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In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an inte-

grable system of partial differential equations, introduced by and named after Mark

J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem

was found. It was shown to give rise to a new nonlocal PT symmetric and integrable

Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scat-

tering transform was constructed for the case of rapidly decaying initial data and a

family of spatially localized, time periodic one-soliton solutions was found. In this

paper, the inverse scattering transform for the nonlocal NLS equation with nonzero

boundary conditions at infinity is presented in four different cases when the data at

infinity have constant amplitudes. The direct and inverse scattering problems are ana-

lyzed. Specifically, the direct problem is formulated, the analytic properties of the

eigenfunctions and scattering data and their symmetries are obtained. The inverse

scattering problem, which arises from a novel nonlocal system, is developed via a

left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and

the time dependence of the scattering data is obtained. This leads to a method to lin-

earize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit

1-soliton solution and two 2-soliton solutions are provided for three of the four differ-

ent cases corresponding to two different signs of nonlinearity and two different values

of the phase difference between plus and minus infinity. In another case, there are no

solitons. Published by AIP Publishing. https://doi.org/10.1063/1.5018294

I. INTRODUCTION

Solitons are a unique type of nonlinear wave that arise as a solution to integrable infinite dimen-

sional Hamiltonian dynamical systems. They were first discovered by Zabusky and Kruskal while

conducting numerical experiments on the Korteweg-de Vries (KdV) equation. To their surprise, such

solitons revealed an unusual particle-like behavior upon collisions despite the fact that they are inher-

ently nonlinear “objects.” Their results sparked intense research interest on two parallel fronts. One

is related to the physics and applications of solitons (or solitary waves), while the other is focused on

the mathematical structure of integrable evolution equations.

From the physics point of view, solitons, or solitary waves, represent finite energy spatially

localized structures that generally form as a balance between dispersion and nonlinearity. They have

been theoretically predicted and observed in laboratory experiments in various settings in the physical

and optical sciences (see Refs. 16, 17, and 21 for extensive reviews).

In fluid mechanics, they have been shown to appear as isolated humps in shallow water, whereas in

nonlinear optics, they occur as diffraction-free self guided nonlinear modes of a self-induced optical
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potential. Both disciplines provide exceptional situations where mathematical analysis, numerical

simulations, mathematical modeling, and laboratory experiments go hand in hand.

Mathematically speaking, exactly solvable models play an essential role in the study of nonlin-

ear wave propagation. There are many integrable equations that arise as important models in diverse

physical phenomena. For example, the Korteweg-de Vries (KdV) and the Kadomtsev-Petviashvili

(KP) equations describe weakly nonlinear shallow water waves7,18 propagating in one and two dimen-

sions, respectively. The cubic nonlinear Schrödinger (NLS) equation is also a physically important

integrable model.22 It describes the evolution of weakly nonlinear and quasi-monochromatic wave

trains in media with cubic nonlinearities.8 Solitons appear as a special class of solutions to these

models which are integrable in the sense that they admit an infinite number of conserved quantities.

The KdV, KP, and NLS equations share the mathematical property that they all are exactly solvable

evolution equations with many explicit solutions and linearizations known.

There are many other continuous and also discrete integrable evolution equations that are phys-

ically relevant. Applications are diverse and include problems in fluid mechanics, electromagnetics,

gravitational waves, elasticity, fundamental physics, and lattice dynamics, to name but a few.5,7,9

Recently, continuous and discrete integrable nonlinear nonlocal Schrödinger equations describ-

ing wave propagation in certain nonlinear PT (Parity-time) symmetric media20 were also found;

remarkably, they have a very simple structure.1,2 Furthermore, reverse space-time and reverse time

only nonlocal NLS equations have also been reported.4

Generally speaking, integrability is established once an infinite number of constants of motion

or an infinite number of conservation laws are obtained. However, considerably more information

about the solution can be obtained if the inverse scattering transform (IST) can be carried out.6

The inverse scattering transform (IST) to solve the initial-value problem with rapidly decaying

data for the nonlocal NLS equation,

iqt(x, t)= qxx(x, t) − 2σq2(x, t)q∗(−x, t), (1.1)

where q∗(x, t) denotes the complex conjugate of q(x, t), x ∈R, t ≥ 0 andσ =∓1, has been developed in

Refs. 1 and 3. The direct and inverse scattering problems arise from a novel and interesting nonlocal

second order system of differential equations; see system (2.1) below. Associated with this system are

symmetry relations which relate analytic eigenfunctions as x→∞ to those as x→ ☞∞. In turn, it is

useful to employ Riemann-Hilbert (RH) problems from both the left and right in order to effectively

develop the inverse scattering for both sets of eigenfunctions, i.e., those defined as x → ±∞. We

refer to this as left-right Riemann-Hilbert problems. This is different from the classical NLS equation

where the inverse problem is carried out using a RH problem using corresponding symmetries at

either infinity.9 It is important to carry out the inverse scattering analysis not only to be able to solve

the nonlinear equation but also because inverse scattering is important in its own right. Equation (1.1)

was derived based on physical intuition. Recently, this equation was derived in the physical context

of magnetics.14

It is well-known that the IST procedure for rapidly decaying potentials must be substantially

modified when one is interested in potentials that do not decay as |x|→∞. This class of potentials is

also relevant for the nonlocal NLS equation since it admits soliton solutions with nonzero boundary

conditions (NZBCs).

For the classical NLS equation, the first studies of NZBCs were done in Ref. 23. The method

to carry out the inverse problem employed two Riemann surfaces associated with square root branch

points in the eigenfunctions/scattering data. An improvement was made with the introduction of a

uniformization variable.13 This transforms the inverse problem to the more standard inverse problem

in the upper lower/half planes in the new variable. Subsequently, a number of researchers have also

studied NLS problems in this manner, cf. Refs. 19, 11, 12, and 10.

In this paper, we consider Eq. (1.1) with the following nonzero boundary conditions:

q(x, t)→ q±(t)= q0eiθ±(t), as x→±∞, (1.2)

where q0 > 0 is a constant, 0 ≤ θ± < 2π, and ∆θ ≔ θ+ ☞ θ
☞

is either 0 or π. If ∆θ ≔ θ+ ☞ θ
☞

,

0, π, then the amplitude q±(t) is exponentially growing/decaying at one or the other infinity. We do

not consider this situation. We consider four different cases: two different signs of σ = ∓1 and two
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different values of ∆θ = 0, π. First, we consider the case when σ = ☞1, ∆θ = π. We find the following

1-soliton stationary in space, oscillating in time solution:

q(x, t)= q0 · ei(2q2
0
t+θ+−π) · tanh

[

q0x − iθ∗
]

, (1.3)

where θ∗ = 1
2
(θ+ + θ1 + π), θ1 is a real constant related to the scattering data. This solution can be

singular in the non-generic case when x = 0 and θ+ + θ1 = 2nπ, n ∈Z. Apart from a complex phase

shift, the above solution is similar to the well known black soliton solution in the standard integrable

NLS equation. Second, we consider the case when σ = ☞1, ∆θ = 0. In this case, a single eigenvalue is

found to be in the continuous spectrum; there is no “proper exponentially decaying” pure one-soliton

solution. The simplest decaying pure reflectionless potential generates a 2-soliton standing wave

solution. This is a new property of the nonlocal NLS equation (1.1) which does not appear in the

classical NLS equation. Third, we consider the case when σ = 1, ∆θ = π. Here all solitons must arise

from an even number of eigenvalues: 2N. The simplest situation occurs when N = 1 which leads to

a 2-soliton traveling wave solution. Finally, the case when σ = 1, ∆θ = 0 is considered; in this case,

we show that there are no eigenvalues/solitons.

We use the uniformization methodology mentioned earlier for the nonlocal NLS problem with

the above NZBCs. We first introduce a two-sheeted Riemann surface and then introduce a suitable

uniformization variable. There are a number of new features regarding the nonlocal NLS equation

such as the introduction of important new symmetries which, when combined with a left-right RH

problem allows us to construct the inverse scattering. There are situations when only an even number

of solitons (eigenvalues) can be obtained and others in which there are no eigenvalues/solitons at all.

In certain non-generic situations, the solitons can be singular. We also study “box”-like potentials

and show that the eigenvalue spectrum is consistent with these results.

The outline of this paper is as follows. In Sec. II, some preliminaries are developed. The equa-

tion and compatible linear pair are given and the different nonzero boundary values at infinity

that we will consider in this paper are presented. It is also shown that the only cases in which

the amplitude at infinity are not exponentially growing/decaying are when σ = ∓1, ∆θ = 0, π. In

Sec. III, the direct scattering theory is analyzed and the analytic structure of the eigenfunctions

and associated scattering data are found. From the symmetry of the potentials, the corresponding

symmetry of the eigenfunctions and scattering data are deduced. A suitable uniformization variable

is introduced, the inverse scattering from both the right and left is developed, and pure reflection-

less potentials and trace formulae are obtained. From the time dependence of the scattering data,

the IST is constructed; pure soliton solutions are discussed and an explicit one-soliton solution is

given.

The methodology in the other three cases follows along similar lines. However the details, due

to the underlying multivalued/branching structure of the scattering data, are quite different in each

case; the analysis is developed in all subsequent sections.

II. PRELIMINARIES

The nonlocal nonlinear Schrödinger (NLS) equation (1.1) is associated with the following 2 × 2

compatible system:1

vx =Xv = *,
−ik q(x, t)

σq∗(−x, t) ik

+- v , (2.1)

vt =T v = *,
2ik2 + iσq(x, t)q∗(−x, t) −2kq(x, t) − iqx(x, t)

−2kσq∗(−x, t) − iσq∗x(−x, t) −2ik2 − iσq(x, t)q∗(−x, t)

+- v , (2.2)

where q(x, t) is a complex-valued function of the real variables x and t.

Alternatively, the space part of the compatible system may be written in the form

vx = (ikJ + Q)v , x ∈R, (2.3)
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where

J = *,
−1 0

0 1

+- , Q= *,
0 q(x, t)

σq∗(−x, t) 0

+- . (2.4)

Here, q(x, t) is called the potential and k is a complex spectral parameter. In general, as x → ±∞, q

→ q±(t). Then, Eq. (1.1) simplifies to

iq+,t =−2σq2
+q∗− as x→+∞, (2.5)

iq−,t =−2σq2
−q∗+ as x→−∞ . (2.6)

From the above equations, we find the conserved quantity

q+q∗− =C0, C0 is a constant. (2.7)

The solutions to Eqs. (2.5) and (2.6) are then given by

q+(t)= q0,+eiθ+ e2iσC0t as x→+∞, (2.8)

q−(t)= q0,−eiθ−e2iσC∗
0
t as x→−∞ , (2.9)

where q0,± > 0 are constant. Furthermore, since

C0 = q0,+q0,−ei∆θ , where ∆θ = θ+ − θ− = const., (2.10)

then if ∆θ = 0 or ∆θ = π, C0 is real. Otherwise, it is complex and the background either grows

or decays exponentially as |t| → ∞. In this paper, we shall only consider the cases ∆θ = 0 or π.

For convenience, we will take q0,± = q0. There is no material difference in the analysis if we take

q0,+ , q0,☞.

We also note that as x→±∞, the eigenfunctions of the scattering problem asymptotically satisfy

*,
v1

v2

+-x

=

*.,
−ik q0e∓2σq2

0
t sin∆θ · ei(2σq2

0
t cos∆θ+θ±)

σq0e±2σq2
0
t sin∆θ · e−i(2σq2

0
t cos∆θ+θ∓) ik

+/-
*,
v1

v2

+- , (2.11)

i.e.,

vx = (ikJ + Q±(t))v , (2.12)

Q±(t)=
*.,

0 q0e∓2σq2
0
t sin∆θ · ei(2σq2

0
t cos∆θ+θ±)

σq0e±2σq2
0
t sin∆θ · e−i(2σq2

0
t cos∆θ+θ∓) 0

+/- , (2.13)

where

q(x, t)→ q±(t)= q0e∓2σq2
0
t sin∆θ · ei(2σq2

0
t cos∆θ+θ±), as x→±∞. (2.14)

Here, q0 > 0, 0 ≤ θ± < 2π. We see that with the condition ∆θ = 0 or ∆θ = π, the exponentially

growing terms disappear. The exponential growth is one of the additional novel aspects exhibited by

the nonlocal NLS equation (1.1).

III. THE CASE OF σ = −1 WITH θ+ − θ
−

= π

A. Direct scattering

In this section, we consider the nonzero boundary conditions (NZBCs) given in (2.14) and

σ = ☞1, ∆θ ≔ θ+ ☞ θ☞ = π. With this condition, Eq. (2.13) conveniently reduces to

∂2vj

∂x2
=−(k2 + q2

0ei∆θ )vj =−(k2 − q2
0)vj, j = 1, 2. (3.1)

Each of the two equations has two linearly independent solutions eiλx and e☞iλx as |x|→∞, where

λ =

√

k2 − q2
0
. The variable k is then thought of as belonging to a Riemann surface K consisting of
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two sheets C1 and C2 with the complex plane cut along (☞∞, ☞q0] ∪ [q0, +∞) with its edges glued

in such a way that λ(k) is continuous through the cut. We introduce the local polar coordinates

k − q0 = r1eiθ1 , 0 ≤ θ1 < 2π, k + q0 = r2eiθ2 , −π ≤ θ2 < π, (3.2)

where r1 = |k ☞ q0| and r2 = |k + q0|. Then, the function λ(k) becomes single-valued on K, i.e.,

λ(k)=


λ1(k)= (r1r2)

1
2 · ei

θ1+θ2
2 , k ∈C1,

λ2(k)=−(r1r2)
1
2 · ei

θ1+θ2
2 , k ∈C2.

(3.3)

Moreover, if k ∈C1, then ℑλ ≥ 0; and if k ∈C2, then ℑλ ≤ 0. Hence, the variable λ is thought of as

belonging to the complex plane consisting of the upper half plane, U+:ℑλ ≥ 0, and lower half plane,

U
☞

:ℑλ ≤ 0, glued together along the real axis; the transition occurs at ℑλ = 0. The transformation

k→ λ maps C1 onto U+, C2 onto U
☞

, the cut (☞∞, ☞q0] ∪ [q0, +∞) onto the real axis, and the points

±q0 to 0; see also Fig. 1.

B. Eigenfunctions

It is natural to introduce the eigenfunctions defined by the following boundary conditions:

φ(x, k)∼ we−iλx, φ(x, k)∼ weiλx, as x→−∞, (3.4)

ψ(x, k)∼ veiλx, ψ(x, k)∼ ve−iλx, as x→+∞. (3.5)

We substitute the above conditions into (2.11), obtaining

w = *,
λ + k

−iq∗+
+- , w = *,

−iq−

λ + k

+- , v = *,
−iq+

λ + k

+- , v =

(

λ + k

−iq∗−

)

, (3.6)

which satisfy the boundary conditions, but they are not unique. In the following analysis, it is conve-

nient to consider functions with constant boundary conditions. We define the bounded eigenfunctions

as follows:

FIG. 1. (a) The two-sheeted Riemann surface K. (b) The genus 0 surface is topologically equivalent to K.
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M(x, k)= eiλxφ(x, k), M(x, k)= e−iλxφ(x, k), (3.7)

N(x, k)= e−iλxψ(x, k), N(x, k)= eiλxψ(x, k). (3.8)

The eigenfunctions can be represented by means of the following integral equations:

M(x, k)= *,
λ + k

−iq∗+
+- +

∫ +∞

−∞
G−(x − x′, k)((Q − Q−)M)(x′, k)dx′, (3.9)

M(x, k)= *,
−iq−

λ + k

+- +

∫ +∞

−∞
G−(x − x′, k)((Q − Q−)M)(x′, k)dx′, (3.10)

N(x, k)= *,
−iq+

λ + k

+- +

∫ +∞

−∞
G+(x − x′, k)((Q − Q+)N)(x′, k)dx′, (3.11)

N(x, k)= *,
λ + k

−iq∗−
+- +

∫ +∞

−∞
G+(x − x′, k)((Q − Q+)N)(x′, k)dx′. (3.12)

Using the Fourier transform method, we get

G−(x, k)=
θ(x)

2λ
[(1 + e2iλx)λI − i(e2iλx − 1)(ikJ + Q−)], (3.13)

G−(x, k)=
θ(x)

2λ
[(1 + e−2iλx)λI + i(e−2iλx − 1)(ikJ + Q−)], (3.14)

G+(x, k)=− θ(−x)

2λ
[(1 + e−2iλx)λI + i(e−2iλx − 1)(ikJ + Q+)], (3.15)

G+(x, k)=− θ(−x)

2λ
[(1 + e2iλx)λI − i(e2iλx − 1)(ikJ + Q+)], (3.16)

where θ(x) is the Heaviside function, i.e., θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0.

Definition 3.1. We say f ∈ L1(R) if ∫ +∞
−∞ |f (x)|dx <∞ and f ∈ L1,2(R) if ∫ +∞

−∞ |f (x)| · (1 + |x |)2dx

<∞.

