
J. Austral. Math. Soc. 24 (Series A) (1977), 92-102.

INVERSE SEMIGROUPS OF HOMEOMORPHISMS
BETWEEN OPEN SUBSETS

BRIDGET BOS BAIRD

(Received 27 April 1976)

Communicated by T. E. Hall

Abstract

The symbol Jfa(X) denotes the inverse semigroup, under composition of functions, of all
homeomorphisms between open subsets of a T, topological space X. The first result is that two
such semigroups ^n(X) and $a(y) are isomorphic if and only if the spaces X and V are
homeomorphic. Ideals of Sa(X) are next examined and it is shown that for many spaces X the
semigroup Ja(X) is 0-simple. We also look at congruences on £C;(X); one result is that we
determine a congruence which in many instances is the largest proper congruence on £a(X).

1. Introduction

If X is a nonempty topological space then the set of all homeomorphisms
whose domain and range are open subsets of X forms a semigroup under
composition of functions; we denote it by J*G(X). In fact this semigroup is an
inverse semigroup (for every element a in the semigroup there exists a unique
element b, called the inverse of a, such that aba = a and bab = b). J?G(X) is a
subsemigroup of the symmetric inverse semigroup J'x (the inverse semigroup,
under composition, of all injective partial maps on the set X) and consists of
all maps which preserve the topological structure of X and have as domain
and range open subsets of X. The empty map, denoted by 0, belongs to
JG(X). We will consider J?G(X) for topological 7", spaces X.

The first result is an isomorphism theorem: if JG{X) and JG(Y) are
isomorphic then X and Y are homeomorphic (the converse clearly holds).
The next section of the paper examines ideals of JG(X). It turns out that for
many spaces X, including R" (the cartesian product of n copies of the real
line), the rationals, and the Cantor discontinuum, the semigroup JG(X) is
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[2] Inverse semigroups of homeomorphisms 93

0-simple (the only ideals are J'G(X) and {0}). This is not always the case,
however, and as an example the ideals of ^a(I) are enumerated (/ denotes
the closed unit interval). The last section examines congruences on J'G(X) for
T2 spaces X. If ^ G ( X ) is 0-simple then the largest proper congruence on
$c,(X) is given; in other instances a minimal proper congruence on J'G(X) is
determined. Another result of this section shows that the only idempotent
separating congruence on JfG(X) is the diagonal congruence.

General information about semigroups will be from Clifford & Preston
(1961, 1967). The notations dom/ and ran/ will denote the domain and the
range of a function /. If /, g G $G (X) and dom / n ran g = 0 then / ° g = 0
(the empty map). It is clear that 0 is the zero of $G (X). If / G J>a(X) then the
inverse of / (in the semigroup) is just the inverse mapping /"'. Idempotents
(elements / such that f°f = f) are identity maps on open subsets U of X and
will be denoted by iv.

2. Isomorphism theorem for J?G(X)

THEOREM 2.1. There exists an isomorphism <p from 3G(X) onto $G(Y) if
and only if there exists a homeomorphism h from X onto Y. If <p is such an
isomorphism then h can be chosen so that <p(/) = h ° / ° h' for all f G JG(X).
Conversely, if h is a homeomorphism from X onto Y, then <p, defined by
<p(f)= h°f°h'forf£ ^o(X), is an isomorphism from #G(X) onto $G(Y).

PROOF. Suppose <p is an isomorphism from JG(X) onto JG(Y). If X
has one point then the conclusion immediately follows (0 and ix are the only
elements in J>G(X)). So now suppose X has more than one point and let
x G X. Since X is a T, space the set X — {x} is a nonempty open subset of X.
Homomorphisms of semigroups carry idempotents onto idempotents and so
<p(ix-i*))= iv where V is open in V. Since <p is an isomorphism we have that
W Y and V/0. Suppose y £ V. Then V C Y - {y} and if <p-\iY-ly))= iv

then

Hence X - {x} C U. Since V - {y} / Y we have that U/ X. Thus X - {JC } =
U and so V = Y - {y}. Define a map h from X into Y by h (x) = y. Then
<p( 'x-(x)) = i 'v-IMOI-

If x/ x' then X - {x} ^ X - {x'} and so h(x)/ h(x'). Thus h is injective.

