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ABSTRACT. An inverse semigroup T is separated over a subsemigroup S if
T is generated, as an inverse semigroup, by S and for each a, b € S there

exists x € SaMSh such that a~lab~1p = 2~ !

example, if T is generated as an inverse semigroup by a semigroup S whose prin-

x and dually for right ideals. For

cipal left and right ideals form chains under inclusion, then T is separated over
S. In this paper we investigate the structure of inverse semigroups T which are

separated over subsemigroups S.

The structure theory of inverse semigroups has been the object of much study
over recent years with particular attention being paid to O-bisimple and O-simple
inverse semigroups (2], [9], [10], [11], [13], for example). These papers attempted
to determine the structure of various O-bisimple or 0-simple inverse semigroups
directly in terms of groups and semilattices. However the degree of complication
involved even in these cases leads one to suspect that this is, in general, a futile
task although it is possible in some cases.

In a general sense, the structure of inverse semigroups is determined by its
semilattice of idempotents and a semilattice of groups. This is a consequence of
a theorem of Munn [11] which shows that the maximal fundamental homomorphic
image S/p of an inverse semigroup § is a full subsemigroup of the semigroup Tg
of isomorphisms between the principal ideals of the semilattice E of idempotents
of S. The canonical homomorphism pu: S — S/u is idempotent separating so its
kernel is a semilattice of groups. The problem of constructing idempotent separ-
ating extensions of semilattices of groups by inverse semigroups has been solved,
theoretically at least, by D’Alarcao [4] and Coudron [3] so that one could, in
principle, construct all inverse semigroups if one could construct all fundamental

inverse semigroups; the latter, however, remain a mystery.
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86 D. B. McALISTER

In this paper, we shall adopt a more internal approach to describing inverse
semigroups. Suppose that 0 is a homomorphism of a semigroup S into an inverse
semigroup T. Then we shall say that T is separated over S, by 6, if T is

generated as an inverse semigroup by S0 and, for each @, b € §,

a0a0)=166(b0)~ 1 = x0(x0)~! for some x €aS N bS,

(a0)~1a0(0)~! b9 = (y0)~1y0 for some y € Sa N Sb.

The main aim of this paper is to investigate the structure of an inverse semigroup
T, which is separated over a semigroup §, in terms of S. Special cases of this
concept have been considered before. For example, let T be a bisimple monoid
and let § be the right unit subsemigroup of T; if § is right reflexive then T is
separated over S. Clifford [1] has described the structure of T in terms of S. On
the other hand, Eberhart and Selden [5] have described the structure of all one
parameter inverse semigroups. Any such semigroup T is separated over a sub-
semigroup S of the multiplicative semigroup of the positive reals.

Theorem 3.5 gives an explicit method of construction for all fundamental inverse
semigroups which are separated over an arbitrary semigroup S. Thus, by using
D’Alarcao’s extension theorem [4] one could, in principle, construct all inverse
semigroups which are separated over §. We have not been able to do this explicitly
without imposing conditions on S. A semigroup S is naturally quasisemilatticed
if the sets of principal left and right ideals of S form semilattices under inclusion;
thus an inverse semigroup is nawurally quasisemilatticed. If § is naturally semi-
latticed and T is separated over S by @ then, for a, b € §,

a6(a0)~'60(60)" ! = (a A, B)la A_5)0]1,

(@)~ 1a8(86)~ 150 = [« A, D)) a A, b)9,

where, for example, @ A_b in S is such that aS'nbsS! = (a A, b)S!. There is
thus a universal inverse semigroup E(S) in the category of inverse semigroups
which are separated over S. An explicit construction and several coordinatisations
for E(S) are given in §4 while the congruences and ideal structure form the sub-
ject matter of $s.

Whenever the sets of principal left and right ideals of a semigroup § are
chains under inclusion, every inverse semigroup generated, as an inverse semi-
group, by a homomorphic image of S is separated over S. Hence E(S) is the free
inverse semigroup on S and so § can be embedded in an inverse semigroup if and
only if it can be embedded in E(S). The last result remains true if S is naturally
quasisemilatticed (Theorem 4.6) so that we can use E(S) to obtain a set of
necessary and sufficient conditions for the embeddability of such semigroups in

inverse semigroups.
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INVERSE SEMIGROUPS SEPARATED OVER A SUBSEMIGROUP 87

The main tools used in this paper are what we term shift representations of
$ by one-to-one partial transformations. Theserepresentations generalise both the
Vagner-Preston representations of inverse semigroups and the regular representa-
tions of cancellative semigroups. They are described in S2.

The theory undergoes considerable simplification when the semigroup § under
consideration is cancellative. It is applied in $6 to give necessary and sufficient
conditions on a cancellative semigroup so that each element of /(S) should be of
the form ab~!c with a, b, c € §; the precise conditions are that the sets of prin-
cipal left and right ideals of S should be chains under inclusion. The theory is
also applied to give a characterisation of the positive cone of a right ordered group.

The final section consists of several examples of inverse semigroups which
arise from the general theory. In particular the theory gives a method for con-
structing O-simple inverse semigroups in which D £ §. The P-classes in these
semigroups are traversed by a semigroup but no D-class is a subsemigroup so that
the O-simple inverse semigroups obtained here are, in a sense, dual to those con-
sidered by Munn [12].

1. Embedding a semigroup in an inverse semigroup. If S is any semigroup,
it follows from general categorical considerations, or from [8), that there is an
inverse semigroup /{S) and a homomorphism n: § — I(S) with the following prop-
erty: given any homomorphism @ of S into an inverse semigroup T, there is a

unique homomorphism : I(S) — T such that the diagram

7 l\ T
I(S)/¢'

commutes. The semigroup I(S) is called the free inverse semigroup on S. One of
the aims of this paper is to investigate the structure of I{S) and some related semi-
groups when the ideal structure of S has certain special properties; in particular,
when the sets of principal left and right ideals of S form chains under inclusion.
It follows easily from the functorial properties of S!, $° and I(S) that I(S})
and I(S)! and (5% and I(5)° are naturally isomorphic. Hence, in studying the
relationships between S and I(S) we may, without loss of generality, assume that
S has a zero and an identity. We shall assume the latter throughout this paper.
Because any homomorphism of S into an inverse semigroup can be uniquely
factored through 7, S can be, embedded in an inverse semigroup if and only if 7 is
one-to-one. We can use this to give a short proof of Schein’s theorem [16] which
gives necessary and sufficient conditions for embedding semigroups in inverse

semigroups.

Let S=5! bea semigroup. Then a nonempty subset H of § is strong if
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88 D. B. McALISTER

ax, bx, ay € H together imply by € H. Clearly, if nonvoid, the intersection of
strong subsets is strong.
Let H £ 0 be a strong subset of S =S! and define

x=y (ﬁH) ifand only if H'x=Hy

where, for example, H 'x ={u € S: x u € H}. Then %H is a right congruence on
on S [2, $10.2] and can be used to construct a representation of § by one-to-one
partial transformations in the following way [2, §$11.4]. Set Wy=1ix €S:H x =0l
Wy is clearly an ‘(RH-class of §, and let XH be the set of .(RH-classes different
from W,. For each a € §, define
i’p'; =%a for each X G?IH such that X@ E‘XH.

Then the mapping p” ra -—»pf is a representation of § by one-to-one partial
transformations of KH; thus pH is a homomorphism of § into the symmetric in-
verse semigroup Q(KH) on fXH.

Recall that, if T is an inverse semigroup, the natural partial order on T is
defined by

x <y if and only if x = ey for some e =e? € T [2, §7.1).

Lemma 1.1. Let 6 be a homomorphism of a semigroup S =S into an inverse
semigroup T and let a € S. Then K = {x € S: a0 <x0} is a strong subset of §

which contains a.

Proof. Suppose bx, by, cx € K. Then af <(bx)d, a0 < (by)9, ad < (cx)§ and so,
also, (@8)~! <(bx)9~ 1. Thus

a0 = ab(af)~1af < (cx)0(6x)0~ Hby)0 = cO(x0 x0~ 160~ 66)y0 < (cy)0.
Hence cy € K. This shows that K is strong and, clearly, a € K.

Lemma 1.2. Let S =S! be a semigroup and let a € S. Then a=

{x € S:an<xn} is the smallest strong subset of S which contains a.

Proof. ByLemmal.l, aisa strong subset of § which contains a. On the
other hand, suppose that H is a strong subset of § and a € H. Let pH: \) —'g(iH)
be the representation of § obtained from H and suppose that x € a. Since pH
can be factored through 7, it follows that apH < xp" and so, in particular, the
domain Apg of pg is contained in Ap:’. Now a =1a ¢ fo sol € Ap:’; hence
e Apg. Further, since p:l < pg,

7=1p"-Tpt =%,

Hence H 'x = H 'a and so, since 1 € H 'a, x € H. This shows that a CH.
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INVERSE SEMIGROUPS SEPARATED OVER A SUBSEMIGROUP 89

Theorem 1.3 (Schein [16]). Let S =S be a semigroup. Then S can be em-
bedded in an inverse semigroup if and only if for each pair of distinct elements of

S there is a strong subset of § which contains one of the pair but not the other.

Proof. Suppose that 7 is one-to-one and that a #b in S. Then an# by and
so an {bn or bndan; thus béa or a ¢b.

Conversely, if H is strong and @ € H, b & H then, since a CH,bd @ and
so an § bn; in particular, an # by.

The method of proof of Theorem 1.3 can be used to give the relationship be-

tween the ideal structure of $ and that of I(S).

Proposition 1.4. Let § = St be a semigroup and let n: S — I(S) be the
canonical homomorphism of S into the free inverse semigroup on S. Then ar,(arl)'l

<bnlbn)~! if and only if a N bS £ D.

