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INVERSE *-SEMIGROUPS *-GENERATED

BY FAMILIES OF ISOMETRIES

WACtAW SZYMANSKI

(Communicated by John B. Conway)

Abstract. It is shown that if a »-semigroup »-generated by a family of com-

muting Hubert space isometries that commute each other, none of which com-

mutes with the adjoint of another one, and none of which is a nonzero power of

another one, consists of partial isometries, then it is singly »-generated. Also,

the following result on algebraic semigroups is proved: If S is an inverse *-

semigroup »-generated by a set X satisfying the generating relations: a*a = 1,

ab = ba , for all a,b e X , then S is the bicyclic semigroup. Both results fol-

low from the special behavior of inverse »-semigroups »-generated by analytic

Toeplitz operators.

1. Introduction

In this paper all semigroups have unit. A semigroup S is a ^-semigroup if

there is a mapping *:S —y S satisfying (ab)* = b*a*, (a*)* = a for a,b G S,

I* = 1 . Let X be a subset of a -«-semigroup S. S*(X) denotes the *-

semigroup that consists of all words in a, b*(a, b G X). It will be understood

that 1 G S*(X), and thus 1 will not be listed as an element of X. Elements of X

may be related to each other by certain equalities between words in a,b*(a ,b G

X). Such relations are called generating relations for the semigroup S*(X) (cf.

[1], p. 41). S is *-generated by X if S = S*(X). If X = {ax, ... ,ak},

then S*(ax, ... ,ak) = S*(X). The number of letters in a word will refer only

to the letters, not to their powers, e.g. ab2a*^ is a 3-letter word. Let S be a

semigroup. An element b G S is called the (semigroup) inverse of a G S if

aba = a , bab — b. S is called an inverse semigroup if each element of S has

a unique inverse.

1.1. Fundamental characterization of inverse semigroups ([1], Theorem 1.17). A

semigroup S is an inverse semigroup if and only if every element of S has an

inverse and all idempotents in S commute.

Let H be a complex Hubert space. B(H) stands for the *-semigroup of

all linear bounded operators in H with the composition and with * being the
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adjoint operation. *-subsemigroups of B(H) will be allowed to contain all

appropriate scalar multiples of their members. U G B(H) is a partial isometry

if UU*U = U, i.e. if U* is a semigroup inverse of U. Each inverse semigroup

is isomorphic with a »-semigroup of partial isometries in a Hubert space. Also,

each *-semigroup of partial isometries in a Hubert space is an inverse semigroup

(cf. [4] Proposition 1.1 for the proof and references). Partial isometries U G

B(H) for which S*(U) is an inverse semigroup are completely characterized

in [2].

The bicyclic semigroup is one of the fundamental examples of an inverse

semigroup. It is defined as the free semigroup S*(a) »-generated by a single

element a such that a*a = 1 (cf. [1], p. 43). Consider a more general question:

Suppose S - S*(X) is a »-semigroup and X satisfies the generating relations

a*a = 1, ab = ba, for all a, b G X. What are the consequences? The answer

is given in §3. It turns out that S*(X) is »-generated by a single element, hence

it is the bicyclic semigroup. In §2 inverse »-semigroups generated by analytic

Toeplitz operators are studied.

C denotes the complex plane, N stands for the set of all non-negative inte-
2 *

gers. An operator P G B(H) is a projection if P — P  — P .

2. Inverse »-semigroups generated by analytic Toeplitz operators

The results of this section concern the classical Hardy space on the unit disc.

The notations and terminology are standard (cf., e.g. [5]). Y is the unit circle,

m is the normalized Lebesgue measure on F, z denotes the identity function

on T, P is the Riesz projection = the projection of L onto H . A function

q G H   is inner if \q\ = 1, m - a.e. If q G H°° , then T' : H  —> H   denotes

the analytic Toeplitz operator T f = qf, f G H . The following theorem is

the main result of this section:

2.1. Theorem. Suppose X is a family of isometries in H that commute with

the unilateral shift TT. If the ^-semigroup S*(Xl){Tz}) ^-generated by Tz

and all isometries from X is an inverse semigroup, then S*(Xl){Tz}) — S*(Tz),

i.e. is ^-generated by Tz alone.

It will be convenient to prepare the proof by proving separately the following

lemma, perhaps of interest on its own.

2.2. Lemma. Let q be an inner function. Let k G N. The projections TzTz*,

T T* commute if and only if q G z H or q = czp with some c gT , p G N,

p < k.

Proof. Firstly notice that an inner function q is an analytic polynomial if and

only if q = czp with some c G Y, p G N. This can be shown in an elementary

way using the maximum modulus theorem.