The above reasoning applied to <p~' yields that <p"'(/v_(y)) = ix-{x} for some
x G X and so ran h = Y. Thus h is a bijection from X onto V.

Next we show that (p(iu) = i>><u) for all U open in X, and (p~'(iv) = h \v)
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for all V open in Y. If <p(i[/)= iw and x G V then U is not contained in
X — {x} and so W is not contained in Y - {h(x)}. Hence /i(x)G W and so
/j(L/)C W. Conversely, if y G W then W is not contained in Y - {y} and so 17
is not contained in X - {h '(y)} .Thus h \y)& U and so y G h( t / ) . Hence
h(U)= W and cp(zL;) = 'MUI- NOW suppose V is open in Y and <p '(/v)= i'o.
Then h(G)= V and since /i is injective we have that G = h \V). Thus
<P"'(»V) = ih '(vi-

Now we show that h is a homeomorphism. If V is open in Y then
(f '(iv) = h '(vi and since i», '(V)G J-a(X) this means that h '(V) is open. Thus
h is continuous. Likewise h is open.

To complete this part of the proof we must show that if / G 3a(X) then
(p(f)=h°f°h '. If fG^o(X) and L7 = dom/ then

d o m (f ( / ) = d o m <p(f ' ° f) = d o m ip(iu) = h ( U ) = d o m ( h ° f ° h ' ) .

Likewise ran tp(f) = h{ra.nf). Now let y £ dom <p(/). Then y = h(x) where
x G dom /. Let G be any open neighborhood of the point x which is contained
in dom/. Then / ° ( C G^ G (X) with dom(/°/ f ; )=G and ran(/° io) = f(G).
Thus dom q>(f ° ia)~ h(G) and ran <f>(f ° ic) = h(f(G)). Now since x G G we
have that cp(/)(h(x)) G h{f{G)). Such sets /(G) form a basis for the point
f{x) and so ^(/)(/i(x)) = h{f(x)). But this means that <p(f)(y) =
(h ° f ° h ~ ' ) ( y ) . T h u s < p ( / ) = h ° f ° h ~ ' .

The proof of the converse of the theorem is straightforward.
Thron (1962) has shown that two TD-spaces (a weaker requirement than

7"i) X and Y are homeomorphic if and only if their lattices of closed subsets
are lattice-equivalent. An isomorphism from JG(X) onto ,?G(Y) induces an
equivalence between the lattices of open subsets (idempotents in JG(X) are
identity maps on open subsets) which in turn induces an equivalence between
the lattices of closed subsets. Hence theorem 2.1 may be derived from Thron's
result. Schein (1965) also has a similar result for differentiable manifolds. If V
is a differentiable manifold of class C (where r g 0) and LDifTp( V) (where
p g r ) denotes the class of all local diffeomorphisms of class C whose
domain and range are open subsets of V then LDifF( V) forms an inverse
semigroup under composition. Schein's paper states that if ^ is an isomorph-
ism from LDifF(V) onto LDiffp(W") then there exists a difreomorphism h
of class C from the manifold V onto the manifold W such that ^(/) =
h°f°h'' for all / G LDiffp( V).

3. Ideals of 3C,{X)

If S is an inverse semigroup and °U C S then ^ is an ideal of 5 if and
only if S°IIS = °ll. If S contains a zero element 0, then {0} will be an ideal of S.
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Now if X is a discrete space then ,fG(X) is just $x, the symmetric inverse
semigroup on the set X, and so if / and g belong to JG(X) then they will
generate the same ideal of JG(X) if and only if dom/ and domg have the
same cardinality. Thus there are many ideals. The next results present the
contrasting situation and show that for many spaces X the semigroup J'a(X)
is 0-simple. Recall that all topological spaces are assumed to be nonempty.

THEOREM 3.1. JG(X) is 0-simple if and only if every nonempty open
subset of X contains an open subset homeomorphic to X.

PROOF. Suppose .fr,(X) is 0-simple and U is a nonempty open subset of
X. Let fy be the ideal generated by iLl. Then °U/ {0} and so °U = 3>G{X).
Hence ;\ 6 3/ and so /.* = / ° /(, ° g for some /, g G 3C, (X). But then dom g =
X and g maps X homeomorphically onto an open subset of U.