Proof. Suppose a@ NbS #0. Then bx € a for some x € S and so an < (bx)n.
Hence an = bylbn)~ lay; that is anlan)~! < bylon)~ L.

Conversely, suppose that aplan)~! < br](br])'1 and let p be the representa-
tion of § by one-to-one partial transformations obtained from the strong subset a.
Then, since p can be factored through 3, aplap)™! <bplbp)~!; that is Aap C Abp.
Since 1 € Aap, this implies 1 € Ap, so that b e Xz thatis bS Na #o.

Corollary 1.5. The mapping a defined by (aS)a = (an)i(S) is an order isomor-
phism of the set of principal right ideals of S into the set of principal right ideals
of IS) if and only if a NbS £ 0 implies a € bS.

If T is an inverse semigroup, then the intersection of principal right (left)
ideals is again principal and, indeed, if aT N bT =cT then xaT N xbT = xcT
for each x € T. Thus, when one considers the relationships between § and I(S)
it is of interest to suppose that S is naturally quasisemilatticed in the sense of
the following definition.

Definition. Let S = S! be a semigroup. Then S is naturally quasisemilatticed
if, for each @, b € S, there exists a A b € § such that a$ N bS = (a /\r b)S and,
for each x € §, (xa /\, xb)S = x(a A, 5)S and dually for left ideals.

If $=5'!is a semigroup in which 9 is trivial then § is naturally quasisemi-
latticed if and only if it is a left semilatticed semigroup under the partial ordering
a < b if and only if a € bS and dually. Any semigroup in which the sets of
principal left and right ideals form chains under inclusion is naturally quasisemi-
latticed as is the positive cone of an /-group and the multiplicative semigroup of
a principal ideal domain. The free monoid on a set X is not naturally quasisemi-
latciced; however if a zero is adjoined, the resulting monoid is naturally quasi-
semilatticed.
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90 D. B. McALISTER

In $6 we shall give necessary and sufficient conditions for embedding a
naturally quasisemilatticed semigroup into an inverse semigroup. These condi-
tions, unlike those in Theorem 1.3, do not involve strong subsets; the latter are
hard to find in general.

2. Shift representations of semigroups. Let S =S! be a semigroup and let

o be an equivalence on § x § which obeys the following condition:
1) (a, xb) 0 (c, xd) if and only if (ax, b) o (cx, d)

forall @, b,c,d,x € § and, for each x € §, define a partial transformation pg

on the set (§ x §)/o of o-classes by

(a, xb) o p: = (ax, b)o.

Then p, is clearly a one-to-one partial transformation of (S x §)/o.

Lemma 2.1. Let o be an equivalence, which obeys (1), on a semigroup S =S,
Then the mapping p°: S — I((Sx $)/0) defined by xp = p: is a representation of
S by one-to-one partial transformations (S x S)/ o if and only if

(2) (a, b) o {c, &) implies (a, b) 0 (xa, dy) for some x, y €.
Proof. For any ¢, b € §, Apr C Ap:pz and further, if (x, aby)o € Ap:b,

(x, aby) 0 p;, = (xab, y)o =(xa,by) 0 p = (x, aby) o p7p7.

Hence p’ is a representation if and only if Ap:ng Ap:b for all a, b € S.

Suppose that (2) holds. Then (x, ay)o ¢ Apjp, implies (xa, y) o (v, bv) for
some u,v € S. Hence, by (2), (xa,y) o (rxa, bus) for some r,s € S. Thus, by
(1), (x, ay) o (rx, abus) so that (x, aylo € Ap7,.

Conversely, suppose that Apzp:_C_ Ap:b and let (2, b) o (c, d). Then
(1, ab) o pZ;(a, blo = (c, d)o implies (1, ab)s € ApZp7 = Ap7 . Hence (1, ab) o
(x, ady) for some x,y € S and so, by (1), (a, b) o (xa, dy).

Definition. If S = S! is a semigroup then an equivalence @ on § x § is called
a shift equivalence if (1) and (2) are satisfied. If o is a shift equivalence on
§ x § then the corresponding representation p° of S by one-to-one partial trans-
formations of (S x §)/o is called a shift representation of S.

Equivalence relations on § x § which obey (1) arise naturally when one con-

siders homomorphisms of S into inverse semigroups as the following examples show.

Proposition 2.2. Let 6 be a homomorphism of a semigroup S =S into an

inverse semigroup T and define equivalences o, Ops»0g on S x§ as follows:
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INVERSE SEMIGROUPS SEPARATED OVER A SUBSEMIGROUP 91
(a, b) 0, (c, d) = b0(ab)0~" = dcd)O™ !,
(a, b) op (c, d) = (ab)0~1ab = (cd)~ 18,

(@, b) og (c, d) = ab~'afb0 b0~ = O~ 1cOdO O™,

Then each of these equivalences obeys (1).
Proof. We show o obeys (1).
(@, xb) o, (c, xd) = af™'aB(xb)xb)0 ! = 07 cOlxd)Oxd)0~"
= a0~ Uax)060b0~ 1x0=1 = 0~ Ncx)0d9do~ 1 x0~ !
= %0~ 120~ Yax)0b0b0~ ! = x0~ 1c0~ Hcx)0d040™ !
= (a0~ Hax)060b0~ ! = (cx)0~ (cx)0d040™ !

= (ax, b) op (ex, &)
since idempotents commute.
The other two are proved similarly.
There is clearly a smallest equivalence on § x § which obeys (1). In some

important cases, this can easily be described and is a shift equivalence.

Lemma 2.3, Let S = S! be a semigroup and define a relation r, on S x S by

0
(a, b) o (c, d) = there exist  PYRRRRE SIS PORTERS such that a =Xp C=%X,,
b=yy,d=y and x,_ |y, =%y, =%y, 15i<n. Then 1 is an equiva-

lence and is contained in the smallest equivalence on S x § which obeys (1).

Proof. 7, is clearly an equivalence on S x S. Further, if 0 is an equivalence

on § x§ which obeys (1) then x,_\y, |, =xy, ,=xy, implies

(x,_yy,_pp Do (xiyi_l, 1) and (1, xl.yl._l) o (1, xiyi)'

Thus, by (1), (x;_,, ¥,_ PDol,y. Jolx, y) sothat, from the definition of
Tor T Co.

Propositions 2.6, 2.7, 2.9 give examples of types of semigroups on which
T, is a shift and thus is the finest shift on § x S. Under these circumstances we
can use 7, to give necessary and sufficient conditions for embeddability in inverse
semigroups.

Lemma 2.4. Let S =S! be a semigroup such that 7o is @ shift and let p be
the shift representation associated with y- Then p =p, if and only if a=b

Proof. If 7o 1s a shift, then p can be factored through % and so a= l:
implies p_ = p,.
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92 D. B. McALISTER

On the other hand, p, = p, implies (1, @) 7 (x, by) and (a, 1) 7 (xb, y) for
some x,y € S. The first of these equivalences implies the existence of u, ---,
Uy Vo sots U in § such that uy =1, u =X, vo=4a,v = b{ and U, Vi =
LG a; tklen U, Wi =
-1 \ 1 1 Since

@ is strongand 1 € @’ v__,, this implies 1 € a’ v, so that v, € a. Hence, by

uy, =uyv., 1<i<n Then v =a € a Suppose v,_

uy. =uyv.=a€dq implies u,_ v.€a andsou,_  €a v.Na v,
i i i=-171 i- e M-
induction, by € a. Dually, the second equivalence implies xb € a.
Since xby =a € a and by € a we have y €a 'xbNa b and so, since a is
strong and 1.€ @ xb, 1 € a 'b; thus b € a. Finally, by duality, we also get

a € b. Hence a =b.

Theorem 2.5. Let S =S! be a semigroup on which 7o is a shift and let
p: S = (S x SY/1,) be the corresponding shift representation. Then S can be

embedded in an inverse semigroup if and only if p is one-to-one.

We now give some examples of semigroups in which 7, obeys (1) and (2).

Proposition 2.6. Let § = S! be a left cancellative semigroup. Then Ty 1S @

shift equivalence on § x §.

Proof. Suppose $ is left cancellative and let (a, b) 7 (c, d). Then a =x,
c=x, b= Yo d= Y and x, iy, =Xy, =%y, 1<i<n, for some
x;,¥; €S. Since § is left cancellative, this implies y, |, =y, 1<i<n; hence
each y, is b and so (@,b) 7, (c,d) implies b =d and ab = cb. On the other hand,
b=d,ab=cb clearly implies (a, b) ) (c, d). Hence

e, D)7y (c, ) e=b=d, ab=ch

It follows from this characterisation of 7, that (a, xb) 7o (c, xd) if and only if
axb = cxd, xb = xd. Since § is left cancellative, the last two equations hold if
and only if axb = cxd and b =d. Hence (1) holds. Finally, from the characteri-
sation of 7, (a, b) 7o (c,d) implies (a, b) 70 (a, d) so that (2) holds trivially.

Proposition 2.7. Let § = S! be an inverse semigroup. Then 1, is a shift

0
equivalence on S x §.
Proof. Suppose (a, xb) 7, (c, xd); then a =u

y € =u, xb=vp ,xd:v" and

0 0
i Vin =Y =Y 1<:i<n, flor some u, v, € S. Set p,=ax, p =cx,

9o=b,49,=d and p,=u;x, q,=x""v

u
; 1<i<n Weshowthat p._,q, ;=
bA,_,=04;, 1<i<n This proves that (ax, b) r; (cx, d) and, together with
its dual, gives (1).