Then we have the following result (see also Ref. 11).

Theorem 3.2. Suppose the entries of Q ☞ Q± belong to L1(R), then for each x ∈R, the eigen-

functions M(x, k) and N(x, k) are continuous for k ∈C1 \ {±q0} and analytic for k ∈C1, and M(x, k)

and N(x, k) are continuous for k ∈C2 \ {±q0} and analytic for k ∈C2. In addition, if the entries of Q

☞ Q± belong to L1,2(R), then for each x ∈R, the eigenfunctions M(x, k) and N(x, k) are continuous

for k ∈C1 and analytic for k ∈C1, M(x, k) and N(x, k) are continuous for k ∈C2 and analytic for

k ∈C2.

The proof of Theorem 3.2 employs the Neumann series; it is given in the Appendix.

Definition 3.3. The Schwartz space or space of rapidly decreasing functions onRn is the function

space

S(Rn)≔ {f ∈C∞(Rn) :‖ f ‖α,β<∞,∀α, β ∈Zn
+}, (3.17)

where α, β are multi-indices, C∞(Rn) is the set of smooth functions from R
n to C, and ‖ f ‖α,β=

supx∈Rn |xαDβf (x)|. In particular, xje−a |x |2 ∈ S(Rn), where j is a multi-index and a is a positive real

number.

Then we have the following result.
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Theorem 3.4. Suppose the entries of Q ☞ Q± do not grow faster than e−ax2

, where a is a positive

real number, then for each x ∈R, the eigenfunctions M(x, k), N(x, k), M(x, k), and N(x, k) are analytic

in the Riemann surface K.

The proof of Theorem 3.4 is given in the Appendix.

C. Scattering data

The two eigenfunctions with fixed boundary conditions as x → ☞∞ are linearly independent,

as are the two eigenfunctions with fixed boundary conditions as x → +∞. Indeed, if u(x, k)=

(u1(x, k), u2(x, k))T and v(x, k)= (v1(x, k), v2(x, k))T are any two solutions of (2.3), we have

d

dx
W (u, v)= 0, (3.18)

where the Wronskian of u and v , W (u, v), is given by W (u, v)= u1v2 − u2v1. From the asymptotics

(3.4) and (3.5), it follows that

W (φ, φ)= lim
x→−∞W (φ(x, k), φ(x, k))= 2λ(λ + k), (3.19)

W (ψ,ψ)= lim
x→+∞W (ψ(x, k),ψ(x, k))=−2λ(λ + k), (3.20)

which proves that the functions φ(x, k) and φ(x, k) are linearly independent, as are ψ and ψ, with only

the branch points ±q0 being excluded. Hence, we can write φ(x, k) and φ(x, k) as linear combinations

of ψ(x, k) and ψ(x, k), or vice versa. Thus, the relations

φ(x, k)= b(k)ψ(x, k) + a(k)ψ(x, k), (3.21)

φ(x, k)= a(k)ψ(x, k) + b(k)ψ(x, k) (3.22)

hold for any k such that all four eigenfunctions exist. Combining (3.19) and (3.20), we can deduce

that the scattering data satisfy the following characterization equation:

a(k)a(k) − b(k)b(k)= 1. (3.23)

The scattering data can be represented in terms of Wronskians of the eigenfunctions, i.e.,

a(k)=
W (φ(x, k),ψ(x, k))

W (ψ(x, k),ψ(x, k))
=

W (φ(x, k),ψ(x, k))

2λ(λ + k)
, (3.24)

a(k)=−W (φ(x, k),ψ(x, k))

W (ψ(x, k),ψ(x, k))
=−W (φ(x, k),ψ(x, k))

2λ(λ + k)
, (3.25)

b(k)=−W (φ(x, k),ψ(x, k))

W (ψ(x, k),ψ(x, k))
=−W (φ(x, k),ψ(x, k))

2λ(λ + k)
, (3.26)

b(k)=
W (φ(x, k),ψ(x, k))

W (ψ(x, k),ψ(x, k))
=

W (φ(x, k),ψ(x, k))

2λ(λ + k)
. (3.27)

Then from the analytic behavior of the eigenfunctions, we have the following theorem (see also

Ref. 11).

Theorem 3.5. Suppose the entries of Q ☞ Q± belong to L1(R), then a(k) is continuous for

k ∈C1 \ {±q0} and analytic for k ∈C1, and a(k) is continuous for k ∈C2 \ {±q0} and analytic for

k ∈C2. Moreover, b(k) and b(k) are continuous in k ∈ (☞∞, ☞q0) ∪ (q0, +∞). In addition, if the

entries of Q ☞ Q± belong to L1,2(R),then a(k)λ(k) is continuous for k ∈C1 and analytic for k ∈C1

and a(k)λ(k) is continuous for k ∈C2 and analytic for k ∈C2. Moreover, b(k)λ(k) and b(k)λ(k) are

continuous for k ∈R. If the entries of Q ☞ Q± do not grow faster than e−ax2

, where a is a positive real

number, then a(k)λ(k), a(k)λ(k), b(k)λ(k), and b(k)λ(k) are analytic for k ∈K.
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Note that (3.21) and (3.22) can be written as

µ(x, k)= ρ(k)e2iλxN(x, k) + N(x, k), µ(x, k)=N(x, k) + ρ(k)e−2iλxN(x, k), (3.28)

where µ(x, k) = M(x, k)a☞1(k), µ(x, k)=M(x, k)a−1(k), ρ(k) = b(k)a☞1(k), and ρ(k)= b(k)a−1(k).

Introducing the 2 × 2 matrices,

m+(x, k)= (µ(x, k), N(x, k)), m−(x, k)= (N(x, k), µ(x, k)), (3.29)

which are meromorphic inC1 andC2, respectively. Hence, we can write the Riemann-Hilbert problem

or “jump” conditions in the k-plane as

m+(x, k) − m−(x, k)=m−(x, k) *,
−ρ(k)ρ(k) −ρ(k)e−2iλx

ρ(k)e2iλx 0

+- (3.30)

on the contour Σ: k ∈ (☞∞, ☞q0] ∪ [q0, +∞).

Remark 3.6. For the Riemann-Hilbert problem

F+(ξ) − F−(ξ)=F−(ξ)g(ξ) (3.31)

on the contour Σ, where g(ξ) is Hölder-continuous in Σ, we can consider the projection operators

(Pj(f ))(k)=
1

2πi

∫
Σ

λ(k) + λ(ξ)

2λ(ξ)
· f (ξ)

ξ − k
dξ, k ∈Cj, j = 1, 2, (3.32)

where
λ(k)+λ(ξ)

2λ(ξ)
· dξ

ξ−k
is the Weierstrass kernel and ∫ Σ denotes the integral along the oriented contour

in sheet I of Fig. 1. One can show that (Ref. 24)

λ(k) + λ(ξ)

2λ(ξ)
· dξ

ξ − k
=

dξ

ξ − k
+ regular terms

for (ξ, λ(ξ))→ (k, λ(k)). If f j (j = 1, 2) is sectionally analytic in Cj and rapidly decaying as |k|→∞
in the proper sheet, we have

(Pj(fj))(k)= (−1)j−1fj(k), k ∈Cj, (3.33)

(Pj(fl))(k)= 0, k ∈Cj. (3.34)

We obtain

F−(k)=
1

2πi

∫
Σ

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, k ∈C2, (3.35)

F+(k)=
1

2πi

∫
Σ

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, k ∈C1. (3.36)

For ξ ∈ Σ, we can take limits from the proper sheet; they are connected by the analogue of Plemelj-

Sokhotski formulas,

F+(ξ0)= lim
k→ξ0∈Σ,k∈C1

1

2πi

∫
Σ

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, (3.37)

F−(ξ0)= lim
k→ξ0∈Σ,k∈C2

1

2πi

∫
Σ

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ. (3.38)

D. Symmetry reductions

The symmetry in the potential induces a symmetry between the eigenfunctions. Indeed, if

v(x, k)= (v1(x, k), v2(x, k))T solves (2.3), then (v∗
2
(−x,−k∗), v∗

1
(−x,−k∗))T also solves (2.3). More-

over, if k→ ☞k∗, according to (3.3), we have θ1→ π ☞ θ2 and θ2→ π ☞ θ1. Hence, λ∗
j
(−k∗)=−λj(k),

where j = 1, 2. Taking into account boundary conditions (3.6), we can obtain
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ψ(x, k)=− *,
0 1

1 0

+- φ
∗(−x,−k∗), ψ(x, k)=− *,

0 1

1 0

+- φ
∗
(−x,−k∗). (3.39)

By (3.7) and (3.8), we can get the symmetry relations of the eigenfunctions, i.e.,

N(x, k)=− *,
0 1

1 0

+-M∗(−x,−k∗), N(x, k)=− *,
0 1

1 0

+-M
∗
(−x,−k∗). (3.40)

From the Wronskian representations for the scattering data and the above symmetry relations, we

have

a∗(−k∗)= a(k), a∗(−k∗)= a(k), b∗(−k∗)=−b(k). (3.41)

When using a particular single sheet for the Riemann surface of the function λ2
= k2 − q2

0
,

the involution (k, λ) → (k, ☞λ) can only be considered across the cuts. The scattering data and

eigenfunctions are defined by means of the corresponding values on the upper/lower edge of the cut;

they are labeled with superscripts ± as clarified below. Explicitly, one has

a±(k)=
W (φ±(x, k),ψ±(x, k))

2λ±(λ± + k)
, k ∈ (−∞,−q0] ∪ [q0, +∞), (3.42)

a±(k)=−W (φ
±

(x, k),ψ
±

(x, k))

2λ±(λ± + k)
, k ∈ (−∞,−q0] ∪ [q0, +∞), (3.43)

b±(k)=−W (φ±(x, k),ψ
±

(x, k))

2λ±(λ± + k)
, k ∈ (−∞,−q0] ∪ [q0, +∞), (3.44)

b
±

(k)=
W (φ

±
(x, k),ψ±(x, k))

2λ±(λ± + k)
, k ∈ (−∞,−q0] ∪ [q0, +∞). (3.45)

Using the notation λ = λ+ = ☞λ☞, we have the following symmetry:

φ∓(x, k)=
λ∓ + k

−iq−
φ
±

(x, k), ψ∓(x, k)=
λ∓ + k

−iq∗−
ψ
±

(x, k), (3.46)

for k ∈ (−∞,−q0

] ∪ [

q0, +∞). Moreover,

a±(k)=−a∓(k), b±(k)=− q2
0

q− · q+

· b∓(k) (3.47)

for k ∈ (☞∞, ☞q0] ∪ [q0, +∞).

E. Uniformization coordinates

Before discussing the properties of scattering data and solving the inverse problem, we introduce a

uniformization variable z, defined by the conformal mapping: z = z(k) = k + λ(k), where λ =

√

k2 − q2
0
,

and the inverse mapping is given by k = k(z)= 1
2

(

z +
q2

0

z

)

. Then λ(z)= 1
2

(

z − q2
0

z

)

. We observe that

(1) the upper sheet C1 and lower sheet C2 of the Riemann surface K are mapped onto the upper

half plane C
+ and lower half plane C

− of the complex z-plane, respectively;

(2) the cut (☞∞, ☞q0] ∪ [q0, +∞) on the Riemann surface is mapped onto the real z axis;

(3) the segments [☞q0, q0] on C1 and C2 are mapped onto the upper and lower semicircles of

radius q0 and centered at the origin of the complex z-plane respectively.

From Theorem 3.2, the eigenfunctions M(x, z) and N(x, z) are analytic in the upper half z-plane,

i.e., z ∈C+, and M(x, z) and N(x, z) are analytic in the lower half z-plane, i.e., z ∈C−. Moreover, by

Theorem 3.5, we find that a(z) is analytic in the upper half z-plane: z ∈C+ and a(z) is analytic in the

lower half plane: z ∈C−.
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F. Symmetries via uniformization coordinates

It is known that (1) when z→☞z∗, then (k, λ)→ (☞k∗,☞λ∗); (2) when z→ q2
0

z
, then (k, λ)→ (k,☞λ).

Hence,

ψ(x, z)=− *,
0 1

1 0

+- φ
∗(−x,−z∗), ψ(x, z)=− *,

0 1

1 0

+- φ
∗
(−x,−z∗), (3.48)

φ *,x,
q2

0

z
+-=

q2
0

z

−iq−
· φ(x, z), ψ *,x,

q2
0

z
+-=
−iq+

z
· ψ(x, z), ℑz < 0. (3.49)

Similarly, we can get

N(x, z)=− *,
0 1

1 0

+-M∗(−x,−z∗), N(x, z)=− *,
0 1

1 0

+-M
∗
(−x,−z∗). (3.50)

Moreover,

a∗(−z∗)= a(z), ℑz > 0, a∗(−z∗)= a(z), ℑz < 0; b∗(−z∗)=−b(z), (3.51)

a *,
q2

0

z
+-=−a(z), ℑz < 0; b *,

q2
0

z
+-=−

q2
0

q− · q+

· b(z). (3.52)

We will assume that a(z) and ā(z) have simple zeros in the upper/lower half z-planes respectively.

We assume that there are no multiple zeros and no zeros on ℑz= 0.

G. Asymptotic behavior of eigenfunctions and scattering data

In order to solve the inverse problem, one has to determine the asymptotic behavior of both

eigenfunctions and scattering data as z→∞ and as z→ 0. From the integral equations (in terms of

Green’s functions), we have

N(x, z)∼ *,
z

−iq∗(−x)

+- , z→∞ N(x, z)∼
(

z · q(x)

q+

−iq∗−

)

, z→ 0, (3.53)

a(z)=


1, z→∞,

−1, z→ 0,
a(z)=


1, z→∞,

−1, z→ 0,
(3.54)

lim
z→∞ zb(z)= 0, lim

z→0

b(z)

z2
= 0. (3.55)

The asymptotic behavior of M(x, z), N(x, z), and M(x, z) are given in the Appendix.

H. Riemann-Hilbert problem via uniformization coordinates

1. Left scattering problem

In order to take into account the behavior of the eigenfunctions, the “jump” conditions at the real

z-axis can be written from the left end as

M(x, z)

za(z)
− N(x, z)

z
= ρ(z)ei

(

z− q2
0
z

)

x · N(x, z)

z
, (3.56)

M(x, z)

za(z)
− N(x, z)

z
= ρ(z)e−i

(

z− q2
0
z

)

x · N(x, z)

z
(3.57)
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so that the functions will be bounded at infinity, though having an additional pole at z = 0. Note that

M(x, z)/a(z), as a function of z, is defined in the upper half plane C
+, where it has (by assumption)

simple poles zj, i.e., a(zj) = 0, and M(x, z)/a(z) is defined in the lower half plane C
−, where it has

simple poles zj, i.e., a(zj)= 0. It follows that

M(x, zj)= b(zj)e
i
(

zj−
q2
0

zj

)

x · N(x, zj), (3.58)

M(x, zj)= b(zj)e
−i
(

zj−
q2
0

zj

)

x · N(x, zj). (3.59)

Then subtracting the values at infinity, the induced pole at the origin and the poles, assumed simple

in the upper/lower half planes, respectively, at a(zj) = 0, j = 1, 2, . . ., J and ā(zj), j = 1, 2, . . . , J̄ (later

we will see that J = J̄) gives
M(x, z)

za(z)
− *,

1

0

+- −
1

z
*,

0

−iq∗−
+- −

J
∑

j=1

M(x, zj)

(z − zj)zja′(zj)


−

N(x, z)

z
−

(

1

0

)

− 1

z

(

0

−iq∗−

)

−
J

∑

j=1

b(zj)e
i
(

zj−
q2

0
zj

)

x · N(x, zj)

(z − zj)zja′(zj)


= ρ(z)ei

(

z− q2
0
z

)

x · N(x, z)

z
,

(3.60)


M(x, z)

za(z)
− *,

0

1

+- −
1

z
*,
−iq+

0

+- −
J

∑

j=1

M(x, zj)

(z − zj)zja′(zj)


−

N(x, z)

z
− *,

0

1

+- −
1

z
*,
−iq+

0

+- −
J

∑

j=1

b(zj)e
−i
(

zj−
q2
0

zj

)

x · N(x, zj)

(z − zj)zja
′(zj)


= ρ(z)e−i

(

z− q2
0
z

)

x · N(x, z)

z
.

