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Abstract To an inverse semigroup, we associate an étale groupoid such that its ac-
tions on topological spaces are equivalent to actions of the inverse semigroup. Both
the object and the arrow space of this groupoid are non-Hausdorff. We show that this
construction provides an adjoint functor to the functor that maps a groupoid to its
inverse semigroup of bisections, where we turn étale groupoids into a category using
algebraic morphisms. We also discuss how to recover a groupoid from this inverse
semigroup.

Keywords Terminal inverse semigroup action · Étale groupoid · Groupoid action ·
Bisection · Algebraic morphisms of groupoids · Spectrum of a semilattice

1 Introduction

Étale topological groupoids are closely related to actions of inverse semigroups on
topological spaces by partial homeomorphisms (see [4, 6, 8]). This relationship is
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used, in particular, to study actions of étale topological groupoids on C∗-algebras and
their crossed products. In order to construct an étale topological groupoid out of an
inverse semigroup, we first need it to act on some topological space. We propose and
study a particularly natural action of a given inverse semigroup.

Namely, given an inverse semigroup S with idempotent semilattice E ⊆ S, we
consider the canonical action of S on the character space Ê of E, equipped with a
certain canonical non-Hausdorff topology. With a different, Hausdorff topology, this
action of S has already been studied in [4, 8]. Our non-Hausdorff topology has the
following crucial feature: if Gr(S) is the étale groupoid of germs for the action of S

on Ê, then the category of actions of S on topological spaces is equivalent to the
category of actions of Gr(S) on topological spaces. The action on Ê is the unique
action of S with this property, and it is a terminal object in the category of actions
of S on topological spaces.

This construction also sheds light on how to turn groupoids into a category. The
map S �→ Gr(S) is functorial, and left adjoint to the functor Bis that maps an étale
topological groupoid G to its inverse semigroup of bisections Bis(G), provided we
turn étale groupoids into a category in an unusual way, using a notion of morphism
due to Zakrzewski (see [2]): an algebraic morphism from G to H, denoted G � H,
is an action of G on the arrow space of H that commutes with the right translation
action of H. With this choice of category, Gr is a functor from inverse semigroups
to étale topological groupoids, which is left adjoint to Bis; that is, algebraic mor-
phisms Gr(S) � G for a groupoid G correspond bijectively and naturally to inverse
semigroup homomorphisms S → Bis(G).

The category of groupoids we use also has another important feature, which we
discuss in Sect. 4.3. Namely, an algebraic morphism G � H is equivalent to a functo-
rial way to turn an H-action on a topological space into a G -action on the same space.
Algebraic morphisms are the appropriate ones if we view groupoids as generalised
groups, while functors are appropriate if we view groupoids as generalised spaces.
Groupoid C∗-algebras are functorial for algebraic morphisms, but not for continuous
functors (see [1, 2]); the orbit space is functorial for continuous functors, but not for
algebraic morphisms.

2 The terminal action of an inverse semigroup

The material included in this section follows ideas from lattice theory and related
notions like the theory of locales and frames [5, 9]. However, since the idempotent
semilattices of inverse semigroups are usually not lattices, we have chosen to give a
self-contained exposition of the results we need.

We are going to describe a terminal object in the category of actions of an inverse
semigroup S on topological spaces. This terminal action lives on a quasi-compact,
sober, but non-Hausdorff topological space which is naturally associated to the semi-
lattice E = E(S) of idempotents in the inverse semigroup. As a preparation, we fix
some details about inverse semigroups, their actions, and terminal objects.

Many inverse semigroups that arise in practice have a zero and a unit, that is,
elements 0,1 ∈ S with 0 · s = 0 = s · 0 and 1 · s = s = s · 1 for all s ∈ S. If our
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inverse semigroup does not yet have them, we add a formal zero and a formal unit
and extend the product by the rules above. Thus it is no loss of generality to assume
that inverse semigroups have unit and zero. We always (and often tacitly) assume that
homomorphisms preserve the unit and zero.

Definition 2.1 A partial homeomorphism of a topological space X is a homeomor-
phism U → V between open subsets U and V of X. These form an inverse semi-
group with unit and zero with respect to the composition of partial maps. The unit is
the identity map on X, and the zero is the empty map.

Definition 2.2 An action of an inverse semigroup S on a topological space X is a
unit- and zero-preserving homomorphism from S to the inverse semigroup of partial
homeomorphisms of X. We also write s · x for the action of s ∈ S on an element x in
the domain of the partial homeomorphism associated to s.

Definition 2.3 Let X and Y be topological spaces with actions of S. A map
f : X → Y is called S-equivariant if, for s ∈ S and x ∈ X, s · x is defined if and
only if s · f (x) is defined, and then f (s · x) = s · f (x).

Actions of S on topological spaces with S-equivariant continuous maps form a
category, denoted TopS .

Definition 2.4 A terminal object in a category is an object that admits a unique map
from each object in the category.

Such a terminal object is unique up to isomorphism if it exists.

Example 2.5 The terminal object in an additive category is the zero object.

Example 2.6 In the category of group actions, the terminal object is the trivial action
on the one-point space.

Example 2.7 The terminal object in the category of continuous actions of a topolog-
ical groupoid G is more complicated: it is the object space G(0) of G , equipped with
the canonical G -action (the anchor map for this action is the identity map on G(0),
and arrows act by g · s(g) = r(g)).

An action of G on a topological space X is given by an anchor map � : X → G(0)

and a multiplication map μ : G ×s,� X → X (see Definition 3.6). The anchor map
� : X → G(0) is equivariant by definition because �(g · x) = r(g) = g · �(x), and it is
routine to check that it is the only equivariant map X → G(0).