-1, -1 -1, -1

Since u,_ Wiog =¥V it follows that B L Nt L N PRt

and so, since idempotents commute, (ul._ 1x)(x" lui_l = (uz.x)(x-' 1vl._ 1);
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INVERSE SEMIGROUPS SEPARATEDOVER A SUBSEMIGROUP 93

similarly (uix)(x-lvi_l) = (uix)(x'lyi), 1 <i<n Hence, for 1<i<n,p
=p4,_, =04, Further

i-19i-1

bo9g = axb=ugv,=uvy=uxb=pq,

and, as above, u

= ulxx— l1/0 =09, Similarly Py 9p1 =091 =09, Thus P 19,21=

pbg. ,=pg., 1<i<mn,
iti-1 itq - -
Finally, suppose that (2, b) 7 (c,d); then a =x(, c=x , b=y, d=y_

-1, _ -1 _ H = -
¥ vg=uxxT v =p g, sothat, since v, =xb, pg,=u v,

and x, |y, =%y, ,=xy,, 1<i<n, for some x,, y. €S and some positive

integer n. As in the immediately preceding paragraph, this implies (x 0?" la, yo)
7 (xna" la, yn); that is (a, b) 7o (ca~la, d). Hence (2) holds.

Corollary 2.8. Let S = S! be an inverse semigroup and let p be the shift

representation associated with 7o Then p is faithful.

Proposition 2.9. Let § = St bea naturally quasiordered semigroup on which

D is trivial. Then 7o is a shift equivalence on § x S.

Proof. This is a special case of Theorem 3.9 so we omit a proof.
3. Fundamental inverse semigroups separated over a semigroup S.

Lemma 3.1. Let 6 be a homomorphism of a semigroup S into an inverse semi-
group T. Let a, b, ¢ € § and suppose that

a6af= 16060~ 1 = x6x6~1, b0~ 1b0c0~1cO = w0~ 1ub
where x =ay = bz, u =vb = wc., Then
af~'60c6~ 1 = yHvbz)0~ 1.

Proof. For convenience of notation, let us identify S with its image in T.
Then

a~ bt = amtaa™ Yo Yo = o l(ay)(ay)' Vo=l = a™ layy' lg=1pc~1
=yy~ lo=lpe=1 2 yx-lbc_l = yx~ Lop=lpe~lec™! = yx-lb(wc)— Lwee™!

= yx~ tolwe)™ 1w = y(b2)~ Volwb) ™ 'w = ylubz)"w

since idempotents in T commute.

Lemma 3.1 is similar to Lemma 3.4 in [5).

Theorem 3.2. Let § be a homomorphism of S =S into an inverse semigroup
T. If T is separated over S by 0 then T =1a0b0™'cO: b € SancS, a, ¢ € S}
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94 D. B. McALISTER

Proof. As in Lemma 3.1, we identify S and S6. Let ab~lc, de~1f € K, where
K denotes the right side of the equation for T, and suppose that b = ua = cv,
e=pd=[q.

By Lemma 2.1, if bb~cd(cd)~! = bb~! and (cd)~lcde e = k= 'k with
b = by = cdz and k = xcd = we, then

b=lede=! = y(xca'z)— 1y

so that ab~ lcde ~!f = ay(xcdz)~'w/. Further xcdz = xby = xuay € Say and
xcdz = wez = wfgz € wfS so that ab~lcde™!f € K. Since, by Lemma 3.1, K is
closed under inverses, it follows that K =T.

Definition. Let T be an inverse semigroup and let § = S' bea subsemigroup
of T. Then T is an inverse semigroup of strong quotients of S if each element
of T is of the form ab~c where b € Sa N cS.

In the light of this definition, we have

Corollary 3.3. Let T be an inverse semigroup which is separated over a sub-

semigroup S. Then T is an inverse semigroup of strong quotients of S.

The inverse semigroups which are separated over a semigroup § = st appear
to be closely related to the shift representations of S. We have not been able to
determine this relationship in general; however we have been able to characterise

fundamental inverse semigroups which are separated over §.

Lemma 3.4. Let 6 be a homomorphism of a semigroup S =S! into an inverse
semigroup T. Suppose that T is separated over S by 0 and define og on
§ xS by

(@, ) 0 (c, ) = a0~ 'afb080™ 1 = 0~ 04040~ "

forall a, b, c, d € S. Then o is a shift equivalence on S xS and § x S/og
is a semilattice, isomorphic to the semilattice of idempotents of T, under the

partial ordering

(aq, b)oE <Ae, a’)aE = (a, b) og (u, v) for some u € Sa N Sc, v € bS N dS.
Proof. Since T is separated over S, Theorem 3.2 shows that each element
_of T is of the form a0~ 'cO where b € Sa N cS. For such an element of T,
aBb0~ 1 c(alb0~1c0)" ! = 2060~ ' OO~ 1 ba0~ "
= aBb0~ 16020~ since b € cS

= w0~ 'u0afab~ if b= va.
Hence the mapping defined by (u, a)aE — 40~ wPafah~! is a bijection of
(S x $)/o onto the semilattice of idempotents of T. Further, since
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INVERSE SEMIGROUPS SEPARATED OVER A SUBSEMIGROUP 95

a0~ 'a0b0b0~! < c0~'c6d0d0~ " if and only if a0~ 'a6bObO~! -
a0~ 1a0c0™ 1cOb0bO~'d0d0~ ! and since T is separated over §, a0~ lagbob0-1 <
c0~1c0d6d6~" if and only if (a, b) og (u, v) for some u € Sa NSc, v € bS N dS.

Hence (S x S)/O’E is a semilattice under

(a, b)OE < (c, d)OE ={a, b) g (4, v) for some u €Sa NS¢, v € bS N dS.

Finally, Proposition 2.2 shows that o obeys (1) while, since (§ x S)/UE is
a semilattice under the partial order described above, o clearly obeys (2). Hence

Op isa shift.

Lemma 3.5. Let S =S! be a semigroup and let o be an equivalence on S x S.

Suppose that (S x $)/o is a semilattice under

(a, bo < (c, Do = (a, b) o (u, v) for some u € Sa N\ Sc, v € bS N dS,
Then,
(i) (1, @do A (1, b)a = (1, v)o for some v € aS NbS,
(ii) (a, Do A (b, D)o = (u, 1)o for some u € Sa N Sb,
(ii1) (@, Do A (1, b)o = (a, blo
for a, b € S.

Proof. (i) Suppose (1, a)o A (1, b)o = (x, y)o. Then, because (x, y)o < (1, da,
there exist x, € §, y, € y§N a$ such that (xl’ yl) o (x, y). Since (xl, y1)0<
(1, b)o, there exist u € §, v € Y1 $ NbS CaS N bS such that (xl, yl) o (u, v
Thus (1, a)o A (1, b)o = (u, v)o. But (u,v)o < (1, v)o < (1, @)o, (1, b)o from the
definition of < since v € a§ NbS. Hence we must have (1, a)o A (1, bo = (1, v)o.

(i1) This is dual to (i).

(iii) From the definition of the partial order on (§ x $)/0, (a, b)o < (a, 1)g,
(1, b)o. On the other hand, if (x, y)o < {a, 1)g, (1, b)o, then {(x,y) o (x p ¥, for
some x, € Sa N $x and then, since (x Y1 )a< (1 b)o, (xly )‘7("2’ Y, ) for
some x, € Sx, N Sa and y, €y, SﬁbSCbS Thus (x, y)o_(x Y, )0<(a blo.
Hence (a, o /\ (1, &)o = (a, b)o

Suppose that T is an inverse semigroup with semilattice of idempotents E
and for each @ € T define a partial transformation p, of E by xp,=a” xa for
each x € Eaa~!, Then Munn [11] shows that p: T — $E) defined by ap=p,
is a representation of T by partial one-to-one transformations of E and that

T/p *‘is”’ the maximum fundamental homomorphic image of T.

Theorem 3.6. Let S =S be a semigroup and let 6 be a bomeomorphism of S into
a fundamental inverse semigroup T which is separated over S by 6. Define
op on $ xS by
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(2, b) o, (c, d) = ab™1aBb0bO™ " = 67040401

and let p: S — s x S)/OE) be the sbhift representation associated with op. Then
T is isomorphic to the inverse bull of Sp in $((S x S)/OE).
Conversely, let o be an equivalence on § x S which obeys (1) and is such

that (S x S)/ o is a semilattice under
(a, blo < (c, o = (a, b) 0 (4, v) for some u €Sa NSc, v ebS NS
and let p be the shift representation associated with o. Then the inverse bull

of Sp in W(S x $)/0) is fundamental and o = o

Proof. Let @ be as in the statement of the theorem. Then, by Lemma 3.4, the
mapping ¢ defined by a¢ = (a, blog if o =ab” 'aBbOb6™" is an isomorphism
from the set E of idempotents of T onto (S x §)/og. Thus we can use (S x 3)/og
to obtain a representation ¥ of T equivalent to pu and hence to obtain an

isomorphic copy of T/pu. For each a€ T, since ¢ is equivalent to p,
Ap, =ted €(SxS)/og:e € Aul=1lep €(SxS)og: e <aa~ !l
Hence, if @ = a0(b0)~'c6, where b = ua = cv,
Ap, = {ep: e < af(b0)~1cOcO™ 1 60ad~ 1}
={ep: e < uf~1u0a0ab™ '} = leg: ep < (u, ado}
= {(xu, ay)og: %, y €S} by Lemma 3.4.

This is independent of the particular choice of a, b, ¢, u, v € S, with b = ua = cv,
such that a = af(b@)~ 'cB. Further, using the fact that ¢ is equivalent to g,
direct calculation shows that (xu, ay) og ¥, = (xc, vy)og.
Consider the diagram
\)

o
6 l> §(S x $)/a,).
T.

