we obtain (4.3) with (4.4) and

VΣ−(x, t, k) =
(
E+(k, t)− I

) (e−iλ+(k)x 0
0 eiλ−(k)x

)
Vρ(k, t)

(
eiλ−(k)x 0

0 e−iλ+(k)x

)
, (4.9)

with E+(k, t) defined in (2.7), and where we used the fact that

−iσ3Q+(t)/(k + λ+) = E+(k, t)− I . (4.10)
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Jump matrix for k ∈ Σo. We wish to write Φ−,1(x, t, k)/s11(k, t) and Φ+,2(x, t, k) in terms of Φ−,1(x, t, k)/s−11(k, t)
and Φ̃+,2(x, t, k) (note that Φ−,1(x, t, k) is analytic across Σo). Using (2.30b) gives

Φ−,1(x, t, k)
s11(k, t)

=
Φ−,1(x, t, k)

s−11(k, t)
q+(t)

i(k + λ+(k))
ρ(k, t) , k ∈ Σ̊o .

To determine the other entries of the jump matrix, we use the first column of the scattering relation, (2.12), extended
to Σo. Applying (2.29b) and rearranging, we again obtain (4.7), but where now Φ−−,1(x, t, k) = Φ−,1(x, t, k), and

Vρ(k, t) =
(

0 −1/ρ(k, t)
ρ(k, t) 1

)
, k ∈ Σo . (4.11)

As before, we rewrite the jump condition in terms of the modified eigenfunctions and consider the limits as k to Σo
from below, obtaining (4.3) with

VΣo (x, t, k) =
(
E+(k, t)− I

) (e−iλ+(k)x 0
0 e−iλ−(k)x

)
Vρ(k, t)

(
eiλ−(k)x 0

0 e−iλ+(k)x

)
. (4.12)

One could write an expression for Vρ(k, t) that is valid over the whole range of values of k as

Vρ(k, t) =
(

1− ρ(k, t)ρ̄(k, t) −ρ̄(k, t)
ρ(k, t) 1

)
, k ∈ Σ+ , (4.13)

by formally defining
ρ̄(k, t) = 1/ρ(k, t) , k ∈ Σo . (4.14)

Again, recall the symmetry relation (2.18) for the reflection coefficients, namely ρ̄(k, t) = ρ∗(k, t) for k ∈ Σ−.
Equation (4.14) provides a relation that supplements (2.18) in the region k ∈ Σo. Moreover, since |ρ(±A−, t)| = 1
by (2.33), then at k = ±A− we have ρ∗(±A−, t) = 1/ρ(±A−, t). Therefore, the extended ρ̄(k, t) thus defined
is continuous at k = ±A−. In fact, recalling (2.36) we have that ρ(k, t) and ρ̄(k, t) [and therefore Vρ(k, t)] are
continuous for all k ∈ Σ+, including at the four branch points k = ±A±.

Summarizing, the jump of M(x, t, k) across Σ+ is given by (4.3), with VΣ−(x, t, k) as in (4.9), and VΣo (x, t, k) as
in (4.12), and with Vρ(k, t) given by (4.13). We can then write the RHP problem for M(x, t, k) as

M+(x, t, k) = M−(x, t, k)
(
E+(k, t)− I

)
[I −Vo(x, t, k)] , k ∈ Σ+ (4.15a)

where

Vo(x, t, k) =



(
1− e−i(λ+(k)−λ−(k))x(1− |ρ(k, t)|2) e−2iλ+(k)xρ∗(k, t)

−e2iλ−(k)xρ(k, t) 1− e−i(λ+(k)−λ−(k))x

)
, k ∈ Σ− ,

(
1 e−2iλ+(k)x/ρ(k, t)

−ρ(k, t) 1− e−i(λ+(k)+λ−(k))x

)
, k ∈ Σo .

(4.15b)

4.2. Residue conditions, solution of the RHP and reconstruction formula
To complete the formulation of the RHP, one must provide a normalization condition as k → ∞, as well as

residue conditions on the discrete spectrum. In the RHP for the case with ZBC, M(x, t, k) → I as k → ∞. In that
case, one subtracts both the contributions from the discrete spectrum and the asymptotic behavior and applies Cauchy
projectors. In our case, however, the asympotic behaviors of M(x, t, k) as k→ ∞ in the two half planes do not match.
The main reason for this mismatch is that

λ−(k) =


k−

A2
−

2k
+ o(1/k), k→ ∞ ∧ Im k > 0 ,

−k +
A2
−

2k
+ o(1/k), k→ ∞ ∧ Im k < 0 .

(4.16)
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As a result, (see Appendix D for details):

M(x, t, k) =

I + O(1/k) , k→ ∞ ∧ Im k > 0 ,

− i
k + λ+(k)

σ3Q+(t) + O(1) , k→ ∞ ∧ Im k < 0 .
(4.17)

[Or equivalently M(x, t, k) = E+(k, t) + O(1) as k → ∞ in the LHP, cf. (4.10).] To overcome this problem, it is
convenient to first consider a toy RHP for a matrix M∗(x, t, k) with the simpler jump condition

M+
∗ (x, t, k) = M−∗ (x, t, k)(E+(k, t)− I) , k ∈ Σ+ . (4.18)

Equation (4.18) expresses the jump that one would obtain in the symmetric NZBC case with reflectionless potential.
In this case, there is no “middle” region Σo. [See (A.19) for details.] By inspection, one sees that a solution to this
problem is given by M∗(x, t, k) = E+(k, t), namely

E+(k, t) = E−+(k, t)
(
E+(k, t)− I

)
. (4.19)

Moreover, the asymptotics of M(x, t, k) given in (4.17) are the same as those of E+(k, t).
With these observations in mind, we perform a change of variable on our original RHP by introducing the new

matrix N(x, t, k) defined as
M(x, t, k) = N(x, t, k)E+(k, t) . (4.20)

Thus N(x, t, k) = I + O(1/k) as k → ∞ in both the upper and lower half planes. The transformation (4.20) results
in the new jump condition

N+(x, t, k) = N−(x, t, k)Ṽ(x, t, k) , k ∈ Σ+ , (4.21)

where Ṽ(x, t, k) = E−+(k, t)V(x, t, k)E−1
+ (k, t) (recall that E+

±(k, t) = E±(k, t) for all k ∈ R). Taking into account
(4.19), (4.3) and (4.15) we then find

Ṽ(x, t, k) = E+(k, t)
(

I −Vo(x, t, k)
)
E−1
+ (k, t) , k ∈ Σ+ (4.22)

where Vo(x, t, k) is given by (4.15). Note that (4.5) imply N(x, t, k) = O(1) as k → ±A− and N(x, t, k) =
O(k∓ A+)1/2 as k→ ±A+.

As mentioned above, we must also specify appropriate residue conditions which provide the contribution from the
discrete spectrum. From (2.40) we have µ−,1(x, t, k j) = bj(t)µ+,2(x, t, k j) ei(λ−,j+λ+,j)x for j = 1, . . . , J. Since the
zeros of s11(k, t) are simple (cf. Appendix E),

Res
k=kj

[
µ−,1(x, t, k)

s11(k, t)

]
=

µ−,1(x, t, k j)

s′11(k j, t)
= Cj(t)e

i(λ−,j+λ+,j)xµ+,2(x, t, k j) , j = 1, . . . , J ,

where Cj(t) is the norming constant associated with the eigenvalue k j and λ±,j = λ±(k j) [as defined in Section 2.4].
Thus,

Res
k=kj

[M(x, t, k)] = Cj(t)e
i(λ−,j+λ+,j)x(M2(x, t, k j) , 0

)
, j = 1, . . . , J . (4.23)

Moreover, since E+(k, t) is analytic for k < Σ+ and invertible for all k , ±A+, we have

Res
k=kj

[N(x, t, k)] = Res
k=kj

[M(x, t, k)]E−1
+ (k j, t) = Cj(t)e

i(λ−,j+λ+,j)x(M2(x, t, k j) , 0
)
E−1
+ (k j, t) , j = 1, . . . , J .

(4.24)
Explicitly, the residue conditions for N(x, t, k) are given by (1.6).

To formally solve the RHP for N(x, t, k), we subtract the asymptotic behavior as k→ ∞ and the residues obtained
from the discrete spectrum; thus we consider the matrix N(x, t, k)− I − ∑J

j=1 Resk=kj
[N(x, t, k)]/(k− k j), which

is analytic off Σ+ and goes to zero as k→ ∞ in both half planes. The solution of this RHP is then formally given by

N(x, t, k) = I +
J

∑
j=1

1
k− k j

Resk=kj
[N(x, t, k)]− 1

2πi

∫
Σ+

[N−(I − Ṽ)](x, t, ζ)

ζ − k
dζ , k ∈ C \ Σ+ . (4.25)
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Recalling again (4.19), (4.20) and (4.22), straightforward algebra yields the following expression for M(x, t, k):

M(x, t, k) = E+(k, t) +
J

∑
j=1

1
k− k j

Resk=kj
[M(x, t, k)]E−1

+ (k j, t)E+(k, t)

− 1
2πi

∫
Σ+

[M−
(
E+ − I

)
VoE−1

+ ](x, t, ζ)

ζ − k
E+(k, t)dζ , k ∈ C \ Σ+ , (4.26)

where (4.24) was used to express Resk=kj
N(x, t, k) in terms of Resk=kj

M(x, t, k). In order to close the system and
to evaluate the reconstruction formula we need to supplement (4.26) with appropriate conditions for these residues.
Even though the second column of M(x, t, k) is analytic at k = k j, the second column of N(x, t, k) is not, since
multiplication by E+(k, t) mixes the columns, as seen from (4.24). Thus, some care must be taken in evaluating the
above expression. Nonetheless, taking into account (4.24) and evaluating the limit of the second column of (4.26) as
k→ k j yields(

1− iq+
2λ2

+,j
Cj(t)e

i(λ+,j+λ−,j)x
)

M2(x, t, k j) =

(
I − 1

2πi

∫
Σ+

[M−
(
E+ − I

)
VoE−1

+ ](x, t, ζ)

ζ − k j
dζ

+
J

∑′

j′=1

1
k j − k j′

Cj′(t)e
i(λ+,j′+λ−,j′ )x(M2(x, t, k j′) , 0

)
E−1
+ (k j′ , t)

)
E+,2(k j, t) , j = 1, . . . , J , (4.27)

where the prime in the summation symbol denotes that the term j′ = j is absent. As usual (4.26) and (4.27) [together
with (4.24)] comprise a mixed linear system of algebraic-integral equations that provides the solution of the RHP.