At first sight, one may hope that terminal actions of inverse semigroups are trivial
as in the group case. It turns out, however, that this is not the case: inverse semigroups
behave more like groupoids than groups in this respect. A complicated topology on
the terminal action is needed because the domains of idempotents in the inverse semi-
group should be as independent as possible (compare Remark 2.13).
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2.1 The character space of a semilattice

The idempotent elements in an inverse semigroup S form a semilattice E(S). The
underlying space of the terminal action of S depends only on E(S), so that we work
with semilattices for some time. We assume throughout that they have a unit and a
zero.

Definition 2.8 For a topological space X, we let O(X) be the semilattice of open
subsets of X with multiplication ∩.

Definition 2.9 A character on a semilattice E is a homomorphism to {0,1}. Equiva-
lently, it is the characteristic function of a (proper) filter, that is, a subset F of E that
satisfies

(1) 0 /∈ F , 1 ∈ F ;
(2) e, f ∈ F ⇒ ef ∈ F ; and
(3) e ∈ F , f ∈ E with e ≤ f implies f ∈ F .

Let Ê be the set of characters on E.

Definition 2.10 For e ∈ E, we define Ue := {ϕ ∈ Ê : ϕ(e) = 1} ⊆ Ê. We equip Ê

with the topology generated by the subsets Ue.

Lemma 2.11 The map U : E → O(Ê), e �→ Ue, is an injective homomorphism of
semilattices. The subsets Ue for e ∈ E form a basis for the topology on Ê.

Proof Obviously, U0 = ∅, U1 = Ê, and Ue ∩ Uf = Ue·f , so that U is a homomor-
phism. It is injective because

ϕe(f ) := [e ≤ f ] =
{

1 if e ≤ f ,

0 otherwise,
(2.12)

is a character that belongs to Uf if and only if e ≤ f . �

We frequently use the above notation [P ] for a property P , which is 1 if P holds,
and 0 otherwise.

Remark 2.13 If Ue ⊆ Uf1 ∪ · · ·∪Ufn for idempotents e, f1, . . . , fn, then considering
the character in (2.12) it follows that e ≤ fj for some j . This makes precise in which
sense the subsets Ue for e ∈ E are as independent as possible.

Lemma 2.14 Open subsets of Ê correspond bijectively to ideals in E, that is, subsets
I ⊆ E containing 0 and satisfying ef ∈ I whenever e ∈ E and f ∈ I (or equivalently,
e ∈ I whenever f ∈ I and e ≤ f ). If A is an open subset of Ê, then the associated
ideal is IA := {e ∈ E : Ue ⊆ A}. And if I is an ideal in E, the corresponding open
subset of Ê is

AI := {
ϕ ∈ Ê : ϕ(e) = 0 for all e ∈ I

}
.
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The proof is straightforward. The ideal corresponding to Ue is the principal ideal
Ie := {f ∈ E : f ≤ e} generated by e.

As a result, the set of ideals in a semilattice is isomorphic to O(Ê) and thus a
locale (see [5, II.1]). The spectrum of this locale, consisting of its prime principal
ideals, turns out to be homeomorphic to Ê. We find the above direct definition of Ê

more convenient.

Lemma 2.15 For any topological space X, there is a natural continuous map

δ : X → Ô(X), δ(x)(U) := [x ∈ U ]. (2.16)

It is a homeomorphism onto its image if X is T0.

Proof It is routine to check that δ(x) is a character on O(X) for x ∈ X. The map δ is
continuous because δ−1(Ue) = e for all e ∈ O(X). Thus δ(e) = δ(X) ∩ Ue, so that δ

is open onto its image. If X is T0, then δ is injective. �

Let Sela be the category of semilattices (with unit and zero) and let Topop be
the opposite category of topological spaces. The map E �→ Ê is a covariant functor
Sela → Topop: a semilattice homomorphism f : E → E′ induces a continuous map
Ê′ → Ê, ϕ �→ ϕ ◦ f . In the converse direction, the map X �→ O(X) is part of a
covariant functor Topop → Sela: a continuous map f : X′ → X induces a semilattice
homomorphism O(f ) : O(X) → O(X′), U �→ f −1(U).

Lemma 2.17 For any topological space X, there is a natural bijection between
continuous maps Ê ← X and homomorphisms E → O(X). This bijection sends
f : X → Ê to the map f̌ : E → O(X), e �→ f −1(Ue), and it maps g : E → O(X)

to ĝ : X → Ê with ĝ(x)(e) := [x ∈ g(e)].

Proof This is straightforward to verify by hand. Instead of this argument, we reinter-
pret the assertion: we must check that

Topop(Ê,X) ∼= Sela
(
E,O(X)

)
if E is a semilattice and X a topological space. Here we write C(x, y) for the set
of arrows x → y in a category C . This means that the functors O and ˆ are adjoint
to each other. The unit and counit of this adjunction are the natural transformations
UE : E → O(Ê) and δX : X → Ô(X) described above. The adjointness follows be-
cause the following composite maps are identities:

O(X)
UO(X)−−−→ O

(
Ô(X)

) O

(
δX

)
−−−−→ O(X), Ê

ÛE←−− O(Ê)ˆ δÊ←− Ê �

Definition 2.18 (see [5, 9]) A topological space is sober if every irreducible closed
non-empty subset is the closure of a unique point. Here a closed subset A is irre-
ducible if A = A1 ∪ A2 with closed subsets Ai ⊆ Ê implies A1 = A or A2 = A.
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Sober spaces are T0 but not necessarily Hausdorff. Hausdorff spaces are sober.
There are spaces which are sober but not T1, and T1-spaces which are not sober.

Lemma 2.19 The space Ê is sober and locally quasi-compact. Each subset Ue for
e ∈ E is quasi-compact.

Proof We claim that if ϕ,ψ ∈ Ê satisfy {ϕ} = {ψ}, then ϕ = ψ , that is, Ê is T0. In-
deed, if ϕ �= ψ , then there is e ∈ E with ϕ(e) �= ψ(e). If, say, ϕ(e) = 1 and ψ(e) = 0,
then ϕ /∈ {ψ} because Ue is a neighbourhood of ϕ not containing ψ .