¥

Let a € S; then, since a0 = af(a0)™'a0 where a=1-a=a. 1,
Aaby = {(x, aylog: x, y € St = Aap
and, for (x, aylog € Aaby,

(x, ay) g ab = (xa, ylog = (x, ay) og p,,

from the calculations in the preceding paragraph. Hence p = 6y and the diagram

commutes. Since Ty & T/p is generated, as an inverse semigroup, by S0y = Sp,
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it follows that T/p is isomorphic to the inverse hull of Sp in (s x S)/UE). In
particular, if T is fundamental, so that p is an isomorphism [11], T is isomorphic
to the inverse hull of Sp in §((S x $)/ o).

Conversely, suppose that o is an equivalence on § x § which obeys (1) and

is such that (S x §)/o is a semilattice under
(a, b)o < (c, Do =1{a, b) o (4, v) for some u € Sa NS¢, v € bS N dS,

Then, clearly, o obeys (2) and so gives rise to a shift representation p of § by

one-to-one partial transformations of (S x §)/@. For each a € §,

Ap = Hx, aydo: x, y € S} =y, v)o: (4, v)o < (1, a)ol.

Hence, by Lemma 3.5 (i), since (§ x $)/0 is a semilattice

Ap, 0 Bp, =y, v)o: (4, v)o <(1, a)o A (1, blo}
= {(u, v)o: (4, v)o < (1, ylo}
= Apy for some y € a$ N bS.

Thus papglpbpgl = pyp;l for some y € aS$ N bS and, dually, P, IPaP; lpbpgl =
=15 for some x € Sa NSb. Hence the inverse hull K of Sp is separated over

Px px

S by p and so, by Corollary 3.3, is an inverse semigroup of strong quotients of

Sp. In particular, the idempotents of K are all of the form p; 1papbp; !, Further,
-1 -1 -1 -1
Pa PaPoPy SPL Py = (a bo<(c, do,

by Lemma 3.5 (iii). Hence the semilattice of idempotents of K is isomorphic to
(S x §)/o and o = 0. From the proof of the first part of the theorem, K/u, the
maximum fundamental homomorphic image of K, is isomorphic to the inverse hull
of Sp in 9((S x $)/0); that is, to K itself. Hence K is fundamental.

Remark. The proof of the first part of Theorem 3.6 shows the following: if
T is separated by 6 over S then T/p is isomorphic to the inverse hull of Sp in
5 x $)ap).

The second part of the theorem shows that if o is an equivalence on § x §

which obeys (1) and is such that (§ x §)/0 is a semilattice under the relation
(a, b)o < (c, dlo =(a, b) o (y, 1) for some u €San Sc, v ebS N ds,
then there is a homomorphism of § into an inverse semigroup T with semilattice
(S x $)/o.
Theorem 3.6 characterises fundamental inverse semigroups which are separ-
ated over § in terms of equivalences on S x S. To end this section, we show
how such equivalences can be obtained from equivalences on §.

If 7 is a right congruence on S = S! then there is a natural action of S on

the set S/7 of equivalence classes as follows:
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am .+« x = {ax)r forall a, x €85.

Dually, if # is a left congruerce on S, then S acts naturally on the left of /7.
Let 7 be a right congruence on § such that $/7 is a semilattice. We say
that S acts naturally on the semilattice S/n if

@AD) x=a-xNb.x

forall @, b € §/m, x € §.

A dual definition holds for left congruences.

Lemma 3.7. Let o be an equivalence on § x S which obeys (1) and is such

that (S x S)/o is a semilattice under the partial ordering

(a, Bo<(c, Do =(a, b) o (u, v) for some u € Sa N Sc, v €bS N dS
and define
aLbealag Doy, 1), aRbe=I(1,a)o(l,d).

Then L is a right congruence on S, S/L is a semilattice (with operation /\1)

under

aL<bL e aLu for some u €Sa N Sbh

and S acts naturally on S/L, Dual results hold for R. Further
(¢, Dolc,d mabLla AjdbR(a Ay AN DLbA DRcd

where, for example, a /\1 ¢ denotes any element of S such that (a AI c)L =
(aL Al cL).

Proof. Let p be the shift representation associated with ¢. Then (a, b) o
(c, d) if and only if p"z'lpapbp;l =pZ 1pfpdp;l. Hence a L b implies ap~lap =
bp~lbp which, in turn, implies (ax)p~ ax)p = (bx)p~ bx)p; that is, ax L bx.
Thus L is a right congruence on $.

Let a, b € S and pick u € Sa N Sb such that (z, 1)o A (b, 1)o = (4, 1)o;
by Lemma 3.5 (iii) such an element exists. Then, from the definition of the partial
order on §/L, ul < aL, bL. On the other hand, if vL <aL, bL then vL = yL for
some y € Sa NSb and so (v, 1)o = (y, 1o < (a, g, (b, 1)o; thus (v, 1)o < («, 1e.
This implies w, Do =, Do A (u, 1)o and so, by Lemma 3.5 (iii), (v, Do =
(z, )o for some z € Sv N Su C Su. Hence yL =zL <uL. It follows that S/L is
a semilattice with aL A bL = uL where u € Sa N Sb is such that (a, 1)o A
(b, Do = (u, 1)o. Further, up~lup = ap~lapbp~lbp implies

(ux)p™ Wux)p = xp~ Hap~ tapbp™ Lpp)xp

= xp~Yap~apxpxp~ bp~ Tbpxp = (ax)p” Yax)p(bx)p~ Hbx)p.
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Hence (ux)L = (ax)L AI (bx)L and so S acts naturally on S/L.
Next (a, b) o (c, d) if and only if
ap” lapbpbp'1 =cp” 1cpz'z’pdp'1
implies ap™~lapbpbp~! = (a A, p~Ha A, pbpbp~!

implies (a A, )p~a A, lpbpbp™! = (a A cp~Ha A, plb A Dplb A, dp™!

implies (a A, c)p-l(a N, c)plb A, dp(b A, dp~1! = cp'lcp(b A, dplb A, dp=!
implies cp~leplb A dlp(b A, dlp~! = cp~'cpdpdp™!

where, for example, (@ A, c)L(aL A, cL). These implications give in sequence

(ab)p~Nablp = [a A, blp™ @ A, blp so ab L (a A, )b

[(a A, c)blplla A, Ablp~! = a A, )b A, dlpl(a A, )b A, d)]p_l
so (@ Aje)bRa A )b A4

a A, B A, Dlp~Mlla A, )b A, dlp = Lcls A, dp~[clb A dp
so (a /\I I\ /\rd) L (b /\rd)

[c(6 A, Dlplele A, Dlp~! = (cdlplcdlp™! so clb A d) R cd.

Hence (a, b) 0 (c, d) implies
abLla NjedbRa A cXb A dLcbA, d) R cd.

The converse follows, as in the proof of Theorem 3.8, because 0 is a shift.
Lemma 3.7 shows that o is determined by the equivalences L and R. The
next theorem shows how, starting with a pair of equivalences L andR we can

obtain a shift o.

Theorem 3.8, Let S = S! be a semigroup and let L and R be respectively
right and left congruences on S such that S/I. and S/R are semilattices under
aL <bL = al c f[or some c €Sa N Sb,
aR < bR = a R c f[or some c €aS N bS,

Suppose also that S acts naturally on the semilattices S/L and S/R. Define

a relation 0 =a(L, R) on S xS by (a, b) 0 (c, d) = there exist finite sets

Xgy vovs X s Ygr coen ¥, in S such that a =xy, c =%, b=y, d =y, and, for
1<i<n,

Yo Lxy, Ry,
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Then o is the finest equivalence on S x S with the following properties:
(i) o obeys (1),

(i) (S x §)/o is a semilattice under

(a, bYo <(c, dlo = (a, B} 0 (4, 1) for some u € San Sc, v €bS N dS,

(iii) @a L ¢, b R d implies (a, b) 0 (c, d).

Proof. First, it is easy to see that 0 is an equivalence on § x S. Suppose
that (a, b) 0 (c, d) and let 4, v € S. Also let x, -+ -, X0 ¥g» <++» ¥, beasin
the definition of 0. Then

%Y1 Lxyy dmplies x4y, 3 Ajuy, g L*y, Nwyiog

where, for b, k € S, b A,k denotes any element of Sh N Sk such that (b A, k)L =
hL A, kL. ‘Since S acts naturally on the semilattice S/L, it follows from this
that (x,_, /\1 u)yi_‘_l L (x, A, uly,_, and hence, because L is a right con-
gruence, (x, | A, u)(yi_1 A v)L (x, /\1 uy,_, A, v). Similarly, Xy, Rxy,
implies (xl. /\I u)(yl._l /\' v) R (xi /\l u)(yl. /\; v), 1<i<n, Thus
(a Ai’u, b /\’ v) o {c Al u, d /\r v).

This shows, in particular, that the mapping S/L x S/R — (S x §)/0 defined
by (aL, bR) — (a, b)o is a semilattice homomorphism so that (S x §)/0 is a
semilattice. Further, because of the order on S/L and S/R,

(a, b)o<(c, Do =(a, b)o(a Ajc, b A d)

=(a, b) 0 (4, v) for some u €Sa N Sc, v € bS N dS.
Suppose that a=ug -+, U, = xb= Vp s un=xdand U Vi L up; | Ruvy,,
1< i< n Define q;=w;, 0< 1< n, where w; is such that xw; €
x§ NvS and xw,R=xR A v,R with wy=b, w, =d and set p, =

u;x, 0<i< n Then
P19 =¥ X Luxw, =pgq,_, for 1 <i<n

since xw__, € vi-lS and L is a right congruence, and pyq, =ugxb =
uw, L uv, =u1xb =p,49 Further, since § acts naturally on the semilastice S/R,

b R=upw, \R=uxR A\ up, |R
=uxRAN uvR =ulxRA v.R)

1 r 11 t T H

= ulxwiR = pl:ql.R, [<i<n

Hence (ax, b) 0 (cx, d). The dual also holds so that o obeys (1).