Now suppose that every nonempty open subset of X contains an open
subset homeomorphic to X. Let °U be an ideal of Ja(X) with °U^{0}.
Suppose /6 °U and f/0. Then if U = d o m / w e have that iv G °U and U/0.
By assumption U contains an open subset V which is homeomorphic to X.
Let d be a homeomorphism from V onto X. Then h G ^ G ( X ) and so
h°i,,°h ' 6 f But h°h,°h ' = ix and so °U = Sa(X). Thus ^ ( X ) is

0-simple.

COROLLARY 3.2. JO(R") is 0-simple for n finite.

COROLLARY 3.3. Let Q denote the space of rational numbers. Then
•?c,(Q) is 0-simple.

COROLLARY 3.4. 3O (^) is 0-simple where (€ is the Cantor discontinuum.

COROLLARY 3.5. If $G(X.) is Q-simple and Yis an open subset of X then
Sa(Y) is 0-simple.

PROPOSITION 3.6. Suppose .fG(Xa) is 0-simple for all a G A. Then
. M r U s X . ) is 0-simple.

PROOF. Let U be a nonempty open subset of n,,<=\ Xa. Then there exist
a finite number of distinct a,, i = 1 • • • n and nonempty open sets Uai C Xa,,
i = 1 • • • n such that

p;,!((i<tl)n • • • n p;,'n(Uajc u

where p,,, is the projection map from n,,e\X,, onto Xar Since SG(Xa,) is
0-simple for each i = 1 • • • n there exist open sets Va, and maps ha, such that
VO| C Ua, and to,,, is a homeomorphism from Vai onto Xa, for i = I • • • n.
Define a set V in na<=AX<, by
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v = Pa](vai)n • • • n p-'n(vaj.

Then V is open and V C U. Define a map h from V into Y\a<EAXa by

|

ha,(xa,) if a = a, for some i = \ •• • n

xa otherwise.

Then h is a well defined map and it is straightforward to show that h is a
homeomorphism from V onto IlaeA Xa. Now by theorem 3.1 ^G(n<,eAXo) is
0-simple.

COROLLARY 3.7. Let X be any open subset of R" (n not necessarily
finite). Then $G(X) is 0-simple.

The discrete case and the spaces mentioned in the last few results are at
opposite ends of the spectrum. When X = /, the closed unit interval, the
semigroup ^ G ( J ) is not 0-simple and yet has very few ideals. Its ideals are
enumerated below.

The ideal, in $G(I), generated by the map /„>.,) is just the semigroup
^G(0,1). If °U. is the ideal generated by i(,,.,| and °V is the ideal generated by iv

where V = [0,\)U(l 1] then

Now let / belong to J'G(I)- We show that the ideal generated by / is one of the
ideals listed above. The maps / and idomf generate the same ideal. Let
G = dom/ and suppose aU' is the ideal generated by iG. Assume G ^ 0 . If
G C(0,1) then iG G ^G(0,1) and if /, h G $C(I) then f° iG °h E J-G(0,1) also.
Hence <%'C^G(0,1). But if G C (0,1) then G contains an interval (a, b) and
so ic generates ^G(0,1). Thus ^ G ( 0 , 1 ) C ^ ' and so %' = ^G(0,1). If O E G
but 1 g! G then G contains a set [0, a) which is homeomorphic to (0,1]. Thus
% C ^ ' . Now i((),,,G<& since [0,1) and (1,0] are homeomorphic. But then
ic = k: °'ion and so io G %. Hence °U'C % and so %' = %. If 0G G and 1 G G
but G^[() , 1] then G contains a set of the form [0-a)U(b, 1] which is
homeomorphic to [0 j )U( | , 1]. Thus V C°U'. But G C [0, c)U(c, 1] for some
c and since this set is homeomorphic to V we have that io G T. Hence °U' GT
and so V = °U'. This shows that any element in ^ G ( / ) generates
one of the listed ideals and since these ideals form a finite chain, any ideal in
J'a(I) is of this form.