(3.61)

We now introduce the projection operators

P±(f )(z)=
1

2πi

∫ +∞

−∞
f (ξ)

ξ − (z ± i0)
dξ, (3.62)

which are well-defined for any function f (ξ) that is integrable on the real axis. If f ±(ξ) is analytic in

the upper/lower z-plane and f ±(ξ) is decaying at large ξ, then

P±(f±)(z)=±f±(z), P∓(f±)(z)= 0. (3.63)

Applying P
☞

to (3.60) and P+ to (3.61), we can obtain

N(x, z)= *,
z

−iq∗−
+- +

J
∑

j=1

z · b(zj)e
i
(

zj−
q2
0

zj

)

x · N(x, zj)

(z − zj)zja′(zj)
+

z

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − z)
· ei

(

ξ− q2
0
ξ

)

x · N(x, ξ)dξ,

(3.64)

N(x, z)=

(−iq+

z

)

+

J
∑

j=1

z · b(zj)e
−i
(

zj−
q2
0

zj

)

x · N(x, zj)

(z − zj)zja
′(zj)

z

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − z)
· e−i

(

ξ− q2
0
ξ

)

x · N(x, ξ)dξ.

(3.65)

Since the symmetries are between eigenfunctions defined at both ±∞, we proceed to obtain the

inverse scattering integral equations defined from the right end.
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2. Right scattering problem

The right scattering problem can be written as

ψ(x, z)= α(z)φ(x, z) + β(z)φ(x, z), (3.66)

ψ(x, z)= α(z)φ(x, z) + β(z)φ(x, z), (3.67)

where α(z), α(z), β(z), and β(z) are the right scattering data. Moreover, we can get the right scattering

data and left scattering data satisfy the following relations:

α(z)= a(z), α(z)= a(z), β(z)=−b(z), β(z)=−b(z). (3.68)

Thus,

N(x, z)= a(z)M(x, z) − b(z)M(x, z)e−i
(

z− q2
0
z

)

x, (3.69)

N(x, z)= a(z)M(x, z) − b(z)M(x, z)ei
(

z− q2
0
z

)

x. (3.70)

The above two equations can be written as follows:

N(x, z)

za(z)
− M(x, z)

z
=−b(z)

a(z)
· e−i

(

z− q2
0
z

)

x · M(x, z)

z
, (3.71)

N(x, z)

za(z)
− M(x, z)

z
=−b(z)

a(z)
· ei

(

z− q2
0
z

)

x · M(x, z)

z
. (3.72)

By the symmetry relations of scattering data, we have

N(x, z)

za(z)
− M(x, z)

z
= ρ∗(−z∗) · e−i

(

z− q2
0
z

)

x · M(x, z)

z
, (3.73)

N(x, z)

za(z)
− M(x, z)

z
= ρ∗(−z∗) · ei

(

z− q2
0
z

)

x · M(x, z)

z
. (3.74)

Using similar methods as solving the left scattering problem, we obtain

M(x, z)= *,
−iq−

z

+- +

J
∑

j=1

−z · b(zj)M(x, zj)e
−i
(

zj−
q2

0
zj

)

x

(z − zj)zja′(zj)
+

z

2πi

∫ +∞

−∞
ρ∗(−ξ)

ξ(ξ − z)
· e−i

(

ξ− q2
0
ξ

)

x ·M(x, ξ)dξ,

(3.75)

M(x, z)=

(

z

−iq∗+

)

+

J
∑

j=1

−z · b(zj)M(x, zj)e
i
(

zj−
q2

0
zj

)

x

(z − zj)zja
′(zj)

− z

2πi

∫ +∞

−∞
ρ∗(−ξ)

ξ(ξ − z)
· ei

(

ξ− q2
0
ξ

)

x ·M(x, ξ)dξ.

(3.76)

I. Recovery of the potentials

In order to reconstruct the potential, we use asymptotics. For example, from Eq. (3.53), we have
N1(x,z)

z
∼ q(x)

q+
as z→ 0. By (3.64), we can get

N1(x, z)

z
∼ 1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2
0

zj

)

x

−z2
j
a′(zj)

· N1(x, zj) +
1

2πi

∫ +∞

−∞
ρ(ξ)

ξ2
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ (3.77)

as z→ 0. Hence,

q(x)= q+ ·

1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2
0

zj

)

x

−z2
j
a′(zj)

· N1(x, zj) +
1

2πi

∫ +∞

−∞
ρ(ξ)

ξ2
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ


. (3.78)

Note that the rapidly varying phase makes the integrals well defined at ξ = 0.
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J. Closing the system

We can find J = J from a

(

q2
0

z

)

=−a(z). To close the system, by the symmetry relations between

the eigenfunctions, we have

(

N1(x, z)

N2(x, z)

)

=
*,
−iq+

z

+- +

J
∑

j=1

z · b(zj)e
−i
(

zj−
q2

0
zj

)

x

(z − zj)zja
′(zj)

·

*........,

zj +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2

0
zl

)

x

(zj − zl)zla′(zl)
· N1(x, zl) +

zj

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − zj)
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ

−iq∗− +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2
0

zl

)

x

(zj − zl)zla′(zl)
· N2(x, zl) +

zj

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − zj)
· ei

(

ξ− q2
0
ξ

)

x · N2(x, ξ)dξ

+////////-
− z

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − z)
· e−i

(

ξ− q2
0
ξ

)

x ·

*.......,

ξ +
∑J

l=1

ξ · b(zl)e
i
(

zl−
q2
0

zl

)

x

(ξ − zl)zla′(zl)
· N1(x, zl) +

ξ

2πi

∫ +∞

−∞
ρ(η)

η(η − ξ)
· ei

(

η− q2
0
η

)

x · N1(x, η)dη

−iq∗− +
∑J

l=1

ξ · b(zl)e
i
(

zl−
q2

0
zl

)

x

(ξ − zl)zla′(zl)
· N2(x, zl) +

ξ

2πi

∫ +∞

−∞
ρ(η)

η(η − ξ)
· ei

(

η− q2
0
η

)

x · N2(x, η)dη

+///////-
dξ.

(3.79)

We note that from Eq. (3.78), q(x) is given in terms of the component N1. We can use only

the first component of Eq. (3.79) to find this function and hence q(x). Hence to complete the

inverse scattering, we reduce the problem to solving an integral equation in terms of the component

N1 only.

K. Trace formula

a(z) and a(z) are analytic in the upper and lower z-planes, respectively. As mentioned above, we

assume that a(z) has simple zeros, which we call z̃i and zj, where ℜz̃i = 0 and ℜzj , 0, then −z∗
j

is

also a simple zero of a(z) by a∗(☞z∗) = a(z). By the symmetry relation a

(

q2
0

z

)

=−a(z), we can deduce

that a(z) has simple zeros
q2

0

zj
, − q2

0

z∗
j

, and
q2

0

z̃i
. We define

γ(z)= a(z) ·
J1
∏

j=1

z − q2
0

zj

z − zj

·
z +

q2
0

z∗
j

z + z∗
j

·
J2
∏

i=1

z − q2
0

z̃i

z − z̃i

, γ(z)= a(z) ·
J1
∏

j=1

z − zj

z − q2
0

zj

·
z + z∗

j

z +
q2

0

z∗
j

·
J2
∏

i=1

z − z̃i

z − q2
0

z̃i

, (3.80)

where 2J1 + J2 = J. Then γ(z) and γ(z) are analytic in the upper and lower z-planes, respectively, and

have no zeros in their respective half planes. We can get

log γ(z)=
1

2πi

∫ +∞

−∞
log γ(ξ)

ξ − z
dξ,

1

2πi

∫ +∞

−∞
log γ(ξ)

ξ − z
dξ = 0, ℑz > 0, (3.81)

log γ(z)=− 1

2πi

∫ +∞

−∞
log γ(ξ)

ξ − z
dξ,

1

2πi

∫ +∞

−∞
log γ(ξ)

ξ − z
dξ = 0, ℑz < 0. (3.82)

Adding or subtracting the above equations in each half plane, respectively, yields

log γ(z)=
1

2πi

∫ +∞

−∞
log γ(ξ)γ(ξ)

ξ − z
dξ, ℑz > 0, log γ(z)=− 1

2πi

∫ +∞

−∞
log γ(ξ)γ(ξ)

ξ − z
dξ, ℑz < 0.

(3.83)
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Hence,

log a(z)= log
*...,

J1
∏

j=1

z − zj

z − q2
0

zj

·
z + z∗

j

z +
q2

0

z∗
j

·
J2
∏

i=1

z − z̃i

z − q2
0

z̃i

+///-
+

1

2πi

∫ +∞

−∞
log γ(ξ)γ(ξ)

ξ − z
dξ, ℑz > 0, (3.84)

log a(z)= log
*...,

J1
∏

j=1

z − q2
0

zj

z − zj

·
z +

q2
0

z∗
j

z + z∗
j

·
J2
∏

i=1

z − q2
0

z̃i

z − z̃i

+///-
− 1

2πi

∫ +∞

−∞
log γ(ξ)γ(ξ)

ξ − z
dξ, ℑz < 0. (3.85)

Note that γ(z)γ(z)= a(z)a(z), and from the unitarity condition a(z)a(z)−b(z)b(z)= 1 and the symmetry

b∗(−z∗)=−b(z), we can obtain

log a(z)= log
*...,

J1
∏

j=1

z − zj

z − q2
0

zj

·
z + z∗

j

z +
q2

0

z∗
j

·
J2
∏

i=1

z − z̃i

z − q2
0

z̃i

+///-
+

1

2πi

∫ +∞

−∞
log(1 − b(ξ)b∗(−ξ∗))

ξ − z
dξ, ℑz > 0,

(3.86)

log a(z)= log
*...,

J1
∏

j=1

z − q2
0

zj

z − zj

·
z +

q2
0

z∗
j

z + z∗
j

·
J2
∏

i=1

z − q2
0

z̃i

z − z̃i

+///-
− 1

2πi

∫ +∞

−∞
log(1 − b(ξ)b∗(−ξ∗))

ξ − z
dξ, ℑz < 0.

(3.87)

Thus we can reconstruct a(k), ā(k) in terms of the eigenvalues (zeros) and only one function b(k).

L. Discrete scattering data and their symmetries

In order to find reflectionless potentials/solitons, we need to be able to calculate the relevant

scattering data: b(zj), b̄(z̄j), a′(zj), ā′(zj), j = 1, 2, . . ., J. The latter functions can be calculated via the

trace formulae. So we concentrate on the former. Since

N1(x, z)=−M∗2(−x,−z∗), N2(x, z)=−M∗1(−x,−z∗), (3.88)

M1(x, zj)= b(zj)e
i
(

zj−
q2
0

zj

)

x · N1(x, zj), M2(x, zj)= b(zj)e
i
(

zj−
q2

0
zj

)

x · N2(x, zj), (3.89)

we have

N1(x, zj)=−b∗(−z∗j ) · e−i

(

zj−
q2
0

zj

)

x · N∗2 (−x,−z∗j ), (3.90)

N2(x, zj)=−b∗(−z∗j ) · e−
(

zj−
q2
0

zj

)

x · N∗1 (−x,−z∗j ). (3.91)

By rewriting (3.91), we obtain

N∗2 (−x,−z∗j )=−b(zj) · e
(

zj−
q2

0
zj

)

x · N1(x, zj). (3.92)

Combining (3.90), we can deduce the following symmetry condition on the discrete data b(zj):

b(zj)b
∗(−z∗j )= 1. (3.93)

Similar analysis shows that b̄(z̄j) satisfies an analogous equation b̄(z̄j)b̄
∗(−z̄∗

j
)= 1.

Also, since a(z) ∼ ☞1 as z → 0, from the trace formula on the real axis, we have the general

symmetry constraint

J1
∏

j=1

|zj |4
q4

0

·
J2
∏

i=1

|̃zi |2
q2

0

e
1

2π i

∫ ∞
−∞

log(1+b(ξ)b∗(−ξ))/ξdξ
= 1, (3.94)

where 2J1 + J2 = J.
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M. Reflectioness potentials and soliton solutions

Reflectioness potentials and soliton solutions, when time dependence is added, correspond to zero

reflection coefficients, i.e., ρ(ξ) = 0 and ρ(ξ)= 0 for all real ξ. We also note that from the symmetry

relation b̄(z)=−b∗(−z∗), it follows that the reflection coefficients ρ(z)= b(z)/a(z), ρ̄(z)= b̄(z)/ā(z)

will both vanish when b(z) = 0 for z on the real axis. By substituting z = zl in (3.79), the system (3.79)

reduces to an algebraic equation that determines the functional form of these special potentials. When

time dependence is added, the reflectionless potentials correspond to soliton solutions. The reduced

equations take the form

*,
N1(x, zl)

N2(x, zl)

+-= *,
−iq+

zl

+- +

J
∑

j=1

zl · b(zj)e
−i
(

zj−
q2
0

zj

)

x

(zl − zj)zja
′(zj)

·
*.....,

zj +
∑J

l=1

zj ·b(zl)e
i

(

zl−
q2
0

zl

)

x

(zj−zl)zla
′(zl)

· N1(x, zl)

−iq∗− +
∑J

l=1

zj ·b(zl)e
i

(

zl−
q2

0
zl

)

x

(zj−zl)zla
′(zl)

· N2(x, zl)

+/////-
. (3.95)

The above equation is an algebraic system to solve for N(x, zl), l = 1, 2, . . ., J. The potentials

are reconstructed from Eq. (3.78) with ρ(ξ)= 0, ρ̄(ξ)= 0, i.e.,

q(x)= q+ ·

1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2
0

zj

)

x

−z2
j
a′(zj)

· N1(x, zj)


. (3.96)

As before, since a(z) ∼ ☞1 as z→ 0, by the trace formula when b(ξ) = 0 in the real axis, we have the

following symmetry constraint for the reflectionless potentials:

J1
∏

j=1

|zj |4
q4

0

·
J2
∏

i=1

|̃zi |2
q2

0

= 1, (3.97)

where 2J1 + J2 = J.

N. Reflectionless potential solution: 1-Eigenvalue

In this subsection, we show an explicit form for the 1-eigenvalue/1-soliton solution without time

dependence, by setting J = 1. Then J1 = 0 and J2 = 1. Now let z̃1 = iv1, we have z̃1 =−i
q2

0

v1
≔−iv1,

where v1 is real and positive. Hence, we have

N1(x, iv1)=
−iq+ +

v1b(−iv1)e
−
(

v1+
q2

0
v1

)

x

(v1+v1)a′(−iv1)

1 − b(−iv1)b(iv1)e
−
(

v1+v1+
q2

0
v1

+
q2
0
v1

)

x

(v1+v1)2a′(−iv1)a′(iv1)

. (3.98)

Therefore,

q(x) = q+ ·
1 +

b(iv1)e
−
(

v1+
q2
0
v1

)

x

v2
1
·a′(iv1)

· N1(x, iv1)

 . (3.99)

By the trace formula when b(ξ) = 0 in the real axis, we can get

a′(iv1)=
1

i(v1 + v1)
, a′(−iv1)=

i

v1 + v1

. (3.100)

From (3.97), we can deduce v1 = v1 = q0. Hence,

a′(iv1)= a′(iq0)=
1

2iq0

, a′(−iv1)= a′(−iq0)=
i

2q0

. (3.101)

By choosing z̃1 = iq0 in (3.93), we can get |b(iq0)|2 = 1. Similarly, we have |b(−iq0)|2 = 1. Thus,

we write b(iq0)= eiθ1 and b(−iq0)= eiθ1 , where both θ1 and θ1 are real. Moreover, we can obtain

b(iq0)=−e−iθ1 and b(−iq0)=−e−iθ1 . Moreover, from (3.52), we can also get
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FIG. 2. (a) The amplitude of q(x, t) with θ+ =
π
4

, θ1 = 0, and q0 = 2. (b) The amplitude of q(x, t) with θ+ =
5π
4

, θ1 = 0, and

q0 = 2.

eiθ1
= b(iq0)= b *,

q2
0

−iq0

+-=−
b(−iq0)

ei(θ++θ−)
=

eiθ1

e2iθ+
, (3.102)

i.e., θ1 = θ1 + 2θ+ + 2nπ, where n ∈Z. Thus, we have the reflectionless potential corresponding to one

eigenvalue,

q(x)= q0eiθ+ ·
[
1 +

2eiθ1−2q0x · (eiθ+ + ei(θ1+2θ+)−2q0x)

1 − e2i(θ1+θ+)−4q0x

]
. (3.103)

To find the corresponding soliton solution, we need the time evolution of the data which we derive

next.

O. Time evolution

We deduce that both a(t) and a(t) are time independent, and

b(iq0, t)= b(iq0, 0)e−2i(q2
0
+2λk)t

= eiθ1 · e−2iq2
0
t , (3.104)

b(−iq0, t)= b(−iq0, 0)e2i(q2
0
+2λk)t

= eiθ1 · e2iq2
0
t
= ei(θ1+2θ+) · e2iq2

0
t . (3.105)

The details are shown in the Appendix. Putting all the above into the formula we had for the

reflectionless potential (3.103), we obtain the following one-soliton solution:

q(x, t)= q0 · ei(2q2
0
t+θ+−π) · tanh

[

q0x − iθ∗
]

, (3.106)

where θ∗ = 1
2
(θ+ + θ1 + π). This is similar to the well-known black soliton of the standard integrable

NLS equation with only a complex phase shift difference. From this solution, we see that there is a

singularity only when θ+ + θ1 = 0, ±2π which puts a restriction on the otherwise arbitrary phases

θ+, θ1. The magnitude of the solution is stationary. In Fig. 2 we give typical one-soliton solutions.