Finally, a L ¢, b R d implies (a, 1) o {c, 1) and (1, ) 6 (1, d) and so
(@ Nj1,6 A Dolc A 1,d A1) by the first paragraph of the proof; thus
(a, ¢) o (b, d) so that (iii) holds.
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Conversely, suppose that 7 obeys (i), (ii), (iii). Then x,_y._, Lxy, Rxy,
implies (x,_,y._, D7lxy,_y, 1, (1, xy, ) a(l,xy.) and so, by (i),
(x,_p yi-l) m (xi, yi-l) 7 (xl., yl.). Hence (a, b) 0 (c, d) implies (a, &) 7 (c, d).
Thus 0 is, in fact, the smallest equivalence on § xS which obeys (i) and (iii).

If L and R are right and left congruences on § = s!, which obey the hypoth-
eses of Theorem 3.7, it is easy to see that e cL, R C R where £ and R are the
familiar Green’s relations. Since £ and R obey the hypotheses of the theorem
when § is naturally quasisemilatticed we get, i‘mmediately, the following resule

which is of fundamental importance in later sections.

Theorem 3.9. Let S = S' be a naturally quasisemilatticed semigroup and

define a relation 7 on S xS by

(a, 8) 7 (c, d) = there exist finite sets xgy soes % , ygs=ossy, in S

such that a = %, ¢ = X b=y, d= Y, and X 1Yol e XY 1 R xyo, 1<idn
Then 7 is the finest equivalence 0 on S x S which obeys (1) and is such that

(S x S)/o is a semilattice under
(a, blo < (¢, Do = (a, b) 0 (4, v) for some u € Sa N Sc, v € bS N dS.
Remark. If S = S! is naturally quasisemilatticed then (S x $)/0 is a semi-
lattice under the partial order in Theorem 3.8 if and only if (a, b) 0 (¢, d) implies

(a A b /\r v)o (c Al u, d/\r v) for all u, v € § where, for example a /\1 u
denotes any element of S such that S(a A\, ) = Sa N Su.

4. Naturally quasisemilatticed semigroups. If S = S! is a naturally quasi-
semilatticed semigroup then it is easy to see that an inverse semigroup T is
separated over S, by a homomorphism 0, if and only if T is generated as an

inverse semigroup and, for each @, b € §,
a0af~'b0b6~" = (a A, D)0(a A B0 if (@ A_b)S =aS N bS,

a0~ 1afb0 160 = (a A, )0~ a A, B)0 if S(a A, b) = Sa N Sh.

It follows that there is a universal inverse semigroup E(S) which is separated
over S; E(S) is the quotient of I(§) under the relations

aa~ b~ = (a A, a A p)~1 if (@ A, b)S =aS N bS,

a~tap ' =(a A, B)"Na A B) if Sla A, b) =San Sh

In this section we shall give an explicit construction for E(S), as the inverse hull
of Sp under a shift representation p of S, and several coordinatisations of E(S).
Throughout this section and the following ones we shall suppose that a

choice of representatives has been made from the generators of the principal left
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and right ideals of the naturally quasisemilatticed semigroup being considered; if
a, beS then a N ;b will denote the representative of the principal right ideal
a$ N bS and a /\l b will denote the representative of the principal left ideal
Sa N Sb. For each a, b € § we also choose elements a * b and a * b in § such
that ala * b)=a A b, (ax b)b=a A, b

Definition. Let S = S' be a naturally quasisemilatticed semigroup and let o
be an equivalence on § x §. Then we shall say that o is a semilattice congruence

on S xS if (§x8)/o is a semilattice under
(a, b)o < (¢, d)o = (a, b) 0 (4, v) for some u €Sa N Sc, v €bS N dS.

Thus o is a semilattice congruence if and only if, for every choice function

on the generators of the principal left ideals and right ideals of §,
(a, b) 0 (c, ), (4, v) 0 (x, y) implies (a A u, b A, vale Ajx,d A, y).

Lemma 4.1. Let S = S! be a naturally quasisemilatticed semigroup and let
o be a semilattice congruence on S which obeys (1). Define a relation " on
S xS by

(a, b) 0™ (c, d) = (a, b) 0 (c, d) 0 (4, V) for some u, v €S

such that av = cv, ub = ud. Then a* is an equivalence on S x § which obeys (1) and
(3) (a, 80" (c,d) = (a, b) 0" (x, y) for some x €Sa N Sc, y €bS N dS;

in particular, o* is a shift.

Proof. First of all, o™ is clearly reflexive and symmetric. Suppose that
(a, b) 0*(c, d) and (c, d) 0™ (e, ). Then there exist x, y, u, v, € S such that
(a, b) o (¢, d) o (u, v) with av = cv, ub =ud and (c, d) o (e, /) 0 (x, y) with
cy = ey, xd = xf. Since o is a semilattice congruence, (a, b) o {e, ) o
(u AI x, v A, y). Further, since v /\’ y = viv * y), alv /\' y) = av(v * y) =
cv(v * y) =cly /\' y) and similarly c(v /\r y) = e(v /\' y); likewise (u Al x}b =
(u A, x)f. Hence (a, b) 0* (e, /) and so ¢* is transitive.

Suppose now that (a, xb) 0 (c, xd). Then (a, xb) 0 (c, xd) 0 (4, v) for some
u, v € S such that-av = cv, uxb = uxd. Then, since 0 is a semilattice congruence
(@, xb) 0 (u, x A _2) = (&, x(x % ) so that (ax, b) 0 (cx, d) o (ux, x x v) by (1).

Further,

ax(x * v) = alx /\r v) = ax(v * %) = cvkv * x) = cxlx * v) and
(ux)b = ulxb) = ulxd) = (ux)d.

Hence, (ax, b) 0* (cx, d). The dual holds by symmetry so we get (1)

Next suppose that (a, b) 6" (c, d). Then it is easy to see from the definition
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of 0" that there exist e € Sa, f € bS such that (a, b) 0 (c, d) 0 (e, {) and eb = ed,
af = ¢f. Since § is naturally quasisemilatticed and eb = ed € ebS NedS, eb =
e(b A_d)t for some ¢ €S, and, similarly af = sla A, c)f for some s € S.
Because (e /\Ia) Le,f R ( /\r b) and, by Theorem 3.9, 7 C g, these equations
imply

(a, b) o (e, b)ole, (b A_d)t) and (q, b)o(sla A, c) f)
Set
u'=sla N ) Ne, V=fAGBA e

Then, since o is a semilattice congruence and (a, b) 0 (sla /\1 c)Nole b A , ),

(a, b) o (sla A, c) Ao A, (b A, A =G, o).
Further

sta AW’ =sta Ajfif = G A D) =af(f (b A i) =a

and similarly «'(b /\r d)t = u'b.

Finally, since (&', v") <(s(a A;e), (6 A _d)) <(a, b) in the natural quasi-
order on S x S and each o class is convex, the fact that (a, b) o (', v") implies
(a, Yo (sla A c), (b A, d)t). Hence we have shown

(a, o (sla Aje)y (b A Do (), v} and av'=sla A, ), d'b=u'(b A_d)t;

that is (@ b) o (sla AI c), (b /\r d)t). Thus (3) holds.

Lemma 4.2. Let S =SS! be a naturally quasisemilatticed semigroup and let
o be an equivalence on § x § which obeys (1) and (3). Suppose that p is the
corresponding shift re presentation of S. Then the inverse bull of Sp in 4((s x S)/0)
is separated over § by p.

Further the semilattice congruence o defined by

-1 -1 -1 -1
(@, ) op (e, d) = p7 PPy =PC PP PY
is contained in every semilattice congruence which contains o.

Proof. Let @, b € S; then Apa = {(x, ay)o: x, y € S} and so, since o obeys
(3, Bp, N Apb ={x, (@ A _blylo:x, y € S} = Ap, A, b Hence pap;lpbp;1 =
Pa A bpa-}\ p and dually. Thus the inverse hull of Sp is separated over § by p.
r r
By Lemma 3.4, o is a semilattice congruence on S x S. Suppose that 7 is

also a semilattice congruence and that ¢ C 7. Then

(a, b) o (c, d) implies (a, b) w (xc, dy), (¢, d) 7 (ua, bv) for some x, y, u, v €S
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and so, since 7 is a semilattice congruence, (a, 4) 7 (c, d). Hence op Cm.
It follows from Lemma 4.2 that, if o is a semilattice congruence on § x §
which obeys (1), then UZ‘ C 0. However g need not equal oz,. (For example, if
§ is cancellative with trivial group of units oz. is always the identity while o
could be § x S). However, if we take 0 = 7 then, since, by Theorem 3.8, 7 is the
smallest semilattice congruence which obeys (1), 7 = Tz.. We can use this to find E(S).
The next lemma is rather technical. It can be applied, among other things,
to give necessary and sufficient conditions for embedding naturally quasisemi-

latticed semigroups in inverse semigroups.

Lemma 4.3. Let S =5S! bea semigroup and define an equivalence 1 on
S xS by (a, b) r{c, d) if and only if there exist finite sets Xgrerts X o Yoo teoa Y,
in § witha=xy, c=x_,b=y, d =y, end x._\y, | 2 XY ‘rinyz., 1<i<n,
Let b =ua =cv, e = pd = fq and suppose there exist x, y, &, B,y,0 in S such that

(u, @) 7 (xp, dy) 1 (a, B) with uf = xpB, aa = ady

and
(c, v) 7 (xf, qy) 7 (y, 8) with cb = xf8, yv =7ygy.
Then

ab~lc <de” 1/ in the [ree inverse semigroup KS) on S.