4. Congruences on $G{X)

In this section we look at various congruences on $G(X). All spaces are
assumed to be T2. Up is a congruence then 0p will denote the set
{/ : (0, / )Gp}. The notation U means the closure of U.
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6] Inverse semigroups of homeomorphisms 97

THEOREM 4.1. Let p be a congruence on JG(X) such that ()p ={0}.
Suppose (/, g) G p. Then dom / = dom g and if x G dom / n dom g then f(x) =
?(*)•

PROOF. Let p be a congruence on J'G(X) with (),, ={0} and suppose
If. g )Gp. Let y G dom/. If y g! dom g then there exists an open set U such
hat y G U but (7 PI dom g = 0 . Now (7 D dom f/ 0 since y G dom /. Hence
f ° /[.. / 0. Since (/. g) G p we have that (/ ° i'̂ . g ° in )G p. But since g ° /'„ = 0
:his means that / ° i , , GO,, which is a contradiction. Hence dom/Cdomg.
Likewise dom gC dom/.

Now suppose (/, g ) G p and x G dom / Pi dom g. If / ( x ) ^ g ( x ) then
:hoose open (7, V such that / (x )G £7, g(x)G V but U C\ V = 0. Then
t e / " ' ( U ) n g '(V) and if G = f~'(U)n g~'(V) then ( ( v » / » i c , i v ° g » i ( ; )
= p. But / \ ° / o i f ; = 0 and i v o g ° / o ^ 0 . This is a contradiction. Hence

THEOREM 4.2. Le; / , g £ i c ( X ) . Define a relation p, OM ^f;(X) by
'J.g)Ep[ ; /dom/=domg and for every x G dom / Pi dom g, /(x) = g(x).
TTien p! is a congruence.

PROOF. Let p, be defined as above. First we show that p, is an
equivalence relation. Clearly (/,/) G p, for all / G $a(X) and if (/, g) G p, then
(g,/)G p,. Now suppose (/, g)G p, and (g , / i ) £p , . Then d o m / = dom g and
dom g = dom /i. Hence dom / = dom h. If x G dom / fl dom g D dom to then
f(x)= g(x) since (/, g ) G p , and g (x )= h(x) since (g, Ji)Gp,. Hence f(x) =
h (x). Since X is T2 and / and h agree on dom / D dom g PI dom h, then / a n d
h agree on dom / D dom g n dom h Pi dom / Pi dom h. Now let x G dom / Pi
dom h. We must show that f(x) = h(x). If U is any open set containing x then
U C\ dom / Pi dom h is an open set containing x. Since j c E d o m / and
dom/=domg we have x G dom g. Hence ((7 Pi dom/Pi dom to ) PI
d o m g ^ 0 . This shows that any open set containing x has nonempty
intersection with dom / Pi dom g Pi dom to. Thus JC G dom / Pi dom g Pi dom to
and by the above f(x)= h(x). This means that (/, to)Gp, and so p, is an
squivalence relation.

Next we show that p, is a congruence. Let (/, g)& p, and to G ^ G (X) . We
will first show that (f° to, g ° to)G p,. Now

dom(/°to)= to '(ran to ndom/)

dom (g ° to) = to '(ran to Pi dom g).

Let y E to "'(ran to Pi dom/) and let V be any open subset of dom to containing
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y. Then ft(y)G ran ft Hidom/ and ft(V) is an open set containing h(y). Let
G = ft(V) D dom/. Then ft(y)GG and since dom/=domg we have that
G Pi dom g/ 0. Hence G O r a n / i n dom g^ 0 and ft '(G O ran li n dom g)
/0. But ft~'(G Dranft ndomg)C V and so V n ft '(ran ft n dom g)
^ 0 . This means that y G ft '(ran ft fl dom g). Hence ft "'(ran ft f~l dom/) C

ft '(ran ft Pi dom g). But then dom (f° ft ) C dom (g ° ft) and so dom (f° ft) C
dom(g°ft). The exact same method shows that dom(g °ft )C dom (/° ft).
Thus dom (/ ° ft) = dom (g ° ft). Now let x G dom (/ ° ft) n dom (g ° ft). Then
x £ dom A and ft (x) G dom/ D dom g. Since (/, g)Gp, this means that

) = g(ft(x))andso(/°ft ,g°ft)Gp,
Finally we consider ft °/ and ft °g. We have that

dom (h°f) = /"'(dom ft D ran /)

dom (ft °g) = g '(dom ft n ran g).