We see in Fig. 2(a) that the magnitude rises from a constant background, whereas in Fig. 2(b), the

magnitude dips from the constant background.

IV. THE CASE OF σ = −1 WITH θ+ − θ
−

= 0

In this section, we consider the nonzero boundary conditions (NZBCs) given in (2.14) with σ =

☞1, θ+ = θ
☞

≔ θ,

q(x, t)→ q±(t)≔ q̃(t)= q0e−2iq2
0
t+iθ , as x→±∞, (4.1)

where q0 > 0, 0 ≤ θ < 2π.
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A. Direct scattering

With this condition, Eq. (2.13) conveniently reduces to

∂2vj

∂x2
=−(k2 + q2

0)vj, j = 1, 2. (4.2)

Each of the two equations has two linearly independent solutions eiλx and e☞iλx as |x| → ∞, where

λ =

√

k2 + q2
0
. We introduce the local polar coordinates

k − iq0 = r1eiθ1 , −π
2
≤ θ1 <

3π

2
, k + iq0 = r2eiθ2 , −π

2
≤ θ2 <

3π

2
, (4.3)

where r1 = |k ☞ iq0| and r2 = |k + iq0|. One can write λ(k)= (r1r2)
1
2 ·ei · θ1+θ2

2
+imπ , m = 0, 1, respectively,

on sheets I (K1) and II (K2). The variable k is then thought of as belonging to a Riemann surface

K consisting of sheets I and II with both coinciding with the complex plane cut along Σ ≔ [☞iq0,

iq0] with its edges glued in such a way that λ(k) is continuous through the cut. Along the real k

axis, we have λ(k)=±sign(k)

√

k2 + q2
0
, where the plus/minus signs apply, respectively, on sheet I

and sheet II of the Riemann surface, and where the square root sign denotes the principal branch of

the real-valued square root function. We denote C± as the open upper/lower complex half planes, and

we denote K± as the open upper/lower complex half planes cut along Σ. Then λ provides one-to-one

correspondences between the following sets:

1. k ∈K+
=C

+ \ (0, iq0] and λ ∈C+,

2. k ∈ ∂K+
=R ∪ {is − 0+ : 0 < s < q0} ∪ {iq0} ∪ {is + 0+ : 0 < s < q0} and λ ∈R,

3. k ∈K− =C− \ [−iq0, 0) and λ ∈C−,

4. k ∈ ∂K− =R ∪ {is − 0+ :−q0 < s < 0} ∪ {−iq0} ∪ {is + 0+ :−q0 < s < 0} and λ ∈R.

The two sheets of the Riemann surface K are shown in Fig. 3.

Moreover, λ±(k) will denote the boundary values taken by λ(k) for k ∈ Σ from the right/left edge

of the cut, with λ±(k)=±
√

q2
0
− |k |2, k = is ±0+, |s| < q0 on the right/left edge of the cut.

See also Fig. 3. The contours along the real axis encircling ±iq0 are used in a Riemann-Hilbert

formulation.

Remark 4.1. Topologically, the Riemann surface K is equivalent to a surface with genus 0.

FIG. 3. (a) The first sheet of the Riemann surface, showing the branch cut (red), the contour (green), and the regions when

ℑλ> 0 (gray) and ℑλ< 0 (white), where λ(k)= (r1r2)
1
2 ei

θ1+θ2
2 . (b) The second sheet of the Riemann surface, showing the

branch cut (red), the contour (green), and the regions when ℑλ< 0 (gray) and ℑλ> 0 (white), where λ(k)=−(r1r2)
1
2 ei

θ1+θ2
2 .
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The eigenfunctions are defined by the following boundary conditions:

φ(x, k)∼ we−iλx, φ(x, k)∼ weiλx as x→−∞, (4.4)

ψ(x, k)∼ veiλx, ψ(x, k)∼ ve−iλx as x→+∞, (4.5)

where

w =

(

λ + k

−ĩq∗

)

, w =

( −ĩq

λ + k

)

, v =

( −ĩq

λ + k

)

, v =

(

λ + k

−ĩq∗

)

(4.6)

satisfy the boundary conditions, but they are not unique.

As in Sec. III, we consider functions with constant boundary conditions and define the same

bounded eigenfunctions M(x, k), N(x, k), M(x, k), N(x, k) except we use the boundary conditions

defined in (4.6).

The bounded eigenfunctions can be represented by means of integral equations, the formulae

are the same as (3.9)–(3.12) except for the constant terms, which are defined in (4.6).

Definition 4.2. We say f ∈ L1,1(R) if ∫ +∞
−∞ |f (x)| · (1 + |x |)dx <∞.

Then, using similar methods as in the prior case (σ = ☞1, ∆θ = π), we find the following result

(see also Ref. 12)

Theorem 4.3. Suppose the entries of Q ☞ Q± belong to L1,1(R), then for each x ∈R, the eigen-

functions M(x, k) and N(x, k) are continuous for k ∈K+ ∪ ∂K− and analytic for k ∈K+, and M(x, k)

and N(x, k) are continuous for k ∈K− ∪ ∂K+ and analytic for k ∈K−.

If we assume that the entries of Q ☞ Q± do not grow faster than e−ax2

, where a is a positive real

number, by similar methods as in case 1, we have the following result.

Theorem 4.4. Suppose the entries of Q ☞ Q± do not grow faster than e−ax2

, where a is a positive

real number, then for each x ∈R, the eigenfunctions M(x, k), N(x, k), M(x, k), and N(x, k) are analytic

in the Riemann surface K.

1. Scattering data

As in Sec. III C, we can define the scattering data a(k), a(k), b(k), and b(k) in the same way and

find the same representations in terms of eigenfunctions. When k ∈ (☞iq0, iq0), the scattering data

and eigenfunctions are defined by means of the corresponding values on the right/left edge of the

cut, are labeled with superscripts ± as clarified below. Explicitly, one has the same formulae as in

(3.42)–(3.45). Then from the analytic behavior of the eigenfunctions, we have the following theorem.

Theorem 4.5. Suppose the entries of Q ☞ Q± belong to L1,1(R), then a(k) is continuous for

k ∈K+ ∪ ∂K− \ {±iq0} and analytic for k ∈K+, and a(k) is continuous for k ∈K− ∪ ∂K+ \ {±iq0}
and analytic for k ∈K−. Moreover, b(k) and b(k) are continuous in k ∈R∪ (−iq0, iq0). In addition, if

the entries of Q ☞ Q± do not grow faster than e−ax2

, where a is a positive real number, then a(k)λ(k),

a(k)λ(k), b(k)λ(k), and b(k)λ(k) are analytic for k ∈K.

B. Symmetry reductions

The symmetry in the potential induces a symmetry between the eigenfunctions. We can obtain

the same symmetry relations as in (3.39) because we consider the same sign of σ in Sec. III and IV.

Moreover, the symmetry between scattering data is also the same as in (3.41).

When using a particular single sheet for the Riemann surface of the function λ2
= k2 + q2

0
, the

involution (k, λ)→ (k, ☞λ) leads to relationships between eigenfunctions across the cut; namely, it

relates the values of eigenfunctions and scattering data for the same value of k from either side of the

cut. One has

φ∓(x, k)=
−λ± + k

−ĩq
· φ±(x, k), ψ∓(x, k)=

−λ± + k

−ĩq∗
· ψ±(x, k) (4.7)



011501-19 Ablowitz, Luo, and Musslimani J. Math. Phys. 59, 011501 (2018)

for k ∈ [☞iq0, iq0]. Similarly,

M∓(x, k)=
−λ± + k

−ĩq
·M±(x, k), N∓(x, k)=

−λ± + k

−ĩq∗
· N±(x, k), (4.8)

for k ∈ [☞iq0, iq0]. Then,

a±(k)= a∓(k), b±(k)=
q̃∗

q̃
· b∓(k) (4.9)

for k ∈ [☞iq0, iq0].

C. Riemann-Hilbert problem

We will develop the Riemann-Hilbert problem across ∂K+ ∪ ∂K−.

(1) Riemann-Hilbert problem across the real axis [see Fig. 4(a)]. Note that (3.21) and (3.22) can

be written as

µ(x, k)= ρ(k)e2iλxN(x, k) + N(x, k), µ(x, k)=N(x, k) + ρ(k)e−2iλxN(x, k), (4.10)

where µ(x, k) = M(x, k)a☞1(k), µ(x, k)=M(x, k)a−1(k), ρ(k) = b(k)a☞1(k), and ρ(k)= b(k)a−1(k).

Introducing the 2 × 2 matrices,

m+(x, k)= (µ(x, k), N(x, k)), m−(x, k)= (N(x, k), µ(x, k)). (4.11)

Hence, we can write the “jump” conditions as

m+(x, k) − m−(x, k)=m−(x, k)

(−ρ(k)ρ(k) −ρ(k)e−2iλx

ρ(k)e2iλx 0

)

(4.12)

for k ∈R.

(2) Riemann-Hilbert problem across [0, iq0] [see Fig. 4(b)]. By (3.21) and (3.22), the notation λ

= λ+ = ☞λ☞ and the symmetry relations of Jost functions and scattering data, we have

M+(x, k)

a+(k)
=

b+(k)

a+(k)
· N+(x, k) · e2iλx +

−ĩq∗

λ− + k
· N−(x, k), (4.13)

FIG. 4. (a) Riemann-Hilbert problem across the real axis. (b) Riemann-Hilbert problem across [0, iq0]. (c) Riemann-Hilbert

problem across [☞iq0, 0).
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−iq−
λ− + k

· M−(x, k)

a−(k)
=N+(x, k) +

q̃

q̃∗
· b−(k)

a−(k)
· −ĩq∗

λ− + k
· N−(x, k) · e−2iλx. (4.14)

Introducing the 2 × 2 matrices

m+(x, k)= (µ+(x, k), N+(x, k)), m−(x, k)=

( −ĩq∗

λ− + k
N−(x, k),

−i q̃

λ− + k
· µ−(x, k)

)

, (4.15)

where µ+(x, k) = M+(x, k)a+(k)☞1, µ☞(x, k) = M☞(x, k)a☞(k)☞1, ρ+(k) = b+(k)a+(k)☞1, and ρ☞(k) =

b☞(k)a☞(k)☞1. Then,

m+(x, k) − m−(x, k)=m−(x, k) *,
− q̃

q̃∗ · ρ+(k)ρ−(k) − q̃

q̃∗ · ρ−(k)e−2iλx

ρ+(k)e2iλx 0
+- (4.16)

for k ∈C+.

(3) Riemann-Hilbert problem across [☞iq0, 0) [see Fig. 4(c)]. By (3.21) and (3.22), the notation λ

= λ+ = ☞λ☞, and the symmetry relations of Jost functions and scattering data, we can get

−λ− + k

−i q̃
· M

−
(x, k)

a−(x, k)
=

q̃∗

q̃
· b
−

(k)

a−(k)
· −λ

− + k

−i q̃∗
· N−(x, k) · e2iλx + N

+
(x, k), (4.17)

M
+
(x, k)

a+(k)
=

−λ− + k

−i q̃∗
· N−(x, k) +

b
+
(k)

a+(k)
· N+

(x, k) · e−2iλx. (4.18)

Introducing the 2 × 2 matrices,

m+(x, k)=
(

µ+(x, k), N
+
(x, k)

)

, m−(x, k)=

(−λ− + k

−i q̃∗
· N−(x, k),

−λ− + k

−ĩq
· µ−(k)

)

, (4.19)

where µ+(x, k)=M
+
(x, k)a+(k)−1, µ−(x, k)=M

−
(x, k)a−(k)−1, ρ+(k)= b

+
(k)a+(k)−1, and ρ−(k)=

b
−

(k)a−(k)−1. Then,

m+(x, k) − m−(x, k)=m−(x, k) *,
− q̃∗

q̃
· ρ+(k)ρ−(k) − q̃∗

q̃
· ρ−(k) · e2iλx

ρ+(k)e−2iλx 0
+- (4.20)

for k ∈C−.

Remark 4.6. For the Riemann-Hilbert problem

F+(ξ) − F−(ξ)=F−(ξ)g(ξ) (4.21)

on the contour Σ̃≔ Σ1 ∪ Σ2 ∪ Σ3, where Σ1≔R, Σ2 ≔ [0, iq0], Σ3 ≔ [☞iq0, 0), g(ξ) is Hölder-

continuous in Σ̃, and g(ξ) = gm(ξ) is chosen depending on which piece of the contour is considered,

where m = 1, 2, 3. We can consider the projection operators

(Pj(f ))(k)=
1

2πi

∫
Σ̃

λ(k) + λ(ξ)

2λ(ξ)
· f (ξ)

ξ − k
dξ, k ∈Cj, j = 1, 2, (4.22)

where
λ(k)+λ(ξ)

2λ(ξ)
· dξ

ξ−k
is the Weierstrass kernel,

∫
Σ̃

≔

∫
Σ1∪Σ2

+

∫
Σ1∪Σ3

denote the integrals along the

oriented contours in Fig. 3(a). One can show that (Ref. 24)

λ(k) + λ(ξ)

2λ(ξ)
· dξ

ξ − k
=

dξ

ξ − k
+ regular terms

for (ξ, λ(ξ))→ (k, λ(k)). If f j (j = 1, 2) is sectionally analytic in Cj and rapidly decaying as |k|→∞
in the proper sheet, we have
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(Pj(fj))(k)= (−1)j−1fj(k), k ∈Cj, (4.23)

(Pj(fl))(k)= 0, k ∈Cj. (4.24)

We obtain

F−(k)=
1

2πi

∫
Σ̃

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, k ∈C2, (4.25)

F+(k)=
1

2πi

∫
Σ̃

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, k ∈C1. (4.26)

For ξ ∈ Σ̃, we can take limits from the proper sheet and connect by the analogue of Plemelj-Sokhotski

formulas

F+(ξ0)= lim
k→ξ0∈Σ̃,k∈C1

1

2πi

∫
Σ̃

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ, (4.27)

F−(ξ0)= lim
k→ξ0∈Σ̃,k∈C2

1

2πi

∫
Σ̃

λ(k) + λ(ξ)

2λ(ξ)
· F−(ξ)g(ξ)

ξ − k
dξ. (4.28)

In principle, the above RH problem can be analyzed for the two-sheeted problem. But a uni-

formizing coordinate makes the problem considerably more straight forward. This is discussed

next.

D. Uniformization coordinates

Before discussing the properties of scattering data and solving the inverse problem, we introduce

a uniformization variable z, see also Ref. 10, defined by the conformal mapping: z = z(k) = k +

λ(k), where λ =

√

k2 + q2
0

and the inverse mapping is given by k = k(z)= 1
2

(

z − q2
0

z

)

. Then λ(z)=

1
2

(

z +
q2

0

z

)

. We let C0 be the circle of radius q0 centered at the origin in the z-plane. We observe the

following:

(1) The branch cut on either sheet is mapped onto C0. In particular, z(±iq0) = ±iq0 from either

sheet, z(0±
I

)=±q0, and z(0±
II

)=∓q0.

(2) K1 is mapped onto the exterior of C0 and K2 is mapped onto the interior of C0. In particular,

z(∞I ) =∞ and z(∞II ) = 0; the first/second quadrants ofK1 are mapped into the first/second quad-

rants outside C0, respectively; the first/second quadrants ofK2 are mapped into the second/first

quadrants inside C0, respectively; zI zII = q2
0
.

(3) The regions in the k-plane such that ℑλ > 0 and ℑλ < 0 are mapped onto D+
= {z ∈C : (|z |2 −

q2
0
) · ℑz > 0} and D− = {z ∈C : (|z |2 − q2

0
) · ℑz < 0}, respectively.

From Theorem 4.3 and the definition of the uniformization variable z, we have that the eigen-

functions M, N are analytic for z ∈ D+ and the eigenfunctions M̄, N̄ are analytic for in z ∈ D☞. See

Figs. 5 and 6.

The contours (green) in two sheets [Figs. 3(a) and 3(b)] are mapped into Figs. 6(a) and 6(b),

respectively, via the uniformization coordinate.

E. Symmetries via uniformization coordinates

It is found that (1) when z→☞z∗, then (k, λ)→ (☞k∗,☞λ∗); (2) when z→− q2
0

z
, then (k, λ)→ (k,☞λ).

Hence, we have the same conclusions as in (3.48), and
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FIG. 5. The complex z-plane, showing the branch cut (red), the regions D± where ℑλ> 0 (gray) and ℑλ< 0 (white), respec-

tively. In particular, the first sheet is mapped onto the region outside the circle, and the second sheet is mapped onto the region

inside the circle. Importantly, the eigenfunctions M, N are analytic for z ∈ D+ and the eigenfunctions M̄, N̄ are analytic for z

∈ D☞.