Proof. Let o be defined on S x S by (a, b) o (¢, 4) if and only if
a”tabb~! = c=lcdd™ ' in I(S). Then o obeys (1)and a £ ¢, b R d implies (qa, b) o
(c, d). As in the proof of Theorem 3.7, this implies 7 C 0.

In I(S):

ab~tc=aa"lu"lc = aa'u" Yuu e
= dy ()~ )M xp)BB~ Yu e since (, @) 7 (xp, dy) 7 (a, B)
= dy(xpdy)~ 'uBuB) ™ c = dylxfqy)~ 'uBuB) " lc
< dylxfqy)~'c since uP(uP)~! is idempotent.

Now, since (xf, gy) 7 (y, 8) and 7 C 0,

(o)™ Ixfqylgy)=" =y~ 1y88™!
so that
()™ Lxfaylgy) =" = N~ Lxpy™ 1y88 gylgy)™!

which implies xfqy = x/y'ly&?- 1qy. Thus
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ab= e < dylxfy=1y86=1gy)= 1 = dy(xf08~ 1y~ lygy)~1c
= dy(c86~ 1y~ lygy) " le = dyy =gy~ y88m e e
=dyy~ 4" l(x/)'lxifqy(qy)'l since (¢, v) 7 (xf, gy) 7(y,8) and 7 C o
= dyy~ g7 1N = dyy™ g~ x Ty

< de"l/ since e = fq.
Theorem 4.4. Let S =S' be a naturally quasisemilatticed semigroup and let
p: S — (S x §)/7*) be the shift representation of S associated with 1. Then

the inverse hull of Sp in §((S x $)/7*) is isomorphic to the quotient E(S) of I(S)
modulo the relations

aa”lpp™! = (a A Ba A B)7Y, aTlab b= (a A B)7Ha A, B)
for all a, b €.

Proof. The proof of Lemma 4.2 shows that, for a, b€ §,

-1, -1 -1 -1 -1, _ -1
PaPa PoPy =Pla p, 0Pta p by Pa PaPy Po=Pa p o)fa A o)

so that the inverse hull T of Sp is a quotient of E(S). More precisely, there is
a unique homomorphism ¥: E(S) — T such that p = wy where p denotes the
canonical homomorphism § — E(S).

Let b=ua =cv, e =pd=[q and suppose that pap; Ipc Spgpo 1p/». Then
since, for example, Apapglpc = {(xu, ay)r*: x, y € S}, there exist x, y € S such
that (4, @) " (xp, dy) and (4, a) 7* papzlpc = (xp, dy) 7* PP lp/; that is
(c, v) 7* (xf, gy). The first and third of these relations are precisely those in
Lemma 4.3. Hence, in I(S), ab~'c <de™'f. Since E(S) is a quotient of I(S), we
have there apbp™ 'cp < dpep™ 'fu. Therefore (aubp™ lcply = (dpep” Y implies
auby'lcy =dpep” I/I,L and so ¥ is one-to-one; thus an isomorphism.

IfS=5'isa semigroup whose principal left and right ideals form chains
then the relations

aa~ b= = (a A, bNa A, B~ alab b =(a A, A A, b)
hold in I(S). Hence we have

Theorem 4.5. Let S =S! be a semigroup whose principal left and right ideals
form chains under inclusion and let p be the shift representation of S associated
with 7. Then I(S) is isomorphic to the inverse hull of Sp in $((S x $)/7™).

As a consequence of its description as a subsemigroup of $((§ x $)/7*), the

semigroup E(S) admits several natural coordinatisations. Before giving these,
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we show how E(S) can be used to give necessary and sufficient conditions for

embedding a naturally quasisemilatticed semigroup in an inverse semigroup.

Theorem 4.6. Let S = S' be a naturally quasisemilatticed semigroup. Then
S can be embedded in an inverse semigroup if and only if the canonical homomor-
phism p: S — E(S) is one-to-one.

Proof. Let 7 be the canonical homomorphism S — I(S}. Then, since p can
be factored through 5, 77 © T]"1 Cpop~ 1. On the other hand, ap = by implies
apap” lay = bybp—lbp. in E(S) and so, by Lemma 4.2, aa~'a=bb" % in I(5).

Thus ap = by implies an = by. Hence no 7]"1 =p O/fl.

Theorem 4,7. Let S =S' be a naturally quasisemilatticed semigroup and let
U be the set of all 4-tuples (a, v, u, c) of elements of S with ua = cv. Define

a binary operation on U by
(@, v, u, Nd, ¢, p, ) = (alv * d), qld * v), (p *) )y, (¢ *, p)f)
Further define
(@, v, u, )~ (d, q, p, /) = there exist x,y, z, w €S

such that (u, a) 7™ (xp, dy), (c, v) 7 (xf, qy), (0, &) ™ (zu, aw), (, ¢) ™ (z¢, vw).

Then ~ is a congruence on U and U/~ is isomorphic to E(S).

Proof. First of all, it is easy to see that the multiplication described above
is, in fact, a binary operation on U. Define ¢y: U — ES) by (@, v, u, W =
PP, lpc where b = ua = cv; since E(S) is, by Theorem 3.2, an inverse semi-
group of strong quotients of Sp, ¥ is onto. Further, easy calculation shows that
Apapglpc = {lxy, ay)i x, y € S}, Vpapzlpc = {{xc, vy)™*:x, y € S} and thus,

because 7 obeys (3), that

Apap;lpcpdpglp/ ={(xp x, A, alv * dhy)*: x, y €5},

Vpapglpcpdpzlpl = {xlc *, p)f, q(d *, I*: x, y €Sk
Thus, because of the action of papb- 1pcpdp; lp/ we find

-1 -1, _ 1 0
PPy PPaPe p/_p(p * )P (p % c)ua(v * a¥(c % PV
=Ua, v, u, Nd, q, p, W
Hence ¥ is a homomorphism.
Finally, the proof of Theorem 4.4 shows that p_p, lpc =P, lp/ if and only

if (@ v, 4, ¢)~(d g, p, )- Hence ~ is the congruence of ¥ and so U/~ is

isomorphic to E(S).
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Theorem 4.8. Let S =S! be a naturally quasisemilatticed semigroup and let
V be the set of all triples (a, b, c) of elements of S with b € Sa NcS. Define
a binary operation on V by

(@, b, c)d, e, ) =(alb * cd), (e *, cd)ed(cd * ), (cd *, e)f)
and a relation ~ on V by
(a, b, c)~ 4, e, /) = b=ua=cv, e=pd=[q and there exist x, y, z, w €S

such that (u, a) ™ (xp, dy), (c, v) T (xf, qy), (b, d) 7 (zu, aw), (f, q) * (zc, vw).

Then ~ is a congruence on V and V/~ is isomorphic to E(S).

Proof. First

(e *, cd)cd(cd % b) = (e *, cd)b(b * cd) = (e *, cd)ualb * cd) € Salb * ed)

while
(e * cd)cdcd * b) = (cd *) elelcd * b) = (cd * elfq(cd * b) € (cd * e)fS

so that the multiplication is a binary operation on V.

Define : E(S) by (a, b, c W = PPy l,o(:. Then, by Theorem 3.2, ¥ is onto
and further, from the proof of that theorem, ¥ is a homomorphism. Finally, as in
the proof of Theorem 4.7, ~ is the congruence of Y so that E(S) &V /~.

The coordinatisation given in Theorem 4.8 reduces to that given by Eberhart
and Selden when S is a subsemigroup of the positive reals < 1[5]). It has, how-
ever, the drawback that, when restricted to a Brandt S-class of E(S) it does not
give the usual Brandt multiplication. The latter can be recovered if we give E(S)

the coordinates described in the next theorem.

Theorem 4.9. Let S =S' be a naturally quasisemilatticed semigroup and let
W be the set of all triples (a, b, c) of elements of S with b € Sa N Sc, Define a
binary operation on W by

(a, b, Nd, e, f)=alc * ) blc* &) A eld= c) fldx )
and a relation ~ by
(@, b, c)~ (d, e, /) e= b=ua=vc, e=pd=qf and there exist x, y, z, w €S

such that (u, a) 7 (xp, dy), @, ¢) 7" (xq, fy), (b, d) 7* (zu, aw), (gf) r* v, cw).
Then ~ is a congruence on W and E(S) & W/~.

Proof. Since

blc * d) A, eld *_c) ={blc « d) », eld x c)lgfld * c)

={eld * c) %, blc *_d)ualc * d)
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where b =ua = vc, e = pd = qf, the multiplication described is, in fact, a binary
operation on W.

Define (a, b, c)¢ = aplbp)~tvp if b = ve. T.hen, firstly, ¥ is well defined.
For, if b = vc = wec, then

L
aplbp)~Yup = aplupep)™up = apcp™lvp™ lup
= apcp” 1vp' lvpcpcp'l since indempotents commute
= apluc)p™ Hue)pep™ ! = aplwedp™ Hwedpep™ ! = aplip) ™ wp.

Next we show that Y is a homomorphism of W onto E(S); the ontoness is obvious.
Since (a, b, Wld, e, N = (ap(bp)™ 'vp)dplep)™1gp), it follows from the
multiplication in 3((S x §)/7*) that

(a, b, WWd, e, P = lalc * d)ipllp A, wid A, lp~ Y *, plglp.