Let A be a non-empty closed irreducible subset of Ê. Since A is closed, we may
write Ê \A = ⋃

e∈F Ue, where F = {e ∈ E : Ue ∩A = ∅}. Let ϕ be the characteristic
function of E \ F . We claim that ϕ is a character with A = {ϕ}. We have ϕ(0) = 0
because U0 = ∅ and ϕ(1) = 1 because U1 = Ê and A is non-empty. If e ∈ F , then
ef ∈ F for all f ∈ E because Uef = Ue ∩ Uf ⊆ Ue. In other words, if ef /∈ F , then
e /∈ F and f /∈ F . If e /∈ F and f /∈ F , then A ∩ Ue �= ∅ and A ∩ Uf �= ∅. Since A

is irreducible, we have A \ Ue ∪ A \ Uf = A \ Uef �= A, so that A ∩ Uef �= ∅, that
is, ef /∈ F . Thus ϕ is a character. Given ψ ∈ Ê, we have ψ /∈ {ϕ} if and only if
there is e ∈ E with ψ ∈ Ue and ϕ /∈ Ue, that is, e ∈ F . Thus ψ /∈ {ϕ} if and only if
ψ ∈ ⋃

e∈F Ue = Ê \ A, that is, ψ /∈ A. Hence A = {ϕ}.
Finally, we check that Ue is quasi-compact for each e ∈ E. This includes the spe-

cial case Ê = U1. The case e = 0 is trivial, so that we may assume e �= 0. The char-
acter ϕe defined in (2.12) belongs to Uf if and only if e ≤ f . Thus no proper open
subset of Ue contains ϕe . In an open covering of Ue, one subset contains ϕe and is
therefore equal to Ue. This yields a subcovering with one element. �

The above proof shows that the only neighbourhood of ϕ1 ∈ Ê is Ê. Thus Ê is
non-Hausdorff unless E = {0,1} and Ê is the one-point space.

Remark 2.20 Mapping an open subset to its complement defines an isomorphism of
semilattices from O(X) onto the semilattice of closed subsets with product ∪. Since
the set of irreducible closed subsets of X is defined in terms of closed subsets and ∪
only, we may recover the underlying space X from the semilattice O(X) provided X

is sober. We cannot recover X from O(X) unless X is sober because for any space X

there is a continuous map X → X′ to a sober space X′ that induces an isomorphism
O(X) ∼= O(X′) (see [5, II.1]).

Example 2.21 Let E = {0,1} ∪ F , where F is either a finite set written as F =
{e1, e2, . . . , en} or an infinite (countable) set of the form {e1, e2, . . .}. We consider two
different types of semilattice structures on E. In the semilattice E<, we assume e1 <

e2 < e3 < · · · ; in the semilattice E⊥, we assume that the elements ei are orthogonal,
that is, eiej = 0 for all i �= j .

In both cases, we consider the principal filter Fi := {e ∈ E : e ≥ ei} gener-
ated by ei and let ϕi := 1Fi

∈ Ê be its characteristic function. In E<, we have
Fi = {ei, ei+1, . . . ,1}, whereas in E⊥ we have Fi = {ei,1}. In addition, F∞ := {1}
is a filter and thus ϕ∞ := 1F∞ is a character. These are all the characters (and filters)
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in both cases. Thus Ê = {ϕ1, ϕ2, . . . , ϕ∞} in both cases. However, the topologies on
Ê< and Ê⊥ are different. We have

O(Ê<) = {∅ = U0, {ϕ1} = Ue1, {ϕ1, ϕ2} = Ue2 , . . . ,U1 = Ê<

}
.

In this case, the basis {Ue : e ∈ E} is already the whole topology of Ê< and we have
a semilattice isomorphism E<

∼= O(Ê<). In Ê⊥, however, we have Uei
= {ϕi} for

all i, and we have to take unions in order to get the whole topology of Ê⊥. The map
E⊥ → O(Ê⊥) is therefore not surjective. Topologise F by the discrete topology,
then O(Ê⊥) is isomorphic to O(F ) ∪ {1∞}, that is, the lattice of all subsets of F

with an extra unit 1∞ added (playing the role of Ê⊥ in O(Ê⊥)). Furthermore, Ê⊥ is
homeomorphic to the non-Hausdorff compactification F ∪ {∞} of F where the only
neighbourhood of ∞ is the whole space.

2.2 The character space as a terminal action

Now we return to an inverse semigroup S with unit and zero. Let E = E(S) be its
idempotent semilattice and Ê the character space defined above. Recall that g∗eg ∈ S

is idempotent for all e ∈ E, g ∈ S. We define an action of S on Ê by partial homeo-
morphisms: let g ∈ S act by

cg : Ug∗g → Ugg∗ , cg(ϕ)(e) := ϕ
(
g∗eg

)
,

with domains Ue ⊆ Ê for e ∈ E as in Definition 2.10. The maps cg and cg∗ are both
continuous, and they are inverse to each other because

cg ◦ cg∗(ϕ)(e) = ϕ
(
gg∗egg∗) = ϕ

(
gg∗)2

ϕ(e) = ϕ(e)

for ϕ ∈ Ugg∗ , e ∈ E and, similarly, cg∗ ◦ cg = IdUg∗g
. Furthermore, cgh = cg ◦ ch,

c1 = Id
Ê

, and c0 = ∅, so that we have an inverse semigroup action.

Theorem 2.22 The action of S on Ê described above is a terminal object in the
category of actions of S on topological spaces, that is, there is a unique S-equivariant
continuous map X → Ê for any topological space X with an action of S.