φ *,x,−q2
0

z
+-=

q2
0

z

i q̃
· φ(x, z), ψ *,x,−q2

0

z
+-=
−i q̃

z
· ψ(x, z), z ∈D−. (4.29)

Moreover,

a∗(−z∗)= a(z), z ∈D+, a∗(−z∗)= a(z), z ∈D−, b∗(−z∗)=−b(z), (4.30)

a *,−
q2

0

z
+-= a(z), z ∈D−, b *,−

q2
0

z
+-=

q̃∗

q̃
· b(z). (4.31)

FIG. 6. (a) The contour (green) in the first sheet is mapped into the above curve in the z-plane. (b) The contour (green) in the

second sheet is mapped into the above curve in the z-plane.
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F. Asymptotic behavior of eigenfunctions and scattering data

In order to solve the inverse problem, one has to determine the asymptotic behavior of

eigenfunctions and scattering data both as z→∞ in K1 and as z→ 0 in K2. We have

N(x, z)∼
(−iq(x)

z

)

, z→∞, N(x, z)∼ *,
−ĩq

z · q∗(−x)

q̃∗
+- , z→ 0, (4.32)

a(z)=

{

1, z→∞,

1, z→ 0,
a(z)=

{

1, z→∞,

1, z→ 0,
(4.33)

lim
z→∞ zb(z)= 0, lim

z→0

b(z)

z2
= 0. (4.34)

G. Riemann-Hilbert problem via uniformization coordinates

1. Left scattering problem

In order to take into account the behavior of the eigenfunctions, the “jump” conditions at Σ,

where Σ≔ (−∞,−q0)∪ (q0, +∞)∪−−−−−−−→(q0,−q0)∪ {q0eiθ , π ≤ θ ≤ 2π}clockwise,upper circle ∪{q0eiθ ,−π ≤ θ ≤
0}anticlockwise,lower circle, can be written as

M(x, z)

za(z)
− N(x, z)

z
= ρ(z)ei

(

z+
q2
0
z

)

x · N(x, z)

z
,

M(x, z)

za(z)
− N(x, z)

z
= ρ(z)e−i

(

z+
q2
0
z

)

x · N(x, z)

z
(4.35)

so that the functions will be bounded at infinity, though having an additional pole at z = 0. Note that

M(x, z)/a(z), as a function of z, is defined in D+, where it has simple poles zj, i.e., a(zj) = 0, and

M(x, z)/a(z) is defined in D☞, where it has simple poles zj, i.e., a(zj)= 0. It follows that

M(x, zj)= b(zj)e
i
(

zj+
q2
0

zj

)

x · N(x, zj), M(x, zj)= b(zj)e
−i
(

zj+
q2
0

zj

)

x · N(x, zj). (4.36)

Then subtracting the values at infinity, the induced pole at the origin and the poles, assumed simple

in D+/D☞, respectively, at a(zj) = 0, j = 1, 2, . . ., J and ā(zj), j = 1, 2, . . . , J̄ give


M(x, z)

za(z)
−

(

1

0

)

− 1

z

(

0

−ĩq∗

)

−
J

∑

j=1

M(x, zj)

(z − zj)zja′(zj)


−

N(x, z)

z
−

(

1

0

)

− 1

z

(

0

−ĩq∗

)

−
J

∑

j=1

b(zj)e
i
(

zj+
q2
0

zj

)

x · N(x, zj)

(z − zj)zja′(zj)


= ρ(z)ei

(

z+
q2
0
z

)

x · N(x, z)

z
,

(4.37)


M(x, z)

za(z)
−

(

0

1

)

− 1

z

(−ĩq

0

)

−
J

∑

j=1

M(x, zj)

(z − zj)zja′(zj)


−

N(x, z)

z
−

(

0

1

)

− 1

z

(−ĩq

0

)

−
J

∑

j=1

b(zj)e
−i
(

zj+
q2
0

zj

)

x · N(x, zj)

(z − zj)zja
′(zj)


= ρ(z)e−i

(

z+
q2
0
z

)

x · N(x, z)

z
.

(4.38)
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We now introduce the projection operators along Σ

P±(f )(z)=
1

2πi

∫
Σ

f (ξ)

ξ − (z ± i0)
dξ, (4.39)

where z lies in the ± regions and Σ≔ (−∞,−q0) ∪ (q0, +∞) ∪ −−−−−−−→(q0,−q0) ∪ {q0eiθ , π ≤ θ
≤ 2π}clockwise,upper circle ∪ {q0eiθ ,−π ≤ θ ≤ 0}anticlockwise,lower circle indicated by the curve in Fig. 5 [red

arrows with black heads].

If f ±(ξ) is analytic in D± and f ±(ξ) is decaying at large ξ, then

P±(f±)(z)=±f±(z), P∓(f±)(z)= 0. (4.40)

Applying P
☞

to (4.37) and P+ to (4.38), we can obtain

N(x, z)=

(

z

−ĩq∗

)

+

J
∑

j=1

z · b(zj)e
i
(

zj+
q2

0
zj

)

x · N(x, zj)

(z − zj)zja′(zj)
+

z

2πi

∫
Σ

ρ(ξ)

ξ(ξ − z)
· ei

(

ξ+
q2

0
ξ

)

x · N(x, ξ)dξ,

(4.41)

N(x, z)=

(−ĩq

z

)

+

J
∑

j=1

z · b(zj)e
−i
(

zj+
q2
0

zj

)

x · N(x, zj)

(z − zj)zja
′(zj)

− z

2πi

∫
Σ

ρ(ξ)

ξ(ξ − z)
· e−i

(

ξ+
q2
0
ξ

)

x · N(x, ξ)dξ.

(4.42)

2. Right scattering problem

As in Sec. III H 2, we can obtain M(x, z) and M(x, z) by the right scattering problem,

M(x, z)=

(−ĩq

z

)

+

J
∑

j=1

−z · b(zj)M(x, zj)e
−i
(

zj+
q2

0
zj

)

x

(z − zj)zja′(zj)
+

z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

· e−i
(

ξ+
q2

0
ξ

)

x ·M(x, ξ)dξ,

(4.43)

M(x, z)=

(

z

−ĩq∗

)

+

J
∑

j=1

−z · b(zj)M(x, zj)e
i
(

zj+
q2
0

zj

)

x

(z − zj)zja
′(zj)

− z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

· ei
(

ξ+
q2
0
ξ

)

x ·M(x, ξ)dξ.

(4.44)

H. Recovery of the potentials

Note that N1(x, z) ∼ ☞iq(x) as z→∞ and

N1(x, z)∼−ĩq +

J
∑

j=1

b(zj)e
−i
(

zj+
q2
0

zj

)

x · N1(x, zj)

zja
′(zj)

+
1

2πi

∫
Σ

ρ(ξ)

ξ
· e−i

(

ξ+
q2

0
ξ

)

x · N1(x, ξ)dξ, (4.45)

we have

q(x)= q̃ + i

J
∑

j=1

b(zj)e
−i
(

zj+
q2

0
zj

)

x · N1(x, zj)

zja
′(zj)

+
1

2π

∫
Σ

ρ(ξ)

ξ
· e−i

(

ξ+
q2
0
ξ

)

x · N1(x, ξ)dξ. (4.46)

I. Closing the system

Similarly, we can get J = J from a

(

− q2
0

z

)

= a(z). To close the system, by the symmetry relations

between the eigenfunctions, we have
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(

M1(x, z)

M2(x, z)

)

=

(−ĩq

z

)

+

J
∑

j=1

−z · b(zj)e
−i
(

zj+
q2

0
zj

)

x

(z − zj)zja′(zj)
·

*..........,

zj +
∑J

l=1

−zj · b(zl)e
i
(

zl+
q2

0
zl

)

x

(zj − zl)zla
′(zl)

·M1(x, zl) −
zj

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − zj)

· ei
(

ξ+
q2
0
ξ

)

x ·M1(x, ξ)dξ

−ĩq∗ +
∑J

l=1

−zj · b(zl)e
i
(

zl+
q2
0

zl

)

x

(zj − zl)zla
′(zl)

·M2(x, zl) −
zj

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − zj)

· ei
(

ξ+
q2
0
ξ

)

x ·M2(x, ξ)dξ

+//////////-
+

z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

· e−i
(

ξ+
q2
0
ξ

)

x ·

*..........,

ξ +
∑J

l=1

−ξ · b(zl)e
i
(

zl+
q2
0

zl

)

x

(ξ − zl)zla
′(zl)

·M1(x, zl) − ξ

2πi

∫
Σ

ρ∗(−η∗)
η(η − ξ)

· ei
(

η+
q2
0
η

)

x ·M1(x, η)dη

−ĩq∗ +
∑J

l=1

−ξ · b(zl)e
i
(

zl+
q2
0

zl

)

x

(ξ − zl)zla
′(zl)

·M2(x, zl) − ξ

2πi

∫
Σ

ρ∗(−η∗)
η(η − ξ)

· ei
(

η+
q2

0
η

)

x ·M2(x, η)dη

+//////////-
dξ.

(4.47)

We note that from Eq. (4.46), q(x) is given only in terms of the component N̄1. We can use only

the second component of Eq. (4.47) to find M̄2 which via the symmetry relation (3.50) yields this

function and hence q(x). Hence to complete the inverse scattering, we reduce the problem to solving

an integral equation in terms of the component M̄2 only.

J. Trace formula

In a similar manner to Sec. III K, we can get the trace formula as follows:

log a(z)= log
*...,

J1
∏

j=1

z − zj

z +
q2

0

zj

·
z + z∗

j

z − q2
0

z∗
j

·
J2
∏

i=1

z − z̃i

z +
q2

0

z̃i

+///-
+

1

2πi

∫
Σ

log(1 − b(ξ)b∗(−ξ∗))
ξ − z

dξ, z ∈D+, (4.48)

log a(z)= log
*...,

J1
∏

j=1

z +
q2

0

zj

z − zj

·
z − q2

0

z∗
j

z + z∗
j

·
J2
∏

i=1

z +
q2

0

z̃i

z − z̃i

+///-
− 1

2πi

∫
Σ

log(1 − b(ξ)b∗(−ξ∗))
ξ − z

dξ, z ∈D−, (4.49)

whereℜz̃i = 0,ℜzj , 0, and 2J1 + J2 = J.

K. Reflectioness potentials and soliton solutions

Reflectioness potentials and soliton solutions correspond to zero reflection coefficients, i.e., ρ(ξ)

= 0 and ρ(ξ)= 0 for all ξ ∈ Σ. We also note that from the symmetry relation b̄(z)=−b∗(−z∗), it

follows that the reflection coefficients ρ(z)= b(z)/a(z), ρ̄(z)= b̄(z)/ā(z) will both vanish when b(z)

= 0 for z on Σ. By substituting z= zl in (4.47), the system (4.47) reduces to algebraic systems of

equations that determine the functional form of these special potentials. When time dependence is

added, the reflectionless potentials correspond to soliton solutions. The reduced equation takes the

form
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(

M1(x, zl)

M2(x, zl)

)

=

(−ĩq

zl

)

+

J
∑

j=1

−zl · b(zj)e
−i
(

zj+
q2
0

zj

)

x

(zl − zj)zja′(zj)

*........,

zj +
∑J

l=1

−zj · b(zl)e
i
(

zl+
q2
0

zl

)

x

(zj − zl)zla
′(zl)

·M1(x, zl)

−ĩq∗ +
∑J

l=1

−zj · b(zl)e
i
(

zl+
q2

0
zl

)

x

(zj − zl)zla
′(zl)

·M2(x, zl)

+////////-
.

(4.50)

The above equations are an algebraic system to solve for either N(x, zl) or M(x, zl), l = 1, 2, . . . , J .

The potential is reconstructed from Eq. (4.46) with ρ(ξ)= 0, ρ̄(ξ)= 0, i.e.,

q(x)= q̃ + i

J
∑

j=1

b(zj)e
−i
(

zj+
q2

0
zj

)

x · N1(x, zj)

zja
′(zj)

. (4.51)

Since a(z) ∼ 1 as z→ 0, from the trace formula when b(ξ) = 0 in Σ, we have the following constraint

for the reflectionless potentials:

J1
∏

j=1

|zj |4
q4

0

·
J2
∏

i=1

*,
|̃zi |2
q2

0

+-= 1, (4.52)

where 2J1 + J2 = J. We claim that J ≥ 2. Otherwise, if J = 1, then J1 = 0 and J2 = 1, which implies

that |̃z1 |2 = q2
0
; hence, the eigenvalue lies on the circle, which in this case is the continuous spectrum.

Such eigenvalues are not proper; they are not considered here.

L. Discrete scattering data and their symmetries

In order to find reflectionless potentials and solitons, we need to be able to calculate the relevant

discrete scattering data. The coefficients b(zj) and b̄(z̄j), j = 1, 2, . . . , J , can be calculated in the same

way as in Sec. III L to find

b(zj)b
∗(−z∗j )= 1, b̄(z̄j)b̄

∗(−z̄∗j )= 1, −b(zj)b(zj)= 1, −b(zj)b(zj)= 1. (4.53)

The functions a′(zj), ā′(zj) can be calculated via the trace formulae.

M. Reflectionless potential solution: 2-Eigenvalue

In this subsection, we construct an explicit 2-eigenvalue reflectionless potential by setting J = 2;

this solution turns into a soliton solution when time dependence is added. The simplest reflectionless

potential case obtains when J1 = 0 and J2 = 2; as mentioned above, when J1 = 1, J2 = 0 leads to

eigenvalues on the continuous spectrum. Note that |̃z1 | · |̃z2 | = q2
0
. Now let z̃1 = iv1, where v1 > q0.

Then z̃2 =−i
q2

0

v1
, a(iv1)= a(−i

q2
0

v1
)= 0, and a(i

q2
0

v1
)= a(−iv1)= 0. Thus,

a(z)=
z − iv1

z − i
q2

0

v1

·
z + i

q2
0

v1

z + iv1

, a(z)=
z − i

q2
0

v1

z − iv1

· z + iv1

z + i
q2

0

v1

, (4.54)

we can get

a′(iv1)=

i

(

v1 +
q2

0

v1

)

2(q2
0
− v2

1
)
, a′ *,−i

q2
0

v1

+-=
i

(

q2
0

v1
+ v1

)

2q2
0

(

q2
0

v2
1

− 1

) , (4.55)

a′(−iv1)=

i

(

v1 +
q2

0

v1

)

2(v2
1
− q2

0
)
, a′ *,i

q2
0

v1

+-=
−i

(

v1 +
q2

0

v1

)

2q2
0

(

q2
0

v2
1

− 1

) . (4.56)
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Similarly, from Sec. IV L, we can get |b(iv1)| = |b(iv1)| = |b(−i
q2

0

v1
)| = |b(−i

q2
0

v1
)| = |b(−iv1)| = |b(−iv1)|

= |b(i
q2

0

v1
)| = |b(i

q2
0

v1
)| = 1. So we can write b(iv1)= eiϕ1 and b(−i

q2
0

v1
)= eiϕ2 . By the symme-

try relations b∗(−z∗)=−b(z) and b

(

− q2
0

z

)

=

q̃∗
q̃

b(z), we can obtain b(i
q2

0

v1
)= ei(2θ+ϕ1), b(−iv1)

= ei(2θ+ϕ2), b(iv1)=−e−iϕ1 , b(−i
q2

0

v1
)=−e−iϕ2 , b(−iv1)=−e−i(2θ+ϕ2), and b(i

q2
0

v1
)=−e−i(2θ+ϕ1). Hence,

we have

M
∗
2
*,−x, i

q2
0

v1

+-=
iq0e2v1x · (q2

0
+ v2

1
) · *.,q0 + v1e

(

q2
0
v1
−v1

)

x
ei(θ+ϕ2)+/-

v1

2q0v1 · e
(

q2
0
v1

+v1

)

x · eiθ (eiϕ1 − eiϕ2 ) − (q2
0

+ v2
1

) *,e2v1x − e
2q2

0
v1

x · ei(2θ+ϕ1+ϕ2)+-


,

(4.57)

M
∗
2 (−x,−iv1)=

iev1x · (q2
0

+ v2
1

) · *,−q0e
q2

0
v1

x
ei(θ+ϕ1) + v1ev1x+-

2q0v1 · e
(

q2
0
v1

+v1

)

x · eiθ (eiϕ2 − eiϕ1 ) − (q2
0

+ v2
1

) *,e2v1x − e
2q2

0
v1

x · ei(2θ+ϕ1+ϕ2)+-
. (4.58)

By (4.51), we have

q(x) = q̃ − i
2

(

q2
0

v2
1

−1

)

ei(2θ+ϕ1)e

*.,
q2
0
v1
−v1

+/-x

1+
q2
0

v2
1

M
∗
2

(

−x, i
q2

0

v1

)

− i
2

(

v1−
q2
0
v1

)

ei(2θ+ϕ2)e

*.,
q2
0
v1
−v1

+/-x

q2
0
v1

+v1

M
∗
2 (−x,−iv1) . (4.59)

N. Time evolution

As in Sec. III O, we find

∂a(t)

∂t
= 0,

∂a(t)

∂t
= 0,

∂b(t)

∂t
= 2i(q2

0 − 2λk)b(t). (4.60)

Hence, a(t) and a(t) are time independent. Moreover,

b(iv1, t)= eiϕ1 · e2i

[
q2

0
+ 1

2

(

v2
1
− q4

0

v2
1

)]
t

, b *,−i
q2

0

v1

, t+-= eiϕ2 · e2i

[
q2

0
− 1

2

(

v2
1
− q4

0

v2
1

)]
t

. (4.61)

Putting all the above into the formula we had for the reflectionless potential, we obtain the following

2-soliton solution, which is oscillating in time or “breathing” soliton solution:

q(x, t)=
*.,e
− i

2

(

2(q2
0

+v2
1 )(t(q2

0
+v2

1 )−iv1x)
v2
1

+ϕ1+ϕ2

)

·
(

2q4
0
· e2itv2

1
+

(

q2
0
v1

+v1

)

x+i(θ+ϕ1) − 2v4
1
e

2iq4
0

t

v2
1

+

(

q2
0
v1

+v1

)

x+i(θ+ϕ2)

−q0v1(q2
0 + v2

1 ) · e
it(q4

0
+v4

1 )
v2
1

+2v1x

+ q0v1(q2
0 + v2

1 ) · ei · q
4
0

t−2iq2
0
v1x+v2

1 (tv2
1

+2θ+ϕ1+ϕ2)
v2
1

)+/- /
*,2v1

*,−2iq0v1 sin


1

2
*,2t *,

q4
0

v2
1

− v2
1
+- − ϕ1 + ϕ2

+-

+- + (q2

0 + v2
1 ) sinh


q2

0
x

v1

+
−2v1x + i(2θ + ϕ1 + ϕ2)

2


+- .

