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ABSTRACT 

Methods are developed and defined for obtaining numerical solutions to three-dimensional, 
free surface, inviscid, incompressible fluid flows and three-dimensional free surface Darcian flow in 
porous media. Since those boundaries consisting of free surface -are unknown a priori, a solution to 
the space boundary value problem resulting from a formulation in the physical space is very 
difficult, if not impossible, to obtain. Consequently, the methods described herein are based on a 
formulation in a space defined by a potential function and two mutually orthogonal stream 
surfaces whose intersections define the streamlines of the flow. In this space the positions of free 
surfaces are known. The formulation considers the magnitudes of the cartesian coordinates x, y, 
and z as the dependent variables. 

The applicability of the methods are demonstrated by implementing them in a computer 
program and by obtaining solutions to four problems with slightly different geometries of 
three-dimensional Darcian seepage flow of water through a dam with a drain over only a portion of 
the toe. Isometric drawing of the space flownets display the results from these solutions. Also a 
number of regular flownets are given which were constructed by projecting the points of 
intersection of the two stream surfaces and/or equipotential surfaces onto horizontal or vertical 
planes. 
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dG dG 

d(G,H) 
dX dy 

()(X,y) 
dH dH and etc. 

dx dy 

The equations given by 8 can be obtained by 
differentiating each of the second set of the above 
functional relationships with respect to x, y, and z 
respectively, and subsequently solving each group of three 
equations with respect to the inverse derivatives. Thus the 
first line of equations is obtained from the solution of the 
following three equations obtained by differentiating 
x=f( qJ ,ljJ , ljJ *) with respect to x, y, and z, respectively. 

dx dF dX dG dx dH 
1 = dCP dx + dljJ dX + dljJ dx 

o dx dF dx dG dx dH 
dCP dy + dljJ dy + dljJ':' dy 

.... (9) 

Likewise 

.d<P d(y, z) . d<P d{X, z) 
J dX d(ljJ, L/J':')' J dy - d (tjJ, tjJ':') , 

.~ d(y, z) . dtjJ d(X, z) 
J dx - d (<p, ljJ*), J dy d (<p, tjJ,:,) , 

.d<P 
J dz 

.~ 
J dz 

d(X, y) 

d{tjJ,ljJ>:') 

_ d{X, y) 
- - d (<p , tjJ':') 

d(X,y) 

d (<p ,ljJ) 

. (10) 

in which j=I/J is the inverse Jacobian determinant 

d£ d£ d£ 

d<P C1ljJ d ljJ':' 

~~k 
d<P dljJ dtjJ':' 

dh dh dh 
d<P dljJ dtjJ':' 

If the partial derivatives of F, G, and H with respect 
to x, y, and z are considered unknown, then Eq. 8 

represents a system of 9 equations in 9 unknowns. Solving 

for these unknowns and substituting the results into Eqs. 
1, 2, and 3 gives the basic inverse equation. It is easier, 

however, to substitute from both Eqs. 8 and 10 into Eqs. 1, 
2, and 3. This latter procedure also yields the following 
inverse equations: 
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These last three basic equations define the inverse 
functions x( <l> , ljJ, l/J*), y( <l>, ljJ, ljJ*), and z( <l>, ljJ ,ljJ *) just as 

Eqs. 1, 2, and 3 formed the basic equations defining the 

poten tial function and the two stream functions in the 
physical space. Consequently, Eqs. 11, 12, and 13, when 

associated with appropriate boundary conditions for a 
particular problem, constitute an inverse mathematical 
formulation of potential fluid or porous media flow. The 

major effort of this investigation has been devoted to the 
development of methods for solving Eqs. 11, 12, and 13 

with appropriate associated boundary ?onditions. 

Method of Solution 

Since Eqs. 11, 12, and 13 (the basic equations for 
which a solution is sought) are nonlinear, and each of the 
equations contain all three of the unknown functions 
x( <l>,ljJ, ljJ*), y( <l>, ljJ, ljJ*), and z( <l>,ljJ ,ljJ*), numerical meth­
ods offer the best present approach to obtaining a 
solution. No effort in this investigation has been devoted 
to seeking transformations, etc., which might make a 
closed form solution possible for certain problems with 
idealized boundary conditions. Rather, the effort has been 
to examine possible numerical approaches which are 
workable and feasible in solving problems of a general 

nature. 

A number of variations of commonly used finite 

differences methods have been implemented in attempting 

to obtain such a solution. The method described as an 
integral part of this report does provide such a solution 

capability provided its implementation is adapted to 

certain features of the particular problem being solved. 

Two alternate methods of solution are also being studied 

further. With the exception of these three approaches the 
attempts at solution by common methods meet with 

limited success. One of the alternative methods utilizes 

finite difference operators based on all possible combina­

tions of first order forward and backward differences of 
the basic Eqs. 11, 12, and 13 and weights the results in 

proportion to the distance the grid point is from the 
various boundaries of the problem. This alternative is 
being studied by a Ph.D. candidate who is attempting to 
obtain the solution to the problem of potential flow at 
the free overfall end of an open channel. In this 
alternative the successive overrelaxation method has been 
modified by using Newton's method to simultaneously 
obtain solutions to the various finite difference operators 
obtained from Eqs. 11, 12, and 13 as well as from the 
boundary conditions at each mesh point. The details of 
this method, as well as the results of solutions, will be 
forthcoming. 

The second alternative which combines direct meth­
ods for solving finite differenee equations with iterative 
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Table 1. Second order equations obtained from Eqs. 11, 12, and 13 under the assumption that variables are known from adjacent planes. 

Eq. 

No. 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Derived 

from 

Eauations 

11 & 12 

11 & 12 

11 & 13 

11 & 13 

12 & 13 

12 & 13 

11 & 12 

11 & 12 

11 & 13 

11 & 13 

12 & 13 

12 & 13 

11 & 12 

11 & 13 

12 & 13 

Plane 

of 

Equations 
Second Order Partial Differential Equation 

(Three other equations can be obtained which apply in the ljJljJ':< plane.) 
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terms is very small in comparison to the other. The 
second criteria helps insure that the equation has some 
resemblance to the Laplace equation upon which many 
numerical as well as other solutions have been based. If 
this criteria is poorly satisfied, a solution in each 
individual plane can be obtained with few iterations by 
solving the system along the grid line in the direction of 
the dependent variable with the larger coefficient. But 
since the problem is of the elliptic type, this would mean 
that a high dependency exists between the values on this 
plane and the values on adjacent planes. Consequently, 
the reduction in arithmetic calculation in obtaining 
tentative solutions in separate planes would be more than 
offset by additional cycles of calculations resulting be­
cause of the slower convergence in the cycle from plane to 
plane. Furthermore, the process of solution may be less 
likely to converge than if this criteria were maintained. 
The third criteria is closely associated with the above two 
reasons. 

To illustrate how the selection of the best equations 
from those listed in Table 1 might be arrived at, consider a 
three-dimensional potential flow with the major com­
ponent of velocity throughout the majority of the region 
as being in the x-direction. The velocity components in 
the y-direction in general are also greater than those in the 
z-direction. Furthermore assume, because of the nature of 
the particular problem, that a boundary of the problem 
along which 1jJ is selected to be held constant is normal to 
the y-direction, and another boundary at right angles to 
this boundary is selected as a 1jf=constant surface. In this 
problem the major changes in the flow field exist within 

cP 1j; planes with lesser changes occurring between adjacent 
cP 1j; planes. Consequently, derivatives of x and y with 
respect to 1j;* will generally be of smaller magnitude than 
those with respect to <p and 1j;. A logical choice, 
therefore, would be to select equations for solving for x 
and y which apply on <p1j; planes and an equation for z 
which applies on <P1j;* planes. In other words the variables 
x, y, and z would each be obtained by use of the equation 
which applies in the plane where the greatest action of 
that variable is. Therefore either Eq. 18 or Eq. 20 should 
be used in solving for x. Proceeding with this selection it is 
clear that Eq. 18 is better suited for a solution than Eq. 
20 because the magnitude of e = dzl d 1j; *, the coefficient 
for the second d.erivative in Eq. 18 is close to unity 
whereas the value of f = d yl d1j; * in Eq. 20 is much 
smaller. Consequently Eq. 18 would constitute a good 
choice for solving for x. Likewise Eq. 19 constitutes a 
good selection of the equation for use in solving for y. 
Since the equation for z is to apply in <p1j; * planes, the 
choice is between Eqs. 27 and 29. For this problem the 
magnitude of d is nearer unity than the magnitude of i, 
and Eq. 27 should be used. 

For other problems the equations to be used might 
be different, but their selections would be based on a 
physical understanding of the flow situation and similar 
criteria. Conceivably, in certain types of problems in 
which the nature of the flow changes drastically in 
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different portions of the flow field, it may actually be 
advantageous to use different equations in different 
regions of the <p 1j; 1j;* space. 

In Eqs. 30, 31, and 32 opposite signs accompany 
the coefficients of the two second order derivatives. Since 
the differential equations must be of the elliptic type, it 
follows that the coefficients must have opposite signs 
associated with them, i.e. if the product of fh in Eq. 30 is 
positive then the product id must be negative or con­
versely, etc., for Eqs. 31 and 32. Should the sign of the 
coefficients in these equations be the same, the equations 
would be hyperbolic, in contradiction to physical facts of 
ideal incompressible fluid flow. Therefore in initializing 
the field values of a problem which is to use Eqs. 30, 31, 
or 32 in its solution, it is necessary to insure that value of 
the products which constitute these coefficients are of 
opposite sign. To do otherwise would probably cause 
divergence or other difficulties in attempting a numerical 
solution. Since in the iterative solution process it is 
conceivable that the coefficients to these equations may 
take on the same sign, it may also be necessary to add 
some additional constraint to prevent this from occurring. 
In the problem solved in this report, any such difficulties 
have been avoided by solving only equations that apply in 
the <p 1j; and cP 1j;* planes. 

Finite difference operators 

In finite difference solutions to partial differential 
equations, the continuous variables are replaced by 
discrete values at the finite difference grid points placed 
throughout the region. For the applications which have 
been considered in this report, a system of grid points has 
been used which forms cubes throughout the region of 
flow. Thus in differencing the partial differential equa­
tions, b.1j; *= b.1j; = b. CP . Furthermore each of the in­
crements b.CP, b.1j;, and b.1j;* have been assumed to have a 
unit value. This is possible in the inverse formulation and 
solution methods used because the region of the problem 
is defined by specifying the number of b. CP, b.1j;, and 
b. 1j; * increments in each of the inverse coordinate 
directions, and thus several dimensions of the physical 
problem become part of the solution. 

The finite difference operators for the interior grid 
points have all been obtained by replacing the derivatives 
by second order central differences. Table 2 gives these 
finite difference operators for the equations in Table 1 
with the terms contained within the square brackets. The 
equations which define the a's in each finite difference 
operator are given in the right portion of the table. Table 
3 gives the equivalent operators for the equations using 

the replacement term above the square bracket in Table 1. 

The operators may be written in a number of 
different forms. The form in which they are given in 
Tables 2 and 3 conforms to that needed to apply the line 
successive overrelaxation iterative (LSOR) method (see 
Forsythe and Wasow, 1960, or Varga, 1962) along lines 



Table 2. Finite difference operators which are based on the partial differential equations in Table 1. 

Eq. 

No. 

18 

19 

20 

21 

22 

23 

24 

Finite difference operator 

(
1 +a ) (1 - a ) 

-xi _ 1jk + Z 1 +a: x ijk - 1 +a: xi+ljk 

(

1 +al) 
-z. l·k+ 2 -1-- z··k-

1- J + a
3 

1J (

1 - a) 
1 + a: Zi+ljk 

(1 +al) (1 -a 3) 
-Yi - 1jk + Z 1 +a

3 
Yijk - 1 +a

3 
Yi +1jk 

= [(a
1
-a

Z
)Y

ij 
-lk + (a

1 
+a

2
)Y

ij
+l

k 
+a

4
]/ (l+a

3
) 

-Zi_ljk +z(~ :::) Zijk - C ~::h+ljk 
= [(a

1 
-a

2
)zij_lk + (a

l
+aZ)zij+lk +a4 ]/(I+a3) 

9 

Definition of a 

coefficient in operator 

Z f df 1 df 
a l = f ,aZ ="2 d4J' a 3 = 2f dCP 

_d(hd) fd(de) hddf 
a 4 - deD - d4J - f deD 

Z h dh 1 dh 
a l = h ,az ="2 d4J' a 3 = Zh 0<1> 

d (ie) ie dh h d (if) 
a 4 = ~ -h deD - d4J 

Z h dh 1 dh 
a 1 = h ,az ="2 d4J' a 3 = Zh deD 

_ ii dh h d (ie) d (if) 
a 4 - h 2Jcp - d4J - deD 

a - gZ a _.s. ~ a - ~ ~ 
1 - 'Z - Z d4J*' 3 - Zg d<1> 

de ~ d(ie) d(de) 
a 4 = g deD - g d4J* - ~ 



Table 2. Continued. 

Eq. 

No. 
Finite difference operator 

25 
-Yi - 1jk +2 G ::~) Yijk - C ~ ~h+ljk 
= [(0.

1 
- 0.2)Y

ijk
_

1 
+ (0.

1 
+ 0.2)Y

ijk
+

1 
+0.

4
]/(1+0

3
) 

26 

27 -z +2(~\z - (~)z 
i -ljk \1 + 0.

3
) ijk \1 + 0.

3 
itljk 

= [(0.
1 

-0.2)zijk_l +(0.
1 

+0.2)zijk+l +0.
4

]/(1+0.
3

) 

28 
(_1 + a. ) (1 - a. ) 

-Yi - 1jk + 2 \1 + a.: Yijk - 1 + a.: Yi +1jk 

29 
-Zi_ljk +2 G :~ Zijk - G ~ ~)Zi+ljk 
= [(0.

1
- 0.2)zijk_l +(0. 1 +0.2)zijk+l +0.4 ]/(1+0.

3
) 

30 -Zij_lk + 2 (:: ~ ::) Zijk + (:~ ~ :~) Zij+lk 

= [(0.2 -0.4)zijk_l +(0.2 +0.4)zijk+l -0.5 ]/(0.3 -0.
1

) 

31 
2 (_0.2 - 0. 1) (0.1 + 0.3) 

-Yij - 1k + \0.
3 

- 0.
1 

Yijk + 0.
3 

- 0.
1 

Yij+l k 

= [(0.
2 

- 0.4)Y
ijk

_
1 

+(0.
2 

+0.4)Y
ijk

+
1 

- 0.
5

]/(0.
3

-0.
1

) 

32 
-Xij -lk + 2 (:: ~ ::hjk + (~ ~ ::) xij+lk 

= [(0.
2 

= 0.
4 

)x
ijk

_ 1 + (0.
2 

+ 0.
4 

)xijk+l - 0.
5

] 1 (0.
4 

-0.
1

) 

10 

Definition of a. 
coefficient in operator 

a. - g2 a. _.B. ~ a. - ~ ~ 
1 - , 2 - 2 CtV:<' 3 - 2 g c¢ 

c(ie) ie £g c(de) 
0.4 = c¢ - g c¢ - g clj;':< 

2 d cd 1 cd 
0. 1 = d , 0.2 = 2" clj;':<' 0.3 = 2d c¢ 

_ C(fg) !..s. cd d c(if) 
0.4 - c¢ - d c¢ - clj;':< 

2 d cd 1 cd a. -d a. ---::--:r. a. ---
I - , 2 - 2 clj;"<' 3 - 2d c¢ 

_ ii cd _ d c(fg) c(if) 
0.4 - d c¢ clj;':< - d(i) 

.2 i ci 1 ci 
0. 1 = 1 , 0.2 = "2 clj;':<' 0.3 = 2i c¢ 

_ ~ ci . c(dh) c(gh) 
0.4 - i c¢ - 1 clj;':< - c¢ 

.2 i oi 1 ci 
0. 1 = 1 , 0.2 = 2" clj;':<' 0.3 = 2i c¢ 

_ c(dh) . c(gh) dh ci 
0.4 - c¢ - 1 Clj;':< - i c¢ 



Table 3. Finite difference operators which are based on the alternate partial differential equation in Table 1. 

Eq. 