We can now derive the reconstruction formula for the potential by looking at the asymptotic behavior of the
solution of the RHP as k → ∞. Indeed, the asymptotic behavior of the eigenfunctions computed from the direct
problem [see Appendix D, specifically (D.2)], together with (4.1), yields

q(x, t) = 2i lim
k→∞

Im k>0

kM12(x, t, k) . (4.28)

Moreover, from (4.26) we have

M(x, t, k) = E+(k, t) +
1
k

J

∑
j=1

Cj(t)e
i(λ−,j+λ+,j)x(M2(x, t, k j) , 0

)
E−1
+ (k j, t)

+
1

2πik

∫
Σ+

[M−
(
E+ − I

)
VoE−1

+ ](x, t, ζ)dζ + O(1/k2) , k→ ∞ ∧ Im k > 0 . (4.29)

Computing the 1, 2 component of (4.29) and using (4.28) then yields the reconstruction formula for the solution of
the defocusing NLS equation with asymmetric NZBC:

q(x, t) = q+(t)
(

1−
J

∑
j=1

Cj(t)
λ+,j

ei(λ−,j+λ+,j)x M12(x, t, k j)

)

+
1

2πi

∫
Σ−∪Σo

1
λ+(k)

[(
iq+(t)

k + λ+(k)
Vo,21(x, t, k) + Vo,22(x, t, k)

)
q+(t)M−11(x, t, k)

−
(

iq+(t)
k + λ+(k)

Vo,11(x, t, k) + Vo,12(x, t, k)
)

q∗+(t)M−12(x, t, k)
]

dk , (4.30)

where the entries of Vo(x, t, k) for k ∈ Σ− and k ∈ Σo are given by (4.15).
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5. Discussion and final remarks

As is always the case, the IST has been formulated under the assumption of existence (i.e., assuming the solution
q(x, t) of the IVP for the defocusing NLS equation with the given IC and asymmetric NZBC exists and satisfies the
same regularity conditions as the IC). On the other hand, as usual one can then look at the representation formula
as a definition of q(x, t), and use it to prove that the function thus defined is the unique solution of the IVP in some
appropriate functional space. The precise characterization of the admissible functional class, however, as well as that
of the regularity properties of the scattering data and the issue of existence and uniqueness of the solution of the
inverse problem, is left for future investigation. In this respect we should remark that this is a difficult problem even
for the focusing NLS with ZBC [36, 37].

We should also mention that the formalism presented in this work could be extended in a relatively straightforward
way to the case of BC which include non-zero and unequal asymptotic carriers, namely

q(x, t) = A± eiα±−iξ±x−i(ξ2
±+2A2

±)t + o(1) , x → ±∞ . (5.1)

The main difference in that case is that, when the NZBC (5.1) are given, the Jost eigenfunctions Φ±(x, t, k) are defined
over Σ± = (−∞, ξ± − A±] ∪ [ξ± + A±, ∞), respectively. It is then clear that, depending on the relative values of
A± and ξ±, the ranges Σ± are not necessarily simply nested as in this work, but could also have more complicated
overlap. Specifically, the “discrete spectrum” region R \ (Σ+ ∪ Σ−) could be empty, while one could have a non-
empty second “dispersive shock wave” region Σ− \Σ+. The jump matrix in that case should be constructed using the
opposite procedure as in the region Σo; namely, by expressing the analytic column of Φ+ as a linear combination of
the columns of Φ− and using the symmetries.

We expect that the IST formalism developed in this work will be instrumental for the calculation of the long-time
asymptotic behavior of the solutions. Recall that, in the focusing case with ZBC, the problem was first studied in
[19, 20] and then later revisited using the Deift-Zhou nonlinear steepest descent method [21, 22]. (See also [23] for
the problem in the presence of real spectral singularities). In the case of symmetric NZBC, the long-time asymptotic
behavior was first studied by [24], and was later revisited and made more rigorous in [25, 26] using the Deift-Zhou
method. We should mention that the special case of a pure step IC was recently studied in [13], and that similar meth-
ods were used in [14] to study the short-time asymptotic behavior in the defocusing case with ZBC and discontinuous
IC. For the focusing NLS equation with NZBC, the general theory of inverse scattering was developed in [27, 11],
and the long-time asymptotics in the symmetric case and the case of one-sided step IC were studied respectively in
[15] and [16]. We should also mention that the IST for the focusing NLS equation with the same kind of asymmetric
NZBC considered in this work was recently studied in [28].

The results of this work also open up a number of interesting problems. Among them, one is the characterization of
the scattering problem for specific classes of initial conditions, along the lines of what was done in [29] for the focusing
NLS with ZBC, and in [30] and [6] for the focusing and defocusing cases with symmetric NZBC, respectively.
Another interesting problem is whether there exist potentials with an infinite number of discrete eigenvalues, i.e., zeros
for the analytic scattering coefficient, accumulating at one of the branch points. In this respect, recall that scattering
problem for the Korteweg-deVries equation (which is the time-independent Schrödinger equation) always has a finite
number of discrete eigenvalues, and that, for the defocusing NLS with symmetric NZBC, sufficient conditions can be
formulated on the potential that guarantee that at most a finite number of zeros are present [7]. On the other hand,
potentials with an infinite number of zeros are known to be allowed for the focusing NLS equation with ZBC [22].

A further problem is the generalization of these results to the Manakov system (i.e., the two-component vector
NLS equation) with asymmetric NZBC. Here we note that, while the IST for the Manakov system with ZBC was
formulated in 1974 [31], and can be generalized to an arbitrary number of components in a straightforward way [32],
the case of NZBC is much more challenging, due to the defect of analyticity of some of the Jost eigenfunctions.
The IST for the defocusing Manakov system with symmetric NZBC was finally formulated in [18] and rigorously
revisited in [9] for the symmetric defocusing case, while the IST for the focusing Manakov system with NZBC was
only recently formulated in [33]. On the other hand, the generalization to larger number of components in the case of
NZBC is even more challenging due to the corresponding increase of the analyticity defect and the degeneracy of the
scattering eigenvalues [34, 35]. One could therefore expect that the development of the IST for coupled NLS systems
with asymmetric NZBC will require significant further work.
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In conclusion, we should reiterate that even though in this work we have taken the branch cuts for the eigenvalues
λ±(k) along the half lines Σ± = (−∞,−A±] ∪ [A±, ∞) (i.e., “outside”), one can equivalently formulate the IST
when the branch cut for the eigenvalues is taken along the segments [−A±, A±] (i.e., “inside”) instead. For compar-
ison purposes, in Appendix B we present the formulation of the IST in the symmetric case with the branch cut inside.
Each choice has its advantages and disadvantages. The analyticity properties of the Jost eigenfunctions are more
standard when the branch cut inside, since half of the columns are analytic in the upper half plane and the other half
in the lower half plane. This simplifies the formulation of the inverse problem. On the other hand, with the branch cut
inside, the RHP acquires an additional jump along the segment [−A±, A±]. This introduces the further complication
that the discrete eigenvalues are located along this jump. Thus, no choice seems to be clearly preferable with regard
to the pure IST. At the same time, choosing the branch cut inside seems to be more convenient in the study of the
long-time asymptotics [15, 13].

Acknowledgments

We thank Mark Ablowitz, David Trubatch, and Martin Klaus for insightful discussions related to this project, as
well as the AIM for its hospitality during the SQuaRE program. We also acknowledge the anonymous reviewers,
whose comments helped us improve the presentation of our work. This work was partially supported by the National
Science Foundation under grants DMS-1311847 and DMS-1311883.

Appendix A. IVP for symmetric NZBC without uniformization

It is instructive to compare the formulation of the IST in the asymmetric case to the IST without uniformization
in the case of symmetric NZBC, namely A+ = A− = qo , 0. In the symmetric case it is convenient to perform a
change of variables to remove the time dependence of the BC, which can be done by introducing the rescaled field
q(x, t) = q̃(x, t) e−2iq2

o t which satisfies a modified NLS equation

iq̃t + q̃xx + 2(q2
o − |q̃|2)q̃ = 0 . (A.1)

In what follows, we will omit the tildes as well as the term “modified” for brevity. Equation (A.1) is the compatibility
condition of the Lax pair (2.1) where T(x, t, k) is replaced by

T(x, t, k) = −2ik2σ3 + iσ3Qx(x, t) + i(q2
o − |q|2(x, t))σ3 + 2kQ(x, t) . (A.2)

The NZBC (1.3) then simplify to q(x, t) → q± as x → ±∞, with q± independent of time. (Also, without loss
of generality we can take q± = qoe±iα.) As a result, by defining the Jost solutions to be simultaneous solutions of
both parts of the Lax pair, all of the scattering data will be time-independent. However, because of this change, the
framework in this section is not merely a reduction λ± → λ and Σ± → Σ. The formulation of the IST that follows
can also be compared to the classical formulation of the IST for the case of symmetric NZBC, as presented in [8] (see
also [6, 7]).

A.1. Direct problem
Jost eigenfunctions and scattering matrix. As x → ±∞, the solutions of the Lax pair tend asymptotically to the
solutions of

Φx = X±Φ , Φt = T±Φ ,

X± = −ikσ3 + Q± , T± = −2ik2σ3 + 2kQ± .