Proof An action θ of S on X involves a semilattice map E → O(X), mapping
e ∈ E to the domain Xe ⊆ X of θe. By Lemma 2.17, this induces a continuous map
f : X → Ê given by f (x)(e) = [x ∈ Xe]. Notice that s · x is defined if and only if
x ∈ Xs∗s if and only if s · f (x) is defined. If x ∈ Xs∗s , then f (s · x)(e) = [s · x ∈ Xe]
and s · f (x)(e) = [x ∈ Xs∗es], and these are equal because x ∈ Xs∗es if and only if
s · x ∈ Xe provided x ∈ Xs∗s . Hence f : X → Ê is S-equivariant.

Conversely, let g : X → Ê be any S-equivariant, continuous map. Given x ∈ X

and e ∈ E, we have g(x)(e) = 1 if and only if x ∈ Xe because x ∈ Xe if and only if
e · x is defined if and only if e · g(x) is defined, if and only if g(x) ∈ Ue if and only if
g(x)(e) = 1. Thus g = f . �
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Remark 2.23 The character space Ê with a more complicated (totally disconnected)
Hausdorff topology has already been considered by Paterson [8]. In his topology,
the domains Ue ⊆ Ê of the partial action on Ê are both open and closed. The map
X → Ê constructed above is continuous for Paterson’s topology if and only if the
domains Xe ⊆ X of the partial action on X are both closed and open. This is a severe
restriction, which rules out the inverse semigroup actions that appear in the study of
foliations.

We may also compare actions of E and Ê on C∗-algebras. Let A be a C∗-algebra.
An action of a semilattice E with unit and zero on A (in the sense of Definition 2.2)

is a unit- and zero-preserving homomorphism from E to the semilattice of ideals in A.
The ideal semilattice of A is canonically isomorphic to the semilattice of open subsets
of PrimA, the primitive ideal space of A. Thus an action of E on A is equivalent to
an action of E on PrimA. (This is the point where semilattices are much easier than
general inverse semigroups.)

By our previous results, an action of E on PrimA is equivalent to a continuous map
PrimA → Ê. This is exactly the structure that turns A into a C∗-algebra over Ê in the
sense of [7]. And this defines how topological spaces act on C∗-algebras. Summing
up:

Proposition 2.24 An action of a semilattice E on a C∗-algebra is equivalent to an
action of the topological space Ê, that is, to a structure of C∗-algebra over Ê.

3 The universal groupoid associated with an inverse semigroup

Given an action of an inverse semigroup S on a topological space X, we get an associ-
ated étale topological groupoid of germs as in [4, 8] (this differs from the construction
of the germ groupoid in [10]). We recall this construction for the action of S on Ê.
We denote the resulting groupoid by Gr(S).

Its object space Gr(S)(0) is Ê. Its arrows are equivalence classes of pairs (s, ϕ)

with s ∈ S, ϕ ∈ Us∗s , where we identify (s, ϕ) and (t,ψ) if ϕ = ψ and there is
e ∈ E(S) with s · e = t · e and ϕ ∈ Ue (that is, ϕ(e) = 1). We write [s, ϕ] for the
equivalence class of (s, ϕ). The source and range maps of Gr(S) are defined by

s
([s, ϕ]) = ϕ and r

([s, ϕ]) = s · ϕ,

and the composition is [s, ϕ] · [t,ψ] = [s · t,ψ] if ϕ = t · ψ . The inversion is
[s, ϕ]−1 = [s∗, s · ϕ], and the unit arrow at ϕ is [1, ϕ].

The topology on the arrow space Gr(S)(1) is the smallest one in which the subsets

O(s,U) := {[s, ϕ] : ϕ ∈ U
}

for s ∈ S and U ∈ O(Us∗s)

are open. We abbreviate Os := O(s,Us∗s).

Definition 3.1 A bisection of a topological groupoid G is an open subset of G(1) on
which the range and source maps are both injective and open.

A groupoid is étale if its arrow space is covered by bisections.
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We restrict to open bisections because we never use more general bijections.

Lemma 3.2 Each Os is a bisection of Gr(S), and these subsets for s ∈ S form a
basis for the topology on Gr(S)(1). In particular, Gr(S) is an étale groupoid.

Proof Since [s, ϕ] = [t,ψ] implies ϕ = ψ and s ·ϕ = t ·ψ , the source and range maps
restrict to bijections on Os , which map O(s,U) onto U and s ·U , respectively. Hence
they are open and injective on Os , so that Os is a bisection. Since these bisections
cover Gr(S)(1), Gr(S) is étale.

We claim that if O(s,U) ∩ O(t,V ) contains [s, ϕ], then it contains a neighbour-
hood of [s, ϕ] of the form Ou for some u ∈ S. First there is e ∈ E with se = te and
ϕ ∈ Ue because [s, ϕ] = [t, ϕ]. Let W := U ∩ V ∩ Ue, this is a neighbourhood of ϕ

in Ê. It contains Uf for some f ∈ E with f ≤ e because Uf ⊆ Ue. Then sf = tf ,
and Osf ⊆ O(s,U) ∩ O(t,V ). It follows that if [s, ϕ] ∈ ⋂n

i=1 O(si ,Ui), then there
is u ∈ S with [s, ϕ] ∈ Ou ⊆ ⋂n

i=1 O(si ,Ui). Thus the subsets Ou form a basis for the
topology on Gr(S). �

Lemma 3.3 The arrow space of Gr(S) is locally quasi-compact and sober.

Proof In general, the arrow space of an étale groupoid G is sober or locally quasi-
compact if and only if its unit space G(0) is sober or locally quasi-compact.

This is clear for local quasi-compactness. We argue for sobriety. On the one hand,
G(0) is open in G(0), and open (or more generally, locally closed) subspaces of sober
spaces are again sober. On the other hand, if f : X → Y is a local homeomorphism
of topological spaces, then X is sober provided Y is.

