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Abstra_

Progressive values of two probabilities are obtained for parameter estimates derived from

an existing set of values and from the same set enlarged by one or more new values, respectively.

One probability is that of erroneously preferring the second of these estimates for the existing

data ("type I error"), while the second probability is that of erroneously accepting their estimates

for the enlarged test ("type II error"). A more stable combined "no change" probability which

always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region

of an equivalent "inverted" sequential probability ratio test (SPRT, Wald 1945) in which the error

probabilities are calculated rather than prescribed.

A parameter change is indicated when the compound pmbabUity undergoes a pmgnessive

decrease. The tests is explicitly formulated and exemplified for Gaussian samples.
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Inverse sequential detection of parameter changes in developing time series

by Uwe Radok and Timothy J. Brown

1. Introduction

The series will be assumed to consist of values from a population with probability function

f (x)=p (=;e;e';e",• ••) dx O)

The existing, or most recent, m values of the series provide parameter est_ates On,; o'm; e"_;

• .. which change to es*+j; 0"s*+j; 0"s*+j; • .. after a further 1_2,. • .j values have been added

to the series. These parameter estimates define four different likelihoods:

S* S*

L. (m)= 1-Ips* Ls*+_(m)=l'IPs*+i
1 1

S*÷"

L_+j(m+j) = p.+j L.(m+y) = p.
! 1

(2).

Throughout bracketed symbols indicate the numbers of values used to calculate the likelihoods,

and subscriptsthenumbers ofvaluesused fortheparameterestimates.

The four equations (2) have been combined for a formal test of the hypotheses H(m):

O= 0,,i, O"= O's,, 0" = O"m "", and H(m+j): 0 = 0s*+j, 0' = Os*+j, 0" = 0"mj "", in terms of

the Neyman-Pearson theory (see e.g., Hoel 1962, chapter 9). this showed (Radok and Brown,

submitted) that the likelihood ratios q (m ) = Ls*+j (m )/Ls* (m ) and

q(m+j) =Lm+j(m+j)/Ls*(m+j) can be estimated by the well-known decision limits of Wald's

(1945) "sequential probability ratio test (SPRT)":

q(m) = _ q(m+j)= 1-_ (3)
l (g O_

where ¢xis the type I error probability of rejecting the estimates 0,,,, O's*, o"s* .. • for the exist-
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ing m values, and [_ is the type II error probability of accepting the same estimates for the aug-

mented set ofm+j values; [_ also represents the type I error of not accepting the estimates 0,,,+j,

O'm+j, O",,,+j; for that augmented set of values. Our test in effect places the likelihood ratio q (m)

on Wald's lower deicision limit, and the ratio q(m+j) on Upper limits which change as further

values become available. But in contrast to the SPRT the "inverse" procedure involves known

likelihood ratios and unknown probabilities which can be found from (3) as

a=(1-q(m))l(q(m + j)-q(m))

(4)

[_= (q(m+j)q(m) - q(m))l(q(m+j) - q(m))

Changes in one or several of the parameter_ are indicated when these error probabilities

show decreasing trends. New parameter values can then be estimated from the new values alone.

Since the individual probabilities can be somewhat irregular due to rounding-off errors, trends

become more clearly visible in their average or in a compound "no-change" probability Vdefined

by the logarithmic width of the SPRT's indecision region,

log, [(1 - [$)/a] - log, [_/(1 - a)] = log, [q (m +j )/q (m)1 = log, Q ;

writing this as

(5)

leads to

_,=(1 + 4_') -1 (6)

7 falls between 0 and 0.5 as long as q(m+j)>(q(m)) and between the arithmetic and

geometric averages of a and [3(see appendix A).
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2. Inverse sequential formulae for Gaussian means and variances.

The basic probability for the Gaussian distribution,

p = (2go2) -Ir_ expl- (x - g)2/2oz ] (7)

involves two parameters (g, o z) which can only be tested jointly since in the present context nei-

ther is known a priori. We use the sample mean as estimate for the population mean It, and

o z = [(n/(n - 1)] s z where s 2 is the sample variance and n(= m or re+j) is the number of values

used. The products (2) are converted to sums by taking logarithms; thus

m m
1og, o_ - _ (x - 11_)2/20_ ; (8)

logt Lm (m) ffi -_- logt 2g - _ 1

with. _(x - g)2 = (m - 1)o_ the last term reduces to - (m - 1)/2.
1

Proceeding in the same way for L_+j(m) leads to

m m

log L,,,+j(m )- --_ logo 2g- _- log, o_+j - _(x -gm+j)2/2o_+j ;
1

with gm+j - _ = Ag the numerator of the last term can be written

1 1 1

=-(m - 1)o_ - 2mgmAg + 2ml_=Ai_-m(Al_) 2

(9)

sothat(9)becomes

m m log_ O_+j- (m - I)(Y_
log_ Lm +j = - "_- log2g - -_- 20_+j

Finallysubtracting(8)from (9')givestheloglikelihoodratio

log_ q (m) = log, Lm+j (m) ffi m logo o_

L,,,(m) 2 o_+j t 2o .÷j

(9')