No. 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Finite difference operator Definition of a coefficients in operator 
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defined by the incremented subscripts on the left side of 
the equation within the plane to which the particular 
equation applies. The operators can readily be modified to 
represent the form needed to apply them in the LSOR 
method in the other coordinate direction by solving for 
the present operator in terms of the value of the variables 
presently on the right side of the equation and the values 
of the variable at the grid point in question (ijk). The 
operator could be made suitable for direct application in 
the successive overrelaxation method (SOR) by writing 
the equation so that only the value of the variable at the 
grid point in question (ijk) is on the left side of the 
equation. 

In order to evaluate which method would minimize 
the amount of computer execution time required to 
obtain a tentative solution in individual planes, 
FORTRAN subroutines were written to implement both 
the LSOR and the SOR methods (each with the over­
relaxation factor equal to 1.4) for each operator in Tables 
2 and 3, to solve a Dirichlet type boundary value problem 
in a plane. The comparison was close but did favor the 
LSOR method. Since the total execution time depends to 
some extent on the effiCiency of the computer system in 
handiing triple subscripted arrays, the comparison of the 
two methods may be different on different computer 
systems even though the identical programs were used in 
the comparison. In the LSOR method more computations 
are involved per iteration but fewer iterations are required 
for a solution than with the SOR method. Since the 
additional computations per iteration are primarily with 
nonsubscripted variables or single arrayed variables, the 
LSOR method requires fewer operations with the triple 
subscripted arrays. The comparisons referred to above 
were made on the UNIVAC 1108 system, under EXEC 8, 
at the University of Utah. Coefficients, which are com­
posed of the a's in the operators, were in each case 
computed only during the first iteration and stored for 
use during subsequent iterations. Doing this is justified 
because the a's are either determined from values on 
adjacent planes which do not vary or they are of relatively 
small magnitudes, and their values will be adjusted during 
the next cycle of solutions anyway. 

Line successive overrelaxation method 

While the LSOR method is well documented in a 
number of references, two of which are given previously, a 
brief description of this method is given here for 
completeness. 

To understand the LSOR method it should be noted 
that when anyone of the operators in Tables 2 or 3 is 
applied across all interior grid points' of a line, a system of 
linear algebraic equations results, with the following form 

AX = 13 .......... (33) 

in which X and Bare column vectors and A is the (nxn) 
matrix given by 

12 

all aIZ 

aZI a ZZ a Z3 

a
3Z 

a
33 

a
34 

A ... (34) 

a
llll

_ l ann 

and n represents the number of grid points at which the 
operator has been applied. If Dirichlet boundary con­
ditions exist at both ends of the grid line, this number is 
two less than the number of grid points on the line 
including the boundary points. For non-Dirichlet 
boundary conditions a finite difference operator from 
that condition gives the first, the last, or both the first and 
last equations of the system, Eq. 33. 

The simple tridiagonal coefficient matrix A is an 
important feature of the method from a computational 
viewpoint, since the system of equations with such a 
coefficient matrix can be solved by a single pass through 
the rows with a Gaussian elimination. The solution is 
subsequently obtained by back substitution. The method 
for accomplishing this has been referred to as the Thomas 
algorithm (Thomas, 1949) by some writers. This method 
defines the follOWing elements, along and above the 
diagonal by the vectors q,f; a.oo T ~pectively, and also 
defines elements of the vectors f and g by 

f 
ITl 

S 
ITl 

g = f (b - q g I ) / s 
ITl ITl ITl ITl ITl- ITl 

in which the b's are the elements ofB. Then the solution 
vector X can be obtained from 

Xn = gn 

x
ITl 

= gITl - fITl x
ITltl 

• n - I ~ ITl ~ I •• (35b) 

Should the elements of all off-diagonal terms in A be 
equal to -1, as is the case for many of the operators in 
Table 3, then the algorithm becomes 

f 

}2 ~ m ~ n .. (36.) 
ITl r - f 

ITl ITl-I 

g = f (b + g I) 
ITl ITl ITl ITl -



/' 

and 

x 
n 

x 
m 

g + f Xl' n-l ~ m ~ 1 . . (36b) 
m m m+ 

In executing the algorithm given by either Eq. 35 or 
Eq. 36, it is not necessary to set aside storage for a new 
array f. Rather, since the values of r need not be retained 
the values of f may be stored in the former array position~ 
for r. 

Upon obtaining the solution vector X which repre­
sents the values of the variable of the finite difference 
operator across an entire grid line, they are immediately 
adjusted by the formula 

X~.+kl = x + W (x - x P ) . . . . . (37) 
1J iIi ijk 

in which xi' with the single subscript, represents the 
solution as described and x ijk with the triple subscript, is 
the value of the variable at the grid point in question. The 
superscript p represents the number of the iteration, and 
WI is the overrelaxation factor with a value between zero 
and unity. It should be noted that Eq. 37 is not the usual 
form of the overrelaxation equation, which is 

p+l _ p p 
x··

k 
- x··

k 
+ W(x. - x .. k) . 

1J 1J 1 1J 
... (38) 

in which W = WI + 1. 

It is easy to demonstrate that Eqs. 37 and 38 are 
identical. In a computer solution it is more efficient to use 
Eq. 37 since core positions from the triple subscripted 
arra~ xijk need only be located once instead of twice as 
requITed by Eq. 38, and since xi may be a non­
subscripted variable. 

The LSOR method proceeds from line to line until 
the value of the variables across all lines within the plane 
have been adjusted. Upon completing the last line the 
entire process is repeated as the next iteration. The 
iterations are continued until changes of the variables 
between consecutive iterations are smaller than some 
prescribed error criteria. An often used and easily applied 
criterion is to continue the iterations until the sum, over 
all grid points, of the absolute values (or sum of squares) 
of the quantity within the parentheses in Eq. 37 is less 
than a small specified error parameter. 

Three-dimensional Seepage Through 

Dam with Partial Toe Drain 

Formulation 

The inverse formulation and method of solution 
described earlier have been applied to a relatively simple 
three-dimensional problem in order to obtain a numerical 
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solution and verify the applicability of the methods. The 
problem selected for this initial application consists of the 
saturated seepage flow through a dam with a vertical face 
which rests on an impervious horizontal base with a 
partial opening on the base through which water can 
drain. Furthermore, the dam lies between two vertical side 
walls. An isometric sketch of this problem is shown in the 
upper portion of Fig. 1. This problem was selected 
because it represents a number of possible real situations 
and has relatively simple boundary conditions associated 
with it. Unfortunately it also contains mathematical 
singularities where the theoretical velocity becomes either 
infinite or zero. 

The problem illustrated in the upper portion of Fig. 
1 is also sketched in the 4?1jJ1jJ* space in the lower portion 
of the figure. This space has been selected such that the 
impervious bottom defines the 1jJ =0 stream surface and 
the left vertical wall (when facing downstream) defines 
the 1jJ *=0 stream surface. The right vertical wall then 
defines the final 1jJ*=constant surface, i.e. 1jJ f *, and the 
phreatic surface (i.e. the surface between the saturated 
flow and zero flow regions at atmospheric pressure) 
becomes the final 1jJ=constant surface, i.e. 1jJ f . The front 
face through which the water enters has a constant 
hydraulic head and consequently represents an equipo­
tential surface, as does the drain surface through which 
water leaves the region of interest. Through Darcy's Law, 
given by 

v = - K7h ......... (39) 

in which Vis the velocity vector, K (assumed constant) is 
the hydraulic conductivity with dimensions of velocity 
and h is the hydraulic head, the potential function is given 
by 

<P = - Kh + Constant ...... (40) 

Consequently the face through which water enters is an 
equipotential surface which can be defined by 4?=O and 
the drain surface coincides with the final 4?=constant 
surface, i.e. <Pf • 

With this definition of the 4?1jJ1jJ * space, the 
following boundary conditions can be developed. (Obvi­
ous boundary conditions are also shown by an equation 

?y t~at boundary in the lower portion of Fig. 1 to help 
IdentIfy that boundary in the 4?1jJ1jJ* with the physical 
problem.) 

A. Bottom 4, 5,9,10 

o· ........ (41) 

tJ~) ~~z~ dO ••• (42) 



The finite difference operator for either Eq. 43 or 
46 is 

(a -a J 
=l/ fa: Zijk_l 

............ (67) 

in which 

a = 
3 

and j=1 or j=M respectively depending upon whether Eq. 
67 applies to the bottom or to the phreatic surface. Prior 
to adjusting the values along the interior lines on the 
bottom and on the phreatic surface by means of the 
operator Eq. 67, the values of z along the ~=O lines of 
these surfaces are obtained from the equation 

ex 
z = S~'" ; d<\>'" •••••.• (68) 

The solution of Eq. 68 follows the approach described for 
solving Eq. 42. 

The boundary conditions, Eqs. 48, for y on the 
upstream face, are obtained by noting that since this 
vertical face is an equipotential surface, the streamlines 
intersect with it normally. Therefore, ay/ a ip =0, 
a x/a ljJ =0, and h= a x/ a 1}J *=0 and Eq. 19 reduces to 
Eq. 48a. The finite difference operator for y on the front 
face is obtained by first differencing Eq. 48a and then 

noting from Eq. 48b that Yi-Ijk = Y i+ljk . The resulting 

operator is 

+a ] }/(1 +a) ............. (69) 
3 1 

in which 

a 
1 

Z 
e , a = 1. e ee and a = e ~ 

Z z el/J 3 etjJ 

The boundary condition Eqs. 51 and 54, for x along 
the left and right sides of the problem, are obtained from 
Eqs. 11 and 12 and from the fact that along the sides z is 
constant. The latter fact leads to g= a z/a ljJ =0 and 
a z/ a ip =0, and consequently 

ex ~ ~ ....... (70) 
ecp = etjJ ctjJ':~ 

and 

~ ex ez ( ~ - _ ~ ~ ....... 71) 
uCP - utjJ ul/J':~ 
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Differentiating Eq. 70 with respect to ip and Eq. 71 with 
respect to 1}J. and combining leads to Eqs. 51 and 54. 
Alternatively Eqs. 51 and 54 can be derived by setting g 

equal to zero in Eq. 18. 

The finite difference operator for Eqs. 51 and 54 is 

(
1 +a j Ca - Ij 1 3 

- x. . + Z -- x.. + -- x. . 
1-IJk 1 +a

3 
IJk a

3 
+ 1 l+IJk 

in which 

[(a 1 -aZ)xij_lk +(a 1 +aZ)xij+lk]/(a3 + 1) 

............ (72) 

Z e ee a 
e , a z = "2 etjJ' 3 

ee 
Ze ecp 

and the subscript k equals either I or N respectively, 
depending upon whether the operator Eq. 72 is applied to 
the left or right side of the problem. 

The boundary condition Eqs. 52 and 55 for y along 
the sides are also obtained from Eqs. 70 and 71. 
Differentiating Eq. 70 with respect to 1}J and Eq. 71 with 
respect to ip leads to these boundary conditions. Alter­
native Eqs. 52 and 55 can be obtained from Eq. 19 with g 
set equal to zero. The finite difference operator for Eqs. 
52 and 5~ is, . 

( 1+ ct.l] [a 3 - IJ 
-Yi-ljk+Zla3+1 Yijk + a

3
+1 Yit1jk 

in which 

[(a
1 

-aZ)Yij_lk + (a 1 +aZ)Yij +1k]/(a3 + 1) 

............ (73) 

a = 
Z 

and as before k=1 or N depending respectively upon 
which of the two sides is being considered. 

Method of solution 

An examination of the problem as defined earlier, 
indicates that the flow is principally in the x direction in 
the vicinity of the vertical front face and in the y 
direction upon leaving the dam. Consequently in general 
the variables x and y vary more within ip 1}J planes than 
within ip 1}J * or 1}J 1}J planes of the q,1}J ljJ* space. The 
regions of the problem in which an exception to this 
occurs are the small spaces in the vicinity of the bottom 
and vertical sides at the drain end of the flow. In these 
regions singularities (Le. stagnation lines) exist which 
should be given special consideration in order to improve 
the accuracy of the finite difference solution. Since the 
primary purpose of this study was to examine inverse 
formulations for three-dimensional problems and methods 
of solution, this special consideration has not been given 



to these regions, with the consequence that details of the 
solution in these regions must be accepted with reserva­
tion. In addition this examination of the problem indi­
cates little change of the variable z occurs within <P1.JJ 

planes and much more variation of z occurs within <P 1.JJ* 
or 1jJtJJ * planes. 

Therefore, by using the criteria outlined earlier for 
selecting the planes on which tentative solutions for each 
variable will be obtained, it is obvious that x and y should 
be solved for on <P1.JJ planes, and that tentative solutions 
for z should be either on individual <P1.JJ * or 1.JJ 1.JJ* planes. 
Since the equations on the <P1.JJ* planes generally require 
less arithmetic to obtain a solution than do the equations 
which apply on the 1.JJ1.JJ* plane as well as the possible 
difficulties which result if the coefficients of the second 
derivative terms should take on like signs during the 
solution process, z will be solved for on <P1.JJ* planes. An 
examination of the equations in Table 1, which may be 
used for solutions of x, y, and z on the planes as indicated 
previously reveals the following: 

1. Eq. 18 or Eq. 20 can be used for the- solutions 
ofx-. -

2. Eq. 19 or Eq. 22 can be used for the solutions 
ofy-. -

3. Eq. 27 or Eq. 29 can be used for the solutions 
ofz-. -

Further examination of Eqs. 18 and 20 indicat.es 
that the coefficient, e 2, for a 2X /d1.jJ2, is close to unity for 
this particular problem throughout most of the region in 
Eq. 18 whereas this same coefficient f 2 for Eq. 20 is 
relatively small. Based on the second criteria given earlier, 
Eq. 18 will be used to solve for x. Based on the same 
criteria the solutions for y will be based on Eq. 19. 
Comparing the magnitudes of the coefficients d 2 and i 2 

for the term a2z/ a1.JJ *2 in Eqs. 27 and 29 shows that d 2 
in general will be larger than i 2 and therefore Eq. 27 will 
be used to obtain the solutions for z. The equation 
numbers to be used in solving for x, y, and z have been 
underlined in the previous paragraph. 

To help describe the procedure used in obtaining 
the finite difference solution to the three-dimensional 
seepage flow through a dam, the following terminology 
will be used. 

(a) Tentative solution-refers to a solution based on 
any of the finite difference operators in Tables 2 and 3 or 
any of the operators for a boundary condition. These 
solutions are obtained on a specified plane within the 

<P 1.JJ 1.JJ* space and are based on the assumption that certain 
quantities, which are given by single letters in the finite 
difference operator, are known. Actually these quantities 
will have their values adjusted as the solution proceeds. 
All of these tentative solutions in the current computer 
program are obtained by the line successive overrelaxation 
(LSOR) method as described earlier. 
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(b) Iteration number-refers to the number of times 
the LSOR method adjusts the values of x, y, or z on any 
single plane in obtaining a particular tentative solution. 

(c) Cycle number-refers to the number of times all 
tentative solutions are obtained. Thus during the first 
cycle all tentative solutions for x, y, and z will be 
obtained as well as tentative solutions for these variables 
on the boundary plane which are not of the Dirichlet 
type. The same process is repeated for the second cycle, 
etc. 

The procedure followed in the computer program 
for obtaining the solutions is illustrated in the gross flow 
chart given in Fig. 2. There is no reason why this exact 
procedure needs to be followed, and it would be of 
interest to study whether solutions can be obtained in 
fewer cycles by altering the order in which tentative 
solutions are obtained. The present program first obtains 
all the tentative solutions for x, then obtains all the 
tentative solutions for y, and finally obtains all the 
tentative solutions for z. Furthermore, the tentative 
solutions for the boundaries are obtained in general prior 
to obtaining the tentative solutions for that variable on 
planes within the interior of the region. The additional 
feature has been incorporated within the program, so that 
any of the tentative solutions on boundary planes need 
not be obtained during any cycle number. This feature 
provides a means for settling the values at interior grid 
points prior to adjusting the values on the boundary 
planes, and also permits control to be exercised in not 
adjusting certain boundary values during some cycles 
should one decide to do this. Boundary values, for which 
this latter feature may be used, are 'the x values on the 
bottom and phreatic surfaces, or the x and z values on the 
drain surface. These values are obtained by a numerical 
differentiation and integration process. For x on the 
bottom this integration starts at the upstream face and 
proceeds toward the drain, and consequently any error is 
accumulative. This accumulative error, if it changes the x 
values each cycle, in turn prevents the interior values from 
settling very fast. By permitting the interior values to 
become fairly well settled before adjusting the x values on 
the bottom, phreatic surface, and drain, and then adjust­
ing these values only during part of the cycle numbers, 
results in more rapid convergence to the final solution. 