(4.62)

A typical breather solution is plotted in Fig. 7.
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FIG. 7. The amplitude of q(x, t) with θ = π
2

, ϕ1 = 0, ϕ2 = 0, v1 = 3, and q0 = 2.

V. THE CASE OF σ = 1 WITH ∆θ = θ+ − θ
−

= 0

Next we will study the nonlocal nonlinear Schrödinger (NLS) equation (1.1) with σ = 1,

iqt(x, t)= qxx(x, t) − 2q2(x, t)q∗(−x, t) (5.1)

with nonzero boundary conditions (NZBCs)

q(x, t)→ q̂±(t)≔ q̂(t)= q0e2iq2
0
t+iθ , as x→±∞, (5.2)

where q0 > 0, 0 ≤ θ < 2π. Note we take θ+ = θ
☞

= θ.

A. Direct scattering

With this condition, Eq. (2.13) conveniently reduces to

∂2vj

∂x2
=−(k2 − q2

0)vj, j = 1, 2. (5.3)

Each of the two equations has two linearly independent solutions eiλx and e☞iλx as |x|→∞, where

λ =

√

k2 − q2
0
. The variable k is then thought of as belonging to a Riemann surface K consisting of

two sheets C1 and C2 with both coinciding with the complex plane cut along (☞∞, ☞q0] ∪ [q0, +∞)

with its edges glued in such a way that λ(k) is continuous through the cut. The Riemann surface and

the definition of λ are the same as discussed in Sec. III (σ = ☞1, ∆θ = π.)

B. Eigenfunctions

Following the approach discussed in Sec. III, we introduce the eigenfunctions defined by the

following boundary conditions:

φ(x, k)∼ we−iλx, φ(x, k)∼ weiλx as x→−∞, (5.4)

ψ(x, k)∼ veiλx, ψ(x, k)∼ ve−iλx as x→+∞, (5.5)

where

w =

(

λ + k

îq∗

)

, w =

( −îq

λ + k

)

, v =

( −îq

λ + k

)

, v =

(

λ + k

îq∗

)

(5.6)
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satisfy the boundary conditions; they are not unique. As in Sec. III, we consider functions with constant

boundary conditions and define the same bounded eigenfunctions M(x, k), N(x, k), M(x, k), N(x, k)

except we use the boundary conditions defined in (5.6). The bounded eigenfunctions can be repre-

sented by means of integral equations, the formulae are the same as in (3.9)–(3.12) except for the

constant terms, which are defined in (5.6).

C. Symmetry reductions

Taking into account boundary conditions, we can obtain

ψ(x, k)=

(

0 1

−1 0

)

φ∗(−x,−k∗), ψ(x, k)=

(

0 −1

1 0

)

φ
∗
(−x,−k∗). (5.7)

The scattering relations are the same as in (3.41)–(3.45) except for the relation between b and b, i.e.,

b∗(−k∗)= b(k).

Using the notation λ = λ+ = ☞λ☞, we have the following symmetry:

φ∓(x, k)=
λ∓ + k

−îq
φ
±

(x, k), ψ∓(x, k)=
λ∓ + k

îq∗
ψ
±

(x, k) (5.8)

for k ∈ (☞∞, ☞q0] ∪ [q0, +∞). Moreover,

a±(k)= a∓(k), b±(k)=− q̂∗

q̂
· b∓(k) (5.9)

for k ∈ (☞∞, ☞q0] ∪ [q0, +∞).

D. Uniformization coordinates

As in Sec. III, we introduce a uniformization variable z, defined by the conformal mapping: z

= z(k) = k + λ(k), and the inverse mapping is given by k = k(z)= 1
2

(

z +
q2

0

z

)

. Then λ(z)= 1
2

(

z − q2
0

z

)

.

E. Symmetries via uniformization coordinates

We have seen that (1) when z→ ☞z∗, then (k, λ)→ (☞k∗, ☞λ∗) and (2) when z→ q2
0

z
, then (k, λ)

→ (k, ☞λ). Hence,

ψ(x, z)=

(

0 1

−1 0

)

φ∗(−x,−z∗), ψ(x, z)=

(

0 −1

1 0

)

φ
∗
(−x,−z∗), (5.10)

φ *,x,
q2

0

z
+-=

q2
0

z

−îq
φ(x, z), ψ *,x,

q2
0

z
+-=
−îq

z
ψ(x, z), ℑz < 0. (5.11)

Moreover,

a∗(−z∗)= a(z), a∗(−z∗)= a(z), b∗(−z∗)= b(z), (5.12)

a *,
q2

0

z
+-= a(z), ℑz < 0, b *,

q2
0

z
+-=−

q̂∗

q̂
· b(z). (5.13)

F. Asymptotic behavior of eigenfunctions and scattering data

In order to solve the inverse problem, one has to determine the asymptotic behavior of

eigenfunctions and scattering data both as z→∞ and as z→ 0. We have

N(x, z)∼
(

z

iq∗(−x)

)

, z→∞, N(x, z)∼ *,
z · q(x)

q̂

îq∗
+- , z→ 0, (5.14)

a(z)=

{

1, z→∞,

1, z→ 0,
a(z)=

{

1, z→∞,

1, z→ 0,
(5.15)
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lim
z→∞ zb(z)= 0, lim

z→0

b(z)

z2
= 0. (5.16)

G. Left and right scattering problems

Using similar methods as in Sec. III, we find N(x, z), N(x, z), M(x, z), and M(x, z). They are

almost the same as (3.64), (3.65), (3.75), and (3.76). The only differences are the constant terms,

which are shown in (5.6).

H. Recovery of the potentials

Note that
N1(x,z)

z
∼ q(x)

q̂
as z→ 0 and

N1(x, z)

z
→ 1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2

0
zj

)

x

−z2
j
a′(zj)

· N1(x, zj) +
1

2πi

∫ +∞

−∞
ρ(ξ)

ξ2
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ (5.17)

as z→ 0, therefore,

q(z)= q̂ ·

1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2
0

zj

)

x

−z2
j
a′(zj)

· N1(x, zj) +
1

2πi

∫ +∞

−∞
ρ(ξ)

ξ2
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ


. (5.18)

I. Closing the system

We find J = J from a

(

q2
0

z

)

= a(z). To close the system, by the symmetry relations between the

eigenfunctions, we have

(

N1(x, z)

N2(x, z)

)

=

(−îq

z

)

+

J
∑

j=1

z · b(zj)e
−i
(

zj−
q2
0

zj

)

x

(z − zj)zja
′(zj)

·

*........,

zj +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2

0
zl

)

x

(zj − zl)zla′(zl)
· N1(x, zl) +

zj

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − zj)
· ei

(

ξ− q2
0
ξ

)

x · N1(x, ξ)dξ

îq∗ +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2

0
zl

)

x

(zj − zl)zla′(zl)
· N2(x, zl) +

zj

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − zj)
· ei

(

ξ− q2
0
ξ

)

x · N2(x, ξ)dξ

+////////-
− z

2πi

∫ +∞

−∞
ρ(ξ)

ξ(ξ − z)
· e−i

(

ξ− q2
0
ξ

)

x ·

*........,

ξ +
∑J

l=1

ξ · b(zl)e
i
(

zl−
q2
0

zl

)

x

(ξ − zl)zla′(zl)
· N1(x, zl) +

ξ

2πi

∫ +∞

−∞
ρ(η)

η(η − ξ)
· ei

(

η− q2
0
η

)

x · N1(x, η)dη

îq∗ +
∑J

l=1

ξ · b(zl)e
i
(

zl−
q2
0

zl

)

x

(ξ − zl)zla′(zl)
· N2(x, zl) +

ξ

2πi

∫ +∞

−∞
ρ(η)

η(η − ξ)
· ei

(

η− q2
0
η

)

x · N2(x, η)dη

+////////-
dξ.

(5.19)

We note that from Eq. (4.46), q(x) is given only in terms of the component N1. We can use

only the first component of Eq. (5.19) to find this function and hence q(x). Hence to complete the

inverse scattering, we reduce the problem to solving an integral equation in terms of the component

N1 only.

J. Trace formula

Using b∗(−z∗)= b(z) and following the analysis in Sec. III, we can get
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log a(z)= log
*...,

J1
∏

j=1

z − zj

z − q2
0

zj

·
z + z∗

j

z +
q2

0

z∗
j

·
J2
∏

i=1

z − z̃i

z − q2
0

z̃i

+///-
+

1

2πi

∫ +∞

−∞
log(1 + b(ξ)b∗(−ξ∗))

ξ − z
dξ, ℑz > 0,

(5.20)

log a(z)= log
*...,

J1
∏

j=1

z − q2
0

zj

z − zj

·
z +

q2
0

z∗
j

z + z∗
j

·
J2
∏

i=1

z − q2
0

z̃i

z − z̃i

+///-
− 1

2πi

∫ +∞

−∞
log(1 + b(ξ)b∗(−ξ∗))

ξ − z
dξ, ℑz < 0,

(5.21)

whereℜz̃i = 0,ℜzj , 0 and 2J1 + J2 = J.

K. Discrete scattering data and their symmetries

As discussed earlier, the data a(zj), ā(z̄j) are calculated from the trace formulae. The symmetries

on the data b(zj), b̄(z̄j), j = 1, 2, . . . , J , can be calculated from their associated eigenfunctions. Using

the method in Sec. III L, we can deduce b(zj)b
∗(−z∗

j
)=−1. Ifℜzj = 0, we are led to a contradiction.

Thus we must have thatℜzj , 0; consequently, the eigenvalues come in complex conjugate pairs and

J must be even.

L. Reflectioness potentials and soliton solutions

Reflectioness potentials correspond to zero reflection coefficients, i.e., ρ(ξ) = 0 and ρ(ξ)= 0 for

all real ξ. We also note that from the symmetry relation b̄(z)=−b∗(−z∗), it follows that the reflection

coefficients ρ(z)= b(z)/a(z), ρ̄(z)= b̄(z)/ā(z) will both vanish when b(z) = 0 for z on the real axis.

By substituting z = zl in (5.19), the system (5.19) reduces to an algebraic equation that determine

the functional form of these special potentials. When time dependence is added, the reflectionless

potentials correspond to soliton solutions. The reduced equation takes the form

(

N1(x, zl)

N2(x, zl)

)

=

(−îq

zl

)

+

J
∑

j=1

zl · b(zj)e
−i
(

zj−
q2

0
zj

)

x

(zl − zj)zja
′(zj)

*........,

zj +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2
0

zl

)

x

(zj − zl)zla′(zl)
· N1(x, zl)

îq∗ +
∑J

l=1

zj · b(zl)e
i
(

zl−
q2
0

zl

)

x

(zj − zl)zla′(zl)
· N2(x, zl)

+////////-
.

(5.22)

The above equations are an algebraic system to solve for N(x, zl), l = 1, 2, . . ., J. The potentials

are reconstructed from Eq. (4.46) with ρ(ξ) = 0, i.e.,

q(z)= q̂ ·

1 +

J
∑

j=1

b(zj)e
i
(

zj−
q2

0
zj

)

x

−z2
j
a′(zj)

· N1(x, zj)


. (5.23)

Since a(z) ∼ 1 as z→ 0, by the trace formula when b(ξ) = 0 in the real axis, we have the constraint
∏J/2

j=1

|zj |4
q4

0

= 1.

M. Reflectionless potential solution: 2-Eigenvalue

In this subsection, we construct an explicit form for the 2-reflectionless solution (this is the

2-soliton solution when time dependence is added) by setting J = 2 and z1 = ξ1 + iη1, where ξ1, η1

> 0, and ξ2
1

+ η2
1
= q2

0
. Then a(ξ1 + iη1) = a(☞ξ1 + iη1) = 0 and a(ξ1 − iη1)= a(−ξ1 − iη1)= 0. Thus,

a(z)=
(z − (ξ1 + iη1))(z − (−ξ1 + iη1))

(z − (ξ1 − iη1))(z − (−ξ1 − iη1))
, a(z)=

(z − (ξ1 − iη1))(z − (−ξ1 − iη1))

(z − (ξ1 + iη1))(z − (−ξ1 + iη1))
, (5.24)
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and we then find

a′(ξ1 + iη1)=
−iξ1(ξ1 − iη1)

2q2
0
η1

, a′(−ξ1 + iη1)=
−iξ1(ξ1 + iη1)

2q2
0
η1

, (5.25)

a′(ξ1 − iη1)=
iξ1(ξ1 + iη1)

2q2
0
η1

, a′(−ξ1 − iη1)=
iξ1(ξ1 − iη1)

2q2
0
η1

. (5.26)

Moreover, we write b(ξ1 + iη1)= c1eiθ1 , by b(zj)b
∗(−z∗

j
)=−1, we have b(−ξ1 + iη1)=− 1

c1
eiθ1 . From

b

(

q2
0

z

)

=− q̂∗
q̂
· b(z), we get

b(ξ1 − iη1)=−e2iθ · b(ξ1 + iη1)=−c1ei(2θ+θ1), b(−ξ1 − iη1)=−e2iθ · b(−ξ1 + iη1)=
1

c1

ei(2θ+θ1).