Let xG/~'(domft Hran/) and suppose U is an open subset of dom/
containing x. Then f(x) G dom ft. Let V = /(£/) fl dom ft. Then V is open and
/(x) G V. Now /"'(V) is an open set containing x and so /"'(V) D dom g / 0
(dom/=domg, x Gdom/). Let G = /"'(V) n dom g. Then G QU, G/0
and G Cdom/ndomg. This means that f(G) = g(G). Hence g(G)C VC
dom ft. But then g(G) C dom ft D ran g and so G C g ' (dom ft D ran g). But
then U Pi g~'(dom ft D ran g) ^ 0 and so x G g"'(dom ft D ran g). This means
that dom (ft C /)C dom (ft °g). The reverse inclusion follows in the same
manner and hence dom(ft °f) = dom(ft °g). Now if xGdom(ft°/)n
dom (ft °g) then x G dom/ D domg and so f(x) = g(x). But then h(f(x)) =
ft(g(x)) and hence (ft °/, ft °g)G p,. This completes the proof that pi is a
congruence.

COROLLARY 4.3. Let p be a congruence on $a(X). Then 0p = {0} if and
only if p C p..

PROOF. Suppose p is a congruence and 0p = {0}. Then by theorem 4.1
we have that if (/, g ) G p then (/, g ) G p , . Conversely, suppose pC.pi. Let
(/,0) G p. Then (/,0)G p, and so d o m / = 0 . Hence / = 0 and 0p = {0}.

COROLLARY 4.4. Suppose J>G(X) is 0-simple and p is a proper congru-
ence on J"G(X). Then p Qpx.

PROOF. If p is a congruence on J>a (X) then since ()p is always an ideal of
J'a(X) and $G{X) is 0-simple we have that 0p = $G(X) or 0p = {0}. If p is a
proper congruence then 0p/ JG(X) and so 0p = {0}. But then p C p, by the
last corollary.
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8] Inverse semigroups of homeomorphisms 99

In the last section we showed that for many spaces X, &O(X) is 0-simple.
Recall that R" denotes the Cartesian product of n copies of the real line (n
nay be infinite), Q denotes the space of rational numbers, and % denotes the
"antor discontinuum. The last corollary then yields:

COROLLARY 4.5. p, is the largest proper congruence on'J?a(R"), on
fo{0) and on 3>aW).

When X is a discrete space p, = i (the diagonal congruence) since if
iom/ = dom g then dom/ = dom g and so if (/, g) G p, then / = g. If X is a
discrete space and p is a congruence on JC,{X) such that 0p = {0} then p C p,,
}y corollary 4.3 and so p is the diagonal congruence. In general, the
:ongruence p, does not separate idempotents. In fact, if p, separates
dempotents then X is discrete. This result stems from the following general
heorem which proves that the only idempotent separating congruence on
/ G (X) is the diagonal congruence.

THEOREM 4.6. Let p be a congruence on $a(X) which separates idempo-
tents. Then p is the diagonal congruence.

PROOF. Suppose p is a congruence which separates idempotents. First
ive show that ()p ={0}. If (0, h)Gp then ( 0 , / i ' ' 4 ) G / ) . Since p separates
dempotents this means that h = 0 and 0p = {0}. Now suppose p is not the
diagonal congruence. Then there exist / , g £ i G ( X ) such that (/, g ) G p but
f/ g. Since 0p = {0} we can apply thoerem 4.1 to conclude that d o m / = domg
ind f(x) = g(x) for all x G dom/ n dom g. Since /V g but / and g agree on
their common domain we must have that dom f/- dom g. Set dom f = U and
domg = V. Let p* denote the canonical homomorphism from J?O(X) onto
tc(X)lp. Since (/, g ) G p we have that p*{f)= p*{g) and hence p*(/"') =
o*(g'). But then

P*{h,) = P # ( / ' ° / ) = P*(f>*(f) = p*(g')P*(g)

This means that (iu, i\<)Gp which is a contradiction since p separates
idempotents and U/ V. Hence p is the diagonal congruence.

THEOREM 4.7. The following are equivalent for y>G(X):
1) p, separates idempotents.
2) p, is the diagonal congruence.
3) X is discrete.