The manner in which each of the tentative solutions 
is obtained is slightly different depending upon which 
variable is involved and depending upon whether the plane 
is interior or a boundary plane. For those tentative 
solutions which are obtained by the LSOR method, the 
flow chart in Fig. 3 outlines the procedure used. The 
LSOR method is used for all the solutions on interior 
planes and on all boundary planes with the exception of 
the following five: (1) The x-values on the bottom, (2) the 
x-values on the phreatic surface, (3) the x-values on the 
drain, (4) the z-values on the drain, and (5) the z-values· on 
the upstream face. These five boundary values are 



Read in Problem Specifications 

SUBROUTINE INITAL 

To initialize problem 

Read tape and other 

possible tape operations 

r--.------ - -----------

SUBROUTINE DRAINX 

Adusts x on drain with Eg. 

SUBROUTINE XTOPB called 
twice; once for bottom and once 
for top. Adjusts x on bottom and 
phreatic surface with Eg. 

SUBROUTINE SIDEX 
Adjusts x on left and right sides 

with Eg. 

SUBROUTINE YSIDE called twice; 

YES 

YES 

YES 

SUBROUTINE XINTER 

Adjusts x throughout interior with Eg. 

once for each side. Adjusts y , YES 
on sides with Eg. 

SUBROUTINE ZTOPB called 

twice; once for bottom and once 
for phreatic sur face. Adjusts z 
on these surfaces with Eg. This 
subroutine also adjusts the values 
of z on the u stream face. 

SUBROUTINE ZDRANF 

Adjusts z on drain with Eg. 

SUBROUTINE YINTER 
Adjusts y throughout interior with Eg. 

YES 

YES 

SUBROUTINE ZINTER 
Adjusts z throughout interior with Eg. 

-~---., 

L _____________________ ----------- _________ ------...1 

Print solution results and write tape with 
solution results. 

Fig. 2. Flow chart of computer program for solving problems of three-dimensional flow through a dam. 
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ENTER SUBROUTINE 
for obtaining finite difference 

solutlon in plane 

DO 

--------------
for number 

line s wi thin 
plane 

I 
I 
I 
I~------------------~ 
I Compute the coefficients (i. e. , YES 

---I 
I 

I 
I 
I I the a's) of the finite difference .----<' 

I 
operator and store them in a 

two-dimensional arra 
I 
I 
t 
I 
I 
I 
I 

I 

I 
1 

I 
I 
1 

Compute the quantities needed to define the 

Tridiagonal system of equations along the given 

line in the given plane 

Solve the Tridiagonal system of equations 

resulting from applying the finite difference 

operator across grid points of the given line 

Apply the overrelaxation factor and adjust 

variable alon the iven line 

I 
I 
I 
t 
I 
I 
I 
I 
1 

I 
I 
I 
I 

I 
I 
I 
I 
L _________ ------------- - - ----- -- ---' 

Increment iteration counter 

NO 

NO 

Return 

NO 

Repeat for all 

interior plane s 

within region 

Fig. 3. Flow chart of the computer program subroutines which obtain the tentative solutions by the LSOR-Method. 
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obtained by the numerical differentiation integration 
process which has been described earlier. 

The procedure followed in obtaining each of the 
tentative solutions is first to establish the system of 
equations which results from simultaneous application of 
the fihite difference operator across the particular line 
being considered. The coefficients which are needed to do 
this are actually only computed during the first iteration 
of any tentative solution. Next the tridiagonal system is 
solved and the values of that variable along the line are 
adjusted by the overrelaxation factor. The procedure is 
repeated for subsequent lines until all lines within the 
plane have been adjusted. This entire process constitutes 
one iteration. Iterations are continued until either the sum 
(across all grid points within the plane) of absolute 
differences in values between consecutive iterations is less 
than the prescribed error parameter or the iteration 
number exceeds the maximum specified as allowable. In 
the case of the subroutines which obtain the tentative 
solution on interior planes, the program allows that this 
process of obtaining tentative solutions on consecutive 
interior planes will be repeated either a limited number of 
times or until the maximum iteration number required to 
obtain the tentative solutions is less than a specified 
number. By allowing this to occur, it is possible to obtain 
tentative solutions before leaving that subroutine, such 
that the variable being solved for will no longer change 
because of changes in its values on consecutive planes. 

All lines in the LSOR method have been taken in 
the direction of q). In other words, the lines are defined 
by either holding l/J or l/J* constant depending, respec­
tively, on whether the solution is obtained on a q)l/J or a 
q) ljJ * plane. An earlier version of the program used lines 

taken in the direction of l/J * when using the LSOR 
method to adjust the values of z in the bottom and 
phreatic surface planes. This choice was arbitrary and was 
not based upon considerations of increasing convergence 
rates, etc. Since the performance of the program showed 
no appreciable difference with direction of the lines, the 
final version of the program which is given in Appendix B 
uses lines in the direction of q) for computing z on these 
planes. 

Solution Results 

The results from the inverse formulation given in 
this paper are in terms of the magnitude of x, y, and z at 
the intersection points of the potential surfaces with the 
two stream surfaces defined by holding l/J and l/J* equal 
to constants. As a consequence a three-dimensional 
flownet can readily be plotted by simply connecting the 
points defined by the x, y, and z coordinates given at each 
grid point throughout the q)l/Jl/J * space by lines and 
visualizing the small planes defined by these lines as 
representing sides of the parallelepiped elements of the 
space flownet. 
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The solution results can also readily be used to 
obtain other quantities of interest about the flow. For 
instance the velocity at any point within the flow space is 
given by the following equation 

v = [(~r + l~J ~ + [~rl1/2 .. (74) 

To derive Eq. 74 first note (from the definition of 
'the Jacobian determinant J given below Eq. 8) that upon 
expanding the determinant for J at the top row results in 

J = u 
2 + v 2 + w 

2 = Y 2 . . . . . (75) 

In other words the Jacobian determinant equals the 
velocity of the flow squared. Next note that the first 
equation from each set of three equations in Eq. 8 can be 
written as follows 

y2 ex (76a) 
e<P u 

y2 ~ -v 
(76b) 

e<P 

y2 ez = w . . . . . . . (76c) 
()ljJ 

Upon squaring Eqs. 76a, 76b, and 76c and subsequently 
adding the resulting squares and finally solving for the 
magnitude of the total velocity leads to Eq. 74. 

By using the inverse relationships given earlier or the 
inverse Eqs. 11, 12, and 13 a number of other possible 
equations for computing the velocity can be derived. 

From the numerical solution results, the velocity is 
actually computed by approximating the derivatives by 
differences. Using second order central differences gives 
the following equation for the velocity at a grid point 
(ijk). 

2 2 2 .! 

[(xo +l°k-xo l·k) + (y. l·k- Y. l·k) + (zo l°k- Zo l·k) f 
1 J 1- J 1+ J 1- J 1+ J 1- J 

.............. (77) 

To obtain the direction of the velocity vector at any 
point within the flow space, it is necessary to use Eqs. 
76a, 76b, and 76c in conjunction with Eq. 74. The angles 
(1, S, and y which the velocity vector makes with the 
positive direction of the physical coordinate axes x, y, and . 
z are: 

-1 (~ ex\ 
a = cos lY e<p-) (78a) 

~ = cos -1 t ~ ...... (78b) 

'Y = 
-1 

cos ...... (78c) 



In other words the quantities V a xl a ~, V d y I a ~ and 
va zl a ~ are the direction cosines of the velocity vector. 

By varying the specifications which define variations 
of the basic problem described earlier, four separate 
solutions have been obtained to three-dimensional seepage 
through a dam with a vertical face and a drain over a 
portion of the horizontal bottom. A summary of the 
essential specifications for these problems is given in Table 
4. In all four of the problems, 21 potential lines were 
specified, and in each problem the same number of 
ljJ=constant and ljJ*=constant grid lines were specified. 
This latter specification requires, in each problem, that 
the width between vertical walls equals the depth of water 
on the upstream face, since as implemented in the 
computer program llljJ = llljJ*= ll~. An example of the 
final solution for Problem No.2 showing the magnitudes 
of x, y, and z at each grid point within the ~ljJljJ* space is 
given as Appendix C. 

Table 4. Summary of problem specifications. 

Problem Number 
Specification 

1 2 3 4a 

No. of ~-grid lines 21 21 21 21 

No. of ljJ-grid lines 11 10 9 11 

No. of ljJ*-grid lines 11 10 9 '11 

Height of water on 10.0 9.0 10.0 10.0 
dam face 

Width of dam 10.0 9.0 10.0 10.0 

Dist. zJJ to beginning 1.0 1.0 0.5 1.0 
of rain 

Dist. z 2 from drain 1.0 0.0 1.0 1.0 
to nght side 

aThe specifications to this problem were the same as Problem 
No.1 with the exception the drain was not specified as rectangular 
in shape. 

In the first problem the distance z 1 was specified 
equal to z 2 = 1; thus resulting in symmetry about the 
center t/J *=constant grid line. Clearly a symmetric prob­
lem such as this first one should be solved using only 
one-half of the region in the formulation. However, during 
the process of developing and debugging the computer 
program it was desirable to use the entire region in order 
to provide for an internal check on the solution capabil-
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ity. Should a nonsymmetric flow field result as the 
solution to a symmetrically specified problem, an error 
must exist in the computer program, in one of the 
equations, or the method of approach. 

. The final solution to this first problem was obtained 
in a piecemeal manner as the computer program was being 
developed. That is, as the various components of the 
program were completed they were used to adjust the 
value of the variables through a few iterations or cycles, 
but the results were always stored on tape and used to 
initialize the problem for the next phase in the program 
development and debugging. During this process, since 
there were mistakes in some of the program components 
to begin with, the values of x, y, and z showed 
considerable deviation from symmetry. As the mistakes in 
the program were eliminated, the variables took on 
magnitudes which represented the proper symmetry. The 
final results are not symmetric to all three digits beyond 
the decimal point which are printed out, but in general 
symmetry does exist in the final solution to at least two 
digits beyond the decimal point. 

There are a number of other items from the 
solutions which indicate the accuracy of the numerical 
approach. For example in implementing Eq. 49 in 
obtaining the z values on the upstream face of the dam by 
a numerical integration, the final values of z on each of 
the ljJ =constant grid lines on the face should equal the 
width of dam between the side walls. During the last 
cycles in the solutions these values showed agreement to 
within a few percent of the specified values. For the first 
solution, the average value computed from the integration 
during the latter cycles settled to a value of 10.021 
instead of 10.000. The largest difference in the z on the 
right side occurred at the bottom where the final z from 
the integration was 10.044 and the smallest occurred on 
the phreatic surface and was equal to 9.999. 

For the second solution the final average value for z 
from integrating along the ljJ =constant lines on the 
upstream face from the latter cycles was 9.008 instead of 
9.000, with the largest value equaling 9.013 just above the 
bottom and the smallest equaling 9.005 near the phreatic 
surface. 

The same comparison for the third solution shows 
the largest value occurring at the phreatic surface equal to 
10.026 and the smallest at the bottom equal to 10.005. 
The average width between sides was computed equal to 
10.013 instead of 10.000 units. The largest difference at 
the phreatic surface represents a .26 percent error. Errors 
in this integration of the fourth solution were of similar 
magnitude with the average computed value between side 
walls equaling 9.932 instead of 10.0. 

With one exception, in all four of the solutions, the 
greatest difference in these values of z either occurred on 
the bottom or the phreatic surface where the evaluation 

• 



of the derivatives, needed in the numerical integration, 
had to be based on forward or backward differences. 

The accuracy in evaluating x along the bottom and 
phreatic surface would be expected in general to be 
subject to error of about the same magnitude as that for z 
on the upstream face, with the exception that at the drain 
end near the side walls in the vicinity of the line 
singularity the error may be larger. 

The writer is the least satisfied with the methods for 
determining the non-Dirichlet boundary values of x and z 
on the drain by means of Eqs. 57 and 58 respectively. 
This lack of satisfaction occurs 1) because both Eq. 57 
and Eq. 58 come directly from Eq. 12 making the values 
of z strongly dependent upon the values of x as 
determined on the drain surface and x in turn dependent 
upon the values determined for z, and 2) because in the 
process of obtaining the solutions the equation for z 
produced greatly erroneous values when used prior to 
having the· interior values (particularly for x) adjusted by 
their operators. Future study needs to be directed toward 
better procedures or formulations of boundary conditions 
for evaluating x and z on surfaces such as the drain surface 
of the dam problem. 

In the following four subsections flow nets for the 
four solutions are presented and certain features of the 
flows, as given by the solution results, are discussed. To 
fully understand the flow field from a three-dimensional 
problem, the reader must visualize the flow in space from 
flownets on the plane of a printed page. To help in this 
visualization process, a complete isometric flownet show­
ing all interior cubes of the flow field was initially 
prepared by use of a computer driven plotter. All of this 
detail resulted in too many lines to give a clear visual 
picture of the space flow field. Subsequently isometric 
drawings were prepared which show only the top and 
right sides of the three-dimensional flownets along with 
the container of the dam which is assumed to be 
transparent so that the imaginary seepage lines are visible. 
These latter isometric drawings are given for Problems 
Nos. 1, 2, and 3. In addition, flownets from each of the 
solutions are given which result from projecting the flow 
patterns upon planes either parallel to the sides of the 
dam, parallel to the bottom of the dam, or parallel to the 
front face of the dam. These individual flownets are 
obtained from plotting the magnitudes of x and y, the 
magnitudes of x and z, or the magnitudes of y and z from 
individual iP 1); planes, cI>1);* planes or 1);1);* planes within 
the cI> 1jJ 1);* space respectively. 

Problem No.1 

An isometric flownet drawn from the solution for 
Problem No. 1 is given in Fig. 4. Figures 5 through 10 are 
flownets from separate cI> 1); planes for j = 1,2, ... 6 
respectively. Since Problem No.1 is symmetric about the 
center j = 6 cI>1); plane, the remaining 5 flownets from cI>1); 
planes which could be plotted from the solution are 
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identical to those given in Figs. 5 through 10. The flownet 
from j = 7 is identical to that from j = 5; the flownet from 
j = 8 is identical to that from j = 4; etc., until the flownet 
from j = 11 is identical to that from j = 1. 

These flownets (Figs. 5 through 10) represent 
plottings of the magnitudes of x and y onto a vertical 
plane parallel to the sides of the dam, and as such do not 
show any of the change in the z-direction of the 
streamlines and stream surfaces of the flownet. In the 
outer portions of the dam in the vicinity of the drain the 
seepage velocity has a sizable component in the z­
direction. To illustrate changes of the stream surfaces in 
the z-direction, flownets have also been plotted from the 
solution to Problem No. 1 which result by projecting the 
magnitudes of x and z from separate cI>1);* planes within 
the cI> ljJ1jJ* space upon a horizontal plane. Figures 11, 12, 
and 13 are such flownets obtained from the' cI> 1); * planes 
with k=l, 6 and 11 respectively. Figure 11, therefore, 
represents the flownet on the bottom of the dam, and Fig. 
13 the plan view of the flownet of the phreatic surface. In 
these last three flownets a dashed line is shown entering 
the outer edge of the drain. This line has been drawn to 
point out that the outside stream surfaces move inward 
abruptly and actually leave the region of interest within 
the area of the drain. The very outside stream surface 
actually abruptly changes from vertical to horizontal and 
then to vertical again at the bottom and sides of the drain. 
The resulting discontinuities in the variables of the 
problem are poorly approximated in this region by the 
polynomials resulting from the finite differences. Con­
sequently details of the solutions, particularly in the 
immediate vicinity of these singularities, cannot be con­
sidered very accurate. 

Flownets obtained by plotting the z and y coordi­
nates from individual 1);1);* planes are given in Figs. 14, 15, 
and 16. The 1);1);* plane of Fig. 15 is associated with i=ll; 
and the 1);1);* plane of Fig. 16 with i= 1 . 

The flownets taken from the various planes illus­
trate various features of this flow. From them it can be 
noted that 60.5 percent of the total flux entering the face 
of the dam enters through the lower half of the face. At 
approximately two-thirds the distance from the face to 
the drain or at the i=l1 1);1Jj" plane, on the other hand, 
50.8 percent of the flux crosses the lower half of the 
seepage region between the bottom of the dam and the 
phreatic surface. At the front face 52.0 percent of the 
flux enters through the center half midway between the 
two side walls and 48 percent enter through the two 
outside quarters of the front face. At the i=11 1); 1);* plane, 
52.4 percent of the flux is still moving through the center 
half of this equipotential surface. Through the 1); 1); * plane 
with i=18 on the other hand, 56 percent passes through 
the center half and 44 percent through the outer halves. 