The eigenvalues of the x-part and t-part are respectively ±iλ, ±2ikλ, where λ2 = k2 − q2
o . As before, we take the

branch cut on Σ = (−∞,−qo] ∪ [qo, ∞), which coincides with the continuous spectrum. We define λ as a single-
valued function of k ∈ C, such that λ(k) is continuous as k approaches the branch cut from above. A convenient
choice for the eigenvector matrices is

E±(k) = I − i
k + λ(k)

σ3Q± , (A.3)
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where we emphasize that here Q± are independent of time. For all k ∈ Σ, one can then introduce two fundamental
matrix solutions Φ±(x, t, k) to both parts of the Lax pair such that

Φ±(x, t, k) = E±(k) e−iθ(x,t,k)σ3(I + o(1)) , x → ±∞ ,

with
θ(x, t, k) = λx + 2kλt , d(k) = 1/ det E±(k) = [k + λ(k)]/[2λ(k)] . (A.4)

Also, we introduce the modified eigenfunctions as

µ±(x, t, k) = Φ±(x, t, k) eiθ(x,t,k)σ3 . (A.5)

As before, µ±(x, t, k) are rigorously defined in terms of integral equations:

µ−(x, t, k) = E−(k) +
x∫
−∞

E−(k) e−iλ(k)(x−y)σ3 E−1
− (k)∆Q−(y, t) µ−(y, t, k) eiλ(k)(x−y)σ3 dy , (A.6a)

µ+(x, t, k) = E+(k)−
∞∫
x

E+(k) e−iλ(k)(x−y)σ3 E−1
+ (k)∆Q+(y, t) µ+(y, t, k) eiλ(k)(x−y)σ3 dy . (A.6b)

where ∆Q± = Q−Q±. Like in the case of asymmetric NZBC, if (1+ | · |)(q(·, t)− q±) ∈ L1(R±) for all t ∈ R+,
a Neumann series expansion for the above integral equations can be used to rigorously define the eigenfunctions and
the analytic continuation of the appropriate columns off Σ, as well as to determine the asymptotics of the eigenfunc-
tions as k→ ∞. In particular, (when the branch cut is outside), µ−,1 and µ+,2 are analytic in the whole complex plane
except the branch cut.

Note that det Φ±(x, t, k) = det µ±(x, t, k) = det E±(k) = 1/d(k), independent of x and t, which only vanishes
when λ = 0 (i.e., at the branch points k = ±qo). Thus, for all k ∈ R \ [−qo, qo], Φ±(x, t, k) are fundamental matrix
solutions of both parts of the Lax pair (2.1), and one can define the scattering matrix S(k) by

Φ−(x, t, k) = Φ+(x, t, k) S(k), k ∈ Σ . (A.7)

Since Φ±(x, t, k) are simultaneous solutions of both parts of the Lax pair, the scattering matrix S(k) is independent
of both space and time. Moreover, det S(k) = 1. The entries of the scattering matrix may be written in terms of
Wronskians as

s11(k) = d(k)Wr(Φ−,1, Φ+,2)(x, t, k) , s12(k) = d(k)Wr(Φ−,2, Φ+,2)(x, t, k) , (A.8a)
s21(k) = d(k)Wr(Φ+,1, Φ−,1)(x, t, k) , s22(k) = d(k)Wr(Φ+,1, Φ−,1)(x, t, k) . (A.8b)

The reflection coefficients appearing in the inverse problem are ρ(k) = s21(k)/s11(k) and ρ̄(k) = s12(k)/s22(k).
The scattering coefficients then inherit analyticity properties from the eigenfunctions via the Wronskian relations (A.8).
In particular, s11(k) is analytic in C \ Σ.

Symmetries. As in the case of ZBC and asymmetric NZBC, if v(x, t, k) solves the scattering problem, then so does
σ1v∗(x, t, k∗)σ1. For k ∈ Σ, s11(k) = s∗22(k) and s21(k) = s∗12(k). Thus, since det S(k) = 1, we have that
|s11(k)|2 ≥ 1 on Σ, and thus s11(k) has no zeros there.

Moreover, for k < Σ, we have the following:

σ1Φ∗−,1(x, t, k∗) =
−iq−

k− λ(k)
Φ−,1(x, t, k) , σ1Φ∗+,2(x, t, k∗) =

iq∗+
k− λ(k)

Φ+,2(x, t, k) , (A.9a)

s∗11(k
∗) = (q−/q+) s11(k) . (A.9b)

The above relations are derived using similar arguments as in the asymmetric case.
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To derive the second symmetry, for k ∈ Σ we introduce another set of eigenfunctions as

Φ̃±(x, t, k) = [I − i
k− λ(k)

σ3Q±] eiθ(x,t,k)σ3(1 + o(1)) as x → ±∞. (A.10)

We now have two fundamental matrix solutions to the Lax pair. Thus they are related by a matrix independent of x
and t, which we may determine by letting x → ±∞:

Φ̃±(x, t, k) = Φ±(x, t, k)[− i
k− λ(k)

σ3Q±] , Φ±(x, t, k) = Φ̃±(x, t, k)[− i
k + λ(k)

σ3Q±] , k ∈ Σ .

(A.11)
Defining S̃(k, λ(k)) = S(k,−λ(k)), we have

s22(k) = (q−/q+) s̃11(k) , s21(k) = −(q∗+/q−) s̃12(k) . (A.12)

Limits of the eigenfunctions and scattering coefficients from below the branch cut. Recall λ(k) is discontinuous across
the branch cut, and specifically, λ 7→ −λ across Σ. Φ−,1(x, t, k) and Φ+,2(x, t, k) are analytic for k ∈ C \ Σ and are
continuous to the branch cut from above. Then as k→ Σ from above or below, we have

Φ−−,1(x, t, k) := lim
ε↑0

Φ−,1(x, t, k + iε) = Φ̃−,1(x, t, k) , k ∈ Σ , (A.13a)

Φ−+,2(x, t, k) := lim
ε↑0

Φ+,2(x, t, k + iε) = Φ̃+,2(x, t, k) , k ∈ Σ . (A.13b)

We again use the tilde to denote both the alternate eigenfunctions and the limits of a function as it approaches the
branch cut from below. Comparing with (A.11), we find

Φ̃−,1(x, t, k) =
i

k− λ
q∗−Φ−,2(x, t, k) , Φ̃+,2(x, t, k) = − i

k− λ
q+Φ+,1(x, t, k) , k ∈ Σ . (A.14)

Since s11(k) may be expressed as a Wronskian of functions which admit analytic continuation, we may determine its
limit as k→ Σ from below:

s−11(k) := lim
ε↑0

s11(k + iε) =
k− λ

−2λ
Wr(Φ̃−,1, Φ̃+,2) =

q+
q−

s22(k) = s̃11(k) , k ∈ Σ . (A.15)

Finally, we observe that limε↑0 θ(k + iε) = −θ(k), so

µ−−,1(x, t, k) = lim
ε↑0

µ−,1(x, t, k + iε) = Φ̃−,1(x, t, k) e−iθ(x,t,k) , (A.16a)

µ−+,2(x, t, k) = lim
ε↑0

µ+,2(x, t, k + iε) = Φ̃+,2(x, t, k) eiθ(x,t,k) . (A.16b)

Note also that all eigenfunctions remain finite at the branch points but, for generic potentials, all scattering coefficients
have square root singularities as k→ ±qo, and they all become proportional to each other in this limit.

Discrete eigenvalues. The discrete spectrum is the set of values k j ∈ C for which s11(k j) = 0. Since the scattering
operator is self-adjoint, its eigenvalues lie on the real k-axis. On the other hand, the first symmetry implies s11(k)
has no zeros for k ∈ Σ, so the discrete spectrum must be contained in the segment (−q0, q0). The zeros of s11(k)
are simple (see [8] and Appendix E), and we assume there are only a finite number J of them; we write λj for λ(k j).
Using the Wronskian expressions (A.8), we may write

Φ−,1(x, t, k j) = bjΦ+,2(x, t, k j) , j = 1, . . . , J , (A.17)

for some constants bj. The norming constants are Cj = bj/[s′11(k j)] at each of the eigenvalues k j. Starting from the
relation (A.17), and using the properties of the first symmetry yields

bj = −(q∗+/q−) b∗j , [s′11(k j)]
∗ = (q−/q+) s′11(k j) , C∗j = −(q+/q∗+)Cj . (A.18)
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A.2. Inverse problem
As usual, we begin by looking at (A.7) columnwise. We then rewrite these equations to obtain a relation between

the limits of the analytic Jost eigenfunctions and analytic scattering coefficients from above and below the branch cut
(similarly to what was done for k ∈ Σ− in the asymmetric NZBC). Explicitly, after rearranging terms, we obtain the
matrix jump condition

M+(x, t, k) = M−(x, t, k)(E+(k)− I)[I −Vo(x, t, k)] , k ∈ Σ , (A.19)

where the analogue of (4.10) was used [namely, E+(k)− I = −iσ3Q+/(k + λ(k))], with

M(x, t, k) =
(

µ−,1(x, t, k)
s11(k)

, µ+,2(x, t, k)
)

, k ∈ C \ Σ , (A.20)

implying M+(x, t, k) = M(x, t, k) and where M−(x, t, k) is obtained from (A.14), (A.15) and (A.16), and where

Vo(x, t, k) = e−iθ(x,t,k)σ3

(
|ρ(k)|2 ρ̄(k)
−ρ(k) 0

)
eiθ(x,t,k)σ3 , k ∈ Σ . (A.21)

Similarly to the problem with asymmetric NZBC, the eigenfunctions are continuous as k → ±qo (under the same
regularity assumptions for the potential), but the scattering coefficients [and therefore M(x, t, k)] have square root
singularities in those limits. In particular,

M(x, t, k) =
(
O(k∓ qo)

1/2, O(1)
)

, k→ ±qo . (A.22)

On the other hand, the reflection coefficients [and therefore Vo(x, t, k)] remain finite as k → ±qo, and in particular,
|ρ(±qo)| = 1. As in the problem with asymmetric NZBC, the asympotics of M(x, t, k) as k→ ∞ in each half plane
do not match, since

M(x, t, k) =

I + O(1/k) , k→ ∞ ∧ Im k > 0 ,

− i
k + λ

σ3Q+ + O(1) , k→ ∞ ∧ Im k < 0 .