Finally, since Ê, the object space of Gr(S), is locally quasi-compact and sober by
Lemma 2.19, so is its arrow space. �

Definition 3.4 Given an étale topological groupoid G , let Bis(G) be the inverse semi-
group of bisections of G , with multiplication s · t = {g · h : g ∈ s, h ∈ t} and pseu-
doinverse s∗ = {g−1 : g ∈ S}.

Lemma 3.5 The map S → Bis(Gr(S)), s �→ Os , is an injective homomorphism.

Proof It is easy to see that Os · Ot = Ost , O0 = ∅ and O1 = Gr(S)(0) = Ê, so that
the map s �→ Os is a homomorphism of inverse semigroups with unit and zero.

To prove injectivity, assume Os = Ot . Then Us∗s = Ut∗t and hence s∗s = t∗t . Let
e := s∗s = t∗t and define ϕe(f ) := [f ≥ e] as in Equation (2.12). Then ϕe ∈ Ue, so
that [s, ϕe] = [t, ϕe] because Os = Ot . Therefore, there is f ∈ E with ϕ ∈ Uf (that
is, f ≥ e) and sf = tf . Now f ≥ e implies s = sf = tf = t . �

Definition 3.6 Let G be a (possibly non-Hausdorff) topological groupoid, with arrow
space G(1), object space G(0) and range and source maps r, s : G(1) ⇒ G(0).

An action of G on a (possibly non-Hausdorff) topological space X is a pair (�,μ),
where � is a continuous map X → G(0), called anchor map, and μ is a continuous
map μ : G(1) ×s,� X := {(g, x) ∈ G(1) ×X : s(g) = �(x)} → X, written (g, x) �→ g ·x,
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such that �(g · x) = r(g) for all g ∈ G(1), x ∈ X with s(g) = �(x), g1 · (g2 · x) =
(g1 · g2) · x if both sides are defined, and 1�(x) · x = x for all x ∈ X.

A map f : X → Y between two topological spaces X and Y with such actions
of G is G -equivariant if �Y ◦ f = �X and f (g · x) = g · f (x) for all g ∈ G(1), x ∈ X

with s(g) = �X(x). That is, f (g · x) is defined if and only if g · f (x) is defined, and
both are equal if defined, for all g ∈ G(1), x ∈ X.

With G -equivariant maps, the actions of G form a category, denoted TopG .

Theorem 3.7 The categories TopS and TopGr(S) of actions of S and Gr(S) on topo-
logical spaces are isomorphic.

Proof Let X be a space with an action of S. By Lemma 2.17, we get a continuous S-
equivariant map � : X → Ê = Gr(S)(0) given by �(x)(e) = [x ∈ Xe], which we take
as our anchor map. If �(x) = ϕ and g ∈ Gr(S)(1) satisfies s(g) = ϕ, then g = [s, ϕ]
for some s ∈ S, so that ϕ(s∗s) = 1 and hence x ∈ Xs∗s , that is, s · x is defined. To
define [s, ϕ] · x := s · x, we must check that this does not depend on the choice of
the representative (s, ϕ). If [t, ϕ] = [s, ϕ], then there is e ∈ E such that ϕ(e) = 1 and
se = te. Since e · ϕ is defined, so is e · x, and e · x = x. Thus s · x = s · (e · x) =
(se) · x = (te) · x = t · (e · x) = t · x. Thus an action of S on X yields an action
of Gr(S) on X.

Conversely, an action of the étale groupoid Gr(S) on a topological space X induces
an action of the inverse semigroup Bis(Gr(S)). Using the homomorphism s �→ Os

from Lemma 3.5, we may turn this into an action of S. More precisely, given e ∈ E,
let Xe := �−1(Ue) and for each s ∈ S, define θs : Xs∗s → Xss∗ by θs(x) := g · x,
where g is the unique element of the bisection Os with s(g) = �(x). This defines an
inverse semigroup action of S on X.

It is easy to check that these constructions provide functors TopS � TopGr(S) that
are inverse to each other. �

Could there be a Hausdorff topological groupoid whose actions on Hausdorff topo-
logical spaces are equivalent to actions of S? Unfortunately, the answer is no, already
for the simplest conceivable inverse semigroup, the semilattice {0, e,1} with e2 = e.
An action of E on a topological space X is the same as specifying an open subset
Ue ⊆ X, the domain of e. Thus an action of E on a Hausdorff space is a Hausdorff
space with an open subset. Taking its characteristic function, an open subset is equiv-
alent to a continuous map from X to {0,1} with the topology where {1} is open and
{0} is not open (this so-called Sierpiński space is homeomorphic to Ê). There is, how-
ever, no Hausdorff space Y such that open subsets in Hausdorff spaces X correspond
to maps X → Y .

Using non-Hausdorff spaces becomes more natural when we study actions on C∗-
algebras because their primitive ideal spaces are usually non-Hausdorff. In Propo-
sition 2.24 we already observed that actions of a semilattice E on C∗-algebras are
equivalent to actions of the topological space Ê. For a general inverse semigroup, we
therefore expect actions of S on C∗-algebras to be equivalent to continuous actions
of Gr(S). This is indeed the case for an appropriate definition of continuous action
for non-Hausdorff groupoids. We plan to discuss this definition elsewhere.
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4 Functoriality

We want to establish that S �→ Gr(S) and G �→ Bis G is an adjoint pair of functors.
For this, we first have to describe the categories of inverse semigroups and groupoids
we use. One of them is fairly obvious:

Definition 4.1 Let Mon∗ be the category of inverse semigroups with zero and unit,
with homomorphisms (preserving zero and unit) as arrows.