An examination of the length of flow leaving 
through the drain reveals that the length at the outside of 
the drain opening is 3.591 units, and the length at the 
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Fig. 13. Flownet from the c!>,"* plane cOincident with the phreatic surface (i.e. j~ll) 
obtained by plotting the magnitudes of x and z from the solution to Problem No. I 
onto a plane parallel to the bottom of the dam. 

Fig. 14. Flownet from the tjJtjJ * plane associated with i~1 5 obtained by plotting the 
magnitudes of z and y from the sol~tion to Problem No. I onto a vertical plane 
parallel to the face of the dam. 

Fig. 17. Isometric plotting of space Oowllet from solution to Problem No.2. 
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Fig. IS. Flownet from the .jJ<jJ* plane associated with i= II oblained by plotting Ihe 
magnitudes of z and y from the solution to Problem No. I onto a vertic~11 pl:lI1e 

parallel to Ihe face of the dam. 

10·0 1 

1 
I 

- r--f--

i 
- r-- --
- --- ---'--

- --r--- - ,.----

- ---r-. --I---

- -
r--

Fig. 16. Flownet from the tjJtjJ. plane coincident with the face of the dam (i.e. i~11 

obtained by plotting the magnitudes of z and y from the solution to Problem No. I 
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Fig. 18. Flownet from the <l>ljJ plane associated with k=1 obtained by projecting the 
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 19. Flownet from the <l>ljJ plane associated with k=2 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. :!O. Flownet from the ¢~ plane associated with k=3 obtained by projecting the 

maglliludes of x and y from the solution to Problem No.2 onto a vertical plane 

parallel to the sides of the dam. 
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Fig. 21. Flownet from the <l>ljJ plane associated with k=4 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 22. Flownet from the <l>ljJ plane associated with k=S obtained by projecting the 

magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 23. Flownet from the <l>ljJ plane associated with k=6 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.1 onto :1 vC'rtkal plane 

parallel to the sides of the dam. 
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Fig. 24. Flownet from the <I><jJ plane associated with k=7 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 25. F10wnet from the <I><jJ plane associated with k=8 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 26. Flownet from the <I><jJ plane associated with k=9 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 onto a vertical plane 
parallel to the sides vf the dam. 

29 

( 

r 

9·381 

Fig. 27. Flownet from the <I><jJ plane a&,ociated with k=IO obtained by projecting the 
magnitudes of x and y from the solution to Problem No.2 U1Ho a verticnl plnnc 
parallel to the sides of the dam. 

z 

t 9·381 ------- --------j 

r 
0 

a. 

\ \\\\\\\\h 
\ \ \ ~ 

~ 

I I I I \ U/~ 
Fig. 28. Flownet from the <I><jJ * plane coincident with the bottom of the dam (i.e. j=l ) 

obtained by plotting the magnitudes of x and z from the solution to Problem No.2. 
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Fig. 29. Flownet from the <jJ<jJ. plane associated with j=5 obtained by plotting the 
magnitudes of x and z from the solution to Problem No.2 onto a plane parallel to 
the bottom of the dam. 
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Fig. 30. Flownet from the <l>tjJ * plane coincident with the phreatic surface (i.e. j=10) 
obtained by plotting the magnitudes of x and z from the solution to Problem No.2 
onto a plane parallel to the bottom of the dam. 

Fig. 31. Flownet from the tjJtjJ' plane associated with i=18 obtained by plotting the 
magnitudes of z and y from the solution to Problem No.2 onto a vertical plane 
parallel to the face of the dam. 
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Fig. 32. Flownet from the tjJtjJ* plane associate; with i=15 obtained by plotting the 
magnitudes of z and y from the solution to Problem No.2 onto a vertical plane 
parallel to the face of the dam. 
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Fig . .1.1. Flownet fro," the tjJtjJ* plane a&,ociated with i=11 obtained by plotting the 
111:1gnitudes of z and y from the solution to Problem No.2 onto a vertical plane 

I)urallcl 10 the face of the dam. 
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Fig. 34. Flownet from the tjJtjJ * plane associated with .=5 obtained by plotting the 

magnitudes of z and y from the solution to Problem No.2 onto a vertical plane 
parallel to the face of the dam. 
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Fig. 35. Flownet from the tjJtjJ * plane coincident with the face of the dam (i.e. i=l) 
obtained by plotting the magnitudes of z and y from the solution to Problem No.2. 
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Fig. 36. Flownet from the tjJtjJ* plane coincident with the drain of the dam (i.e. i=211 
obtained by plotting the magnitudes of z and x from the solution 10 Problem No.2 
onto a horizontal plane. 

." 



" 

15· 078 

F,g. 37. Isometric plotting of space f10wnet from solution to Problem No.3. 
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Fig. 38. Flownet from the "'''' plane associated with k=1 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 39. Flownet from the <1>," plane associated with k=2 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 40. Flownet from rhe <1>," plane associated with k=3 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 41. Flownet from the <I><jJ plane associated wIth k=4 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 42. Flownet from the <I><jJ plane associated with k=5 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam . 
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Fig. 43. F10wnet from the c!><jJ pIane associated wIth k=6 obtained by projecting the 
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 44. Flownet from the c!><jJ plane associated wIth k=7 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 

y 

t 

o 
o 

Fig. 45. Flownet from the c!><jJ pIane associated with k=8 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 46. Flownet from the C!>W plane associated with k=9 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.3 onto a vertical plane 

parallel to the sides of the dam. 
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Fig. 47. Flownet from the <l>ljJ* plane coincident with the bottom of the dam (i.e. j=l) 
obtained by plotting the magnitudes of x and z from the solution to Problem No.3. 
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Fig. 48. Flownet from the <l>ljJ * plane associated with j=S obtained by plottmg the 
magnitudes of x and z from the solution to Problem No.3 onto a plane parallel to 
the bottom of the dam. 
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Fig. 49. Flownet from the <l>ljJ* plane coincident with the phreatic surface (i.e. j=9) 

obtained by plotting the magnitudes of x and z from the solution to Problem No.3 
onto a plane parallel to the bottom of the dam. 

34 



.. 

'f 

t 10'0 
I 

~ 
I I 

t 

I t IT \ 

~ 
1 

11. I 
I 

1 

E I 

Fig. 50. Flownel from the </1</1' plane associated wilh i=15 obtained by plotting the 
magnitudes of z and y from the solution to Problem No.3 onto a vertical plane 
parallel to the face of the dam. 
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Fig. 51. F10wnet from the </1</1. plane coincident with the face of the dam (i.e. i=1) 
obtained by plotting the magnitudes of z and y from the solution to Problem No.3. 
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Fig. 52. Flownel from the <1></1 plane associated with k=1 oblained by projecting the 
magnitudes of x and y from the solution to Problem No.4 onto a vertical plane 
parallel to Ihe sides of the dam. 

Y 

f 

o 
6 

L--L __ L-~ __ L--L~ __ ~~-L-L-L~LL~~~~~~~ ___ X 

1-------- 9·899 -----+ 2·791 ---I 
Fig. 53. Flownet from the <1></1 plane associated with k=2 obtained by projecting the 

magnitudes of " and y from the solution to Problem No.4 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 54. F10wnet from the <1></1 plane associated with k=3 obtained by projecting Ihe 

magnitudes of x and y from the solution to Problem No.4 onto a vertical plane 
paraDel to the sides of the dam. 
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Fig. 55. Flownet from the <1></1 plane associated with k=4 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.4 onto a vertical plane 
parallel to the sides of Ihe dam. 
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Fig. 56. Flownet from the <PlJ! plane associated with k=5 obtained by projecting the 
magnitudes of x and y from the solution to Problem No.4 onto a vertical plane 
parallel to the sides of the dam. 
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Fig. 57. Flownet from the <t>lJ! plane associated with k=6 obtained by projecting the 

magnitudes of x and y from the solution to Problem No.4 onto a vertical plane 
para nel to the sides of the dam. 
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o 
o 

t--------~------- 11·799 ---.----

Fig. 59. Flownet from the <t>lJ!* plane coincident with the phreatic surface (i.e. j= II) 
obtained by plotting the magnitudes of x and z from the solution to Problem No.4 
onto a plane parallel to the bottom of the dam. 
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Fig. 60. Flownet from the lJ!lJ!* plane associated with i=15 obtained by plotting the 
magnitudes of z and y from the solution to Problem No.4 onto a vertical plane 
parallel to the face of the dam. 
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Fig. 61. Flownet from Ihe l\llJ.s>!' plane coiu(.'idenl with the racc of Ihl~ dam (i.e, j=l) 

obtained by plolting the l1lagnitLlde~ or z and y from the soilition to Problelll No.4. 
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Conclusions 

The methods defined in this report show promise 
for obtaining finite difference solutions to three­
dimensional problems with free surfaces. By changing the 
conventional roles played by the variables of the problem, 
a free surface, with an unknown position in the physical 
space, can become a plane of known position in an inverse 
space, and consequently an inverse formulation such as 
that given in this report for potential flows has definite 
advantages. These advantages occur at the expense of 
more complex partial differential equations which must 
be solved. 

The methods used in this report for solving the 
inverse partial differential equations from three­
dimensional ideal fluid flows are practical with presently 
available high speed digital computers. The computer time 
required for a solution wm depend upon a number of 
factors such as the number of finite difference grid points, 
the initialization used, the nature of the particular 
problem, and the accuracy required before terminating 
the iterative (i.e. cyclic) solution process. The solutions 
obtained in this report required approximately 15 to 20 
minutes each of execution time in the UNIVAC 1108 
system at the University of Utah. These problems used 
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2541 grid points (fewer were used for Problem Nos. 2 and 
3) throughout the space of the problem. Since the three 
unknowns x(<p, ljJ, ljJ*), y(<p,ljJ,ljJ*), and z(<P,ljJ,ljJ*) must 

be solved simultaneously, three times this many finite 
difference grid points, or 7623, were actually used. 
Additional study should produce more efficient means for 
solving the resulting space boundary value problem than 
the method used in this report. At that time the merits of 
inverse formulations will be even greater. 

The principal objectives of this study were to 
develop the inverse formulation and demonstrate its 
applicability in solving a three-dimensional problem. 
Consequently, major emphasis was not given to obtaining 
as accurate a solution as would be possible. For the 
problem investigated, greater accuracy could be achieved 
by giving special consideration to the singularities of the 
problem. Methods for improving the finite differences 
solution to two-dimensional problems in the vicinity of 
singularities can be modified to improve the finite 
difference solution to three-dimensional problems. The 
method of "patching in" an appropriate analytic solution 
should be quite easily adapted to three-dimensional flows. 
Despite the fact that no special consideration was given to 
the singularity, the methods used in this report yield what 
appear to be reasonably accurate solutions. 
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APPENDIX A-DESCRIPTION OF BLOCK ITERATIVE METHODS 

INVESTIGATED FOR SIMULTANEOUS SOLUTIONS OF FIRST 

ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Since the basic inverse partial differential equations 
which describe ideal three-dimensional fluid flow are first 
order and three in number, and since these three 
equations cannot be combined by differentiation to give a 
single equation for each of the three dependent variables 
which is not extremely complex, an'initial study investiga­
ted the feasibility of using block iterative methods t'o 
obtain finite difference solutions to simultaneous first 
order partial differential equations. This study utilized the 
first order inverse equations 

a . . . . . . . (A-I) 

and 

a ....... (A-2) 

which apply to ideal two-dimensional flows and which are 
derived by inverting the two equations which result from 
expressing the horizontal and vertical components of 
velocity in terms of the potential function and the 
two-dimensional stream function. 

Actually none of the methods investigated that used 
second or higher order differences were convergent. They 
are described here to prevent other researchers from 
devoting effort investigating similar unsuccessful solution 
methods. The writer knows of no easier method for 
demonstrating convergence or nonconvergence of the 
block iterative methods used than to actually implement 
them in a computer program for solving a simple problem, 
and this has been done. This Appendix describes the 
methods used. 

The first method solved the finite difference equa­
tions across the ljJ equal constant grid lines simultaneously 
before proceeding to the next ljJ equal constant line in the 
iterative process. The finite difference operator was based 
on a third degree polynomial passing through four 
consecutive grid points. For a grid network with ~ 4> = ~ ljJ , 

these operators for Eqs. A-I and A-2 are: 
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1 
.j. 6" xi+2j = a ............ (A-3a) 

and 

1 
- (; Y

i
+2j = a . . . . . . . . . . . . (A-4a) 

for i=2,3, ... n-2 
and for the final grid point adjacent to the final 4> equal 
constant boundary 

1 1 1 1 
- 3" Yn - 1j - 1 - zYn - 1j +Yn - 1j +1 - 6"Yn - 1j +2 -"3 x nj 

_lx ,+x ,+x _lx = a 
2 n-lJ n-2J n-2j 6 n-3j 

(A-3b) 

and 

1 1 1 
--x --x +x --x +-Y 

3 n-lj-l 2 n-lj n-lj+l 6 n-lj+2 3 nj 

1 1 ... (A-4b) 
f.ZYn_lj - Yn - 2j + (;Yn - 3j = a 

in which i = I + 4> / ~ cP and j = I + ljJ / ~ ljJ. For the last ljJ 
equal constant grid line adjacent to the upper boundary of 
the problem, Eqs. A-3 and A-4 must be changed in a 
manner similar to the change between the (a) equation 
and the (b) equation such that the value of j does not 
exceed the number for the top ,ljJ equal constant 
boundary. 

Upon applying Eq. A-3 and then A-4 at each grid 
point across the ljJ equal constant grid lines results in the 
following system of equations, written in matrix form. 
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DC ~I J=Z.U1 

1M =1-1 

XX=VIIIM.KI+Olfl·VIII".KI 

Of T= X X - X I I • M • K I 

X( It M, M) =XX 

ART=VHIM.KI 

r,1 DBT=IART-OfTllfM 

00 72 J= 2. 11M 

72 XII.J.KI=XII.J.KI+APT-ORT·FLrATIJ-II 

Z1 CO NT INUE 

DAT= (A P< J-XX"'+X( L,H,K' II F~ 

DO 35 J= 2. "M 
15 XIL.J.KI=XIL.J.KI+AIK1-0"T'FLOATIJ-II 

XI L.M.KI =XXH 

GO TO ZO 

J3 DO 75 1=7..LI1 

J" =1-\ 

XX =V 71111. II + 01 F I'V 71 1M. 11 

DFT=XX-XII .... KJ 

XC I. M, K I =XX 

ART=V7IIMdl 

<;2 OBT= (APT-Orr Iffl1 

00 73 J= 2. MM 

73 Xlr.J.KI=XII.J.KI+AAT-OBT'FLC~TIJ-11 

75 CONTINUE 

OBT=IAAI-XX'1·XIL.I1.KIIIF" 

DO 36 J=2.1111 

3 E x I l • J. K I = X I L • J • K 1+ AA 1- DB T· FL CA TI J- 1 I 

xc l.H.KI =XXH 

GO TO 20 

24 DO ? 6 1= 2. LI' 

111 =1-1 

XX=V7IIM.21+0TFI·V7II'1.21 

OfT=xx-XII .M.K I 

XI 1.11. KI =XX 

63 ABT=V:1'IIM.41 

DRT=IABT-OfTllfM 

00 ?7 ,J:: 2. "11 

77 XII.J.KI=X!I.J.KI+AAT-OBT'FLCATlJ-11 

?6 CO NTINU[ 

OBT=IAA7-XXM+XIL.I1.KIIIF" 

00 37 J::7.MI1 

~ 1 X I l • J. K I = X I L • J • K I + A A ?- DB To FL OA TI J-I I 

XIL.".KI=XXH 

7[1. CONTINUE 

"E TURN 

1 0 su,",=o.n 

DO 9 K=I.N 

q SUM=SIlI1+XTlK I 

SUI1=<;UI11FLOATI NI 

64 DO 11 K=I.NZ 

IF INIRO .[0. 01 GO TI' 65 

IF INNOT .EO. 01 GO TO 66 

5UI1= XT IK I 

GO TIl 65 

6 E FK =K -K CE T 

FK2=FK.FK 

5UH::BO +BI.fK +B:?' FK 2. ~HF K. FK 2 

65 OIF::I~U'1-XTlKJ IIXTIKI+I.0 

WR HE I hol 091 K.O IF .SIl" 

00 12 I=Z.LI1 
IM=! -I 

IF INIATI BO.71.AU 

7 I X X =0 IF • X I I ol • K I 

GO TO 7:? 