To circumvent this problem, we again consider a toy RHP with the jump condition

M+
o (x, t, k) = M−o (x, t, k)[−i/(k + λ(k))]σ3Q+ ,

(which is the RHP obtained from a reflectionless potential with no discrete spectrum). By inspection, a solution to
this problem is given by Mo(x, t, k) = E+(k). That is, recalling that λ(k) [and therefore E+(k)] is continuous from
above the cut,

E+(k) = E−+(k)(E+(k)− I) , k ∈ Σ . (A.23)

With this in mind, we define N(x, t, k) as

M(x, t, k) = N(x, t, k)E+(k) , k ∈ C \ Σ . (A.24)

Substituting into (A.19), we obtain the jump condition N+ = N−E−+( E+ − I )( I − Vo )E−1
+ for k ∈ Σ, or equiva-

lently, using (A.23),

N+(x, t, k) = N−(x, t, k)(I − E+(k)Vo(x, t, k)E−1
+ (k)) , k ∈ Σ , (A.25a)

together with the standard asymptotics
N(x, t, k) = I + O(1/k) , k→ ∞ . (A.25b)

Thus, the asymptotics in each half-plane now match, which will allow us to subtract the asymptotic behavior at
infinity and apply Cauchy projectors as in the case of ZBC and symmetric NZBC. Before we do so, however, we need
to consider the contribution from the discrete spectrum. From (A.17) we have

µ−,1(x, t, k j) = bjµ+,2(x, t, k j) e2iθ(x,t,kj) .
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The zeros of s11(k) are simple, so

Res
k=kj

[
µ−,1(x, t, k)

s11(k)

]
=

µ−,1(x, t, k j)

s′11(k j)
= Cjµ+,2(x, t, k j)e

2iθ(x,t,kj) ,

where Cj is the norming constant (A.18) associated with eigenvalue k j. Since E+(k) is analytic off the cut,

Resk=kj
[M(x, t, k)] =

(
µ−,1(x, t, k j)

s′11(k j)
, 0
)
= Resk=kj

[N(x, t, k)] E+(k j) .

Thus we consider N(x, t, k)− I − ∑J
j=1 Resk=kj

[N(x, t, k)]/(k− k j), which is analytic for k < Σ, and which goes
to 0 as k→ ∞ in both half planes. After some algebra, the solution of this RHP is given by

N(x, t, k) = I +
J

∑
j=1

1
k− k j

Resk=kj
[N(x, t, k)]− 1

2πi

∫
Σ

(
N−E+ Vo E−1

+

)
(x, t, ζ)

ζ − k
dζ ,

and we have the solution of the original RHP (A.19)

M(x, t, k) =

[
I +

J

∑
j=1

1
k− k j

Resk=kj
[N(x, t, k)]− 1

2πi

∫
Σ

(
M−(E+ − I)VoE−1

+

)
(x, t, ζ)

ζ − k
dζ

]
E+(k) . (A.26)

Taking the limit of the second column as k→ k j, we obtain the algebraic relations that complete the linear system for
the solution of the RHP:(

1− iq+
2λ2

j
Cj e2iθ(x,t,kj)

)
M2(x, t, k j) =

(
I − 1

2πi

∫
Σ

[M−
(
E+ − I

)
VoE−1

+ ](x, t, k)
k− k j

dk

+
J

∑′

j′=1

1
k j − k j′

Cj′e
2iθ(x,t,kj)

(
M2(x, t, k j′) , 0

)
E−1
+ (k j′)

)
E+,2(k j) , j = 1, . . . , J , (A.27)

where λj = λ(k j) for j = 1, . . . , J.

Reconstruction formula. As in the asymmetric case, q(x, t) is obtained from M(x, t, k) via (4.28). The asymptotic
behavior of (A.26) as k→ ∞ in the UHP is

M(x, t, k) = E+(k) +
1
k

J

∑
j=1

Cje
2iθ(x,t,kj)

(
M2(x, t, k j) , 0

)
E−1
+ (k j)

+
1

2πik

∫
Σ

[M−(E+ − I)VoE−1
+ ](x, t, ζ)dζ + O(1/k2) .

Computing the 1, 2 component of the above expression [using similar steps as in the asymmetric case] then yields the
reconstruction formula for the solution of the defocusing NLS equation:

q(x, t) = q+

(
1−

J

∑
j=1

Cj

λj
e2iθ(x,t,kj)M12(x, t, k j)

)
+

1
2πi

∫
Σ

1
λ(k)

[
iq2

+

k + λ(k)
Vo,21(x, t, k) M−11(x, t, k)

− q∗+

(
iq+

k + λ(k)
Vo,11(x, t, k) + Vo,12(x, t, k)

)
M−12(x, t, k)

]
dk . (A.28)

Alternatively, q(x, t) can be expressed in terms of the Jost eigenfunctions. From the definition of M(x, t, k), the limits
from below the cut and the symmetries one can check that

M−(x, t, k) =
(

i(k + λ)µ−,2(x, t, k)/(q+(t)s22(k, t)) , iq+(t)µ+,1(x, t, k)/(k− λ)
)

, k ∈ Σ . (A.29)
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Also, (A.5) and the scattering relation (A.7) imply

µ−,1(x, t, k) = s12(k, t)µ+,1(x, t, k) + e−2iθ(x,t,k)s2,2(k, t)µ+,2(k, t) , k ∈ Σ . (A.30)

Straightforward algebra then yields:

q(x, t) = q+ − q+
J

∑
j=1

Cj

λj
µ+,12(x, t, k j)e

2iθ(x,t,kj)

+
1

2π

∫
Σ

1
λ(k)

[
e−2iθ(x,t,k)(k + λ(k))ρ̄(k)µ+,11(x, t, k)− iq+e2iθ(x,t,k)ρ(k)µ+,12(x, t, k)

]
dk . (A.31)

A.3. Comparison between the reconstruction formulae with and without uniformization

We next show how the reconstruction formula (A.31) obtained from the IST formulated without the use of a
uniformization variable agrees with the reconstruction formula derived using the uniformization variable. We first
discuss the case when no discrete eigenvalues are present, in which case the reconstruction formula obtained using
the uniformization variable is [6, 8]

q(x, t) = q+ +
1

2π

∫
R

e−2iθ(x,t,z)ρ̄(z)µ+,11(x, t, z)dz , (A.32)

where the uniformization variable is z = k + λ(k). [Recall that the transformation k 7→ z is inverted by k =
1
2 (z + q2

o)/z and λ = 1
2 (z− q2

o/z).] Breaking the integral (A.32) into an integral over Σ and one over R \ Σ, we see
that ∫

Σ

e−2iθ(x,t,z)ρ̄(z) µ+,11(x, t, z)dz =
∫
Σ

e−2iθ(x,t,k)ρ̄(k)
k + λ(k)

λ(k)
µ+,11(x, t, k)dk , (A.33)

where we made the change of variables z = k + λ(k) and with some abuse of notation we write ρ(k) for ρ(z(k)),
θ(x, t, k) for θ(x, t, z(k)) etc., and viceversa. The range z ∈ [−qo, qo] can also be obtained by taking k ∈ Σ, but
with the opposite sign for λ(k) and the opposite orientation for the contour. In other words, the appropriate change of
variables in this case is z = k− λ(k), and some care must be taken in evaluating the integrand. In particular, dropping
the explicit dependence on k, and again with some abuse of notation, using the symmetries of the problem we have:

µ+,11(x, t, k,−λ) =
iq∗+

k− λ
µ+,12(x, t, k, λ) , ρ̄(k,−λ) = − q+

q∗+
ρ(k, λ) , e−2iθ(x,t,k,−λ) = e2iθ(x,t,k,λ) .

Thus ∫
R\Σ

ρ̄(z)e−2iθ(x,t,z)µ+,11(x, t, z)dz = −
∫
Σ

iq+
λ(k)

ρ(k)e2iθ(x,t,k)µ+,12(x, t, k)dk . (A.34)

Combining (A.33) and (A.34) then confirms that indeed (A.32) coincides with (A.31).
One can also check that the formulations of the problem with and without uniformization are equivalent by deriv-

ing the one-soliton solution from the IST without uniformization. Considering the reflectionless case [i.e., ρ(k) = 0
for all k ∈ Σ] with just one discrete eigenvalue at k = k1, we may use (A.27) to solve for µ+,12(x, t, k1)

µ+,12(x, t, k1) = −
iq+

k1 + λ1

/(
1− iq+

2λ1
C1e2iθ(k1)

)
.

When formulated for the uniformization variable, the norming constant may be written as

Cunif =
2iλ1(k1 + λ1)

q+
e−2iλ1ζ1 ,
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with ζ1 ∈ R. Then

C1 = Cunif

/
dz
dk

(k1) = Cunif
λ1

k1 + λ1
=

2iλ2
1

q+
e−2iλ1ζ1 .

The reconstruction formula becomes

q(x, t) = q+ −
2q+λ1

k1 + λ1

/(
e−2iθ(k1)+2iλ1ζ1 + 1

)
.

Setting k1 = cos α, λ1 = i sin α, we recover the familiar dark soliton solution of the defocusing NLS equation with
symmetric NZBC, namely:

q(x, t) = q+e−iα( cos α + i sin α tanh
[
|λ1|(x− ζ1 + 2k1t)

])
.

Appendix B. IST for symmetric NZBC: branch cut inside

We next show how the IST can equivalently be formulated when the branch cut for the eigenvalues λ±(k) is taken
along the segments [−A±, A±] instead of along the half lines Σ± = (−∞,−A±]∪ [A±, ∞). For brevity, we present
the IST only in the case of symmetric NZBC (i.e., the limit A+ = A− = qo), but it should be clear that the formalism
generalizes to asymmetric NZBC. Indeed, as a further example in Appendix C we present the IST in the opposite
limit, namely A+ = 0, corresponding to one-sided NZBC.