PROOF. 1) implies 2) is a consequence of the last theorem. We now show
that 2) implies 3). If | X | = 1 then trivially X is discrete. Suppose | X | > 1 and

https://doi.org/10.1017/S1446788700020085 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020085


100 Bridget Bos Baird [9]

x £ X. Since X is Tx the set X - {x} is open. If X - {x} is not closed also then
X — {x} = X. But then dom ix-(x) = dom ix and I'X-M and ix agree on their
common domain. Hence (ix (x), i x ) £ p i . But we are assuming that p, is the
diagonal congruence. This is a contradiction. Thus the set X — {x} must be
closed. But then the set {x} is open and X is discrete.

We now show that 3) implies 1). Suppose X is discrete and (/, g ) £ p , .
Then dom/ = d o m / = domg = domg and / (x )=g( j t ) for all x G d o m / f l
dom g. Hence / = g and p, is the diagonal congruence and so certainly p,
separates idempotents.

If X is a discrete space then, as remarked earlier, $a(X) is just the
inverse semigroup Jx of all partial injective maps on the set X. Congruences
on J'x have been studied (see Scheiblich (1973)). If X is not a discrete space
then by the last theorem px is not the diagonal congruence. Clearly p, is not
the universal congruence nor a Rees congruence (0p, = {0}). The next few
results will be used to determine another congruence p2 on JG(X) and gain
some information about it. We will use the notation U— V if U and V differ
by at most a finite number of points.

DEFINITION 4.8. (Reilly & Scheiblich (1967)). Let S be an inverse
semigroup and P = {£„: a £ J} be a partition of the idempotents of S. Then P
is a normal partition if

1) a, (i G J implies that there exists y G J such that EaEp C Ey.
2) a £ / and / £ S implies that there exists /3 £ J such that

f-'EJCEp.

THEOREM 4.9. (Reilly & Scheibich (1967)). Let P = {Ea:aGJ} be a
normal partition of the idempotents of an inverse semigroup S. Let a,— ~
{(/, g)G S x S: there exists a G J with f~lf, g 'g G Ea and, for some e £ £„,
fe = ge) and <T2 = {(/, g) G S x S: a G / implies that, for some /3 £ J, flEaf,
g~*Eag C. Ep}. Then a, and cr2 are, respectively, the smallest and largest
congruences on S which induce the partition P of idempotents.

THEOREM 4.10. (Preston (1954)). Let p be a congruence on an inverse
semigroup S. Then p is a congruence on the idempotents of S and the partition
(into equivalence classes) that p induces is a normal partition.

THEOREM 4.11. Let f, g £ ^ c ( X ) . Define a relation p2 on J>a(X) by
(fg)Ep2 if dom/ = domg and \{x: x £ dom/ D domg, f{x)/ g(x)}\ < Ho.
Then p2 is a congruence on $G(X). Furthermore, if p is a congruence on ^
which induces the same partition of idempotents that p2 does, then p2 C p.

PROOF. Define a relation a on the idempotents of J'G(X) by (iUy i v ) £
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*

if U=V. Then cr is an equivalence relation and induces a partition P =

[Ev: U open in X} where EL, = {iv: U= V}. We show that P is a normal

partition. Let ELh Ev G P. Then EU°EV C £t ,nv. If / G JG(X) then we will

show that f~l°Ev ° / C E, >{V). Suppose iv G £,,- Then / " ' °iv °f = if <{V). But

if->f\ -)G £/ '(U) since (7= V. Hence / " ' ° E(> °f C Ef->(U) and P is a normal

partition.

According to theorem 4.9 P has associated with it a smallest congruence

°"i = {(/- g)'-f"'"/, g " ' ° g G EL, for some £ ( . G P and / ° iv = g °iv for some

iv G EL;} . But this just says that d o m / = d o m g and | {jt: x G dom / fl

dom g, f(x)/ g(x)}\< No. Hence p2 = cr,, and p2 is a congruence which is the

smallest congruence inducing the partition P of idempotents .

Note that in most cases the congruences p, and p2 are distinct. In fact, if X

has an open dense subset D such that | X - D | i? Nn then p, ^ p2 ((iD, i x ) G pi,

but (iD, i.v) ^ p:). If X is a finite space then X is discrete and p2 is the universal

congruence. On the other hand, if X is infinite then p2 is a proper congruence.