Let q now be an inner function.   Then  T   is an isometry in H .   The

operators T^Tr*f=z P~z  /, T T*f - qPqf, fGH , are projections onto
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k k       1 7
ran Tz = z H   and ran T = qH , respectively. Let q = q0 + qx z -\-  be the

Fourier expansion of q . For the sake of convenience denote:

L=TkTk*TJ*,        R=TJ*TkTk*.

Fix arbitrarily n G N. Then

(2.3) Rz" = 0   if n<k,        Rz" = qPqz"    if n > k.

Assume that the projections TzTz*, T T* commute, i.e. L = R. In particular,

for the constant function / = 1 :

0 = Rl=Ll= zkPzkqPql = qQzkPzkq.

Hence, qQ = 0 or q is an analytic polynomial of degree at most k - 1. By

the remark opening the proof, q0 = 0 or q = czp with some c G T, p G N,

p < k. Suppose q is not an analytic polynomial. Hence q0 = 0. If k = 1,

the proof is finished, because then q g zH . If k > 1, take / = z. Then

2q-qx-r-qfz-\-  and by (2.3)

0 = Rz = Lz = z P~z  qPqz = qxz P~z  q .

Hence, qx — 0. Thus q G z H . If k = 2, the proof is finished. If not,

continue the above process until k .

For the proof of the converse assume that q G z H or q = zp with some

p G N, p < k. Then qH c z H or z H c <?// , respectively. Hence the

projections onto these subspaces commute.   Q.E.D.

Proof of Theorem 2.1. Every operator in H commuting with Tz is of the

form T with some q G H°° ([5], Problem 147). Hence all members of X are

of that form. Take arbitrarily T' G X . Since T is an isometry, q is an inner

function. By the fundamental characterization of inverse semigroups (1.1), all

idempotents in S*(X\j{Tz}) commute. In particular, T T* commutes with

Tv Tz * for each k G N. By Lemma 2.2, q G z H or q = czp with some

ceT, p G N, p < k , for each k G N. Since q ^ 0, q cannot belong to all

z H , k G N. Hence there are c gT , p G N such that q = czp .    Q.E.D.

3. Consequences for operator and abstract semigroups

The product of Hubert space isometries is an isometry. Here is a correspond-

ing result for partial isometries.

3.1. Proposition. Suppose U ,V g B(H) are partial isometries. UV is a par-

tial isometry if and only if U* U commutes with VV*.

Proof. If U is a partial isometry, then so is U* ; hence both E = U*U, F =

VV* are projections. Suppose EF = FE. Then UV(UV)*UV = UFEV =

UEFV = UV. Hence, UV is a partial isometry. Now suppose that UV is a

partial isometry. Then UFEV = UV. Multiplying by U* from the left and by
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V* from the right one gets EFEF — EF . Thus EF is an idempotent of norm

at most one. Such idempotents are self-adjoint. Hence, EF — FE .   Q.E.D.

The proof of the "only if part is purely algebraic. The proof of the "if part

is geometric. Is it possible to give an algebraic proof?

3.2. Proposition. Suppose V ,W g B(H) are isometries. If VW* = W*V

then VW — WV, VV* commutes with W, and WW* commutes with V.

Conversely, if VW = WV, and VV* commutes with W or WW* commutes

with V, then VW* = W*V.

Proof. Suppose W* commutes with V. It is proved in [3], Proposition 3.5,

that W commutes with V . Here is that argument, for the sake of completeness:

(VW-WV)*(VW-WV) = W* V* VW -W* V* WV -V*W* VW+V* W* WV
= 0. From this it is clear that VV* commutes with W, and WW* com-

mutes with V . For the converse compute (V*W - WV*)*(V*W - WV*) =

W*VV*W-W*VWV*-VW*V*W+VW*WV* = 0 if VV* commuteswith

W. If WW* commutes with V, then replace W by V and F by IF in the

above computation.    Q.E.D.

The above proof uses not only the »-semigroup structure of B(H), but also

the C*-algebra structure of B(H). Can this property be proved in a purely

»-semigroup context?

3.3. Proposition. Let V, W g B(H) be isometries such that VW* = W*V.

Then the semigroup S*(V, W) consists of partial isometries, i.e. is an inverse

semigroup.

Proof. By Proposition 3.2, VW = WV . hence, all members of S*(V, W) have

form U = VJ V*k WmW*" , j,k,m,nGN. It is immediate that UU*U = U .

Now S*(V, W) is an inverse semigroup, because it is a »-semigroup consisting

of partial isometries—use a result of Duncan-Paterson quoted in §1.   Q.E.D.