80 xX=DIF.VIIIH.KI 

72 V31I".KI =XX-XlIoI.KI 

12 XlIol.KI=XX 

A I K I = ~ IJM - X I L • I • K 1 

II XI l. I. K I =SUM 

IF INIRD .EO. 01 G~ TI) 101 

IF IN"OT .EO. III r,o TO 68 

SUI1=XT INMI 

GO TO (; 7 

FK 2=fK.F K 

SUl1oRO +B l' FK .R2' FK 2+ A "F K' fK 2 

F. 7 0 I F = 1<; UI1 - X TI '''' II IX TI N" I + I • 0 

WRIT fir; ol 091 "". 01 F • ~ U" 

DO 4 J 1= 2 .l" 
1M =1-1 

IFf~IATI 73.74.73 

7q XX=OIf.X II oI.N"I 

GO T ° 7~ 
73 xX=OIF'V?IIM.II 

75 V?IIMdl=XX-XIJoI.N~1 

43 XI IoI.NM I=XX 

AAI=~lIM-XIL.I.N"1 

XI l. I • N" 1= SUM 

IF INTAIl .EO. III GO T~ 69 

IF IN'IOT .E9. nl GO TO 7(; 

SUI1= Xl I'J J 

GO TO 6'3 

70FK=N-KCET 

FK2=FK.FK 

<;UH=9n.RI·fK.A2·fK?+R'.FK'FK2 

6'3 OIF=I,UI1-XTlNI IIXTINI+I.O 

WR IT f I 6 ol n'll "I • nJ f. < IJ ~ 

DO 14 1=2.LH 

1'1 =1-\ 

!F INI~TI 16.71.76 

17 xx =0 IF. X I I 01 ." I 

GO TO 7A 

76 Xx=OIF.V2III1.7J 

78 V7fIM,q. =XX-X( I.l,~1 

14 XII".NI=XX 

AA2=5UM-XlL.I."I1 

XIlol.NI=SUM 

PE TUQN 

(NO 

iilFnlloIS RZTOPB.8lTOPH 
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SU~ROlJTINE ZTOPB IN 80 T. UFI> S T .IF INL • l[N 0 I I 

CO 11" ON X I ZI • I I • II I • Y I 21 • II • I I I • Z I 71 • I I. II I • C I I I q. 'l I • C Z I I q. q I • C J I 1'3 

,. ,q J • ell (1 q, q J ,C 5 ( 1 q. 9 J • A ( 1 q J • He 1 9) • G( ] <! J ,H. FL, 

'IoF" ,FN .OEl, IF, 71, ERR .l.lH ,'"1 .MM, N ,N"" .L'2 ,H2. N2.HAX. MAXCT. NRT 

$.?TlIJI 

rO,~puTf~ Z-CORO. rN TOP OR BOTTOM. If NROT=O THEN POTTO~ 

IF JlfRST=O 00 NOT [£T(R"JNf 7=C 8Y I'H(GPATING NEAR fRONT 

SUMI =71I.t.N I 

IF IN.OT .GT. nl GO TO I 

JI =7 

GO TO Z 

I JJ =" 
JI =I1M 

7 IF II7FRST .(Q. 01 GO TO 10 

ZTI1I=O.O 

SIJM=O.O 

(1=.54166667 

E7=.04166667 

(3 =. 6666666 7 

(4=.n~33333 J 

00 3 J =3 .HZ 

JZ =J-2 

JH =J-I 

JP=J'I 

JO =J +7 

OX 1 =E J'I X 14. J. 11 -X I 7.J. I " -E 4. I X I~. J • I I - X II • Jol I 1 

OX Z=[ ~. I X 14. J. 21 -x I 7. J. Z" -E 4' I x I~. J. 21- x I 1 • J. 2 I I 

OX 3= [~. I X I q • J 031 - X I". J • 3 " -E 4. I X 15,,10 ~ 1- X I 1 • J.3 I I 

OY 1= [J. I YI 3. JP • 1 1- Y I 3. JI1. III -f" q • I Y 13. JO 01 I -Y I J. J7 011 1 

OY Z=( J. I Y 13. JP • 7. 1- Y I 3. J'1. ? II -£ 4. I y n. JO .Z I -Y I ~. J 2.2 I I 

OY 3=E J. I YI 3. JP • 3 1- Y I ~. JI1. J II -£ 4. I y n. JO. 3 I -Y I ~. JZ 031 I 

01 =OXI/OYl 

02 =0 x ?IO Y Z 

03=0 X 3/0 Y 3 

Z T 12 I:: .5, I 0 I .02 I 

ZI I.J.21 =ZTI 71 

DO 4 K=J.NI1 

KP=K'I 
OX 4::( 3' I X I q • J. KP 1- XI ? J. KP I I -f q • IX 15. J. KP I -X I 1. J. K P I I 

OY4=E3'IYI3.JP.KPI -YI1.JM.KP 1I-[4.IY 13.JO.KPI-YI~.J2.KPI I 

04 =0 X 4/0 Y4 

ZT IK 1= ZT I K -I 1+ E 1'1.117'031 -£ 2' 1[11 + D 4 I 

ZI I.J.KI =ZTI KI 

01 =1l2 

02=03 

4 03=04 

ZT IN I=ZT INI1I +.5.IDJ+Il71 

ZI I.J.NI =ZTINI 

IF INRT .GT. 1001 GO TI) 3 

~QIT[(6.tOOl IZT IK I.K=IoNI 

11"0 FOPI16TIIH .1r;fR.31 

3 SUI1::SIlI1+?TINI 

~UI1=SIJI1I fL OA TI 1111-31 

WR IT E I r;.t 151 5 UI1 ol n NL 

115 FOR"ATI' AVE Z='.FIO.4.· ZFINAL=·.FlD.41 

IF 1£7FR5T .L T. 01 ~U"=ZF I'll 

00 6 J=3.112 

01 F = I 7 I I • J • N 1- ~ IJ M I I Z I I. J • N I 

00 ~I K=2.NI1 

71 ZI IoJ.KI =~Il.J.K 1-01 F'ZI I.J.KI 

6 ZI I.J.NI =5UI1 

IF IJZFRST .L T. -)I GO TO 74 

DO ~ 1=I.L'1 

DO 5 J =I.M 

5 ZI I.J.NI =5UI1 

DO 7 J=I.11 

ZI L. Joll =ZI 

7 ZIl.J.NI=ZfNOI 

74 DO a K=2.N 

ZII.7.KI=Zlld.KI 

Z( \. 1,K) =lC 1. 3.K I 

Z I 10 11" .K 1 = Z ( I ." 2. K I 
8 Z'l,M,KI=Z'l.H?,K) 

IFIAP,ISUM-~U'1l1 .LT •• 11 GO TO 10 

Olf= (')UM -5U~ II IF N 

DO 16 K=2.NM 

FK =0 IF .F LOA T I K - I I 

DO 16 J=I.~ 

DO 16 I::2.l 

IF. ZII.J.KI=ZII.J.KI+fK 

10 NCT=O 

J=JJ 

70 ~UI1=I1.0 

00 11K:: 2. '1M 

KP =K +1 

KI1 =K-I 

DO 17 1=7.lM 

IP =T +1 

111::"1-1 

IF INfT .GT. fll GO Ta 13 

CO =Y « I ,J 1 • K I - v I I • J • K ) 

Al =CD'CO 

A2 =.2,).C O. (V fl. J 1 • KP J- Y ( T. J, KP J- Y ( I. J 1. KM I +Y (I. J .K MI ) 

A!=.7C::;·( YC.IP ,JJ .~o -YfIP,J,KJ -y (Ip.i,JI.K ).Y (IH,J.I( JI Icn 
A 3 1= 1.01 I A 3 + I • I 

C I I I 11. KH I = A 3 1 • I 2.' j I • 2. I 

C21I".K"'I-=AJI'IA~-I.1 

C3IIM.KMI=A31'IAI-A?! 

C4ITM.KM I=A31' IA I+A2I 

13 AIIMJ=CIII".Kf'l1 

GI 1M I::C2 1II1.KM I 

12 ~IIMI::C3III1.K"I'ZII.J.K,",I.C4IlM.KMI'1II.J.KPI 

~I II =P (II+?I I.J.KI 



B I l71 = B I l2 1- f I l2 I. 1 I l • J. K I 

00 14 I=2.l? 

1M =1-1 

AI II:A II I.GI 1M II AI I'" I 

1.. "I I I :8 II I' B I I'" "AI I" I 

I: l2 

T7=811" AI II 
01 f= T l-Z Il M • J. K I 

SU,.:SUM'ABSI ['If I 

1I l M • J • K 1= T Z + WI' 01 F 

15 IP =1 

1= 1- 1 
T l = I P I I I -G I I I • T l II A I I I 
OIf=Tl-lIIP.J.I<I 

SU",=SUM' ABSI ['If I 

1 I I P • J • K 1= T 1 + WI' 01 F 

If II • GT. 11 GO TO 1'; 

11 CONTINUE 

NC T= NC T' 1 
112 fORMATI' NCT=·.I5.· ~u",=·.EI7.f,1 

IF I'SU'" .GT. 3[100.1 GO TO f,4 

Ifl'SU'" .GT. FPR .um. NCT .IT. MAXI GO TO 20 

I' 4 WR IT f I 6. 204 I N 80 T • NC T • SUM 

7[14 fOR"'AT I' 1 NBOT:·. I~.· NCT:·.I 5.' ~UM=·.F: 12.61 

IFI'IRT .GT. InUI RETUPN 

00 31 K= ioN 

H WPITEI6ol001 IlIJ.J.KloI:l.ll 

PF: TURN 

END 

ii\Fnp.r S X S I DE. X S I DE 

SURPOUTINIC SIOEX IJBE GI 

INTEGER IENOII01 

IF I 'SUM .GT. 3000. I GO TO 6 
If ISUM .GT. fRII .ANO. NCT .L T. MAX I GO TO 20 

WRITcl6ol131 K.NCT.SIJ'" 

11 3 FO 0", A T I' X S I Of =' • 13.' NC T: •• IS.' <; tJl1:-' • E 1 2.61 

IF HI R T • G T. 1 1)01 GOT 0 .. 2 

8 WR IT E I 6 ol 00 I I X I I. J. n 01 : 1. L I 

IOU FOPMATIIH olf;F6.3.<;F7.31 

42 IF IK .GT. 11 PETURN 

KP :NM 

GO TO 10 

6 WRITEI6ol141 K.NCT.SIJ'" 
114 fORMATI' XSIOE:'oI3.' NCT:'. 15.' 5U"':'.fI7.5.· SOLUTION BLEw UP'I 

5T OP 

END 

iilfOll.rS SlINT. <;7.INT 

SUAIIOUTINE ZINTEP 

COM"ON XI21ol1olll.YI?101l.111.lPloll.111.ClI1 clo'l''C211q.91.C311q 

$ .9 I • C .. I 1 q. 'll • C 5« 1 '1 • 9 I • A I 1 0 I • 31 1 9 I • C I 1 q I • H • fL • 

$ f M • F "J • DE l • IF • 7 1 • Ell R • l. • L M • M • M M. N • N M • L" • M 2. N 2 • M A X • '1 A xC T • NR T 

NC CUNT =1 

"6 <;U,.M=O.O 

NC TM A X =0 

DO ?') J::2.M'1 

J" =J-l 

JP =J + 1 
NC T=n 

"0 'SUMl=O.O 

00 1 K:7.NM 

KM:K -1 

KP =K + I 

Co MM ON X I 21 • 1 1 • III • Y I ? 1 • 11 • 1 II • 1 I ? 1 • 1 1. 11 I • C 1 I 1 '1 • q I • C 2 I 1'l • 9 I • C 3 ( 1 q 

\ • q I • rio I 1 'l. 91 • C 5 I 1'l. 9 I • A I 1 q I • PI 1 q I • Gil q I • H • fL • 

00 2 I=2.L'" 

1M =1-1 

'Lf'1.FN.OEl.lf .71,ERR,L.lOM, M. ""'. N.NM.102.M 2.N2 .MAX. MAXCT.NRT 

$,zTIlll 

'~l =. 4 

K= 1 

KP =7 

F25= .25 

F5=.5 
10 NC T=O 

L2=l1)2 

DO 30 J=JSEG.,.M 

3[1 IENDIJI::LO" 

?li SU,.=O. 

00 1 J=JBEG .... M 

J'1=J -1 

JP =J +1 

U1 =t OM 

If IIENDI JI .FO. LOMI GO TO 31 

U' =IENOI JI 

L2=l",-1 

q 00 2 1=2 ,L M 

1M =1-1 

IP:I + 1 

IFINCT .GT. nl GO TO 3 

75 = 1 I I ,J ,K PI - 1 I I • J • K I 

A 3 : • 2 <; • I 1 I I P , J • K PI - 7 II p. J. K I -Z II '" • J. K P I + 1 I 1M. J • K I I Il S 

A ~ 1:: 1 .01 I 1.0 + A 3 I 

JFIJ .GT. 11 GO TO I? 

C S I I M. 11 :A 31' I Al +7.1 

C51T~.;>1 :A31'IA3-1.1 

C511>1.31 =A31*n 

GO TO 15 

I 2 AI: l ~ 0 Z'S 

A;> =f;> Sol S. III I • JP. KP 1- Z I I. JM .K PI -2 II • J P • K I +ll I. J M. K I , 

C 1 I 1M. JM I = A 31 0 I 2.+ '2. 0 All 

C ? I 1 ~ • JM I = A 3 I 0 I A ~- ) • I 

C3II~.JMI=A31·IAI-A?1 

C41I". JM I=A31' IAl+ A21 

"l IFIJ .GT. II GO TO 13 
1 5 A I 1M 1= C 5 11M. I I 

6II"'I=C51IM.71 

AI JM 1=1:5 IIM.3IoX II .JP.KI 

GC TO ;> 

1"l A I 1M I : C 1 I 1M. J" I 

GI 1M I =C? IIM.JM' 

E I I M I = C"3 I 1M. J~ I, X I I • JM • K 1+ C 4 II "1 • JM 1* X I I • JP • K I 

? CO NTJN UE 

'Hl71=AIl21-GIL2)OXI L.J.KI 

00 4 I=7.L2 

Il =I-l 

AI II:A IT I+GI J 111 AI III 

4 8 I I' =R I I I+!l I I 1 II A I I I I 

1= L? 

XT::RIIIIAIII 

OIf=XT-X ILM.J.KI 

SUM=';\J"'.ABS(!HFI 

XI tM.J.K I=XT +Wlo 01 f 

5 1":1 
1= 1- 1 

XT::I'\( II-Gil 10XT IIAI II 

OIf=XT-X IIP.J.KI 

';UM=SUM+ A1351 I)IF I 

X I IP • J .K I = X T • W I 0 or f 

IF II • GT. l' GO TO <; 

LPLe; =L M+ 1 

X T =X I L PL S. J. K I 

I: L'" 
~:? IFlxlr.J.KI .IT. XTl GO TO 1 

X I I. J. K I : X T - • n I <;.F L'J A TIL oL S- n 
I: 1- I 

IE NO 1.1 I: I 

GO TO 3? 

I CO NT 1'1 UE 

NC T:~'r T+ 1 
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IP =1 + 1 

IflNCT .GT. PI GO TO"l 

CO =. 5' I Y II • J P • K I -Y I I • J M. K I I 

Al =CD*CD 
00 T= • 1 25' I Y I I • JP • K 0 I - Y I I .J M. KP 1- v I I. JP. 11M I +Y I I • J M. KMI I 

A! =CO* DOT 
A 2 =. I '5. I Y II P • ..IP .K 1- v I IP .J M. Iq - Y II M. JP. K I • Y ( 1M. J M. K I I' CO 

Cf=.S*IYII.J.KPI-VII.J.K"11 

CI=.5*IXI!.JP.KI-XIl.JM.KII 

D f T= Y I I. J. K PI' Y I I. J • K" 1- ? 0 Y II • J • K I 

01 P= .;> 5* I X II P. JP .K 1- X I IP .J M • KI - X I 1M. JP. K I + X I I"'. J M. K I I 

CG =.5 * I III • J P • K I -Z II • J" • K I I 
Of P:: • ;> 5. I Y II P • J. KP 1- Y I IP • J • K >11 - v II M. J. KP I + Y I 1M. J • K M I I 

OG T= • '50 I III • J P. KP 1- 7 I I. J". K PI -ll1.J p • KM 1+ 1 I I. JM .K MI I 

AS::2.' A?*C I* Cf-C 0* IC F* OG T+ CG .OF T 1- CI .OFP -Cf'DIP 

OBIN=1.OIlI.0+All 

C 1 II M • KM 1= 2.' II. + A 1 I. DB IN 

C21IM.II",'=OBIN*1 A2-I.OI 

C31I~.KM ,::DSHI.I AI-A31 

C4IIM.KM I=OBI"'.I Al+A31 

C 5 II" • KM I:: AS' 0 B 1 "l 
3 AI 1M I=CIIIM.IIM I 

CI II1I=C7IIM.KM I 

? 1\ I 111 I = C 3 I 1M • K M I *l I I • J • K 111 + C 4 I 1M. K M I 0 1 I I • J. K P I +C 5 I 1M. K M I 

B I 11 =A II , + 1 I 1 • J • K I 

Illl?l::flILll-CIl:?loZIL.J.KI 

00 14 I=2.l2 

Il =1-1. 