On the other hand, from the multiplication in W,

{a, b, Nd, e, N

=falc * dplblc x d) A eld * c)lp~ Yiu(c x d) x, eld x_g)lgp.

Since § is naturally quasisemilatticed,
(p N, wld A, c) @ {p(d A, c) A d /\'c)¥= eld * <) /\1 be * d)
so there exist x, z € § such that

(p A vld A, ¢) = x}blc * d) AI eld * ol
z{(p A, v)d A, o)l = ble * d) AI e(d * ).

Hence, working with x alone,
(o A, )Nd A, &)y 1) 7" (elble x_d) A eld x o), 1)

so that, since 7 is a shift and

(0 Nyd A, €)= (p*, vdualc x &) = (v, plgf(d *_c),

b(c * d) /\1 e(d * c) = {eld * c) *) blc * d)uale * d)

= {blc * d) *, eld *_clgfld *_c),

we get
(p *, V), alc * D) r*(xleld *, ) %, blc x Dy, alc *_d)},

(%, p)g, fd* N 1" (ddblc x d) *, eld x cNg, [(d* N
Hence, by Lemma 4.3,

(a, b, Y (d, e, N <la, b, N4, e, N.
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Operating with z gives the reverse inqeuality so that ¥ is a homomorphism.
Finally, if b = ua = vc, e = pd = qf, Lemma 4.3 and the definition of p shows that

(a, b, W =(d, e, Y = (a, b, c)~ (d, e, f).
Hence E(S) & W/~.

The congruences in Theorems 4.7, 4.8, 4.9, and thus the coordinatisations for
E(S), undergo considerable simplification in two cases: (i) S is cancellative; the
. . .o oy . .. . .
results for this case are stated in Theorem 6.2. (ii) L is trivial on §; in this

case 7=7"= 7, is a semilattice congruence on $ x § and the congruences reduce to
{a, v, u, c) ~ (4, g, b, /) in Ue (g a 75 (p, 4, (c, v) 70 (/, 9,
(a, b, I~ (d, e, Nin V= (g, a) 7y (p, ), (c, D)7 (f, 9)

where b=ua = cv, e = pd = [q,

(a, b, c)~ (d e, /) inW e (4 a) 7o (p, 4, (v, ) 7o (q, /)

where b =ua = ve, ¢ = pd = qf.

To end this section, we give an example to show how the coordinatisation in
Theorem 4.9 gives rise to the Brandt multiplication in Brandt Y-classes of E(S).
Suppose that § x stisa naturally quasisemilatticed cancellative semigroup on
which ﬂ is trivial. Then it follows from Theorem 5.2 that, in E(S) = W/~,

], =Ha, b, ¢): beSan Scl

is a §-class for each b € S: in this case ~ is, in fact, the identity congruence.
By Theorem 4.9,

(a, b, Nd, b, ) = (alc *_d), blc * d) A, bld * ) [(d* o).

This belongs to J, if and only if b = blc * d) N\, b{d * c). But the latter implies
b € Shic * d)S CSbS and b € Sb(d * c)S CSbS whence, since § is trivial and §
is cancellative, (¢ * d)=1= * c); thus ¢ =d. Hence, modulo the ideal gen-

erated by [,

- (a, b, ) if c=4d,
(a, b, c)d, b, /)={a poite

otherwise.

This is just the multiplication in the Brandt semigroup
MO(1}; X, X, A) where X ={x €S: b € Sx}.

5. Green’s relations and congruences on E(S). In this section § = s! denotes
a naturally quasisemilatticed semigroup and E(S) denotes the quotient of I(S),

modulo the relations

aa™'ob~ = (a A BMa A BN, aTlabT'b=(a A, B)"Ma A, )
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for all a, b € §, regarded as a subsemigroup of 4((S x $)/7*). The results are
easily translated into the coordinatised forms of E(S).

Lemma 5.1. Let papglpc € E(S) where b =ua = cv. Then
@) (pp7 0, )" Mo 03 0 ) = o7 o p 7!

D) (ppy e )" Mo ey e ) =0 Pt
i) (p ey e Megpy "o )" = o Py

Theorem 5.2. Let pap;lpc, PP lp/ € E(S) where b =ua =cv, e = pd = [q.
() pap; e £ pge; o, =, V)1, ).

(ii) papb‘lpc R pdpzlp/ = (u, a) 7 (p, d).

(iii) p pj lpc}( pdpglp/ = (4, a) 7 (p, d), (c, v) 7 (}, 9).

(iv) papglpc Y pdp;Ip/ =bJLe.
(V) ooy P S g papy Ry b S e

Proof. (i)
-1 -1 - -1 -1 - -1 -
a7 . LppTle, =50 o ey e ) =007 0 )" o e S lp)

-1 - - -1
=P pcpvpv1 =Py lp/pqpq = (e, u)r(/, 9

since, by Theorem 3.8 and Lemma 3.4, (S x §)/7 is the semilattice of idempotents
of E(S).

(ii) is dual to (i) while (iii) is immediate from (i) and (ii).

(v) If p.p, 1pc ) PaP. lp/ then p_p, lpc £ pxp; lpz R PaP. lp/ for some
x, y, z € S with y = rx = zs. By (i) and (ii), these imply (e, V)7 (z, s), (r, x) 7
(p, d). Hence, from the definition of 7, b = cv Dzs=rmx T pd =e.

Conversely, if b 9L e then, for some t € §, b £t Re. Hence there exist
a, B, ¥, 6 € § such that

b=at, t =Bb=ey, e=15

thus e = BbS. Let g = Pu, x =ad and set y =gx, z=f; so y =e =2q. Then
ua=b¥ t=Pua=ga, tRe=1t5=pPuad =gx. Thatis, ua £ ga R gx which
implies (u, a) 7 (g, x). Hence, by (i), (ii),

-1 -1 -1 -1 -1
pap7to R osle, LT loppy el ey

Thus p,p; o, D pap e,

If papglpc € E(S)pdpglp,E(S) then p_p, lpc R pxp;lpz and p p~ o, €
E(S)pdp;lp/ for some x, y, z € S with y =rx = zs. Since (§ x §)/r is the semi-
lattice of idempotents E(S), these relations imply (u, @) 7 (r, x) and
(z, )7z A f s /\rq). Hence b=uzaLrmx=y and y=25s £ (= Al/)(s A, 49 =
(z %, {Yq(q = s) which implies b € SfgS = SeS.
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Conversely, if b € SeS, p, € E(S)p_E(S) and so, since =15 $p, and
b e PaPy Pc~ Py

-] - -
pap7 e TP papy e, < PaPe ‘o

Corollary 5.3. Let I be an ideal of S and set I*= {pap; lpc € ES): b € I}.
Then I* is an ideal of E(S) and each ideal of E(S) has this form.

Corollary 5.4. If S has a kernel, so has E(S); the kernel of E(S) is bisimple
if the kernel of S is a $-class of S (even if Ker S is not bisimple).

An equivalence relation 3 on the set E of idempotents of an inverse semi-
group T is called a normal partition if there is a congruence p on T such that
B =p N(E x E). Reilly and Scheiblich [14} have shown that an equivalence 8
on E is a normal partition if and only if

(i) (a, b) € B, (c, d) € B implies (@ Ac, b Ad) € B,

(ii) (a, b) € B implies (x~'ax, x"'bx) € B forall @, b, c, d € E, x € S.

It is shown in [14] that the mapping ®: 0 — 0 N (E x E) is a complete
lattice homomorphism of the complete lattice A of congruences on T onto the
complete lattice of normal partitions on E. Thus each ®-class is a complete sub-
lattice of A; in particular, it has a greatest and a least element; if 8 is a normal
partition on E we shall denote the greatest and least elements of ﬁ@“l by BV
and P respectively.

Theorem 5.5. The lattice of O-classes of congruences of E(S) is isomorphic
to the lattice of semilattice congruences on S x S which obey (1).

If B is the normal partition corresponding to the semilattice congruence o on
S xS then E(S)/ﬁv is isomorphic to the inverse hull of Sp in §(S x $)/0), where

p is the shift representation of S associated with o.

Proof. Since every homomorphic image of E(S) is separated over S, it is
immediate from Theorem 3.6 and Lemma 3.4 that the normal partitions on E(S) are
precisely the shift semilattice congruences on § x S. Further, from its definition,
E(S)/Bv is, up to isomorphism, the only fundamental homomorphic image of E(S)
with normal partition . Hence the rest of the theorem follows from Theorem 3.6.

As a consequence of Theorem 5.5, we can regard the normal partitions 8 of
E(S), and the corresponding semigroups E(S)/BV, as known. Although Theorem
3.8 gives a method for constructing all shift semilattice congruences on § x §
from equivalences on §, it does not give a unique method of construction. Hence
the situation is not entirely satisfactory. However, in the case when § is the
positive cone of an archimedean ordered group, it is easy to see that congruences
on S which obey the conditions of Theorem 3.8 are the Rees factor congruences
on 5. This, together with the fact that a semigroup, with a left and right zero,
has a zero, gives Theorem 4.4 of {5}
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6. The cancellative case. If the semigroup S x S! is cancellative, the theory
in the previous two sections undergoes considerable simplification.

Lemma 6.1. Let S =S be a cancellative naturally quasisemilatticed semi-
group. Then (a, b) 7 (c, d) = a = gc, b =dh for some units g, b € S while 1*
is the identity on § x S.

Hence the results in Theorems 4.7, 4.8, 4.9 reduce to the results in Theorem 6.2.