Now fix two isometries V, W g B(H) such that V commutes with W, but

not with W* . All words in V, V* have form Vk V*J, j, k G N, all words

in W,W* have form WmW*n, m,n G N. Hence, all elements of the *-

semigroup S*(V,W) are finite products of the form V V*'WmW*n ■■ ■ . If

two words in S*(V, W) are equal, then this equality can always be reduced to

an equality between two words in, at most, two letters each. This is done as

follows: suppose w , w are words in S*( V, W) of at least two letters each, and

w - w'. Multiplying both sides of w = w by a suitable power of V, V*, W,

or W*, and using the relations V*V = I, W*W = I, VW = WV, one

gets new words v, v such that v = v ', at least one of v, v , say v, has

the number of letters strictly less than w, and the number of letters in v

does not exceed the number of letters in w'. Therefore all generating relations

for the semigroup S*(V, W) must be expressed as equalities between at most

two-letter words. The above procedure can be proved by considering cases of

possible endings (or beginnings) of words. Instead of this not very interesting
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proof, here is a demonstration of that "shortening of words" effect. Suppose

w*PVky*j _ v*>*wnw*qvs^ j^,m,n,p,s G N. Multiply from the right

by V'Wq . Then W*pWqVk = V*m Vs+j Wm . The words on both sides are

now two-letter words in the letters depending on powers. This effect is purely

algebraic and depends only on the above three relations.

3.4. Lemma. Suppose V,W g B(H) are isometries, VW = WV, V*W /

WV*, and no nonzero power of W equals a power of V. Then the relations:

(G) V*V = I,        W*W = I,        VW=WV

are the only generating relations for the ^-semigroup S* (V, W).

Proof. Notice that W is not unitary. If W was unitary, then Fuglede's theorem

would imply V* W = WV* . By the remarks before this theorem it is enough to

consider equalities between words of at most two letters each. It is not difficult

to show that either they contradict some assumptions about V, W, or they

imply one of the conditions (G). Any equality between one-letter words leads to

trivialities or contradictions, e.g. V* — WJ cannot happen, because the ranges

of V* and WJ are different, unless k = j = 0. A similar conclusion is true if

one examines equalities between a one-letter word and a two-letter word. The

only nontrivial equality between two-letter words, which is not already in (G),

is V* W" = W" V* , k ,n G N. Assume k ,n> I . Multiply this equality by

Vk~x from the right and by W*"~x from the left, then V*W = WV*, which

contradicts the assumption.   Q.E.D.

3.5. Theorem. Suppose X is a family of commuting isometries on a Hubert

space H. Assume that

(a) no element of X commutes with the adjoint of another element of X, and

(b) for any V ,W g X, no nonzero power of V equals a power of W.

If S*(X) consists of partial isometries (is an inverse semigroup), then X has

one element.

Proof. Suppose there are two different V, W g X. By Lemma 3.4, the only

generating relations for S*(V, W) are the relations (G). Choose an inner func-

tion q which is not a polynomial. Then F. and T satisfy the assumption of

Lemma 3.4. Hence, the generating relations for the »-semigroup S*(T,,T) are

exactly the same as for S*(V , W). Thus the mapping h(V) = F,, h(W) = Tq

extends to a »-preserving isomorphism of S*(V, W) and S*(T.,Tq). Since

S*(V, W) consists of partial isometries, it follows from Proposition 3.1 that

WW* commutes with VkV*k for each k G N, because W*V is a partial

isometry. Hence, TT* commutes with izi* for each kGN. It follows

from the proof of Theorem 2.1 that q = czp with some c G Y, p G N, which

is a contradiction.     Q.E.D.

In a very similar manner one proves the following general result for algebraic

semigroups.
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3.6. Theorem. If S is an inverse semigroup ^-generated by a set X which

satisfies the generating relations: a* a = 1, ab = ba, for a,b G X, then X has

one element and S is the bicyclic semigroup.

Proof. As above, suppose X has two different elements a, b. Let q be an

inner function chosen as in the proof of Theorem 3.5. Then the »-semigroups

S*(a,b) and S*(Tz,T) are »-isomorphic, because their generating relations

are the same, by Lemma 3.4. Here a corresponds to Tz, b corresponds to

T . By 1.1, the idempotents bb*, a a* commute for each k g N, and

they belong to S*(a,b). Thus the projections TqT*, TTT* commute for all

k G N. Hence, q = czp for some c gT , p G N, which is a contradiction.

Thus X has one element, X = {a} . Hence, S = S*(a) is bicyclic.   Q.E.D.
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