A I J I =A I I 1+ C I II II AI II I 

1'1 BIII=81I1'BIIllfAITlI 

1= l2 

IP =t.., 
ZT:-1lIIIIAIII 

OIf= 71 JP.J.K 1-2T 

o;UMZ::';UMl+Afl<;(OIn 

ZI IP.J.K I::ZT +. 4* 01 f 

IS IP =1 

1= 1- 1 
ZT::IBI II-CII 10ZY If AI II 

Dlf=71IP.J.KI-lT 

SU Ml =<; LIM 7' ABo;( 01 Fl 

ZI IP •• I.K l=lT +. 4. 01 f 

IF II • GT. I' GO TO I C; 

1 CONT HIUf 

NCT=NCT+I 

1[10 fOPMAT IlH ol6FB.31 

IfISU'" .GT. I.E51 GO TO Sf; 

IfINr::T .IT. MAX .AND. SU'17.GT.ERR I GO TO 20 

55 If INn .GT. NCTMAX I "'CTMAX=NCT 

Ifl~OOINCOUNT.NRTI .'iT. 01 GO TO 8f; 

DO 61 K= 1. M 

f; I WR IT f I 6. 100 I I ZI I •• j. K I. 1= I.L I 

~f; ,,>UMM =SU'1~+<;U" 

W'lITE(G.2041 J.NCT.5U"Z 
zr4 fO R", AT (' SOLUTION fC'P Z IN PSI P';IS PLANE J='. 13.' NCT:·. 15.' <;UM: 

"'. E 17.61 
;> S CO NT INUE 

R S NC OU 'I T =N CO UN T. I 

WR IT E I 6. 2 [10 I 11/ CO UN T • S U .., Z 

lno FORMATI' NCOUfIIT::·.I<;.· 5U"=·.[12.61 

If 15U" .GT. l.f51 <;TOP 

!FINCr"AX .GT. "l .ANO. NCOUNT .LT. MAXCTI GO TO 7f; 

PE TURN 

END 

afnR.IS SYINT.SYINT 

SUAROllTINE Yl~ITER 

CO '1'" ON , X I 21 • 1 1 • 1 11 • Y I 2 1 • 1 1 • 1 II • Z , 21 • 1 1. 11 I • ell I 'l • q I • C? I 1'l • 9 I • C 3 I I 'l 

~ • 'l I • C 4 I 1 'l • 91 • C 5 I 1 'l • 'l I • A I I q I • '11 1 9 I • G I I '11 • ~ • FL. 

'!; fM .f N • DE L. !f • 71 • ER II .l. U1 • M • M ~. 11/ • "1M. L 2 • M 2. N2 .... A X • "'A XC T. NR T 

WI =.4 

NC OU NT =, 

?f, SU MM =0. 

NC TM ~ X =0 

DO 25 K= 2. NM 

f 



t 

KII =II-I 

KP =K' I 

NC T=O 

70 SUH=O. 0 

DO I J=?HII 

JP =J' I 
DO ? Y =2.L 'I 

111 =1-1 

IP=I·I 
IflNCT .GT. 01 GO Tn 3 

C£=.S' (ZII.J.KPI-lII.J.K,,11 

OE P= .1 25 * ( Z I IP • J .K P I -1. (I P. J. KM 1-7 I III. J. KP I 'Z ( I H. J. KI1II 

AI=C£*Cf 
AZ =. I? 5* CE * I 7 I I. JP • K PI -711 .J P. K 111-2 I I. JI1. K P I +2 I I. J 11. KI1II 

A 3=0£P ICE 

CH =.5* IX II .J .K P I -x II. J. K HI I 

CG=71! .JP.O -711 .J".KI 

PI=AJ*CH'CG 
PZ=r:[*f.S*CYCI.J,KP)-YCI,J,KM) ).fZU,JP,KJ+ZCI,JH.tO-?*zeI.J.K.J)+ 

S .12'5. (' G* (Y (I .JP, KP )- Y ( I. JP, K "'I - Y (I, J M. KP J + Y ( I, JH ,K H' ) » 

P 1 =. ?~.C H' 11. I I P. JP • K 1- 7 I IP • J ,.. K'I- Z ([ 11. JP. K 1+ 7 I IH. J /1. K I 1+ .12 S* C G* I 

S XI IP.J .K P I -X II P. J. K" 1- X I IM.J .K P I 'X II 11. J. KI1II 

831 =1.01( 1.0'A11 

C 1 lIM. JI1I-:: A 31' I Z.' 2 • 'A II 
C 7 I I". JI1 I = A 11 • I A l- I • I 

C31I11.JI1I=Bll' IA1- A?I 

CqlI".JI1I=A31*UI·A?1 
C 5 II M. JI1 1= 8 31 , I P 1- P 7 -p 31 

J A( YI1I =CI I I" .JI1I 

G I 1111 = C 7 II M. J" I 
Z B I I~ 1= C 3 I 1M. J" I' V I I. J". K 1+ C q II M • JH 1* V I I. JP • K 1+ C SlIM. JI1 I 

AI II =R IlI.VI I.J.KI 

AIl?I=AIL21-f,IL21'VIl.J.KI 

DO q Y =7.L 2 

II1=r -I 

AIII=AUI+GII"I/Aly,.1 

q ~III=RIII+BII""AI1P"1 

I=Ll 
VT =R II II A I II 

DIf=VT-Y IUhJ.KI 

<;UH=<;UI1·AASI[lIfl 

YI UI.J.K l=vT'WI' OIf 

~ IP =1 

1= 1- 1 

VT = I R I II -G I I I • VT " A I 11 
OIf=VT-Y IIP.J.KI 

SU H= <;1111+ ABS I 01 n 
VI IP.J.K I=YT'WI' 01 f 
IF II • G T. I I G Q TO 5 

C£ =. 5' I Z I 1 .J.K P I -7 ( }oJ.K 111 I 

AI =C£'CE 
A2 =. I 2S' CE' I 7 I J • JP • K 01 -7 I I.J P. K 11 1- 711. JI1. KP I +7 ( 1+ J 11. KI1II 

A3=CE' I.S'IYI J .J.KPI-V I loJ .K~I 10 IZ Il.JP.K I +Z (1+JI1.KI-?"ZI1.J.KI 1+ 

i .175' ( 71 J • JP .~ 1- ZI I. JM.K II 'I VI I .JP. KP I -v I loJP. KI1I- Y (I • JI1. K P 1+ Y II • 

$J'1.KI1I11 
YI I. J. K I =( Y 17. J. KI +.50 II A I. A ZI 0 Y I I.JP. K 1+ ( A 1-A21 .y I loJM. K I +A3 I II 

ill.+ A I I 

I CO NTINUE 

NC T=NC T+ I 

liZ FOQI1H!' NCT=·.IS.· ~U'I=·.E12.61 

IFISUM .GT. 3000.1 G~ TO 6q 

1 F 15 UM • G T. f R P • A Nil. NC T .L T. 11 A X I GO TO 2 0 

"q IF 1~lrT .6T. NCT"AX I NCTMAX=NCT 

IFIHOOINCOUNT.NIHI .GT. 01 GO TO Ali 

DO 76 J-:: I. '1 

76 WRTTEI~olOOI I VI I.J.KI.I=I.L I 

Ino fO""AT IlH olF.F8.31 

q6 SUM" =5UI1M.SU" 
WRITF16.2041 K.NCT.SII" 

7.~q FOPMAT!' SOLUTION FO" Y IN PHI-PSI PLANE K=·dS.· NCT=·.Is.· SUI1=' 

~.£17.G) 

7~ CONTINUE 

"COUNT =N COUN T + 1 

WR IT E I ~. ZOO I III CO UN T • ~ U MI1 ." CT M~ X 

?OO FORMATI' NCOUNT::·.I5.· SU"M::·.E 17.~.· NCTMAX='.Iql 

IF ISU"" .GT. ~OOO. I <TOP 

IF I~CTMA X .GT. 3 .A"n. NCOUNT .l T. M~XCT) GO TO 26 

oE TURN 

£ND 

~F~q.T5 XSPHI.XSPHT 

SUBROUTINE XlNTERI JRfG I 

CO i'<!o' ON X I? 101 I. I II • v I 71 • 11 • 1 J) ,Z I 71 ol 1+ 11 ) • C II I q. q I. CZ II 9.91. C 3 I 19 

~ .9 I • Cq II 9.91 • C 5 I I'!. 9 I • A I I q I • RI 1 91. GC I 91 • H. FL. 

$FM ,FN. DEL, IF, 7) • ERP,l. LO~, M, MM. N.NM.Lf"'l2.H 2.N2. MA X. MAXCr, NRT 

REAL C61191.C7(19).C8119) 

INTEr,ER IENOIIOI 

WI =. q 

NCOU"T=I 

?6 SU"IM=O. 

NC T"IA X =0 

00 7~ K=2.NM 

K" =K-I 

KP =K-I 

l2 =L O? 

DO 10 J= JBEG .M" 

~D I£'JOIJ)=LOM 

NC T=O 

DO I J::J~EG ...... 

JM =J-I 

JP =J'I 

LM =L n" 
IF IIf'JOI JI • fll. lOMI GO TO 31 

ll1=I£NOI JI 

L? =L M- I 

'J DO 7 I=Z.L" 

II' =1-1 

IP =1.1 

Bl =CC.CC 

Rl=.~/CC·CPHI 

R31=I.IIJ,'R~1 

IF (J • 6T. I) 60 TO I? 

C 6 II" I ::8 J\. C 7. - R 17 I 
(711"1 =R31'(I'3-1.1 

C8 II .. ) =~31'BJ 7 

GO TO 15 

12 ~Z=.J?S'CC'17II.JP.KP)-21I.JP.K")-71I.JM.KPI'7II.JI1.KI1II 
PI =. ~. B 3' • ( Y ( J , J • KP )- Y ( I. J, K H ) I • ( 7 ( I, JD • I( ) - Z ( I , ~M • K ) J 

P7=Cf* t.S- (X(I ,J,KO) -XfI.J,K~) I. fl (l,JP,KJ +ZfI,Jf1.KI-?.Z( I.J,I(J I 

" +. I? Ii. f 1 (I ,J P , K) -7 f r • J H , K J ). f x CIt J P , K P ) - x ( I, JP • K HI - X , I ,J M, K P ) + X ( I. 

'JM .KH) II 

P 3 =. J 7S' IV II • J • K PI -Y II .J .K 111 ). I III P. JP • K I-? I I P.J 11. K I -l I I M. JP. K I. 

'Z I 1M. J'" K I 1-. IZ 5'1 ZI r. JP .K 1- 71 I. JM • K I) 0 I Y I IP. J.K PI -Y II P. J. KI1 I - VI I" 
CL ,J ,I( P J .y f r pot, J, K"" I» 

CslIl1,JH 1= IP~-PI-PZ) .811 

CI IYM.JI1)=I?+7.oRI) ,R31 

C?II".JI1)::RH'IB~'-I. I 

C3IIH.JM)=B31·161-A71 
C4IIM.JM)=R31·IBI-R?! 

3 IFIJ .G1. II G0 TO 13 

1 S A 11M I =r.6 I I "I 

AI 1M )=C8 I II1I'X II .JP.KI 

6 I 1M ):: C 7 11'11 

GO TO Z 

13 AI 111 )=CI IIM.J"I 

£IIM)=C7IIM.JMI 

e ( 1M J = C 3 ( I H, JM J. X ( I. J"', K )+ C" fI M • jporl ). X ( I. JP • K J + C 5 (I H. JM ) 

? CO NTINUf 

AIL?)=AIL21-r,ll?hXIl.J.KI 

DO q I=2.L? 

11 =r-I 

A I I I =A I I 1+ G I I I I I AI II I 

q ~III=AIII+BIT1I1AIII) 

I=l? 

Xl ::8 I I " A II I 
OIF=XT-X IL".J.KI 
<;UI1=SlIl1+AB<;lnYF) 

X I L" • J • K ) = n + WI. 01 F 
~ IP =1 

1= I-I 

Xl=IBI II -6 IT I'XT I/A( II 
DIF=XT-X IIP.J.KI 

SUM=SlIl1+AR<;IOIFJ 

XI IO.J.K )=n_WI,OIF 

IF(J .6T. 1) GO TO 5 

LP LS =L "I' I 
I::LI1 

Xl=X ILPL S.J.K) 

J? IFIXII.J.KI .LT. XTI GO TO 1 

XI I.J.KI =XT- .0IS'FLOAT ILoLS- II 

I= I-I 

IENOIJ)=I 

60 TO 32 

1 CONTINUE 

112 fORI1ATI' NCT='oI~.· <;1I,,=·.£1?6) 

IF ISU~ • GT. 100. I ~TOP 

IFISU'" .GT. ~noo.1 60 TO 64 

1 F IS UM • G T. fq Q • A '10. 'IC T .L T. ~ A X I roo T 0 2 0 

E4 IF (NCT .GT. Nr-TMAX I NCP.IAX=NCT 

IF IMOO INCOUNT.NRTI • r,T. 01 GO TO 8f; 

DO 7~ J-:: 1." 
7 ~ WR 1 TE I 601 00 I I X I r. J. K I • I = 1 .l I 

1"0 !'ORHAT IIH .1~F8. ~I 

86 SUM" =SU"'''I.~U~ 

WRlTfC6.Z0s) K.NCT.<;u" 

?O 5 FO q.u T I' SOL liT 10 "I fO P X 1'1 P "I -P 5 r P l ~ NE K =' .r 3.' NC T =' oJ <;.' <; UM =' 
$.[ 1?61 

7.5 CONTINU£ 

NC OUNT =N COUNT. I 

WR HE I G. ZOOI N CO UN T. <;UMI1.NCT ~4X 

700 FOQ"'AT(' NCOUNT=',IS,' SLJMM=',E12.F.i.' NCTMAX::'.I4' 

IF ISlI~11 .GT. pnnn.) <TOP 

rFINfTMAX .GT. 3 .ANI). 'JCOUNT .IT. "AXCT) GO TO 76 

Of TUR" 

£ND 

iilF~P.I XDRAIN.XORAIN 

SUBROUTINE DRAINX 

CO 11,. ON ~ I ZI .1 I • II I • Y I 71 • ) I. I )) • Z I ? I • I I. I J I. C I I J q. Q I • (? C 19 • 91 • C 3 I I q 
'fi .9 J ,r.4 ( 1 '3. q I ,r. 5 ( I q, C! ) , A ( 1 q) , F-;( 1 91. G( 1 a) ,H, FL, 

'!iF'" .FN .CEl. IF,. 71, [R R, l. LH,M ,M M, N ,NM .l2 .~2, N2."4AX,. HA XCT. NRT 

L3=L-~ 

C [)£RIVATIVES BASFO ON FIQ<;T A'IO <;ECOND ORDER DIF!'£RENC£S 

D7=~ • 

[13=1.5 

04=.33333333 

DS=.~6666~li1 

C FIR<;T ROW 

AI II =X IL • I .1) 

DO I J =2.11" 

JP =J +1 

JM =J-I 

DO 7= (( XI L. J.? I -X IL .J • III • I 7 I L. JP. J )- 7 I L • JM. I ) I '. S + DZOV IL M. J.I I -0 ~. 
$. y( l2 ,J ,J ) .. 04. V (L ~. J. 11 II (7 Il .J ,. 21- ! ( l ,. J, 1 I ) 