Direct problem. As in the case with the branch cut outside, we define λ(k) on the branch cut [−qo, qo] to be con-
tinuous from above. The continuous spectrum is still the set Σ = (−∞,−qo] ∪ [qo, ∞). Namely for all k ∈ Σ,
we can define the Jost solutions Φ±(x, t, k) and the modified eigenfunctions µ±(x, t, k), using the same relations as
in Appendix A. [That is, µ±(x, t, k) again satisfy (A.6).] For all k ∈ Σ̊, we can also define the scattering matrix
S(k) via (A.7). The analyticity properties of the eigenfunctions and scattering coefficients, however, are very different
from the case with the branch cut outside. Namely, using the same integral equations (A.6), one can show that now
µ−,1(x, t, k) and µ+,2(x, t, k) are analytic in the UHP, while µ−,2(x, t, k) and µ+,1(x, t, k) are analytic in the LHP,
exactly as in the problem with ZBC, and unlike the problem with the branch cut outside. Since the scattering coeffi-
cients may be defined using the Wronskian relations, s11(k) may be analytically continued to the UHP, and s22(k) to
the LHP, again as in the problem with ZBC, and unlike the problem with the branch cut outside. The difference from
the case of ZBC is of course the presence of the branch cut [−qo, qo], and the fact that the continuous spectrum is only
the subset Σ of the real k-axis.

Symmetries. If v(x, t, k) solves the first of (2.1), then so does v̂(x, t, k) = σ1 v∗(x, t, k∗) σ1. Comparing asymptotics
at x = ±∞, we have that

Φ±(x, t, k) = σ1 Φ∗±(x, t, k) σ1 , k ∈ Σ .

Importantly, since all of the columns of Φ±(x, t, k) are analytic, each column of the above relation can also be
extended to k < Σ [and in particular evaluated for k ∈ (−qo, qo)] by considering the Schwarz extension of each
column. Substituting into (A.7), we have

S(k) = σ1S∗(k)σ1 , k ∈ Σ ,

which implies
s11(k) = s∗22(k

∗) , Im k > 0 , s12(k) = s∗21(k) , k ∈ Σ ,

where the symmetry for the analytic scattering coefficients was extended via the Schwarz reflection principle. For the
second symmetry, we again define two new matrix solutions Φ̃±(x, t, k) as in (A.10), which again satisfy (A.11), and
the scattering matrix S̃(k), which satisfies (A.12). In particular, the symmetries (A.11) of the eigenfunctions yield

Φ̃+,1(x, t, k) =
iq∗+

k− λ
Φ+,2(x, t, k) , Φ̃−,2(x, t, k) = − iq−

k− λ
Φ−,1(x, t, k) , k ∈ (−qo, qo) . (B.1)

In turn, these imply s̃22(k) = s11(k)(q−/q+) for all k ∈ (−qo, qo).
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Limits of the eigenfunctions and scattering coefficients from below the branch cut. The limits of Φ+,1, Φ−,2 as they
approach the branch cut from below are

Φ−+,1(x, t, k) := lim
ε↑0

Φ+,1(x, t, k + iε) = Φ̃+,1(x, t, k) , k ∈ (−qo, qo) ,

Φ−−,2(x, t, k) := lim
ε↑0

Φ−,2(x, t, k + iε) = Φ̃−,2(x, t, k) , k ∈ (−qo, qo) .

The limit of s22(k) as k approaches the branch cut from below is

s−22(k) := lim
ε↑0

s22(k + iε) = −Wr(Φ̃+,1(x, t, k), Φ̃−,2(x, t, k))
k− λ(k)

2λ(k)
=

q−
q+

s11(k) , k ∈ (−qo, qo) , (B.2)

Taking into account that limε↑0 θ(x, t, k+ iε) = −θ(x, t, k) for k ∈ (−qo, qo) and the definition (A.5) of the modified
eigenfunctions, and in preparation for the inverse problem, we combine the limits to the branch cut from below of the
functions analytic in the LHP into the matrix expression(

µ−,1(x, t, k)
s11(k)

, µ+,2(x, t, k)
)
=

(
µ−+,1(x, t, k) ,

µ−−,2(x, t, k)

s−22(k)

)
−i

k + λ(k)
σ3Q+ , k ∈ (−qo, qo) . (B.3)

Importantly, the combination of the two symmetries of the analytic scattering coefficients results in a constraint on the
values of s11(k). Indeed, noting that s̃22(k) = s−22(k), we have

s∗11(k) = s11(k)
q−
q+

, k ∈ (−qo, qo) . (B.4)

Thus (B.4) implies that for k ∈ (−qo, qo), we have arg s11(k) = arg q+ or arg s11(k) = arg q+ + π. This relation
will result in a constraint on the norming constants.

Discrete eigenvalues. The number and location of discrete eigenvalues in the case of symmetric NZBC were dis-
cussed in Appendix A. At any such value k j ∈ (−qo, qo) for which s11(k j) = 0 for j = 1, . . . , J, (A.17) holds.
Moreover, using the symmetries (B.1) of the scattering coefficients, we know that zeros of s11(k) are also zeros of
s22(k). Combining (B.1) with (A.17) we then have

Φ̃−,2(x, t, k j) = −
q∗+
q−

bjΦ̃+,1(x, t, k j) , j = 1, . . . , J .

This relation will be needed in order to subtract the residues from the RHP.
We will also need to relate s′11(k j) to s′22(k j), where the derivatives are taken in upper and lower half neigh-

borhoods of k j, respectively. Indeed, when the branch cut is taken inside, the zeros of s11(k) and s22(k) lie on the
boundary of their domains of analyticity. On the other hand, one can show that, just like the condition q(x, t)− q± ∈
L1(R±) guarantees analyticity of s11(k) and s22(k) in C± as well as continuity up to the real axis away from the
branch points, the condition (1 + |x|)(q(x, t)− q±) ∈ L1(R±) [which was already required in order to the eigen-
functions are well defined at the branch points] guarantees that the derivatives of s11(k) and s22(k) are also continuous
up to the boundary, away from the branch points. Equation (B.1) then implies

s′22(k j) = [s′11(k j)]
∗ , j = 1, . . . , J .

Moreover, since the complex derivative is independent of direction, we can also differentiate s22(k) along the real
k-axis. Using the relation (B.2), we obtain

s′22(k j) =
q−
q+

s′11(k j) , j = 1, . . . , J . (B.5)

Using (B.5), we may write
µ̃−,2(k j)

s′22(k j)
= − iq+

k j − λj

µ−,1(k j)

s′11(k j)
, j = 1, . . . , J , (B.6)

which is the relation that we will need to regularize the RHP.
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Inverse problem. We now formulate the RHP, and show that the problem reduces to the RHP that we derived when
the branch cut was taken outside. For k ∈ Σ, the Jost eigenfunctions are related to each other by the scattering matrix
via (A.7). We therefore define

M(x, t, k) =


(

µ−,1(x, t, k)
s11(k)

, µ+,2(x, t, k)
)

, Im k > 0 ,(
µ+,1(x, t, k),

µ−,2(x, t, k)
s22(k)

)
, Im k < 0 .

(B.7)

Using the scattering relation (A.7), it is then straightforward to show that

M+(x, t, k) = M−(x, t, k)
(

I −Vo(x, t, k)
)

, k ∈ Σ , (B.8)

where Vo(x, t, k) has the same expression as in (A.21). (Indeed, the expression for the jump matrix in this range of
values of k is exactly the same as in the case of ZBC, regardless of whether the branch cut is taken outside or inside.)
Now, however, we must take into account the jump of M(x, t, k) across the branch cut, which is given by (B.3). Thus
we may write

M+(x, t, k) = M−(x, t, k)V(x, t, k) , k ∈ R , (B.9)

where

V(x, t, k) =

{
I −Vo(x, t, k) , k ∈ Σ ,
E+(k)− I , k ∈ (−qo, qo) .

We may subtract off the residues using the relationship (B.6). Then, as in the case with the branch cut outside, we use
a rescaling, defining N(x, t, k) as in (A.24). This gives the new jump condition N+(x, t, k) = N−(x, t, k)Ṽ(x, t, k)
where

Ṽ(x, t, k) =

{
I − E+(k)Vo(x, t, k) E−1

+ (k) , k ∈ Σ ,
I , k ∈ (−qo, qo) .

This, however, is precisely the RHP obtained by taking the branch cut outside, which is what we would expect. (Note
that the two values of λ(k) obtained with the different choice of branch cut agree on the real axis — in fact, they agree
on the closure of the upper half plane.)

Appendix C. IST for the defocusing NLS equation with one-sided NZBC

As a further application of the methods presented in the main text, here we consider the IVP for the defocusing
NLS equation (A.1) with the following one-sided NZBC:

lim
x→−∞

q(x, t) = qo , lim
x→∞

q(x, t) = 0 , (C.1)

with qo > 0, and where without loss of generality we have set the asymptotic phase to zero using the phase invariance
of the NLS equation. Of course one could also use the scaling invariance of the NLS equation to set qo = 1, but we
will not do so, as we want to allow for the possibility of taking the limit qo → 0. As in the case of symmetric NZBC,
the extra term proportional to qo in (A.1) was added so that the BC (C.1) as x → −∞ is independent of time, which
also makes it possible to introduce the Jost solutions as simultaneous solutions of both parts of the Lax pair.

The Lax pair for the above defocusing NLS equation (A.1) is still given by (2.1) with T(x, t, k) replaced by (A.2).
As a special case, we will consider the following step IC:

q(x, 0) =

{
qo , x < 0 ,
0 , x > 0 .

(C.2)

We should mention that the BC (C.1) also allows the introduction of a uniformization variable, similarly to the case
of symmetric NZBC [8] and unlike the case of asymmetric NZBC.
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C.1. Direct problem
Jost eigenfunctions. As usual, the Jost eigenfunctions Φ±(x, t, k) are the solutions of (2.1) with prescribed asymptotic
behavior as x → ±∞. We first discuss the limit x → ∞. Since q(x, t)→ 0 as x → ∞, we have limx→∞ X(x, t, k) =
X+(k) = −ikσ3 and limx→∞ T(x, t, k) = T+(k) = −(2k2 − q2

o)σ3. We can then define Φ+(x, t, k) as the matrix
solution of both parts of the Lax pair such that

Φ+(x, t, k) = e−iθ+(x,t,k)σ3 + o(1) , x → ∞ , (C.3a)

where
θ+(x, t, k) = kx + (2k2 − q2

o)t . (C.3b)

Obviously Φ+(x, t, k) is well-defined ∀k ∈ R. Moreover, using standard arguments one can show that its columns
Φ+,1(x, t, k) and Φ+,2(x, t, k) admit analytic continuation to Im k < 0 and Im k > 0, respectively.