4.1 The category of étale topological groupoids and functoriality of bisections

The most obvious choice for a category of étale topological groupoids uses con-
tinuous functors as morphisms. However, for this category neither Gr nor Bis are
functorial. The correct arrows for the category of groupoids are the following:

Definition 4.2 ([2, 3]) Let G and H be topological groupoids. An algebraic mor-
phism from G to H, denoted G � H, is an action of G on H(1) that commutes with
the action of H on H(1) by right translations.

Buneci and Stachura trace this definition back to Zakrzewski [11]. They study
algebraic morphisms because groupoid C∗-algebras are functorial for algebraic mor-
phisms, but not for functors.

The following more concrete description of algebraic morphisms is already proved
in [3, Lemmas 2.8 and 2.9].

Lemma 4.3 An algebraic morphism G � H is equivalent to a pair consisting of an
action of G on the object space H(0) of H and a functor from the transformation
groupoid G � H(0) to H that acts identically on objects.

Recall that the groupoid G � H(0) has object space H(0), arrow space

G(1) ×s,� H(0) = {
(g, x) ∈ G(1) × H(0) : s(g) = �(x)

}
,

and composition (g,h · x) · (h, x) := (g · h,x).

Proof First we explain how an algebraic morphism G � H induces a continuous
action of G on the object space H(0). We have �(h) = �(hh−1) = �(1r(h)), so that
the anchor map H(1) → G(0) of the algebraic morphism is the composition of the
range map r : H(1) → H(0) and a continuous map � : H(0) → G(0), the restriction of
the anchor map to units. The action of G on H(0) has anchor map � and is defined
uniquely by g · r(h) := r(g · h) for all g ∈ G(1), h ∈ H(1). This action is continuous
because g · x = r(g · 1x) for all g ∈ G and x ∈ H(0). Since the action of G on H(1)

commutes with right translations, given g ∈ G(1) and x ∈ H(0) with �(x) = s(g),
there is a unique μ(g,x) ∈ H(1) such that s(μ(g, x)) = x and g · h = μ(g,x) · h for
all h ∈ H(1) with r(h) = x, namely, μ(g,x) := g ·1x . The map μ defines a continuous
functor G � H(0) → H. The above reasoning may be reversed, showing that � and μ

as above provide an algebraic morphism G � H by g · h := μ(g, r(h)) · h. �
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Example 4.4 If G and H are just spaces (all arrows are identities), then an algebraic
morphism G � H is the same as a continuous map H(0) → G(0). More generally,
if H is a space and G arbitrary, then an algebraic morphism G � H is the same as a
continuous action of G on the space H(0) = H(1).

Example 4.5 If G and H are both topological groups, then an algebraic morphism
G � H is the same as a continuous group homomorphism G → H.

Example 4.6 The canonical left action of G on G(1) is a morphism G � G , the identity
morphism.

Remark 4.7 Algebraic morphism must be distinguished from Hilsum–Skandalis
morphisms, also called Morita morphisms. These are given by a topological space X

with a left G - and a right H-action, such that

(1) the actions of G and H commute;
(2) the right H-action is free and proper;
(3) the anchor map X → G(0) for the left action induces a homeomorphism X/H ∼=

G(0).

Given an algebraic morphism, we may let H act on X := H(1) by right translations
and G as specified on the left. These two actions commute by assumption; the right
H-action on X is free and proper with X/H ∼= H(0) via the range map. The induced
map X/H → G(0) is the anchor map of the action of G on H(0) in Lemma 4.3. Thus
an algebraic morphism is a Hilsum–Skandalis morphism as well if and only if the
induced map H(0) → G(0) is a homeomorphism. Equivalently, it comes from a con-
tinuous functor that acts by a homeomorphism on objects.

Recall that Y ×G X for a right G -space Y with anchor map �Y and a left G -space X

with anchor map �X is the quotient of Y ×�X,�Y
X by the equivalence relation

(y · g,x) ∼ (y, g · x)

for all y ∈ Y , g ∈ G(1), x ∈ X with �Y (y) = s(g) and �X(x) = r(g). The action
map (g, x) �→ g · x provides a natural homeomorphism G ×G X ∼= X for any left
G -space X, where we let G act on itself by right translations.

This allows us to compose algebraic morphisms: given left Gj -actions on Gj+1
commuting with the right Gj+1-action by translations for j = 1,2, we may use the
homeomorphism G2 ×G2 G3 ∼= G3 to transform the induced left G1-action on G2 ×G2 G3
into one on G3, which commutes with the right translation action and hence defines
an algebraic morphism G1 � G2.

Definition 4.8 Let Grd be the category whose objects are the étale topological
groupoids and whose morphisms are the algebraic morphisms, with the composition
and identities just described.

Our next goal is to explain how an algebraic morphism G � H induces a ho-
momorphism Bis G → Bis H, so that we get a functor Bis : Grd → Mon∗. We first
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describe this functoriality of Bis by hand and then more conceptually. Notice that a
continuous functor G → H does not induce a map on the level of bisections.

Let f = (�,μ) describe an algebraic morphism G � H, where � : H(1) → G(0)

and μ is the functor G � H(0) → H as in Lemma 4.3. For a bisection t ⊆ G(1), let

f∗(t) := {
μ(g,x) : g ∈ t, x ∈ H(0), s(g) = �(x)

}
Since s(μ(g, x)) = x and g ∈ t with s(g) = �(x) is unique if it exists, the source map
is a bijection from f∗(t) onto �−1(s(t)). Since f∗(t−1) = f∗(t)−1, the range map is a
bijection from f∗(t) onto �−1(r(t)). Thus f∗(t) is a bisection in H. We leave it to the
reader to check that f∗ : Bis G → Bis H is a homomorphism and preserves zero and
unit, and that f∗ ◦ g∗ = (f ◦ g)∗ for composable algebraic morphisms and Id∗ = Id.

Definition 4.9 Let G be an étale topological groupoid and let X be a right G -space.
A partial homeomorphism t : U → V of X is (right) equivariant if U is G -invariant
and t (x · g) = t (x) · g for all x ∈ U , g ∈ G(1) for which x · g is defined.