(10)
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Proceeding the same way for the augmented set of m +j values yields first

m__ m+j
log, m+j(m+j)=- loge211- logeo_+j - Z(x - $t=+j)2/2o_+j

2 2 1
(11)

where the last term. with _,(x - l_m+j) 2 ffi (m+j - I) o_2+j reduces to (m+j - I)/2. Next

m+j m+j m+/
logcLm(m+j) = - loge 211- logeo 2 - _ (x - (gm+i - AI_))2/2o_+j •

2 2 1
(12)

Expanding the last term as before yields

loge L,,, (m +j) ffi- m+j logo 2z - m+j loge 02 -
2 2

(m+J- t)o2.+j (m+j)_z
O_ 2a_

(12')

Subtracting(12')from (II)we obtainthesecondloglikelihoodradio

logeq(m+j)ffi m_2 • o_ . m _2_ , ra_2+i 1]loge am--_+j_" L "o--_m2
+ (m+/×_)2 (13)

The final formulae therefore are

m tq(m) = exp nlog, om+ m2_____l1
0.% -o_z+jj 2o_+j (J_+J-g')

Io.---_, L,_-_2 1 + 2oz (Jh.,j-g.)

(14)

The first two exponents in each formula reflect solely changes in variance, while the third

exponentsdepend primarilyon changesinthemean.

3. Example.

Hg. la shows a series of values drawn at random from Gaussian populations with different

means and variances. The different probabilities are shown in fig. lb and suggest a change start-

ing with the 7th value and accelerating after the 9th value, the actual beginning of a new section

in "statistical control" (Shewhart 1939). A spurious change is suggested briefly after the 14th
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value,butthisis reverseduntil a real change becomes visible after the 26th value, just in, de the

next controlled section. It is noteworthy that these control changes are revealed even though the

population parameters differed considerably from their (small) sample estimates employed by the

test, as the only information available in practice.

4. Conclusion.

We plan to carry out more extensive experiments to establish the full properties of the

inverse sequential procedure, and to test its efficacy on different geophysical time series. Addi-

tional parameters for which the procedure has been formulated, but not yet adequately tested,

include l_isson means (variances), cbl-square means (representing also variances and degrees of

freedom) and linear and exponential trends. These will be reported in a further paper.
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gram.
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Captions:

Fig.1: Aninversesequentialdetectionof parameterchanges.

a) Valuesdrawnat randomfromthreeGaussianpopulationswithmeansandvari-

anc.esindicated.

b)Probabilitiesthatnoparameterchangesareoccurring.

Forsymbolsseetext.
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Appendix A: The no-change probability y

The probability y as defined by equation (6) is,

_= (I + _f_)-_,

and lies between the arithmetic and geometric means of the probabilities a and J3.

shown by alternatively substituting these means for a and 13in the expanded equation (AI),

O = [1- (a+p)+ c0]

When a = [3= (a + 13)/2, equation (A3) becomes

(A1)

This canbe

(A2)

(a + [3)2 + a 2 + _2 + 2c_ > 4c_, or (a- [_)2> 0 .

Finally, with Q 2 > Q > Q t,

[1 + O-,_]-' = ys,_,u_r/c < y= [1 + _'Q?-' < ,ar/t_,k = [1 + ._'_1 -t

(A4)

(¢x+ 13)> 0 since ¢z+ [3> 2(¢x_)_;this can be seen by squaring

(A5)

(A6)

SO that Q2-Q ----2(C_) ½+

both sides giving

1-2(c0)'_+_I
Q2--

1-(a+13)+c_+
Q 1 = (A3)

This shows that the numerator N and the denominator D of Q both have been increased by

£=(a2+l_2)/2 >0. Since Q >1 (i.e., N>D), then Q=N/D >Ql= (N+£)i(D+e) since

ND +N¢ > ND +DR orN > D. the initial condition.

Again with a ffi [3= (o_) z_, equation (A3) becomes
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INVERSE SEQUENTIAL TEST OF GAUSSIAN SAMPLES
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