The limit x → −∞ is slightly more involved, since limx→−∞ X(x, t, k) = X−(k) = −ikσ3 + Q− and
limx→−∞ T(x, t, k) = T−(k) = 2kX−(k), where Q− = limx→−∞ Q(x, t) as before. The eigenvalue-eigenvector
relations for X− and T− are

X−E− = E−(−iλσ3) , T−E− = E−(−2ikλσ3) ,

where λ2 = k2 − q2
o and

E−(k) = I − i
k + λ

σ3Q− .

Note, for future convenience, that

det E−(k) =
2λ

k + λ
= 1− q2

o
(k + λ)2 =: 1/d−(k) , E−1

− (k) = d−(k)
[

I +
i

k + λ
σ3Q−

]
. (C.3c)

As before, λ(k) is a multi-valued function with branching. Here we will take the branch cut to be the real line
segment [−qo, qo], we take the principal branch of λ(k), such that sign[Im λ] = sign[Im k], and we will define λ(k)
on k ∈ [−qo, qo] so that it is continuous from above. Note λ(k) is real-valued for k ∈ Σ, with Σ = R \ (−qo, qo) =
(−∞,−qo] ∪ [qo, ∞). We then define Φ−(x, t, k) as the matrix solution of both parts of the Lax pair such that

Φ−(x, t, k) = E−(k)e−iθ−(x,t,k)σ3 + o(1) , x → −∞ , (C.3da)

where
θ−(x, t, k) = λx + 2kλt . (C.3db)

Obviously Φ−(x, t, k) is well-defined ∀k ∈ Σ. Moreover, using standard arguments one can show that its columns
Φ−,1(x, t, k) and Φ−,2(x, t, k) admit analytic continuation to Im k > 0 and Im k < 0, respectively.

Importantly, one can also define Φ−,1(x, t, k) and Φ−,2(x, t, k) on the branch cut k ∈ (−qo, qo) by taking the
limit from the UHP and the LHP, respectively. As a result, all four column eigenfunctions [i.e., Φ±,1(x, t, k) and
Φ±,2(x, t, k)] are defined ∀k ∈ R. Note however that, while the limit of Φ−,1(x, t, k) to k ∈ (−qo, qo) from the UHP
is straightforward (because it is continuous from above), the evaluation of the limit of Φ−,2(x, t, k) to k ∈ (−qo, qo)
from the LHP requires some care as a result of the discontinuity of λ(k) when taking the limit to (−qo, qo) from
below. This has important consequences in the development of the IST, so we take a closer look at such limits.

Auxiliary eigenfunctions. Note that for k ∈ (−qo, qo), limε↓0 λ(k± iε) = ±λ(k). As in the asymmetric case, for
k ∈ Σ one could just as well choose the opposite sign for λ(k). To make this statement more precise, we introduce a
set of auxiliary eigenfunctions Φ̃−(x, t, k) such that

Φ̃−(x, t, k) = Ẽ−(k) e−iθ̃−(x,t,k) + o(1) , x → −∞ ,

where θ̃−(x, t, k) = −λ (x + 2kt) = −θ−(x, t, k) and Ẽ−(k) = I − i/(k− λ) σ3Q−. It should then be clear that:
(i) The regions of analyticity for the columns of Φ̃−(x, t, k) are the opposite of those of Φ−(x, t, k). (ii) In particular,
for k ∈ [−qo, qo], Φ̃−,2 is continuous from above. (iii) Importantly,

lim
ε↑0

Φ−,2(x, t, k + iε) = Φ̃−,2(x, t, k) , k ∈ [−qo, qo] .
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Our next task is to express Φ̃−,2(x, t, k) in terms of known eigenfunctions. To this end, we note that, for all Im k > 0,
we have Φ̃−,2(x, t, k) = (−iq−/(k− λ), 1)T e−iθ−(x,t,k) + o(1) as x → −∞. On the other hand, Φ−,1(x, t, k) =

(1,−ir−/(k+λ), 1)T e−iθ−(x,t,k)+ o(1) as x → −∞ for all Im k > 0. Moreover, Φ−,1(x, t, k) and Φ̃−,2(x, t, k) are
both solutions of the scattering problem, and they have the same exponential dependence; furthermore, Im λ(k) > 0
for all k ∈ (−qo, qo) and therefore e−iθ−(x,t,k) → 0 as x → −∞. Therefore, Φ−,1(x, t, k) and Φ̃−,2(x, t, k) must
be proportional. Indeed, (−iq−/(k − λ), 1) = c (1,−iq∗−/(k + λ), 1) for c = −iq−/(k − λ). Combining these
results, we finally obtain:

Φ−,2(x, t, k) = lim
ε↑0

Φ−,2(x, t, k + iε) = − iq−
k− λ

Φ−,1(x, t, k) , k ∈ (−qo, qo) .

Scattering matrix. Recall that all of the Jost eigenfunctions Φ±,1 and Φ±,2 are defined ∀k ∈ R. Since tr X = tr T =
0, the determinant of any matrix solution of the Lax pair is independent of x and t. For the Jost eigenfunctions, this
determinant is most easily evaluated in the limit x → ±∞. In this way one obtains det Φ+(x, t, k) = 1 for all k ∈ R.
Also, for k ∈ Σ we have det Φ−(x, t, k) = 2λ/(k + λ) ≡ 1/d−(k). On the other hand, for k ∈ (−qo, qo) (C.3)
implies det Φ−(x, t, k) = 0.

However, since Φ+(x, t, k) is a fundamental matrix solution of the Lax pair ∀k ∈ R, one can express the columns
of Φ−(x, t, k) as a linear combinations of those of Φ+(x, t, k):

Φ−(x, t, k) = Φ+(x, t, k) S(k) , ∀k ∈ R .

As in the symmetric case, the scattering matrix S(k) thus defined is independent of time, owing to the fact that
Φ±(x, t, k) are simultaneous solutions of the Lax pair. Moreover, since det Φ+(x, t, k) = 1 ∀k ∈ R we have
det S(k) = det Φ−(x, t, k) for all k ∈ R. That is,

det S(k) =

{
1/d−(k) , k ∈ Σ ,
0 , k ∈ (−qo, qo) .

In column form (C.3) is, for all k ∈ R,

Φ−,1(x, t, k) = s11(k)Φ+,1(x, t, k) + s21(k)Φ+,2(x, t, k) , (C.3ea)
Φ−,2(x, t, k) = s12(k)Φ+,1(x, t, k) + s22(k)Φ+,2(x, t, k) . (C.3eb)

In turn, using (C.3e), one can also express the individual scattering coefficients as Wronskians. Explicitly, for all
k ∈ R,

s11(k) = Wr(Φ−,1(x, t, k), Φ+,2(x, t, k)) , s12(k) = Wr(Φ−,2(x, t, k), Φ+,2(x, t, k)) , (C.3fa)
s21(k) = Wr(Φ+,1(x, t, k), Φ−,1(x, t, k)) , s22(k) = Wr(Φ+,1(x, t, k), Φ−,2(x, t, k)) . (C.3fb)

For future convenience, we also introduce the reflection coefficients

ρ1(k) = s21(k)/s11(k) , ρ2(k) = s12(k)/s22(k) , k ∈ R .

Finally, we note that unlike the case of symmetric NZBC, all Jost eigenfunctions and scattering coefficients remain
finite at the branch points.

It is worthwhile to note that (C.3) is usually referred to as the scattering relation from the right, and, as in the case
of ZBC and symmetric NZBC, one can equivalently define a scattering relation from the left as

Φ+(x, t, k) = Φ−(x, t, k) R(k) .

The corresponding reflection coefficients are r1(k) = s12(k)/s22(k) and r2(k) = s12(k)/s11(k). Unlike the case
of ZBC and symmetric NZBC, however, the formulations from the left and from the right are not equivalent. In
particular, while det Φ+(x, t, k) = 1 ∀k ∈ R, det Φ−(x, t, k) = 0 for all k ∈ [−q0, qo]. Thus (C.3) only holds for
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k ∈ Σ (because it is only there that Φ−(x, t, k) is a fundamental matrix solution of the Lax pair). Nonetheless, one
can use the Wronskian relations

r11(k) = d−(k)Wr(Φ+,1(x, t, k), Φ−,2(x, t, k)) , r12(k) = d−(k)Wr(Φ+,2(x, t, k), Φ−,2)(x, t, k) ,
r21(k) = d−(k)Wr(Φ−,1(x, t, k), Φ+,1(x, t, k)) , r22(k) = d−(k)Wr(Φ−,1(x, t, k), Φ+,2(x, t, k)) ,

which hold for k ∈ Σ, as a a definition of all scattering coefficients rij for all k ∈ (−qo, qo). Of course, for the
analytic scattering coefficients r11(k) and r22(k) this definition coincides with the value obtained by their analytic
continuation. Note however that, even though all the pieces (C.3) are also defined for k ∈ (−qo, qo), the scattering
relation is not valid there. Obviously, R(k) = S−1(k) for all k ∈ Σ. Entrywise, one has:

r11(k) = d−(k) s22(k), r12(k) = −d−(k) s12(k), r21(k) = −d−(k) s21(k), r22(k) = d−(k) s11(k), k ∈ Σ.

As usual, these relations can be extended to the UHP/LHP for the analytic scattering coefficients.

Symmetries. As before, the scattering problem admits a symmetry under the map k 7→ k∗. The symmetry of
Φ±(x, t, k) is the same as in the case of ZBC:

Φ+(x, t, k) = σ1Φ∗+(x, t, k∗) σ1 .