Equivariant partial homeomorphisms are closed under composition and inversion
of partial homeomorphisms, so that they form an inverse semigroup.

Lemma 4.10 The inverse semigroup of equivariant partial homeomorphisms of G(1)

with right translation action of G is isomorphic to Bis G .

Proof Given a bisection T ⊆ G(1), we define a partial map t on G(1) by t (h) := g · h
if there is g ∈ T with s(g) = r(h) (g is unique if it exists). This defines an equivariant
partial homeomorphism of G(1). Conversely, if t : U → V is an equivariant partial
homeomorphism of G(1), then

T := {
g ∈ G(1) : there is h ∈ U with g = t (h)h−1 = t

(
r(h)

)} = t
(
r(U)

)
is a bisection with t (h) = g · h whenever h ∈ U , g ∈ T and s(g) = r(h). �

Let X be a right H-space and let M be an H, G -bispace. Then X ×H M is a
right G -space. An H-equivariant partial homeomorphism t : U → V of X induces a
G -equivariant partial homeomorphism of X×H M by t∗(x,m) := (t (x),m), with do-
main U ×H M ⊆ X ×H M . The map t �→ t∗ is an inverse semigroup homomorphism
preserving zero and unit. This construction is functorial if we view bispaces M as
morphisms and compose them by the balanced product, M ◦ N := M ×G N .

In particular, if M = H with the right translation action of H and the left action
given by an algebraic morphism G � H, then a G -equivariant bisection of G induces
an H-equivariant bisection of G ×G H ∼= H. By Lemma 4.10, this yields a homo-
morphism Bis G → Bis H. This is the conceptual explanation of the functoriality of
bisections promised above. It is straightforward to see that this abstract construction
is equivalent to the concrete one above.
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4.2 An adjointness relation

Theorem 4.11 Let S be an inverse semigroup with zero and unit and let G be an étale
topological groupoid. Then algebraic morphisms Gr(S) � G correspond bijectively
to homomorphisms S → Bis G .

Proof Theorem 3.7 has an equivariant analogue with the same proof: actions of S

on a right G -space by equivariant partial homeomorphisms are equivalent to actions
of Gr(S) that commute with the right G -action. In particular, an algebraic morphism
Gr(S) � G is equivalent to an action of S on G(1) by G -equivariant partial homeo-
morphisms. By Lemma 4.10, this is equivalent to a homomorphism S → Bis G . �

Theorem 4.11 asserts that Gr is left adjoint to the functor Bis. In particular, it
implies that Gr is a functor Mon∗ → Grd. Let us see this more directly.

An inverse semigroup homomorphism f : S → T restricts to a homomor-
phism between the idempotent semilattices, and hence induces a continuous map
� : Ê(T ) → Ê(S) by Lemma 2.17. We let S act on Ê(T ) by composing f with the
canonical action of T on Ê(T ). The map [s, ϕ] �→ [f (s),ϕ] is a well-defined functor
Gr(S) � Ê(T ) → Gr(T ). This defines an algebraic morphism Gr(S) � Gr(T ). The
resulting left action is defined by

[
s, �(ϕ)

] · [t, ϕ] := [
f (s) · t, ϕ]

for s ∈ S, t ∈ T , ϕ ∈ Ut∗t ⊆ Ê(T ), �(ϕ) ∈ Us∗s .

We also describe the adjointness between Bis and Gr using a unit and counit of
adjunction. These are canonical arrows S → Bis(Gr(S)) and Gr Bis(G) � G .

The first is the canonical inverse semigroup homomorphism O : S → Bis(Gr(S))

in Lemma 3.5.
For the latter, we first need a map G(0) → (Gr Bis G)(0). The idempotent bisections

of G are exactly the open subsets of the object space G(0). Hence the object space of
Gr Bis(G) is

(Gr Bis G)(0) = ̂E(Bis G) = ̂
O

(
G(0)

)
.

The map δ : G(0) → ̂
O(G(0)) that we need is defined already in (2.16). Bisections of G

act on G(0) by partial homeomorphisms. This defines an action of Gr Bis(G) on G(0) by
Theorem 3.7. The map δ is clearly Bis G -equivariant, hence it is Gr Bis(G)-equivariant
as well.

Now we assume that G(0) is T0 to simplify the construction. Then δ is a homeo-
morphism onto its image. The topological groupoid Gr Bis(G)� G(0) is isomorphic to
the restriction of Gr Bis(G) to G(0). This restriction is exactly the original groupoid G .
This provides an isomorphism Gr Bis(G)� G(0) ∼= G and hence an algebraic morphism
Gr Bis(G) � G . This is the counit of the adjunction in Theorem 4.11.

4.3 Algebraic morphisms as functors of action categories.

If we think of groupoids as generalised spaces, then we would expect a morphism
between them to induce a map between the spaces of orbit (isomorphism classes of
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objects) because this is the classical space described by a groupoid. Whereas functors
between groupoids do this, algebraic morphisms, in general, do not induce a map
between the orbit spaces.

If we think of groupoids as symmetries of spaces, then we would expect a mor-
phism to turn an action of one groupoid into an action of the other, in the same way as
for group homomorphisms. Whereas functors do not do this, we are going to show,
even more, that algebraic morphisms are exactly the same as functors between the
categories of actions that do not change the underlying space.

Let Forget : TopG → Top be the functor that forgets the G -action.

Theorem 4.12 An algebraic morphism G � H induces a functor F : TopH → TopG

that satisfies Forget ◦ F = Forget. Conversely, any functor with this property comes
from an algebraic morphism G � H in this way.