IFIJ .EQ. ZI O[lI=.5,n02 

AIJI=AIJM)+.S*IDOI·0071 

1 DD I=OOZ 

002= ( ( X ( L,. H,. 7) -x (L ,.,..,. 1 )) • ( Z ( L, "1 ,. J I -Z IL ,. MM .1 J ) + 0 ;>.y (L H. H, 1 ) -03 • Y I l2 

$,,...1 )·04.YIl1.M,l) )/f7'L.H.Z)-7Il,Md I ) 

41"1=4IMI1I+.5·100I+[>£'I71 

IFINRT .LT. 1?IWRIT£IFoInOI IAIJI.J=I.M) 

IOU FOR"'AT IIH .17FIO.4 I 

XA =X IL • J .1 I 

DIF= IX IL .11.II-AI "II )f IA 1M 1- XR I 

DO 3 J=Z."M 

3 XIL.JoIl=AIJ)+OIF'IAIJI-X~1 
YFI'JCT .GT. (1) 60 TO ~ 

CC::.5·IZII.J.KP)-ZIY.J,K1411 

C CENTEP PORTIO'J 

D02K=Z.NM 
CP HI ::. Z~, I ? ( IP ,J .K 0) -7 I I P. J. K~ I -7 I 1M. J. KP ) +2 I I "I. J. KM II 

47 



DO 4 J=2.MM 

JP =J +1 

JM =J-I 
DO 2= 1.5' I X IL .J .K PI - X IL • J .K MIl' I Z IL • JP • K I -Z IL. J M. K I 1+6 •• V IL M. J • K I -

'I> 0 2' V IL 2. J. K I +05. VI L 3. J. K " /I 71 L • J. KP 1- Z I L • J. KM II 

IflJ .EQ. 21 001=.<;.002 

AI JI =A IJMI +. 5. COOl+0071 

4 001=002 
DO 2= I I X I L. M. KP 1- X I L. M. KM II • I 71 L ." • K I -1 IL. MM. K I 1+ 6 •• V IL M. M. K I -02' V I 

'I> L 2 .M .K 1+ 05' V IL 3. M. K I 1/ I Z IL • M .K P I -1 IL • M. KM I I 

AIMI=lIMMI+.o;·COfH+l'o;>1 

IflNRT .LT. I?lWRITEI601001 UIJI.J=I.MI 

XB =X IL .1 .K I 

OIf=IXCL.M.KI-AIMIIIOI",-xBI 

00 5 J =2. M "I 

5 XI L.J.KI =AIJ l*oIFo fA IJ 1- rPI 

;> CONTINUE 

A I II =X IL .1 .N I 
DO f; J=2.MM 

JP =J + I 

JM =J-I 
DO 2= II X I L • J. NI -X IL • J • 'I "I I I. f Z IL • J P • N I -2 IL. JM. N I I •• 5 +02' Y I LM. J • N 1- 03 

"OV IL ? J. N I '04' V I L 3. J • N II II Z I L. J. N I -1 I L. J. NM I I 

IFIJ .EQ. ?I 001=.5·002 

AI JI =lIJMI +.5' IDOl+0(7) 

6 001=002 
002= If XIL.M.NI-X IL .M.NMI " IZ IL .M.N 1-7IL.MM.NII +02'YILM.M.NI-03*v I 

, L 2 • "I • N 1+ 0'" V I L 3 • M. N I II I Z I L • M .N 1-7 I L. "I • N "I I I 

AI "II =A 1"1"11'.501001 +DOn 

IFI'JRT .LT. l71wPITEI6.1001 IAIJI.J=I.MI 

X8=X IL,J .NI 

DIF=CXIL.M.NI-AIMII/IAI'1I-XIl,1 

DO 1 J=2."l" 
7 XIL.J.NI =AIJI+oIF*IAIJI-XBI 

RE TURN 

END 

~frR.r SURIN.SU'lIN 

SU~ROUTINE INITALIZf.ZENOl1 

RE AL K I Z 
CO M"l fiN X 121 • I I • III • V I 21. 11. III. Z I 71 .} 1. 1l I • C} I 1 q. q I. C2 119.91 • C 31 } 9 

... 9 I • C 4 11 'l. 'll • C 51 19. 'l I • A I 1 q I • BI 1 9 I • Gil q I • H. FL. 

OE l X =1 X I I • M. I I - X I I • 1 • 1 II IF M 

00 'l J=2.MII 

9 XI I. J. 11 =X II • I 01 1+ DE L x of LI) AT IJ - II 

NC T=O 

10 SU M=O. 

00 I I J= 2. MM 

JP =J + I 
JM =J-I 

00 II I=2.LM 
XT =. 7<; *1 X I I. JO • I " XI I • J'" • 1 I + XI I + I • J. 1 I +X I I-I. J • I II 

OIf:: Xl -x II.J 01 J 

SU M= SUM+ AB S 101 F I 

I 1 X I I. J. 11 = X T + • f; • 0 If 

NC T::NC T+ 1 

If 15 UM • G T. .001 • AN O. til CT • LT. II 0 I (;0 Tal 0 

WRITf(!:'ol041 NCT.SUM 

1("111 FORMATI' INITIALIZING X NCT=·015.· SUM=·.fI2.61 

IFI"JPT .LT. ~Ol WRITEl6,)Oll ItxlI.J.ll.J=I.MloI=I.LI 

OL X:: • ;> *1 X I L. M. I I -x I L • I. 1 II 

FNC=IIIC-l 

00 17 K= 2 .NC 

KK =K PE-K 

FK 1= I 1.0-FLO AT IK -III FNCI" 2 

xF =0 LX' I 1. -F K I I 

DO 13 J= 1. M 

X I 10 J • KK I = X I 1 • J • II 

13 XlloJ.KI=Xll.J.1l 

00 14 I=2.l 

f 1 = X F 0 If LOA T II -1 II FL 10 • 1 .5 

XI I.", KI =X II .M. 11- FI 

X I I. M • KK I = X I I • M • K I 

DO 14 J=}.MM 

FJ=flflAT IJ-IlIFM 

XX =X II.J oll-FJof I 

X I I. J. KK I = X X 

14 xII.J.KI=XX 

12 CONTINUE 

DO I r; 1= 1. L 
00 15 J= 1. M 

15 XII.J.NI=xlI.JolI 

RE TURIII 

ENO 

$F" .fN.OEL.FZl .71.EPR.L .LM. "l. MM.N.NM.L2. M2 .N2.MAX ."lAXCT.NRT 

[10TT0'1 HID TOPIV AND 21 

~fOP.I lORAIN.ZORAIN 

CO =H IFL 

?F =F N* DE L 

NC =N 12 + 1 

Z1-'3= 17ENoI-Zll/fN 

FK 72=0. 

FK 21 =1). 
DO 1 K=loN 

DO 2 I=I.L 

VII.I.KI=O.O 

K I 7= IF LO A T II - I II FL 1* * 3 

2 T = I }. -K I Z I • F K Z I +K 12 0 f K 1 2 

ZII.}.KI=?T 

71 I. M. KI =ZT 

Y I I. M. K I =H -C 0 0 FL OA TIT - Il 

00 3 J =2.M "l 

lII.J.KI=2T 

CONTINUE 

FKZI =fKll+OEL 

IFIK .EO. II FK22=ZI 

FK 2?=F~Z2*lH3 

IFIK .EO. NMI FKZ2=ZF 

1 COlliTINUE 

DO It [=I.L 

DE L Y =V II • M • I 1I fM 

YT =OEL V 

DO It J=2.MM 

VII.Jdl=VT 

It YT=VT.DELV 

NC T=O 

5 5UM=n. 

DO I; J=2.MM 

JP =J + I 

JM =J-l 

Y T =. 7 c; 0 I Y I 1 • JO • 1 1* V I I • JM • I I * Z •• V I 2. J • I I I 

01F= VT-V Il.J. tI 

<;UM=SUM*AB51IHFI 

Vll.J.1l =YT*.f;oOIf 

00 I; I=7.LM 
VT =.2 'i' I Y I I • JP • 1 1+ v I I. JM • II + VI I-} • J.l I +V I I + 1. J • III 

[' I F= V T -V II • J • I I 

5UM=511M+AB5101FI 

I> Vll.Jdl =VT*.f;*OIF 

NC T:: ~Jr T + 1 

IF ISUM .GT •• 001 • AND. NCT • LT. 1101 GO TO 5 

WRITEI",1001 NCT.5tH' 

Ion FOPMATI' INITIALI7ING V - I>JCT=·oIs.· 5lJM=·.FI2.61 

1("11 FORMftTIIHO.lIFIO.3.201/olH .l1FIO.3)) 

90 7 I=I.L 

00 7 J =1. M 

VT -:ov IT.J • I I 

['0 7 K =2.N 

7 vII.J.KI=VT 

OYl=VII.M.II-VII."f".11 
XI 1. "101 1=0. 

Xlloldl=O. 

o v 3= v I 1 • ? • II - Y I 1 • 1 • I I 

[)O 8 I=2.L 

OV <'= V I I. M. 1 I - V I I .M" • I I 

X I I. M. I I = X I I - 1 • "I • 1 1+ • 5' II) Y 1 +[' Y 21 

DV 1::f)V Z 

OVII=YlI.2oll-VII,Jd I 

x I I. I • I I =X I I -I , I • I I. • 50 ID v 3 +fJ V 41 

8 DV ~=OV4 

OOqI=I.L 
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SU'lROtJTINE ZOPANFI lE"JOll 
CO MM ON X I 21 01 I d II • V I 71 • 11 • III • 2 I ? 1 01 1. Il "C I I 1 q • 9 I • C Z 119. 9 I • C 31 1 9 

'!; .9 J • r. 4 119. 'll • C 51 ) q. 9 I • A I I q J • BI 1 91. G( 1 91 • H. FL. 

.. FM .f N • DE L • ZF .71 • [R R • L. LM • '" • '1 ". N • Nil. L2 • M Z, N2. '" AX. MA XC T. NR T 

,.ZTlll1 
OV IV 1 • v 2. v 3.D? r:n. Olt I:: D2'v 1- OJo Y7 + 0 It. V 3 

OX21 Xl.X2.X3.X4,04.D5J =XI-04 ox2- .Sox3-050X4 

OX IXIoX2.x3.XIt.E3.E41 = E3*IXI-X?!-[II'IX3-XIII 
OMMI XI.X2. X3.X4. 04.051 =04' X 1+. S.X 7-x3+0S o XIi 

Ox M I xl. x 2 • X 3 • X II • 01 • 0 2 • 0 3 .0 II I =0 loX I - n 2 * X 2 + 03' x 3 -0 4 0 X 4 

N3 =N-~ 

U=L-~ 

01=1.!\3333333 

[)2=3.0 

03 =1.5 

04=.33333333 

05=.16666<;67 

El=.5416666f;7 

f7=.OltI66!;6f;7 

E3=. F66b666f;7 

f.4=./]83B33~3 

DO 2 J=2.M 

21 L. Joll =ll 

JP =J + I 

JM =J-1 

JO =J +' 
J2=J -? 

OY 1= 0 Y I V I L M • J. II • V I L 2. J. II • V IL 3. J • I I .02.03.04 I 

OY2=OV IV ILM.J.n.v IL2.J. 71. V IL 3 .J.21.02 .03.041 

o V 3= 9 V I V I L M •• J • 3 I • V I L 2 • J. 31 • V n. 3 • J • 3 I • 02 • 0 3. 0 II I 

5X ):: 0;> * x IL • J • 7 1- 01 0 X I l • J • I 1- 0 ~. X IL • J • 3 I + 0 4 0 X (L • J .41 

5X 7= x I L. J. 31 -. 5' XI L. J. 21 -0 "' X I L • J .1 I -['5 * x I L. J. 4 I 

5 X ~= E ~ 0 I X I L • J • 4 I -X Il • J • ? II -E "' I X I L • J • " 1- X I L, J. 1 I I 

IflJ .GT. ?I GO TO 3 

001= 10 V I +S Xl *0 X 2 I? I L • 3. 1 1.2 I L. ) .1 I .2 IL • 2. I I .7.1 L. 4 • 1 I .1'4. O'i I II 

$ OX 21 X ( L. 3. II • X I L • 1 • 1 I. X I L. 2 • 11 • X IL • 4. II • D 11.05 I 

002:: 10 V 2 +S X 2 *0 X 2 12 IL • 3. 2" i'l L. 1 ., I .7. IL • ;>. 21.7.1 L. II • 21 .04. [l'i I II 

$ OX 21 X I L. 3.2 I • ~ I L • I. 21 • X I L. 7 • 21 • ~ IL • 4. ? I .0 4. O~ I 

DO 3= 10 v3 +5 X"3 00 x ? 17 I L • 3. 3 I • Z I L. ) .31 • Z IL • 2. 31 • ., I L. II .31 .04.051 II 

'0121 X I L. ~. 31 • X IL • } • 31 • X I L. 2.31 • X IL • II. 3 I .0 11.05 J 

EO TO 4 

3 IFIJ .EG. MMI GO TO" 

If (J • [0. MIG 0 TO F 

DO 1:: I 0 V 1 + S x 1 00 X I Z I L • JP. 1 I • Z I L. J M • I I • 1 I L • J O. I I • 71 L. J 2. ) I • f 3 , E It I II 

$ OXIXIL.Jo.II.XIL.J".II.XIL.JO.II.XIL.J2.11.f3.rlll 

DO 2= I 0 V 2 +S X 2'[l X I 21 L • JP • 2 I .ll L. JM. ? I .ll L • J O. 21 .7.1 L. J2. 2 I • E"3. E4 I 1/ 

$ 0 X I X 1 L • JP • ? I • X I L. J" • ? I • X I L • JO. ? I • X I L • J 2. 2 I , E 3. E 4 I 

003= I n v 3 +5 X 3.0 X I ZI L • JO • "3 I. II L. JM. ~ I • Z I L • JO. 3 I .21 L. J 2. 3 I • [ 3. E4 I II 

.. 0 X I X I L. JP • J I • X I L. JM • 3 I • X I L. JO. 3 I • X I L • J 2. 3 I • [ 3. f 4 I 

GO T a II 
5 001= 10 v 1 + S XI .r MM Il 1 L • J P. II • Z n. • J. 1 I .2 I L • J", II .71 L. J2. } I • Olt. 05 I If 

,0MMIXIL.JP.II.XIL.J.II.xIL.JM.II.XIL.JZ, 11.04.051 

DO 7:: In V2 +S X?, 0 MM I Z I L • J P. 21 .7. n. • J. ?I • 7 I L • JM. ;> I • Z I L. J:? 2 I • 04. Ot; I 1/ 

'Ii 0 MM 1 X I L • J P • ? I • X I L • J • ? I • X I L • J"l • 2 I • X I L • J 2. 2 I • 0 4 • 05 I 

DO 3= lOY 3 +5 X 3 *0 MM I Z I L • J P. 31 • 1 Il • J. 3 I • Z I L oJM. 31 .71 L. J?. 3 I • D 4.05 I II 

$ OM"'I~IL.Jo.~I.XIL.J.31.XIL.JM.31.XIL.J2.31.D4.0SI 

fO TO II 

6 J3=J-~ 

DO 1= 10 V 1 +S X 1*0 XM 17 I L • J. 1 1.71 L. J"', I I. Z I L • J 2, 11 • 71 L. J 3. I I. 01.02 .03. 

$ 0 II I I If) XM I X IL .J • 1 I. X I L. JM • II • XI L • J? 11 • X I L • J3. 11.01.02.03.04 I 

[)02= II' V2 +S X" o[l X M 17 I L • J • 2 I • 7 I L. JM • ., I • Z I L • J 2. 21 • Z I L. J 3. ? I • 0 1.02 • 03 • 

~Oltll II) XII I~ IL.J.?" XI L .JM .?I. XI L .J2. 21.XI L. J3. ".Dl.02. 03.041 

DO 3= I (l v 3 +5 X 300 XM I Z I L • J • 3 I • 71 L. JM. 3 I .71 L • J 2.3 I • II L. J 3. 3 1.01.02 .03. 

~ 04 II 10 XM I X I L • J • 3 I • X I L. JM • ~ I • XI L • J? ~ I • X I L • J3. 3 I .01.02.03.04 I 

It ZTI21=Zl+.S*IODl+(l0?l 

f 



90 7 I< =~. NM 
1= K+I 

KM =K-l 

KP =K +? 

K2 =K-? 