In matrix form, (C.3) holds only where all columns are defined, i.e., k ∈ R. However, its first and second columns
can be extended to the UHP and LHP, respectively. A similar symmetry holds for Φ−(x, t, k):

Φ−(x, t, k) = σ1Φ∗−(x, t, k∗) σ1 .

Here, however, the situation is complicated by the fact that Φ−(x, t, k) is only defined as a matrix for k ∈ Σ, and,
more importantly, that λ(k) is discontinuous across k ∈ (−qo, qo). In other words, the relation λ(k∗) = λ∗(k)
[which is needed to derive (C.3)] only holds for k ∈ C \ (−qo, qo). Thus, (C.3) does not hold for k ∈ (−qo, qo).
Indeed, we have already seen that for k ∈ (−qo, qo) the correct symmetry is (C.3).

The corresponding symmetries of the scattering coefficients can be obtained from (C.3):

S(k) = σ1S∗(k∗)σ1 .

Of course, as a matrix equation (C.3) only holds for k ∈ Σ, where both (C.3) and (C.3) apply. In particular,

s12(k) = s∗21(k
∗) , k ∈ Σ .

However, one can use the Schwartz reflection symmetry to extend the diagonal entries:

s11(k) = s∗22(k
∗) , k ∈ Σ ∪C+ .

On the other hand, for k ∈ (−qo, qo) one must replace (C.3) with (C.3). Then, comparing the first and the second
of (C.3e) one obtains

(s12(k) , s22(k)) = −
iq−

k− λ
(s11(k) , s21(k)) , k ∈ (−qo, qo) .

Recalling the definition (C.3) of the reflection coefficients one then obtains

ρ1(k) = ρ∗2(k) , k ∈ Σ , (C.3ga)
ρ1(k)ρ2(k) = 1 , k ∈ (−qo, qo) . (C.3gb)
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Asymptotic behavior as k → ∞. First of all, note λ(k) = k− q2
o/(2k) + O(1/k2) as k → ∞. Let us remove the

exponential oscillations by introducing as usual modified eigenfunctions as

µ±(x, t, k) = Φ±(x, t, k) eiθ±(x,t,k)σ3 .

The asymptotics of Φ+(x, t, k) are of course identical to the case of ZBC. Similarly, the asymptotics of Φ−(x, t, k)
is the same as that of the case of symmetric NZBC. Overall, we have:

µ±(x, t, k) = I ∓ 1
2ik

σ3Q(x, t) + h.o.t. , k→ ∞ ,

where “h.o.t.” denotes O(1/k) diagonal terms and O(1/k2) off-diagonal terms. In particular,

q(x, t) = −2i lim
k→∞

k µ+,12(x, t, k) .

This relation will provide the key for reconstructing the potential from the solution of the RHP. Also, from the Wron-
skian definitions (C.3f) of the scattering coefficients, it follows

s11(k) = 1 + O(1/k) , s21(k) =
iq∗−
2k

+ O(1/k2) k→ ∞ . (C.8)

Discrete spectrum. It is straightforward to show that, as in the case of symmetric NZBC, no zeros of s11(k) can occur
in the continuous spectrum k ∈ Σ. Moreover, similar arguments as in the fully asymmetric case, show that no zeros
of s11(k) and s12(k) can lie in the “DSW” spectrum k ∈ (−qo, qo). As a result, we obtain that no discrete spectrum
can be present in the problem with one-sided NZBC.

Step IC. We now consider the IC (C.2). In this case we can solve the scattering problem exactly at t = 0. And since
the scattering matrix is independent of time, this is all is needed for the IVP.

The scattering problem at time t = 0 has the form: vx = X± v for x >
< 0, with piecewise constant coefficients

X± = −ikσ3 + Q± , Q− =

(
0 q−

q∗− 0

)
, Q+ = O . (C.9)

One can easily find exact solutions which yield explicit, simple representations for the Jost solutions at time t = 0
over half of the real x-axis:

Φ−(x, 0, k) = E−(k) e−iθ−(x,t,k)σ3 x < 0 , (C.10a)

Φ+(x, 0, k) = e−iθ+(x,t,k)σ3 x > 0 , (C.10b)

with θ±(x, t, k) and E−(k) as before. The form of the Jost solution beyond these domains can then be obtained
by writing each Jost solution as an appropriate linear combination of the fundamental matrix solution of the scat-
tering problem in each region and then imposing continuity at the boundary. On the other hand, for the purpose of
determining the scattering data, we can simply evaluate (C.3) at (x, t) = (0, 0), obtaining

S(k) =

{
E−(k) , k ∈ Σ ,
Eo(k) , k ∈ (−qo, qo) .

where the matrix

Eo(k) = E−,1(k)
(
1 , −iq−/(k− λ)

)
=

(
1 −iq−/(k− λ)

iq∗−/(k + λ) 1

)
was obtained using (C.3). The reflection coefficients are then

ρ1(k) = iq∗−/(k + λ) , k ∈ R , (C.11a)

ρ2(k) =

{
−iq−/(k + λ) , k ∈ Σ ,
−iq−/(k− λ) , k ∈ (−qo, qo) .

(C.11b)

Once can verify that, since s11(k) = s22(k) = 1, there are no discrete eigenvalues.
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C.2. Inverse problem
We introduce a sectionally meromorphic matrix similarly to (B.7) in the case of symmetric NZBC, namely:

M(x, t, k) =



(
µ−,1

s11
, µ+,2

)
=

(
Φ−,1

s11
, Φ+,2

)
eiΘ , Im k > 0 ,

(
µ+,1,

µ−,2

s22

)
=

(
Φ+,1,

Φ−,2

s22

)
eiΘ̃ , Im k < 0 ,

where

Θ(x, t, k) = diag(θ−(x, t, k),−θ+(x, t, k)) , Θ̃(x, t, k) = diag(θ+(x, t, k),−θ−(x, t, k)) , (C.12)

with θ±(x, t, k) given by (C.3db) and (C.3b). It is easy to verify from the asymptotic of the eigenfunctions that a
canonical normalization condition at infinity holds for M(x, t, k), i.e.,

M(x, t, k) = I + O(1/k) k→ ∞ .

The goal is then to determine a jump condition similar to (B.8), where M±(x, t, k) are the limiting values of M(x, t, k)
as Im k → 0±. The starting point is, as always, the scattering relation (C.3). Separating the eigenfunctions analytic
in the UHP from those analytic in the LHP one obtains(

Φ−,1(x, t, k)
s11(k)

, Φ+,2(x, t, k)
)
=

(
Φ+,1(x, t, k),

Φ−,2(x, t, k)
s22(k)

)
Ṽ(k) , k ∈ R ,

where the “core” jump matrix Ṽ(k) is

Ṽ(k) =
(

1− ρ1(k)ρ2(k) −ρ2(k)
ρ1(k) 1

)
, k ∈ R .

Note that the expression for Ṽ(k) is the formally the same for k ∈ Σ and k ∈ (−qo, qo). The difference is in the
symmetries of the scattering coefficients. Indeed, recalling (C.3g) and letting ρ(k) = ρ1(k) for all k ∈ R we have

Ṽ(k) =



(
1− |ρ(k)|2 −ρ∗(k)

ρ(k) 1

)
, k ∈ Σ ,(

0 −1/ρ(k)
ρ(k) 1

)
, k ∈ (−qo, qo) .

The jump condition is then given by M+(x, t, k) = M−(x, t, k)V(x, t, k), where the full jump matrix V(x, t, k) is
obtained from Ṽ(k) as

V(x, t, k) = (lim
ε↑0

eiΘ̃(x,t,k+iε))−1Ṽ(k) lim
ε↓0

eiΘ(x,t,k+iε) .

Explicitly, recalling (C.12) and the discontinuous behavior of λ(k) on (−qo, qo) from below, we have

V(x, t, k) =



(
ei(θ−(x,t,k)−θ+(x,t,k))(1− |ρ(k)|2) −e−2iθ+(x,t,k)ρ∗(k)

e2iθ−(x,t,k)ρ(k) ei(θ−(x,t,k)−θ+(x,t,k))

)
, k ∈ Σ ,(

0 −e−2iθ+(x,t,k)/ρ(k)
ρ(k) e−i(θ−(x,t,k)+θ+(x,t,k))

)
, k ∈ (−qo, qo) .

Importantly, the full jump matrix is not unimodular, unlike the case of ZBC or symmetric NZBC. Explicitly,

det V(x, t, k) =

{
e2i(θ−(x,t,k)−θ+(x,t,k)), k ∈ Σ ,
e−2iθ+(x,t,k), k ∈ (−qo, qo) .

However, det V(x, t, k) → 1 as k → ∞ — as it must in order to be consistent with the normalization (C.2) in both
the UHP and LHP. The RHP can now be formally solved by subtracting the asymptotic behavior at infinity applying
Cauchy projectors. We omit the details since they are similar to the cases previously presented.
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C.3. Conversion between RHP from the left and from the right

Recall that one can equivalently write the scattering relation as Φ−(x, t, k) = Φ+(x, t, k) S(k), like we have
done here, or as Φ+(x, t, k) = Φ−(x, t, k) R(k). Correspondingly, one can formulate two different RHPs: one “from
the right”, which is the one we used here, and one “from the right”. The choice breaks the left/right symmetry of
the NLS equation. On the other hand, it is possible to convert from one RHP to the other, as we discuss next. The
issue is relevant in our case because, unlike the case of ZBC and symmetric NZBC, with asymmetric NZBC the Jost
eigenfunctions from the left and from the right possess different domains of analyticity. This in turn determines where
it is possible to define the reflection coefficients appearing in the jump condition for the RHP.

Recall that the sectionally meromorphic matrix M±(x, t, k) for the RHP in section 4 was defined in (C.2). On the
other hand, in the RHP from the left is constructed using the sectionally meromorphic matrix

M̌(x, t, k) =



(
µ−,1(x, t, k),

µ+,2(x, t, k)
r22(k)

)
, Im k > 0 ,

(
µ+,1(x, t, k)

r11(k)
, µ−,2(x, t, k)

)
, Im k < 0 .