Proof An algebraic morphism G � H induces a left G -action on H(1) ×H X for any
H-space X. The latter is naturally homeomorphic to X via the map (h, x) �→ h · x.
Thus an H-action becomes a G -action on the same space. Since H-equivariant maps
are also G -equivariant, we get a functor F : TopH → TopG with Forget ◦ F = Forget.

Conversely, take such a functor F . When we apply F to the space H(1) with left
translation action of H, we get a left G -action on H(1). We claim that this left action
commutes with the right translation action, so that we get an algebraic morphism
G � H, and that the functor F acts on any space in the way described above, given
by this algebraic morphism.

For x ∈ H(0), let Hx := {g ∈ H(1) : s(g) = x}. This is an H-invariant subspace
for the left translation action. Since F is a functor, Hx is G -invariant as well, and
the induced G -action on Hx is the restriction of the G -action on H(1). An arrow
h ∈ H(1) induces an H-equivariant map Hr(h) → Hs(h) by right translation. Since F

is a functor, these maps remain G -equivariant, that is, the left G -action commutes
with the right translation action of H.

For an H-space X with anchor map π , the action is an H-equivariant map
H(1) ×s,π X → X if we let H act on H(1) by left translations as above. Since this
map is surjective, the left G -action on X is determined by the action on H(1) ×s,π X.
For each x ∈ X, we get an H-invariant subspace in H(1) ×s,π X consisting of ele-
ments of the form (h, x), which is isomorphic to H(1)

π(x). Hence the action of G on

H(1) ×s,π X is determined by the left actions on H(1)
y for all y, which are in turn

determined by the action on H(1). Thus the functor F and the functor induced by the
algebraic morphism we have just constructed are equal because they agree on H(1). �

5 Reconstructing groupoids

Let G be an étale topological groupoid and let S ⊆ Bis G be an inverse sub-semigroup.
Is it sometimes possible to recover G from S?

We begin with the following well-known result (see [4] and also [6]):
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Proposition 5.1 Let G be an étale topological groupoid and let S be an inverse sub-
semigroup of Bis G . Assume that S covers G(1), that is,

⋃
S = G(1), and that

for all s, t ∈ S and g ∈ s ∩ t, there is r ∈ S with g ∈ r ⊆ s ∩ t. (5.2)

Then G is isomorphic to the topological groupoid of germs of the action of S on G(0).

That is, we may recover G if we know the object space G(0) with the action of S,
provided S covers G and condition (5.2) holds. These conditions together are equiv-
alent to S forming a sub-basis for some topology on G(1) (not necessarily equivalent
to the given topology). In particular, Proposition 5.1 applies if S is a basis for the
usual topology of G(1). It is shown in [6] that if S is just an inverse sub-semigroup
of Bis G for which E(S) covers G(0) (meaning that the inclusion map S ↪→ Bis G is a
wide representation of S in the sense of [6, Definition 2.18]), then the germ groupoid
construction yields an étale groupoid with unit space homeomorphic to G(0). This
groupoid will, however, not be isomorphic to G in general if S does not cover G(1)

(for instance take S to be E(Bis G) ∼= O(G(0)) so that S is a basis for G(0) but the
associated groupoid of germs is just the space X = G(0) viewed as a groupoid in the
trivial way).

Lemma 5.3 Let S be an inverse semigroup of bisections of G that is a basis for G(1).
Assume that X := G(0) is T0. Let E be the idempotent part of S. The map δ : X →
Ô(X) → Ê, δ(x)(e) = [x ∈ e], is an S-equivariant homeomorphism onto its image.
The groupoid G is isomorphic to the restriction of Gr(S) to the invariant subspace
X ⊆ Ê = Gr(S)(0).

Proof Since E is a basis, δ(x) = δ(y) implies that x and y belong to the same open
subsets. Hence x = y because X is T0. Thus δ is injective. We have δ(x) ∈ Ue if and
only if e ∈ E. Since the sets Ue and e for e ∈ E form bases of X and Ê, the map δ is
a homeomorphism onto its image.

The germ groupoid construction is compatible with restriction to invariant sub-
spaces. Hence the restriction of Gr(S)(0) to X is the groupoid of germs of the action
of S on X, which is G by Proposition 5.1. �

It is easy to see that S is a basis of G(1) if and only if S covers G(1) and E is a
basis of G(0). If E is not a basis for the topology of G(0), then we may equip G(0)

and G(1) with the topologies generated by E and S, respectively. This yields a new
étale groupoid that may not be distinguished from G using our data. Hence the as-
sumption that E is a basis is necessary.

If we do not know the set X, then we cannot in general recover G even if S is a
basis for G . Recall that the open subsets Ue for e ∈ E form a basis for the topology
on Gr(S), so that G could be Gr(S). But there may be many other étale groupoids G
for which S is a basis of bisections.

The situation improves if we are given the whole inverse semigroup Bis G and
know this fact. The reason for this is that we may recover a sober space from the
semilattice O(X) (see Remark 2.20).
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Proposition 5.4 Let G be a sober étale topological groupoid and let S := Bis G . Let
E ⊆ S be the idempotent part of S. Call e ∈ E irreducible if e �= 1 and e = e1 · e2
implies e1 = e or e2 = e. For an irreducible e ∈ E, define ϕe : E → {0,1} by ϕe(f ) =
0 if and only if f ≤ e. These maps are characters, and the subset X ⊆ Ê of all ϕe with
irreducible e ∈ E is S-invariant. The restriction of Gr(S) to X is naturally isomorphic
to G .

Proof Recall that E = O(G(0)). An element e ∈ E is irreducible in the above sense if
and only if its complement in G(0) is irreducible as a closed subset. Since G(0) is sober,
e ∈ E is irreducible if and only if e = G(0) \ {x} for a unique x ∈ X. Then ϕe(f ) =
[x ∈ f ]. Thus X is the range of the canonical map δ : G(0) → Ê. The assertion now
follows from Lemma 5.3. �
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