(5.27)

Hence, we have

N1(x, ξ1 + iη1)=
(

e2η1x+iθ · ξ1 ·
(

e2η1x+2i(θ+θ1)q0(η1 + c2
1η1 − iξ1) − ic2

1q1ξ1e6η1x + c1ξ1(ξ1 + iη1)e3(θ+θ1)i

+ c1(η1 − iξ1)(η1 + c2
1η1 + ic2

1ξ1)e4η1x+i(θ+θ1)
))

/
(

c2
1ξ

2
2e8η1x + c2

1ξ
2
1e4(θ+θ1)i + e4η1x+2i(θ+θ1)

·
(

(1 + c2
1)2η2

1 + (1 + c4
1)ξ2

1

))

, (5.28)

N1(x,−ξ1 + iη1)=
(

c1ξ1e2η1x+iθ ·
(

e4η1x+i(θ+θ1)(η1 + c2
1η1 − iξ1)(η1 + iξ1) − ic1q0ξ1e6η1x

+ c2
1ξ1(ξ1 − iη1)e3i(θ+θ1) − c1q0(η1 + c2

1η1 + ic2
1ξ1)e2η1x+2i(θ+θ1)

))

/
(

c2
1ξ

2
1e8η1x + c2

1ξ
2
1e4i(θ+θ1)

+ e4η1x+2i(θ+θ1)
(

(1 + c2
1)2η2

1 + (1 + c4
1)ξ2

1

))

. (5.29)

By (4.51), we can obtain

q(x) = q̂ ·
[
1 +

c1eiθ1 e−2η1x

iξ1(ξ1+iη1)

2η1

N1(x, ξ1 + iη1) +
− 1

c1
eiθ1 e−2η1x

iξ1(ξ1−iη1)

2η1

N1(x,−ξ1 + iη1)

]
. (5.30)

N. Time evolution

As in Sec. III O, we find that the scattering data satisfies

∂a(t)

∂t
= 0,

∂a(t)

∂t
= 0,

∂b(t)

∂t
=−2i(q2

0 + 2λk)b(t). (5.31)

Hence, a(t) and a(t) are time independent. Moreover,

b(ξ1 + iη1, t)= c1eiθ1 · e−2i(q2
0
+2ξ1η1i)t , b(−ξ1 + iη1, t)=− 1

c1

eiθ1 · e−2i(q2
0
−2ξ1η1i)t . (5.32)

Putting all the above into the formula we had for the reflectionless potential, we obtain the following

2-soliton solution:

q(x, t)=
(

ei(2q2
0
t+θ)

(

c2
1q0e

8tη1

√

q2
0
−η2

1
( − 2η2

1e4η1x+2i(θ+θ1) + (q2
0 − η2

1)(e8η1x + e4i(θ+θ1))

+ c4
1q0e

4η1(x+4t

√

q2
0
−η2

1
)+2i(θ+θ1) · (q2

0 − 2η2
1 − 2iη1

√

q2
0
− η2

1

)

+ 2c1η1e
2η1x+4tη1

√

q2
0
−η2

1
+i(θ+θ1)

· (−e4η1x + e2i(θ+θ1))(−q2
0 + η1(η1 − i

√

q2
0
− η2

1
)) − 2c3

1η1e
2η1(x+6t

√

q2
0
−η2

1
)+i(θ+θ1) · (− e4η1x + e2i(θ+θ1))

· (− q2
0 + η1(η1 − i

√

q2
0
− η2

1
)
)

+ q0e4η1x+2i(θ+θ1) · (q2
0 + 2iη1(iη1 +

√

q2
0
− η2

1
)
)

))

/

(

q2
0e4η1x+2i(θ+θ1) + c4

1q2
0e

4η1(x+4t

√

q2
0
−η2

1
)+2i(θ+θ1) − c2

1e
8tη1

√

q2
0
−η2

1
(− 2η2

1e4η1x+2i(θ+θ1)

+ (η2
1 − q2

0)(e8η1x+4i(θ+θ1))
)

)

. (5.33)
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FIG. 8. (a) The amplitude of q(x, t) with θ = 0, θ1 =− 3π
4

, c1 =
√

2, η1 =
√

3, and q0 = 2. (b) The amplitude of q(x, t) with θ

= 0, θ1 =
3π
4

, c1 =
√

2, η1 =
√

3, and q0 = 2. (c) The amplitude of q(x, t) with θ = 0, θ1 = π, c1 =
√

2, η1 =
√

3, and q0 = 2.

Typical 2-soliton solutions, which travel and interact, including the one in Ref. 15, are shown

in Fig. 8. In terms of magnitude, Fig. 8(a) shows the interaction of two waves of elevation, Fig.

8(b) shows the interaction of two depressive waves (i.e., two “dips”), and Fig. 8(c) illustrates the

interaction of one elevated wave and one depressive wave.

If we choose q0 = 2, η1 =

√
3, θ = 0, c1 =

√

p2−p1

p2+p1
, and e2iθ

=

−p3−ip4

p3−ip4
, we can get the general

formula in Ref. 15.

VI. THE CASE OF σ = 1 WITH θ+ − θ
−

= π

The final case we will study is the nonlocal nonlinear Schrödinger (NLS) equation (1.1) with σ

= 1

iqt(x, t)= qxx(x, t) − 2q2(x, t)q∗(−x, t) (6.1)

with nonzero boundary conditions (NZBCs)

q(x, t)→ q±(t)= q0e−2iq2
0
t+iθ± , as x→±∞, (6.2)

where q0 > 0, 0 ≤ θ± < 2π, θ+ ☞ θ☞ = π.

The analysis of this case is similar to the NZBCs studied in Sec. IV. As discussed in Sec. IV, it

is natural to introduce the eigenfunctions defined by the following boundary conditions:

φ(x, k)∼ we−iλx, φ(x, k)∼ weiλx as x→−∞, (6.3)

ψ(x, k)∼ veiλx, ψ(x, k)∼ ve−iλx as x→+∞, (6.4)

where

w =

(

λ + k

iq∗+

)

, w =

( −iq−
λ + k

)

, v =

( −iq+

λ + k

)

, v =

(

λ + k

iq∗−

)

(6.5)

satisfy the boundary conditions.

As in Sec. III, we consider functions with constant boundary conditions and define the same

bounded eigenfunctions M(x, k), N(x, k), M(x, k), N(x, k) except we use the boundary conditions

defined in (6.5).

The bounded eigenfunctions can be represented by means of integral equations, the formulae

are the same as in (3.9)–(3.12) except for the constant terms, which are defined above in (6.5).

A. Symmetry reductions

Taking into account boundary conditions, we can obtain (5.7). The scattering relations are the

same as in Eqs. (3.41)–(3.45) except for the relation between b and b, i.e., b∗(−k∗)= b(k).
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Similarly, we can define the eigenfunctions and scattering data on the left/right edge of the cut

for k ∈ (☞iq0, iq0). Then

φ∓(x, k)=
λ∓ + k

−iq−
· φ±(x, k), ψ∓(x, k)=

λ∓ + k

ĩq∗−
· ψ±(x, k) (6.6)

for k ∈ (☞iq0, iq0). Moreover, we have

a±(k)=−a∓(k), b±(k)=
q2

0

q+ · q− · b
∓

(k) for k ∈ (−iq0, iq0). (6.7)

B. Uniformization coordinates

Before discussing the properties of scattering data and solving the inverse problem, we introduce

a uniformization variable z, defined by the conformal mapping: z = z(k) = k + λ(k), and the inverse

mapping is given by k = k(z)= 1
2

(

z − q2
0

z

)

. Then λ(z)= 1
2

(

z +
q2

0

z

)

.

C. Symmetries via uniformization coordinates

It is known that (1) when z→ ☞z∗, then (k, λ)→ (☞k∗, ☞λ∗) and (2) when z→− q2
0

z
, then (k, λ)→

(k, ☞λ). Hence, we can deduce the same formulae as in (5.10) and (5.12) although z has a different

representation here. Moreover,

φ *,x,−q2
0

z
+-=

q2
0

z

iq−
φ(x, z), ψ *,x,−q2

0

z
+-=
−iq+

z
ψ(x, z), z ∈D−, (6.8)

a *,−
q2

0

z
+-=−a(z), z ∈D−, b *,−

q2
0

z
+-=

q2
0

q+ · q− · b(z), (6.9)

where D☞ represents the white regions of Fig. 5.

D. Asymptotic behavior of eigenfunctions and scattering data

In order to solve the inverse problem, one has to determine the asymptotic behavior of

eigenfunctions and scattering data both as z→∞ in K1 and as z→ 0 in K2. We have

N(x, z)∼
(−iq(x)

z

)

, z→∞, N(x, z)∼ *,
−iq+

z · q∗(−x)

q∗−

+- , z→ 0, (6.10)

a(z)=

{

1, z→∞,

−1, z→ 0,
a(z)=

{

1, z→∞,

−1, z→ 0,
(6.11)

lim
z→∞ zb(z)= 0, lim

z→0

b(z)

z2
= 0. (6.12)

E. Left and right scattering problems

Using the methods in the second case, we can get

N(x, z) =

(

z

iq∗−

)

+

J
∑

j=1

z · b(zj)e
i
(

zj+
q2
0

zj

)

x · N(x, zj)

(z − zj)zja′(zj)
+

z

2πi

∫
Σ

ρ(ξ)

ξ(ξ − z)
· ei

(

ξ+
q2

0
ξ

)

x · N(x, ξ)dξ,

(6.13)

N(x, z) =

(−iq+

z

)

+

J
∑

j=1

z · b(zj)e
−i
(

zj+
q2
0

zj

)

x · N(x, zj)

(z − zj)zja
′(zj)

− z

2πi

∫
Σ

ρ(ξ)

ξ(ξ − z)
· e−i

(

ξ+
q2
0
ξ

)

x · N(x, ξ)dξ,

(6.14)
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M(x, z) =

(−iq−
z

)

+

J
∑

j=1

−z · b(zj)M(x, zj)e
−i
(

zj+
q2

0
zj

)

x

(z − zj)zja′(zj)
+

z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

· e−i
(

ξ+
q2

0
ξ

)

x ·M(x, ξ)dξ,

(6.15)

M(x, z) =

(

z

iq∗+

)

+

J
∑

j=1

−z · b(zj)M(x, zj)e
i
(

zj+
q2

0
zj

)

x

(z − zj)zja
′(zj)

− z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

· ei
(

ξ+
q2
0
ξ

)

x ·M(x, ξ)dξ,

(6.16)

where we recall from the second case Σ≔ (−∞,−q0) ∪ (q0, +∞) ∪ −−−−−−−→(q0,−q0) ∪ {q0eiθ , π ≤ θ ≤
2π}clockwise,upper circle ∪ {q0eiθ ,−π ≤ θ ≤ 0}anticlockwise,lower circle.

F. Recovery of the potentials

Note that N1(x, z) ∼ ☞iq(x) as z→∞ and

N1(x, z)∼−iq+ +

J
∑

j=1

b(zj)e
−i
(

zj+
q2
0

zj

)

x · N1(x, zj)

zja
′(zj)

+
1

2πi

∫
Σ

ρ(ξ)

ξ
· e−i

(

ξ+
q2
0
ξ

)

x · N1(x, ξ)dξ, (6.17)

we have

q(x)= q+ + i

J
∑

j=1

b(zj)e
−i
(

zj+
q2
0

zj

)

x · N1(x, zj)

zja
′(zj)

+
1

2π

∫
Σ

ρ(ξ)

ξ
· e−i

(

ξ+
q2
0
ξ

)

x · N1(x, ξ)dξ. (6.18)

G. Trace formula

As in Sec. V K, we can show that b(zj)b
∗(−z∗

j
)=−1, which implies that ℜzj , 0 and J is even.

Hence, we can get the trace formula as follows:

log a(z)= log
*...,

J/2
∏

j=1

z − zj

z +
q2

0

zj

·
z + z∗

j

z − q2
0

z∗
j

+///-
+

1

2πi

∫
Σ

log(1 + b(ξ)b∗(−ξ∗))
ξ − z

dξ, z ∈D+, (6.19)

log a(z)= log
*...,

J/2
∏

j=1

z +
q2

0

zj

z − zj

·
z − q2

0

z∗
j

z + z∗
j

+///-
− 1

2πi

∫
Σ

log(1 + b(ξ)b∗(−ξ∗))
ξ − z

dξ, z ∈D−, (6.20)

where ℜzj , 0. We claim that this case does not admit soliton solutions. Indeed, by the asymptotic

of a(z), i.e., a(z) ∼ ☞1 as z→ 0 and the factℜzj , 0. Moreover, the trace formula yields

a(z)=

J/2
∏

j=1

z − zj

z +
q2

0

zj

·
z + z∗

j

z − q2
0

z∗
j

exp

(

1

2πi

∫
Σ

log(1 + b(ξ)b∗(−ξ∗))
ξ − z

dξ

)

. (6.21)

Since the exponential term is real for all ξ ∈ Σ, it implies that

J/2
∏

j=1

|zj |4
q4

0

exp

(

1

2πi

∫
Σ

log(1 + b(ξ)b∗(−ξ∗))
ξ

dξ

)

=−1,

which is a contradiction. Thus, in this case there are no solitons.
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H. Closing the system

This time the equation will not have a discrete spectrum contribution; to close the system, by the

symmetry relations between the eigenfunctions, we have
(

N1(x, z)

N2(x, z)

)

=

(

z

iq∗−

)

+
z

2πi

∫
Σ

ρ(ξ)

ξ(ξ − z)
· ei

(

ξ+
q2
0
ξ

)

x ·

*....,
−iq+ − ξ

2πi

∫
Σ

ρ(η)

η(η − ξ)
· e−i

(

η+
q2

0
η

)

x · N1(x, η)dη

ξ − ξ

2πi

∫
Σ

ρ(η)

η(η − ξ)
· e−i

(

η+
q2

0
η

)

x · N2(x, η)dη

+////-
dξ. (6.22)

I. Time evolution

Similar to the case in Sec. IV, we can get

∂a(t)

∂t
= 0,

∂a(t)

∂t
= 0,

∂b(t)

∂t
= 2i(q2

0 − 2λk)b(t),
∂b(t)

∂t
=−2i(q2

0 − 2λk)b(t). (6.23)

Then

ρ(z, t)= ρ(z, 0)e
2i[q2

0
− 1

2
(ξ2− q4

0

ξ2 )]t
, ρ(z, t)= ρ(z, 0)e

−2i[q2
0
− 1

2
(ξ2− q4

0

ξ2 )]t
. (6.24)

It yields

q(x, t)= q0e−2iq2
0
t+iθ+ +

1

2π

∫
Σ

ρ(ξ, 0)e
−2i[q2

0
− 1

2
(ξ2− q4

0

ξ2 )]t

ξ
e
−i(ξ+

q2
0
ξ

)x · N1(x, ξ, t)dξ. (6.25)

In principle, we can formulate integral equations for M̄2 via the symmetry between M and N to obtain

q(x) as done in Sec. IV.

VII. MODULATIONAL INSTABILITY

In this section, we study the modulation instability of a constant (in space) amplitude solution

to the nonlocal NLS equation (1.1). More precisely, we study linear stability properties of the family

of solutions defined by

q(x, t)=Aeiωt , (7.1)

where A is a constant complex amplitude and ω is a real frequency. In the limit x → +∞, we define

A ≡ A+, and when x → ☞∞, we let A ≡ A
☞

. If we let A± = q0eiθ± , then in order for Eq. (7.1) to be a

solution to (1.1) we require that θ+ ☞ θ☞ = 0 or π. Thus, we distinguish here between four different

cases: θ+ ☞ θ☞ = 0, σ = ±1 and θ+ ☞ θ☞ = π, σ = ±1.

A. Modulational instability I: θ+ − θ
−

= 0

In this case, we have A+ = A
☞

≡ A and ω = 2σ|A|2. To study modulational instability, we write

solutions to (1.1) in the form

q(x, t)= (A + εq̃(x, t))e2iσ |A |2t . (7.2)

Substituting (7.2) into (1.1) and retaining terms up to order ε, we obtain

iq̃t(x, t)= q̃xx(x, t) − 2σ |A|2q̃(x, t) − 2σA2q̃∗(−x, t) . (7.3)

Equation (7.3) governs the dynamical evolution of the perturbation q̃(x, t) subject to the boundary

conditions; q̃(x, t) decays very fast at plus and minus infinity. We next decompose the perturbation in

terms of its Fourier integral representation

q̃(x, t)=

∫ +∞

−∞

(

q̃1(k)eiλt + q̃2(k)e−iλ∗t
)

eikxdk . (7.4)
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It is evident that the constant solution is modulationally unstable if the eigenvalue λ is complex. After

some algebra, we find

λ2
= k2(k2 + 4σ |A|2) . (7.5)

Thus we conclude that when σ = +1, the solution (7.1) is modulationaly stable, whereas it is

modulationaly unstable for σ = ☞1.

The unstable case corresponds to having two eigenvalues on the imaginary axis or two solitons

that are stationary and oscillate in time, as discussed in case 4.

B. Modulational instability II: θ+ − θ
−

= π

In this second case, we find A+ = ☞A
☞

≡ A thus ω = ☞2σ|A|2. Under this situation, the linear

stability analysis proceeds as before by writing a perturbative solution to (1.1) in the form (7.2) with

the exception that q∗(−x, t)= (−A∗ + εq̃∗(−x, t))e−2iσ |A |2t . Substituting (7.2) into (1.1) and retaining

terms up to order ε, we now obtain

iq̃t(x, t)= q̃xx(x, t) + 2σ |A|2q̃(x, t) − 2σA2q̃∗(−x, t) . (7.6)

Decomposing the perturbation in terms of its Fourier integral representation (7.4), we then find

λ2
= (k2 − 2σ |A|2)2 + 4|A|2 . (7.7)

It is thus evident that the constant amplitude solution is modulationally stable for both signs of σ.

VIII. CONCLUSION

In this paper, the nonlocal NLS equation (1.1) with nonzero boundary values at infinity is con-

sidered. Depending on the signs of nonlinearity σ = ±1 and phase difference of the boundary values

from plus infinity to minus infinity ∆θ = θ+ ☞ θ☞, there are four distinct cases to consider when the

amplitude at infinity is constant.