If J-G(X) is 0-simple then p, is the largest proper congruence on ^c,(X). In

some instances the congruence p2 is a minimal congruence on Sa(X).

THEOREM 4.12. Suppose X and #a(X) satisfy the following two condi-

tions :

1) $c,(X) is 0-simple.

2) | X ! > 1 and every open subset U of X is homogeneous (if a, b G U

then there exists a homeomorphism h from U onto U such that h(a)= b). Then

p2 is a minimal proper congruence on ,fa{X) (ifp is a congruence on 3C,(X) and

p C p2 then either p = p2 or p is the diagonal congruence).

PROOF. Suppose X and Jr,(X) satisfy the conditions of the theorem.

Since | X | > 1 and ,?r,(X) is 0-simple we have that p2 is not the diagonal

congruence and using corollary 4.4 we have that p2 C p, and so (),,. = {()}. This

means that p2 is not the universal congruence and so is a proper congruence.

Now suppose p is a congruence on ,?a(X), p is not the diagonal

congruence and p C p;. We will eventually prove that p2 C p. Since p is not the

diagonal congruence there exist f, g G .fa(X) such that (/, g ) G p but /V g-

This means that (ij,,mf, id,,mf.)G p (see proof of theorem 4.6). Now since Sa(X)

is 0-simple and | X | > 1 we get that p C p2C px and hence / and g agree on

their common domain. But f/ g and so dom f/ dom g. Let W = dom / and

V = domg. Then ( /„ , / \ )Gp, W/ V and VV = V. Hence |W|gN ( 1 . Since

pC.pi we have that W=V. Now (;V. /„) G p and so (i\, i \ n * ) G p and

(iw. iv -»-)Gp also. Since V/ W we have that Vfl W/ V o r V f l W/ W.

Without loss of generality suppose that V Pi W^ V. Since V= W this means

that V = (Vfl W)U {*,,•• -,*„} where n S 1, n is finite and x, £ (V D VV) for
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i = 1 • • • n. Now since V and VOW are open we have that the set
G = ((V n W)L){x,}) is open. But since V (1 W C G C V and (iv,ivnw)&p
we get that (iG, ivnw) £ p. Hence we have a nonempty infinite open set G such
that (f'G, /G-{«,))€E p where x, £ G. Now let y £ G . Since G is homogeneous
there exists a homeomorphism /i from G onto G such that /i(jti)= y- But
then (Ji ° iG °h ~\ h ° iG-{Xl)°h"') £ p which means that ((V;, I'G-M) £ p. If y, 2 £
G, y ^ z then (iG °JG-(z>, iG-{y(0*o ui)£ P and hence (JG ,,,, iG_,,,,,)£ p. Since
O'G, I G ( Z } ) £ p this means that (ic, Jo-(*.yl)€E p. We can continue this process to
obtain the result that if F is a finite subset of G then (iG,/G F ) £ p .

Let K be any finite subset of X. We will show that (ix, i X K ) £ p. Since
^ G (X) is 0-simple G contains an open subset G' which is homeomorphic to
X. Let / map G' homeomorphically onto X and let F — f'(K). Then F is a
finite subset of G and so (iG, JG_F) £ p and so (/° iG ° / ' , / ° ;G F, / ') £ p- But
this means that (ix, 1 X - K ) £ P -

Now let 1/ be an open subset of X and let F be any finite subset of U.
Then (ix ° iv, ix_F ° (o)£ p and so (iu, I 'U-F)£ p- We finally show that p and p2

induce the same partition of idempotents. If (iu, iv) £ p then (i1 ,̂ iV) £ p2 since
p C p2. Conversely, if (iv, iv )£ P2 then U=V and 0 = V (J>G(X) is 0-simple
and | X | > 1 means that p 2 Cp,) . Then UUV= 0 and UUV=U. This
means that (iuuv, iu)£ P2 also. But then U = (U U V)- F where F is a finite
subset of U U V and so (iou v, iu) £ p. Likewise (iUuv, iV) £ p and so (iu, iv) £
p. Thus (iv, iv) £ p if and only if (iu, iv) £ pa- Hence p and p2 induce the same
partition of idempotents of J>G(X). Now by theorem 4.11 p2Cp. But this
means that p2 = p and completes the proof.

COROLLARY 4.13. The congruence p2 is a minimal proper congruence on
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