Theorem 6.2. Let S =S! be a cancellative naturally quasisemilatticed semi-
group.
(i) Let U=1{(a, v, u, ¢) € S xS xS x S: ua = cv}; define

(@, v, u, N4, q, p, ) = (alv * d), q(d * v), (p *, u, (c *) )P

and

(@, v, u,c)~d, g, p, ) e>u=gp, c=gf, a=dbh, v=gb

for some units g, b €8S,

Then ~ iS g congruence on U and E(S) =& U/~.
(ii) Let V={{a, b, c) € S xS xS: b € Sa N cS}; define

(a, b, )4, e, f) = (alb * cd), (e * cd)cd(cd * b), (cd * e)f)

and

(@, b, c)~(d, e, f) —a=db, b=geh, c=gf f[orsome units g, b €S.

Then ~ is a congruence on V and E(S) & V/~
(iii) Let W ={{a, b, c) € S xS xS:b € Sa NScl; define

(a, b, cNd, e, ) =alc *, d), blc * d) A\ eld * c), fld * c))
and

(@, b,c)~(d, e, ) —>a=dh, b=gebh, c=[h [or some units g b €S.
Then ~ is a congruence on W and E(S) & W/~.

Definition. An inverse semigroup T is an inverse semigroup of quotients of
a subsemigroup § = s! if each element of T is of the form ab™'c with 4, b, ¢ € S.
If S=S! is a cancellative semigroup in which the sets of principal left and
right ideals form chains under inclusion then it follows from Theorem 4.5 that
I(S) is a semigroup of quotients of S. In fact the converse is also true. To prove
this, we consider a type of representation which generalises the shift representa-
tion considered earlier.
A subset H of a semigroup S = S! is called right consistent if ab € H
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1mphes a € H. Suppose that H is a right consistent subset of a cancellative

semigroup § = s! and for each a € S, define

6.1) xp,=xa for each x € H such that xa € H.

Then the proof of the following lemma is straightforward.

Lemma 6.3. Let S =S be a cancellative semigroup and let H be a right
consistent subset of S. Then the mapping p:a — p_ is a representation of S

by one-to-one partial transformations of H.

Lemma 6.4. Let S =S be a cancellative semigroup and let w be the shift
representation S defined by (x, ay)w = (xa, y) forall x,y € S. Then

Aa) wwbw L. Sa x bS.

Theorem 6.5. Let S =S’ be a cancellative semigroup. Then the following
statements are equivalent,
(i) I(S) is an inverse semigroup of strong quotients of S.
(ii) KS) is an inverse semigroup of quotients of S.
(iii) The sets of principal left and right ideals of S form chains under inclusion.
(iv) S is naturally quasisemilatticed and I(S) is naturally isomorphic to E(S).
(v) S is naturally quasisemilatticed and 1(S) is separated over S.
(vi) for each a, b € S there exist x, y € § such that

aa” Vo=l = xx"1,  a~lab~lb= y~ 1)/
in 1(S).

Proof. Clearly (i) implies (ii) and (iii) implies (iv) implies (v) implies (vi) so
we need only show that (ii) implies (iii) and (vi) implies (i).

(ii) = (iii). Let @, b € S and set H = {x € S:a’ € xS or ab € xS}. Then
H is easily seen to be right consistem let p be the corresponding representation
of S. Then ace Ap P, 'n Apbpb so that p _p_ pbpb is nonzero. By hypoth-
esis, p_p pbpb =P, p p for some x, v,z €S. Thusa €pp pbpb implies
ax = uy for some u € H and so ap_ p p = uz. Since p p pbpb is idempotent,
a = uz and so uy = ax = uzx whence, because S is cancellative, y = zx.

Now let w be the represenataion of S by one-to-one partial transformations

of $ xS given in Lemma 6.4. Since, in I(S), aa~ b~ = xx~ 1271z, we have

-1 -1
Sx(aS N bS) = Aw £ mbwb .—_Acoz ®,0 0, =SzxxS.

Thus z is a unit in § and so, in I(§), z~ 2 = 1. It follows that pap; 1pbp;l =
pxp;l and so a € Apx; this implies a’ € axS or ab € axS. Hence a € xS =

aS N bS or b € xS =a$ N bS; that is aS CbS or bS CaS. This shows that the
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set of principal right ideals of S is a chain under inclusion. Dual arguments show

that the same is true for principal left ideals so (iii) is proven.

-1 1 -1 _ -1
(l)b(Db —(J)c(oc

and so, by Lemma 6.4, a$ N bS = cS. Hence the set of principal right ideals of

(vi) = (i). Suppose aa™'bb™' = cc ™! in I(S); then ® @]
S is a semilattice under inclusion and, in I(S), a2~ p=! = (a /\' b)Xa /\' b)~ L.
The dual clearly holds, so we may invoke Theorem 3.2 to conclude that I(S) is an
inverse semigroup of strong quotients of S.

Theorem 6.5 can be applied to characterise the positive cones of right ordered
groups among semigroups.

Theorem 6.6. Let S =S! be a semigroup. Then the following are equivalent.

(i) S is positive cone of a right ordered group.

(ii) each element of I(S) bas the form xy~ 'z for a unique triple x, y, z € S
with y € Sx:N z§,

Proof. (i) = (ii). Since S is cancellative and the sets of principal left and
right ideals of S are chains under inclusion, it follows from Theorem 6.5 that each
element of I(S) has the form xy-lz where y € Sx NzS. Further, by Theorem 6.2,

-1
xy

units. Hence (ii) holds.

z=ab~'c ifand only if x =a, y =b, z =c because S has trivial group of

(ii) = (i). Suppose that ux = uy in S and define 0 on § x § by

(a, B o lc, d) = b~ Hab) = d~Hed) in KS);

by Proposition 2.2, o obeys (1). Then, by (1), (4, x) 0 (u, y) so that x ™ HNux) =
y- 1(uy) in 1(S); whence (ux)~ I - (uy)~ ly. By the uniqueness hypothesis in
(ii), this gives x =y.

The dual also holds, hence S is cancellative and so, by Theorem 6.5 and
Theorem 6.2, the sets of principal left and right ideals form chains under inclu-
sion and further S has trivial group of units. Hence S is the positive cone of a

right ordered group.

6. Some examples. 1. Let S be the semigroup of all 2 x 2 real matrices of
the form (‘; 2), a >0, b>0. Then the sets of principal left and right ideals of

S form chains under inclusion. § has group of units

a 0
Hl= ( ):a>0,b=0
b 1
a 0
K= ):a>0,b>0.
b 1

The kernel is not bisimple but is a P-class of S.

and kernel
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——— e - e ——— — — ——— —
wy
~~
(S [N
— [
S’
——

H A

Since § consists of a group of units and a kernel, it follows from Theorem
6.6 and Proposition 5.2 that the same is true of I(S). In fact, since the kernel
of S is a D-class of S, Proposition 5.2 shows that the kemel of I(S) is a P-class
of I(S) and thus, by [2, Example 2.3.6), is a bisimple inverse semigroup.

2. Let S be the semigroup of all 2 x 2 real matrices of the form (; Na, b>0
ot b =0, a > 1. Then the sets of principal left and right ideals of S form chains

under inclusion. § consists of the disjoint uinon

(0 9

which is isomorphic to the semigroup of reals >1 which was considered in [5], and
a kernel K

|

|

| a 0

(L)

| b 1

' b1
F———y

L

e b 1

L P
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Since S has a kernel, so has I(S); in fact I(S) is the disjoint union of I(P)
and its kernel which is a simple, but not bisimple, inverse semigroup. It follows,
from Theorem 5.2, that each D-class of Ker I(S) contains a unique element of S.
Thus the $-classes of Ker I(S) have S as a transversal but no D-class of Ker I(S)
is a subsemigroup. Thus Ker I(S) is a different type of simple inverse semigroup
from those considered by Munn [ 11}.

The semigroup S in this example is the positive cone of a right order on the
group of all 2 x 2 real matrices of the form (Z ‘1)), a > 0. Similar examples can be
obtained by considering §-classes in the positive cones of right ordered groups
which are not ordered.

3. Let § be the positive cone of the I-group. Then, in §, H =9 and so, by
Proposition 5.2, = § in E(S). Regard E(S) as V/~ where V is as in Theorem
6.2; then ~ is the identity so E(S) = V. The idempotents in the g = D-class

containing (b, b, b) are the triples {(a, b, u): b = ua}. Further, from Lemma 5.1,

(a, b, W) <(c, b, v) e u €Sv, a €cS.

Hence if this inequality holds, ua =vc = b, u =xv, a =cy for some x, y € S.
This implies, vc = ua = xvcy and, since Sp = pS for each p € S, vcy =y'vc for
some y' € S, so ve =xy've. Since S is cancellative with trivial unit group this
gives x = y' =y = 1. Hence the idempotents in each g-class are trivially ordered.
Thus each §-class is Brandt and so E(S) is completely semisimple.

4 Let S=S"' be the cyclic monoid of index 7 and period m [2, p. 20]; thus

r=-1 r

-1,1
S={a,a2,...a 'a,...a”'m l}.

Then the sets of principal left and right ideals of S are chains under inclusion
so that Theorem 4.5 may be applied to describe I1(S).

It is easy to calculate, using Theorem 3.7 that, on § x §,

(@% aV)7(a?, a9 —u=p, v=9q on u+v, p+g>r
and thus that

(@ aV " a?, aD > u=zp, v=9y o u+v, p+g>r and

ea¥ = ea®, eaV = ea? where el =efl.
It follows from this that I(S) can be identified with the set of triples
{G, k, )24, j <k <r -1} together with the kernel {a’, ..., a”*™= 1} of 5. Hence
I(S) has order m + %] k2 =m +1(r + 1)2r + 1)/6. It is easy to see that any non-
trivial congruence on I(S) induces a nontrivial congruence on S. Hence, up to

isomorphism, I(S) is the only inverse semigroup generated by S.
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