The direct scattering problem and corresponding analytic properties and symmetries of the

eigenfunctions and scattering data are obtained. The inverse problem is constructed via a Riemann-

Hilbert problem formulated from both the right and left in terms of a convenient uniformization

variable. The simplest pure soliton solutions are obtained. When σ = ☞1, ∆θ = π, a pure one-soliton

solution is found; when σ = ☞1, ∆θ = 0, a pure stationary two-soliton solution is obtained; and with

σ = 1, ∆θ = 0 a traveling bidirectional interacting two-soliton solution is found. In the final case σ

= 1, ∆θ = π, there are no soliton solutions allowed. A number of box potentials are analyzed; their

associated eigenvalues are found and in all cases shown to be consistent with the prior analytical

results. The modulational instability of a plane wave is also discussed.
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APPENDIX: DETAILED ANALYSIS FOR SECTION III

1. Proof of Theorem 3.2

For k ∈ (☞∞, ☞q0) ∪ (q0, +∞), the matrices P
☞iλ(k)± and P±

iλ
are defined as follows:

P±−iλ(k)=
1

2λ

(

λ + k iq±
−iq∗∓ λ − k

)

, P±iλ(k)=
1

2λ

(

λ − k −iq±
iq∗∓ λ + k

)

. (A1)
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We have (P±
iλ

)2
=P±

iλ
, (P±−iλ

)2
=P±−iλ

, P±
iλ

+ P±−iλ
= I2, and P±

iλ
P±−iλ
=P±−iλ

P±
iλ
= 0. Moreover,

(ikJ + Q±)P±−iλ(k)=−iλP±−iλ(k) (A2)

and

(ikJ + Q±)P±iλ(k)= iλP±iλ(k). (A3)

Then, we can rewrite the Green’s functions in terms of the projectors to find

M(x, k)=

(

λ + k

−iq∗+

)

+

∫ x

−∞
[P−−iλ + e2iλ(x−x′)P−iλ]((Q − Q−)M)(x′, k)dx′, (A4)

M(x, k)=

( −iq−
λ + k

)

+

∫ x

−∞
[e2iλ(x′−x)P−−iλ + P−iλ]((Q − Q−)M)(x′, k)dx′, (A5)

N(x, k)=

( −iq+

λ + k

)

+

∫ +∞

x

[e2iλ(x′−x)P+
−iλ + P+

iλ]((Q − Q+)M)(x′, k)dx′, (A6)

N(x, k)=

(

λ + k

−iq∗−

)

+

∫ +∞

x

[P+
−iλ + e2iλ(x−x′)P+

iλ]((Q − Q+)M)(x′, k)dx′. (A7)

The projections P±−iλ
(k) and P±

iλ
(k) admit a natural continuation to k ∈K \ {±q0}, i.e., λ ∈C \ {0}.

Taking into account that these projections are singular matrices, we can show that their l2-norm is

given by

‖ P±−iλ(k) ‖2=‖ P±iλ(k) ‖2=
√

|λ − k |2 + |λ + k |2 + 2q2
0

4|λ |2 =

√

2|λ |2 + 2|k |2 + 2q2
0

2|λ | . (A8)

In particular, if k ∈ (☞∞, ☞q0] ∪ [q0, +∞), then

‖ P±−iλ(k) ‖2= |k ||λ | . (A9)

We consider the Neumann series

M(x, k)=

∞
∑

n=0

M(n)(x, k), (A10)

where

M(0)(x, k)=

(

λ + k

−iq0e−2iq2
0
t−iθ+

)

, (A11)

M(n+1)(x, k)=

∫ x

−∞
[P−−iλ + e2iλ(x−x′)P−iλ]((Q − Q−)M(n))(x′, k)dx′. (A12)

Then

‖M(n+1)(x, k) ‖≤
√

|λ + k |2 + q2
0

+
2|k |
|λ |

∫ x

−∞
‖ Q(x′) − Q− ‖ · ‖M(n)(x′, k) ‖ dx′ (A13)

if x′ ≤ x and λ ∈ U+ ∪ (☞∞, 0) ∪ (0, +∞).

Since the entries of matrix Q ☞ Q
☞

belong to L1(R), using the identities

1

j!

∫ x

−∞
|f (ξ)|

[∫ ξ

−∞
|f (ξ ′)|dξ ′

] j

dξ

=

1

(j + 1)!

∫ x

−∞
d

dξ

[∫ ξ

−∞
|f (ξ ′)|dξ ′

] j+1

dξ

=

1

(j + 1)!

[∫ x

−∞
|f (ξ)|dξ

] j+1

,

(A14)

we can get the Neumann series which is uniformly convergent for k ∈C1 \ {±q0}. It follows that M(x,

k) is analytic for k ∈C1 because a uniformly convergent series of analytic functions converges to an

analytic function. Similarly, M(x, k) is continuous for k ∈C1 \ {±q0}.
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To extend the continuity properties at k =±q0, we rewrite P−−iλ
+e2iλ(x−x′)P−

iλ
as I2+[e2iλ(x−x′)−1]P−

iλ

and use the estimation

‖ I2 + [e2iλ(x−x′) − 1]P−iλ ‖≤ 1 + 2|x − x′ | · |k | ≤max{1, 2|k |}(1 + |x |)(1 + |x′ |)
≤max{1, 2|k |}(1 + |x |)2 (A15)

and the fact that f ∈ L1,2(R) ⊆ L1(R), the proof then proceeds as before under the condition that the

entries of Q ☞ Q
☞

belong to L1,2(R). Similarly, the proof for N(x, k), M(x, k), and N(x, k) can be done

by using the above method.

2. Proof of Theorem 3.4

The integral equation of M(x, k) can be written in the alternative form

M1(x, k)= λ + k +

∫ x

−∞

∫ y

−∞
(q(y) − q−)(−q∗(−z) + q∗+)e2iλ(y−z)M1(z, k)dzdy (A16)

and

M2(x, k)=−iq∗+ +

∫ x

−∞
e2iλ(x−y)(−q∗(−y) + q∗+)M1(y, k)dy, (A17)

where M(x, k)=

(

M1(x, k)

M2(x, k)

)

.

Since the entries of Q ☞ Q± do not grow faster than e−ax2

, it is easy to see that M(x, k) is analytic

in the Riemann surface K. Similarly, we can prove N(x, k), M(x, k), and N(x, k) are also analytic in

K.

3. Asymptotic behavior of eigenfunctions for the case of σ = −1 with θ+ − θ
−

= π

M(x, z)∼


(

z

−iq∗(−x)

)

, z→∞,

(−z · q(x)

q+

iq∗−

)

, z→ 0,

(A18)

N(x, z)∼



(−iq(x)

z

)

, z→∞,

*,
−iq+

z · q∗(−x)

q∗−

+- , z→ 0,

(A19)

M(x, z)∼



(−iq(x)

z

)

, z→∞,

*,
iq+

−z · q∗(−x)

q∗−

+- , z→ 0.

(A20)

4. Time evolution for the case of σ = −1 with θ+ − θ
−

= π

Since

vt =
*,

2ik2 − iq(x, t)q∗(−x, t) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t)
+- v , (A21)

then
∂v1

∂t
= (2ik2 − iq(x, t)q∗(−x, t))v1 + (−2kq(x, t) − iqx(x, t))v2 (A22)

and
∂v2

∂t
= (2kq∗(−x, t) + iq∗x(−x, t))v1 + (−2ik2 + iq(x, t)q∗(−x, t))v2. (A23)

Note that

q(x, t)→ q± = q0e2iq2
0
t+iθ± , as x→±∞, (A24)
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where q0 > 0, 0 ≤ θ± < 2π, θ+ ☞ θ☞ = π. Thus,

∂v1

∂t
∼ i(2k2 + q2

0) · v1 − 2kq0e2iq2
0
t+iθ+ · v2 (A25)

and
∂v2

∂t
∼ 2kq0e−2iq2

0
t−iθ− · v1 − i(2k2 + q2

0) · v2 (A26)

as x→ +∞, and
∂v1

∂t
∼ i(2k2 + q2

0) · v1 − 2kq0e2iq2
0
t+iθ− · v2 (A27)

and
∂v2

∂t
∼ 2kq0e−2iq2

0
t−iθ+ · v1 − i(2k2 + q2

0) · v2 (A28)

as x→ ☞∞. As x→ ±∞, the eigenfunctions of the scattering problem asymptotically satisfy

(

v1

v2

)

x

=
*,

−ik q0e2iq2
0
t+iθ±

−q0e−2iq2
0
t−iθ∓ ik

+-
(

v1

v2

)

, (A29)

we can get

q0e2iq2
0
t+iθ± · v2 ∼ ∂v1

∂x
+ ikv1 (A30)

and

q0e−2iq2
0
t−iθ∓ · v1 ∼−∂v2

∂x
+ ikv2 (A31)

as x→ ±∞. Hence,
∂v1

∂t
∼ iq2

0 · v1 − 2k
∂v1

∂x
(A32)

and
∂v2

∂t
∼−iq2

0 · v2 − 2k
∂v2

∂x
(A33)

as x→ ±∞.

Note that the eigenfunctions themselves, whose boundary values at space infinities, are not

compatible with this time evolution. Therefore, one introduces time-dependent eigenfunctions

Φ(x, t)= eiA∞t · φ(x, t), Φ(x, t)= eiB∞t · φ(x, t), (A34)

Ψ(x, t)= eiC∞t · ψ(x, t), Ψ(x, t)= eiD∞t · ψ(x, t) (A35)

to be solutions of (A21). We have

∂Φ1(x, t)

∂t
= iA∞Φ1(x, t) + eiA∞t ∂φ1(x, t)

∂t
,

∂Φ2(x, t)

∂t
= iA∞Φ2(x, t) + eiA∞t ∂φ2(x, t)

∂t
, (A36)

∂Φ1(x, t)

∂t
= iB∞Φ1(x, t) + eiB∞t ∂φ1(x, t)

∂t
,

∂Φ2(x, t)

∂t
= iB∞Φ2(x, t) + eiB∞t ∂φ2(x, t)

∂t
, (A37)

∂Ψ1(x, t)

∂t
= iC∞Ψ1(x, t) + eiC∞t ∂ψ1(x, t)

∂t
,

∂Ψ2(x, t)

∂t
= iC∞Ψ2(x, t) + eiC∞t ∂ψ2(x, t)

∂t
, (A38)

∂Ψ1(x, t)

∂t
= iD∞Ψ1(x, t) + eiD∞t ∂ψ1(x, t)

∂t
,

∂Ψ2(x, t)

∂t
= iD∞Ψ2(x, t) + eiD∞t ∂ψ2(x, t)

∂t
. (A39)

Note that

φ(x, t)∼
(

λ + k

−iq0e−2iq2
0
t−iθ+

)

e−iλx,
∂φ(x, t)

∂t
∼

(

0

−2q3
0
e−2iq2

0
t−iθ+

)

e−iλx (A40)

as x→ ☞∞. From

∂Φ1(x, t)

∂t
∼ iq2

0 · Φ1(x, t) − 2k
∂Φ1(x, t)

∂x
= iA∞Φ1(x, t) + eiA∞t ∂φ1(x, t)

∂t
, (A41)
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as x→ ☞∞, we can deduce

A∞ = q2
0 + 2λk. (A42)

Similarly, we have

B∞ =−A∞ =−q2
0 − 2λk, (A43)

C∞ =−A∞ =−q2
0 − 2λk, (A44)

D∞ =A∞ = q2
0 + 2λk. (A45)

Then

∂φ

∂t
=

(

2ik2 − iq(x, t)q∗(−x, t) − i(q2
0 + 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk)

)

φ, (A46)

∂φ

∂t
=

(

2ik2 − iq(x, t)q∗(−x, t) + i(q2
0 + 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) + i(q2
0

+ 2λk)

)

φ, (A47)

∂ψ

∂t
=

(

2ik2 − iq(x, t)q∗(−x, t) + i(q2
0 + 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) + i(q2
0

+ 2λk)

)

ψ, (A48)

∂ψ

∂t
=

(

2ik2 − iq(x, t)q∗(−x, t) − i(q2
0 + 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk)

)

ψ. (A49)

Note that

φ(x, t)= b(t)ψ(x, t) + a(t)ψ(x, t) (A50)

and

φ(x, t)= a(t)ψ(x, t) + b(t)ψ(x, t), (A51)

then
(

2ik2 − iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk)

)

·
(

b(t)ψ1(x, t) + a(t)ψ1(x, t)

b(t)ψ2(x, t) + a(t)ψ2(x, t)

)

=

∂b(t)

∂t
·
(

ψ1(x, t)

ψ2(x, t)

)

+b(t)

(

2ik2 − iq(x, t)q∗(−x, t) + i(q2
0

+ 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) + i(q2
0

+ 2λk)

) (

ψ1(x, t)

ψ2(x, t)

)

+
∂a(t)

∂t
·
(

ψ1(x, t)

ψ2(x, t)

)

+ a(t)

·
(

2ik2 − iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk) −2kq(x, t) − iqx(x, t)

2kq∗(−x, t) + iq∗x(−x, t) −2ik2 + iq(x, t)q∗(−x, t) − i(q2
0

+ 2λk)

) (

ψ1(x, t)

ψ2(x, t)

)

,

(A52)

i.e.,
∂b(t)

∂t
·
(

ψ1(x, t)

ψ2(x, t)

)

+ b(t)

(

2iA∞ 0

0 2iA∞

) (

ψ1(x, t)

ψ2(x, t)

)

+
∂a(t)

∂t

(

ψ1(x, t)

ψ2(x, t)

)

= 0. (A53)

Taking x→ +∞, since ψ(x, t) and ψ(x, t) are linearly independent, so

∂a(t)

∂t
= 0,

∂b(t)

∂t
=−2iA∞b(t). (A54)

Similarly, we can get

∂a(t)

∂t
= 0,

∂b(t)

∂t
= 2iA∞b(t). (A55)

Therefore, both a(t) and a(t) are time independent, and

b(iq0, t)= b(iq0, 0)e−2i(q2
0
+2λk)t

= eiθ1 · e−2iq2
0
t (A56)
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and

b(−iq0, t)= b(−iq0, 0)e2i(q2
0
+2λk)t

= eiθ1 · e2iq2
0
t
= ei(θ1+2θ+) · e2iq2

0
t . (A57)

1 Ablowitz, M. J. and Musslimani, Z. H., “Integrable nonlocal nonlinear Schrödinger equation,” Phys. Rev. Lett. 110, 064105

(2013).
2 Ablowitz, M. J. and Musslimani, Z. H., “Integrable discrete PT symmetric model,” Phys. Rev. E 90, 032912 (2014).
3 Ablowitz, M. J. and Musslimani, Z. H., “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger

equation,” Nonlinearity 29(3), 915 (2016).
4 Ablowitz, M. J. and Musslimani, Z. H., “Integrable nonlocal nonlinear equations,” Stud. Appl. Math. 139(1), 7–59 (2017).
5 Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University

Press, Cambridge, 1991).
6 Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., “The inverse scattering transform-Fourier analysis for nonlinear

problems,” Stud. Appl. Math. 53, 249–315 (1974).
7 Ablowitz, M. J. and Segur, H., Solitons and Inverse Scattering Transform, SIAM Studies in Applied Mathematics Vol. 4

(SIAM, Philadelphia, PA, 1981).
8 Ablowitz, M. J., Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge,

2011).
9 Ablowitz, M. J., Prinari, B., and Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge

University Press, Cambridge, 2004).
10 Biondini, G. and Kovacic, G., “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero

boundary conditions,” J. Math. Phys. 55, 031506 (2014).
11 Demontis, F., Prinari, B., van der Mee, C., and Vitale, F., “The inverse scattering transform for the defocusing nonlinear

Schrödinger equations with nonzero boundary conditions,” Stud. Appl. Math. 131, 1–40 (2012).
12 Demontis, F., Prinari, B., van der Mee, C., and Vitale, F., “The inverse scattering transform for the focusing nonlinear

Schrödinger equations with asymmetric boundary conditions,” J. Math. Phys. 55, 101505 (2014).
13 Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987).
14 Gadzhimuradov, T. A. and Agalarov, A. M., “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear

Schrödinger equation,” Phys. Rev. A 93, 062124 (2016).
15 He, J. S. and Qiu, D. Q., “Mirror symmetrical nonlocality of a parity-time symmetry system,” private communication (2016).
16 Kivshar, Y. and Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
17 Konotop, V. V., Yang, J., and Zezyulin, D. A., “Nonlinear waves in PT-symmetric systems,” Rev. Mod. Phys. 88, 035002

(2016).
18 Korteweg, D. J. and de Vries, G., “On the change of form of long waves advancing in a rectangular canal, and on a new

type of long stationary waves,” Philos. Mag. Ser. 5 39, 422 (1895).
19 Prinari, B., Ablowitz, M. J., and Biondini, G., “Inverse scattering transform for the vector nonlinear Schrödinger equation

with nonvanishing boundary conditions,” J. Math. Phys. 47, 063508 (2006).
20 Ruter, C. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of parity time

symmetry in optics,” Nat. Phys. 6, 192 (2010).
21 Segev, M., “Optical spatial solitons,” Opt. Quantum Electron. 30, 503–533 (1998).
22 Zakharov, V. E. and Shabat, A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation

of waves in nonlinear media,” Sov. Phys. JETP 34, 63–69 (1972).
23 Zakharov, V. E. and Shabat, A. B., “Interaction between solitons in a stable medium,” Sov. Phys. JETP 37, 823–828 (1973).
24 Zverovich, E. I., “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces,”
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