We have M(x, t, k) = M̌(x, t, k) D(k), where

D(k) =


diag

(
1/s11(k) , r22(k)

)
, Im k > 0 ,

diag
(
r11(k) , 1/s22(k)

)
, Im k < 0 .

Correspondingly, M̌(x, t, k) satisfies the jump condition

M̌+(x, t, k) = M̌−(x, t, k)V̌(x, t, k) , k ∈ R ,

where
V̌(x, t, k) = D−(k)V(x, t, k) (V+(x, t, k))−1 , k ∈ R .

Recalling the relations (C.3) between the entries of S(k) and R(k), straightforward algebra yields V̌(0, 0, k). The
matrix V̌(x, t, k) is then obtained from V(0, 0, k) by conjugating with the appropriate matrix exponentials.

Appendix D. Asymptotic behavior of eigenfunctions and scattering data as k → ∞

As usual, in order to normalize the RHP one must evaluate the asymptotic behavior of the eigenfunctions and
scattering data as k→ ∞. Below we show that, if q(x, t) is differentiable with respect to x and qx(·, t) ∈ L1(R), the
analytic columns of the modified Jost eigenfunfunctions exhibit the following asymptotic behavior as k→ ∞ in each
half plane:

µ−,11(x, t, k) = 1 + O(1/k) , µ−,21(x, t, k) =
iq∗(x, t)

2k
+ O(1/k2) , k→ ∞ , Im k > 0 , (D.1a)

µ−,11(x, t, k) =
q(x, t)
q−(t)

+ O(1/k) , µ−,21(x, t, k) =
2ik

q−(t)
+ O(1) , k→ ∞ , Im k < 0 . (D.1b)

Moreover,

µ+,12(x, t, k) = − iq(x, t)
2k

+ O(1/k2) , µ+,22(x, t, k) = 1 + O(1/k) , k→ ∞ , Im k > 0 , (D.2a)

µ+,12(x, t, k) = − 2ik
q∗+(t)

+ O(1) , µ+,22(x, t, k) =
q∗(x, t)
q∗+(t)

+ O(1/k) , k→ ∞ , Im k < 0 . (D.2b)
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We present the calculations for µ−,1(x, t, k) in detail; those for µ+,2(x, t, k) are similar. We already know that the
first column of µ−(x, t, k) admits a uniformly convergent Neumann series representation in the UHP for its integral
equation, which we rewrite as:

µ−,1(x, t, k) =

(
1

iq∗−(t)
k+λ−(k)

)
+

x∫
−∞

G(x− y, t, k)∆Q−(y, t) µ−,1(y, t, k)dy , (D.3)

where

G(ξ, t, k) = E−(k, t)
(

1 0
0 e2iλ−(k)ξ

)
E−1
− (k, t) =

1
2
(1 + e2iλ−(k)ξ)I +

1
2λ−(k)

(1− e2iλ−(k)ξ)
[
kσ3 + Q−(t)

]
.

(D.4)
It is also convenient to separate (D.3) into its components, obtaining:

µ−,11(x, t, k) = 1

+
iq−(t)
2λ−(k)

x∫
−∞

∆q∗−(y, t)µ−,11(y, t, k)dy− iq−(t)
2λ−(k)

x∫
−∞

e2iλ−(k)(x−y)∆q∗−(y, t)µ−,11(y, t, k)dy

+
k + λ−(k)

2λ−(k)

x∫
−∞

∆q−(y, t)µ−,21(y, t, k)dy− k− λ−(k)
2λ−(k)

x∫
−∞

e2iλ−(k)(x−y)∆q−(y, t)µ−,21(y, t, k)dy , (D.5a)

µ−,21(x, t, k) =
iq∗−(t)

k + λ−(k)

+
iq∗−(t)
2λ−(k)

x∫
−∞

∆q−(y, t)µ−,21(y, t, k)dy−
iq∗−(t)
2λ−(k)

x∫
−∞

e2iλ−(k)(x−y)∆q−(y, t)µ−,21(y, t, k)dy

− k− λ−(k)
2λ−(k)

x∫
−∞

∆q∗−(y, t)µ−,11(y, t, k)dy +
k + λ−(k)

2λ−(k)

x∫
−∞

e2iλ−(k)(x−y)∆q∗−(y, t)µ−,11(y, t, k)dy , (D.5b)

By Riemann-Lebesgue, the second integral in the right-hand side (RHS) of (D.5a) always vanishes faster than
the first one as k → ∞, and similarly for the third and fourth integrals. The same argument applies to the first two
integrals in the RHS of (D.5b), but not to the last two [since k − λ−(k) = O(1/k) as k → ∞ in the UHP]. Also,
the first integral in the RHS of (D.5a) always vanishes faster than the left-hand side (LHS) of (D.5a) as k → ∞,
and the same holds for the first integral in the RHS of (D.5a) compared to its LHS. Substituting (D.5b) in the RHS
of (D.5a) and (D.5a) in the RHS of (D.5b) we then obtain µ−,11(x, t, k) = 1 + O(1/k) + O(µ−,21(x, t, k)/k) and
µ−,21(x, t, k) = O(1/k) + O(µ−,11(x, t, k)/k) as k → ∞ in the UHP, implying µ−,11(x, t, k) = 1 + O(1/k) and
µ−,21(x, t, k) = O(1/k), as expected.

The first of (D.1) is thus proved. We now note that, if the distributional derivative ∂xq(x, t) is in L1(R), integration
by parts and the Riemann-Lebesgue lemma yield

x∫
−∞

e2iλ−(k)(x−y)(q(y, t)− q−(t))dy =
1

2iλ−(k)
(q(x, t)− q−(t)) + o(1/k) , k→ ∞ .

Replacing (D.5a) in the last integral of (D.5b) and using (Appendix D) then finally yields the second of (D.1).
The calculations of the asymptotic behavior as k → ∞ in the LHP are slightly more complicated by the fact that

k + λ = O(1/k) in that limit [since λ(k) = −k + O(1/k) as k → ∞ in the LHP]. Nonetheless, one can follow a
similar logic to obtain (D.1b) and (D.2b)

Asymptotic expansions up to O(1/kn) can also be iteratively obtained under the assumption that ∂
j
xq(x, t) ∈

L1(R) for j = 1, . . . , n. It should also be noted that ∂xq(x, t) ∈ L1(R) implies that q(x, t) is absolutely continuous
as a function of x, which is consistent with the second of (D.1).
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The asymptotic behavior of the modified eigenfunctions can now be used to derive the asymptotic behavior of
s11(k, t) via (2.14). Explicitly:

s11(k, t) = 1 + O(1/k) , k→ ∞ ∧ Im k > 0 , (D.6a)

s11(k, t) =
q+(t)
q−(t)

+ O(1/k) , k→ ∞ ∧ Im k < 0 . (D.6b)

Combining these expressions with (D.1) and (D.2) we obtain the asymptotic behavior of the meromorphic matrix in
the RHP, namely (4.17).

In the case of symmetric NZBC, the calculations are similar, with a couple of caveats. The first is that in the
symmetric case a phase rotation was applied to the the NLS equation to simplify the boundary conditions. This
affects the time evolution of the Jost eigenfunctions. Also, in the symmetric case the Jost eigenfunctions were defined
to be simultaneous solutions of both parts of the Lax pair, which makes all scattering coefficients independent of time.
Finally, in the symmetric case we have λ± = λ. On the other hand, the asymptotic behavior of M(x, t, k) as k → ∞
turns out to be still given by (4.17), with λ+(k) replaced by λ and Q+(t) replaced by Q+.

Appendix E. Proof that the discrete eigenvalues are simple

Here we provide an explicit proof of the fact that, even in the case of asymmetric NZBC, s11(k) can have only
simple zeros. Recall that the prime denotes differentiation with respect to k. Using (2.14) we have that

s′11(k j, t) = d+(k j)[Wr(Φ′−,1, Φ+,2)(x, t, k j) + Wr(Φ−,1, Φ′+,2)(x, t, k j)] .

Since Φ± solve the scattering ODE, (Φ±)′x = −iσ3Φ± + XΦ±, and:

∂xWr(Φ′−,1, Φ+,2)(x, t, k) = −iWr(σ3Φ−,1, Φ+,2) + Wr(XΦ′−,1, Φ+,2) + Wr(Φ′−,1, XΦ+,2) . (E.1)

We use that −X = X−1 det X, so Wr(Xu, v) = −Wr(u, Xv). Thus (E.1) reduces to

∂xWr(Φ′−,1, Φ+,2) = −iWr(σ3Φ−,1, Φ+,2),

and similarly
∂xWr(Φ−,1, Φ′+,2) = iWr(σ3Φ+,2, Φ−,1).

Evaluating at k = k j, and recalling (2.40) yields:

∂xWr(Φ′−,1, Φ+,2)(x, t, k j) = −ibj(t)Wr(σ3Φ+,2, Φ+,2)(x, t, k j) ,

∂xWr(Φ−,1, Φ′+,2)(x, t, k j) = ibj(t)Wr(σ3Φ+,2, Φ+,2)(x, t, k j) .

Using the symmetry (2.21b) we have Wr(σ3Φ+,2, Φ+,2)(x, t, k j) = −iq+(t)‖Φ+,2(x, t, k j)‖2/[k j + λ+,j], where
‖Φ+,2(x, t, k j)‖2 = |Φ+,12(x, t, k j)|2 + |Φ+,22(x, t, k j)|2. Thus

Wr(Φ′−,1, Φ+,2)(x, t, k j) =
ibj(t)q+(t)
k j + λ+,j

∞∫
x

‖Φ+,2(y, t, k j)‖2dy ,

Wr(Φ−,1, Φ′+,2)(x, t, k j) =
ibj(t)q+(t)
k j + λ+,j

x∫
−∞

‖Φ+,2(y, t, k j)‖2dy .

The above equations show that ∂kWr(Φ−,1, Φ+,2)(x, t, k j) is non-zero, implying that s′11(k j, t) is non-zero.
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