K.3 =K + ~ 

OY 4="'Y IV IL M • J • I I • Y I L 7. J. II • Y IL.3 • J • II .1)2 .03.04 I 

IF IK .ro. NMI GO TO I J 

IFIK .FQ. N2! GO TO IS 

5X4=(~.1 XIL.J.KP I-Xll.J.KII-r~'IXIL.J.K31-XIL.J.KMII 

GO TO 9 

13 SX4=D1'X IL.J.N 1- D2'X IL.J .NMI +03'X I L. J.Nl'-04'X IL.J .N-31 
GO TO q 

15 SX"=04.XIL.J.NI+.S'XIL.J.NMI-XIL.J.f\l21+0SoXIL.J.N-31 

'l IF IJ • GT. 21 GO TO II 

DO 4= 10 Y4 +5 X" on x 2 17 I L • 3. I I. Z I L. I • I I • ., IL • 2. I 1. 7 1 L. " • II .04. OS) II 

'I> OX 21 XI L. "5. r I • X IL • 1. I I. X I L. 2. II • X IL • 4. I I .0". OS I 

GO TO 14 

8 IF IJ • [0. !1M I GO TOIl) 

IF IJ .(P. MI GO TO II 

DO 4= 10 Y4 +'; X 4' 0 X I Z I L. JP • I I. Z I L. JM. I I. Z I L • JO. I I .7.1 L. J2. I I. (3. E4 I II 

~ 0 X I X I L. JP • I I • X I L. JM • r I • X I L. JO. I I • X I L • J 2. I I • f 3. [4 I 

GO TO I" 

1 0 DO ,,= 10 Y4 +5 x".[) MM I Z IL • J P. II • Z Il • J. r I.? I L • JM. I I .7.1 L. J2. T I. OLi. OS I II 

'I> 0 I'M I X IL • J P • I I • X IL • J • I I • ~ I L • Jtl • I I • X I L • J20 I 1.0". OS I 

GO T a I" 
II DO ,,= I ['I Y4 +5 X 4' 0 XM I Z IL • J • I 1.71 L. JM. I I. Z I L • J? r I • Z I L. J.3. I I. 01.02 .03. 

~ 04 II 10 XM I X IL • J • I I. X I L • JM • I I • XI L • J 2. I I • X I L • J.3. r 1.0 I • 02 • 03.04 I 

14 ZT II< I-::ZT IKMI +(I'W02+f)031-EZ'1 ODI+0041 

001=002 

OD2=P.03 

7003=on4 

ZTINI=ZTINMI+.5.1007+I)D31 

OIF=llENOl-7TINII/IZTlNI-ZII 

49 

DO 17 K= 2. NM 

1 7 Z I L. J. K I = Z T I K I +0 IF '1 7 T I K 1- Z 1 J 

WRITflt;.l'i81 J.ZloI?TlKJ.K=2."lJ 

;> c; 8 Fa RM A T It H • I 2 ol 1 F 1 I • 4 1 

2 ZIL.J.NJ=ZEND) 

DO I? K=I.N 

12l1L.I.KI=ZIL.?KI 

NM ID ='1/2-1 

NM ID?= NM 10 +? 

DO 77 K= 1.NMID 

KP -::K + 1 

SL OP I -:: I X IL .J .K 1- X I L • J. KP II /I 71 L • J • KP 1- Z I L • J. K I J 

XOIF-::XIL.JP.KPI-XIL.J.KPI 

SL OP 7= I Z IL • J P • KP 1- Z I L • J. KP II IX 0 IF 

IFISLOPI +.11 .GT. <;LOP7 .ANn. qOPl-.ll .LT. SLOP21 GO TO 22 
Z I L. JP .K PI = X"'I F. <;L OP 1+ Z I L • J. KP I 

72 CONTINUE 

74 KM =K-I 

JP =J + 1 
SL OP 1 -:: I X IL • J .K 1- X I L. J, KM II /I 11 L • J, K I -Z IL, J. K M J I 

XOIF=XIL.JP.KMI-Xll.J,KMI 

SL OP ? = I Z I L • J P • J( M 1-- Z I L • J • K M I II X I) IF 

IFISlOPI +.11 .GT. <;lOP? .AND. '>LOP1-.ll .LT. SLOP?I GO TO 23 

ZI L, JP .K M I = 71 L • J ,K MI - X 01 F. SL OP 1 

') 3 CO NT TN UE 

K= K-I 

IFIK .Gf. N'ITI)21 GO Tr) 24 
DE TURN 

END 



t 

'-



~ 

X-COORDINATES FOR K= 

'" 

APPENDIX C-EXAMPLE OF SOLUTION GIVING 

x(<I>, tjJ, tjJ':'), y(<I>, tjJ, tjJ'~), z(<I>, tjJ, tjJ':') 

.000 .8q4 1.760 2.5% 3.3984.1644.8895.570 6.?06 6.7957.336 7.Rl9 8.?72 8.(,62 8.992 q.243 9.321 

.000 .900 1.770 2.609 3.415 4.183 4.910 5.594 6.232 6.823 7.367 7.863 8.310 8.70~ 9.042 9.308 q.428 

.cno .913 1.797 2.648 3.464 4.?41 4.9765.6661>.311 6.9097.4617.9658.4218.8279.1769.453 9.527 

.000 .936 1.842 2.713 3.546 4.337 5.084 5.786 6.441 7.050 7.612 8.128 8.598 9.019 9.385 9.686 9.893 

.000 .971 1.909 2.807 3.663 4.472 5.234 5.949 6.617 7.238 7.8)4 8.3115 8.830 9.26q 9.655 9.9~2 10.217 

.oon 1.019 2.000 7..934 3.816 4.646 5.475 6.154 6.835 7.4~9 8.057 8.602 9.103 9.55P 9.96310.314 10.572 

.000 1.087 2.124 3.098 4.010 4.862 5.656 6.398 7.089 7.733 8.332 ~.888 9.400 9.86elO.288]0.657 10.936 

.000 1.18G 2.292 3.312 4.257 5.172 5.9l~ 6.618 1.37'; 8.r25 P.629 9.189 9.7081O.]871O.61l10.Q92 11.291 

.000 t.341 2.5293.590 4.551 5.4~2 f>.:?43 6.9957.(;928.3408.941 9.50010.01710.49?10.92411.309 11.631 

.ono 1.621 2.873 3.955 4.922 5.803 6.611 7.3578.0468.6859.216 9.82410.33110.79811.?2111.614 11.953 
Y-COORDINATES FOR K= 1 

.000.000.000.000.000.000.000.000 .(JOO .000.000.000 

.866 .81;1 .849 .8l9 .804 .774 .739 .702 .662 .621 .517 .531 
.000 .000 .000 .000 

.482 .431 .317 .319 

.963.860.750.634 1.7391.731 1.70(; 1.666 1.614 1.sc 2 1.482 

2.625 2.611 2.570 2.cO~ 7.424 2.328 2.221 

3.523 3.~02 3.442 3.350 3.234 3.099 2.950 

4.442 4.Ql1 4.32'3 4.1~7 4.039 3.£'60 3.665 

5.398 5.350 5.226 5.049 4.83Q 4.6[17 4.368 

6.4l9 6.336 6.150 5.308 5.632 5.338 S.030 

7.5~8 7.3Q5 7.108 6.773 6.417 6.f49 5.673 

9.01108.550 S.10n 7.65(1 7.200 6.750 6.3o[j 

Z-COOROINATE5 FOR K= 1 

1.407 

2.105 

2.792 

3.46U 

4.103 

".715 
5.293 

5.8 SO 

1.326 

1.983 

l.t. 25 

3.246 

3.837 

4.392 

4.909 

5.400 

.000.000.000.000.000 .[JOO .000 .000.000 

.000.000.000.000.000 .uno .00fl .000.000 

.000.000 .om, .000 .0(10 .uoo .000 .000 

.oon .OOU .oon .000 .000 .000.000.000 

.000.000 .oon .00[1.000.000.000.000 

.0 no 

.000 

.000 

.000 

.000 

.OUO .000 .(lOO .000 .000 .000.000 .ono 

.000.000.00(1.000.000 .COO .000 .000 

.000.000 .oon .000 .000 .000.000.000.000 

.000.000.000.000.000.000.000.000.000 

.000 .000 .000 .000 .000 .000 .000 .000 .000 
X-COORDINATES FOR K= 2 

1.242 

1.855 

2.451 

3.f' 74 

3.563 
4.[163 

4.521 

4.950 

.000 

.0 DO 

.000 

.000 

.0 on 

.000 

.000 

.0 no 

.000 

.000 

.000 .8841.7422.5733.371 4.1324.8535.5306.161 6.74G 

.000 .889 1.752 2.5R7 3.388 4.152 4.875 5.554 6.1H7 6.173 

.000 .903 1.78D 2.626 3.437 4.209 4.'339 5.624 6.262 6.853 

.000 .927 1.827 2.693 3.520 4.306 5.046 5.740 6.386 G.984 

.000 .964 1.896 2.790 3.640 4.443 5.191 5.903 6.558 7.164 

.000 1.0l4 1.9"!] 2.920 3.798 4.612 5.393 6.110 6.775 7.389 

.000 1.DR5 2.120 ~.0'32 4.001 4.R47 5.633 6.3627.0367.657 

.oon t.188 2.2% 3.316 4.2555.1215.9206.6587.3397.964 

.00u 1.349 2.542 3.607 4.571 5.450 6.25? 7.000 7.683 8.309 

1.153 

1.120 

2.270 
2.794 

3.282 

3.727 

4.130 
4 .5 [10 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

7.282 

7.311 

7.395 

7.532 

7.720 

7.953 

8.227 

8.536 

8.880 
.000 1.6~8 2.8~Q 3.988 4.961 5.845 F.653 7.395 8.075 8.698 9.265 

Y -C 00 RO IN AT [5 FOR K= 2 

1.061 

1.580 

2.081 

2.555 

2.991 

3.384 

3.133 

4.050 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

1.4 Pl. 2 77 1.113 .939 

1.884 1.676 1.457 }.227 

7. • 3 06 2.0 4 6 1. 7 P: 1. 4 90 

?691 2.379 2.056 1.724 

3.032 2.672 2.~03 1.926 

3.332 2.97.6 2.515 2.100 
3.600 3.1'i(J 2.700 2.250 

.000 

.000 

.000 

.000 

.000 

.000 

.Don 

.000 

.000 

.GOO 

.0 on 

.000 

.000 

.00[1 

.000 

.000 

.000 

.000 

.0 00 

.000 

.000 

.00[1 

.000 

.000 

.000 

.0 DO 

.000 

.000 

.000 

.000 

.000 

.000 

.0 [10 

.000 

.000 

.0 [10 

.000 

.000 

.000 

.000 

7.768 8.202 8.58] 8.899 9.149 

7.7998.235 8.£1f- 8.9379.1'31 

7.887 8.328 8.71<: 9.043 9.306 

8.032 8.4818.876 9.215 9.491 

8.227 8.1>85 9.09(J 9.440 9.730 

8.468 A.S3? 9.34[" 9.70410.006 

8.741> 9.2149.1;329.99710.306 

9.056 9.526 9.94410.31010.f,22 

9.3989.86410.27810.64010.950 
9.77910.23910.64~11.00011.300 

.000 .ono .000 .000.000 .DOO .000 .000 .roo .000 .000.000 .noo .000 .000 .000 

.849 .845 .832 .811 .785 .7133 .717 .678 .63~ .5<)2 .547 .500 .450 .398 .344 .287 

1.701 ].!;Q8 1.672 1.630 ].575 1.510 1.437 1.357 1.774 1.186 1.094 .999 .899 .79r:; .687 .573 

7.578 2.S64 2.5212.45<; 2.3692.2'682.1562.0351.9071.7741.6361.4931.344 1.1'i° 1.027 .8';8 

3.4683.4463.3833.2883.1673.0207.871 2.7062.5132.3532.168 1.91f; 1.7781.572 ].357 1.1~4 

4.334 4.3';2 4.26~ 4.1.31 3.968 3.7A2 3.5803.3673.1462.9172.6832.4427.193 1.937 1.~72 1.3'H 

5.3445.2945.1684.9884.173 4.')34 4.2804.014 3.741 ~.461 3.1752.883 2.5A4 2.'27'31.9651.642 

6.376 6.2'32 6.10~ 5.860 S.58l' 5.::'P.0 4.'366 4.643 4.314 3.979 3.640 3.7% 2.94[, 2.C;Q2 2.2:n 1.864 

7.543 7.371 7.083 ~.748 6.389 6.fJ17 5.638 5.2S3 4.864 4.473 4.078 3.682 3.282 2.880 7.4711 2.066 

9.000 ~.5Sf.! 8.1007.6507.2006.7506.3005.850 S.400 4.95(14.5004.0503.6003.150 ?7rm 2.250 

l-rOORDINATE5 FOR K-= ? 

].019 .qq3 .975 .967 .951 .942 .933 .97S .970 .917 .919 .Cl30 .957 .9Q[. 1.048 1.126 

.000 

.258 

.512 

.757 

.q88 

1.199 

1.384 
1.:')44 

1.682 

l.aOO 

.uOO 

.000 

.000 

.000 

.000 

.000 

.iJOo 

.000 

.000 

.000 

9.317 

'3 .36 ~ 

9.494 

9.698 

9.954 

10.245 
10.556 

10.818 

11.207 
1 1 .547 

.000 

.228 

.456 

.683 

.904 

1 .115 

1.311 

1.490 

1.65 J 

1.800 

1.222 

9.336 

9.1143 

9.652 

10.001 

10.371 

10.756 

11.145 

11.522 
11.890 

12.236 

• co 0 

.195 

.386 

.570 

.744 

.901 

1.040 

1.159 

1.262 
1.350 

.000 

.000 

.OUO 

.000 

.000 

.00 a 

.000 

.OOU 

.OGO 

.co a 

9.336 

9.419 

q. 5 9E-

9.831 

10.110 

10.419 
10.743 

11.074 
11.408 
11.742 

.000 

.169 

.337 

.505 

.668 

.826 

.973 

1.11 a 

1.2 J7 
1.350 

1.323 

9.351 

'3.458 

9.667 

lU.015 

10.433 

9.366 

9.473 

9. 6~2 

10.030 

10.450 

10.83810.883 

11.240 11.323 

11 .636 11. 73 U 

12.06812.252 

12.450 12.585 

.UOO 

.130 

.257 

.380 

.496 

.GO 1 

.693 

.77 3 

.842 

.'300 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.DUo 

9.351 

9.434 

9.GOO 

9.890 

10.197 

10.521 

10.863 

11 .204 

11.549 
11.888 

.000 

.108 

.216 

.324 

.430 

.532 

.630 

.724 

.819 

.900 

1 .413 

.000 

.065 

.128 

.19 a 

.248 

.300 

.347 

.387 

.421 

.45(J 

.000 

.OO(J 

.000 

.000 

.000 

.000 

.000 

.000 

.OOU 

.000 

9.360 

9.449 

9.615 

9.892 

10.219 

10.535 

10.907 

11.243 

11.599 
12.004 

.000 

.048 

.091:> 

.145 

.194 

.244 

.294 

.344 

.396 

.450 

1.47 J 

9.381 

9.488 

9.697 

10.036 

10.472 

10.951 

11.424 

11.865 

12.267 

12.630 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

1.000 

1.000 

1.00 a 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 
1.000 

9.381 

9.464 

9.630 

9.894 

10.226 

10.578 

10.922 

11.258 

11.614 
12.055 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

1.492 



en 
en 

9.000 A.~50 8.100 7.65n 7.200 6.7~0 F.~UO 5.850 5.400 4.95r 4.500 4.050 ~.6UO 3.150 ?700 7.250 1.800 1.350 

Z-COORDINATES FOR K~ '3 

R.042 8.0~2 '1.025 8.019 8.015 8.1.111 8.007 8.002 7.9'31 7.'390 7.981 7.971 7.958 7.944 7.928 7.912 

8.042 8.033 8.02~ 8.r?1 8.017 8.013 8.009 8.004 7.99~ 7.992 7.983 7.972 7.95° 7.945 7.929 7.912 

8.042 8.032 '1.025 8.G?!l 8.015 8.ljll 8.007 B.002 7.997 7.989 7.9f\0 7.970 7.957 7.9437.927 7.911 

8.IJ42 B.031 8.023 '1.017 P'.OI2 8.008 8.001 7.998 7.9~2 7.984 7.975 7.964 7.951 7.937 7.921 1.904 

8.042 8.0?9 8.D?I 8.014 B.uO<') 8.004 1.990 1.993 1.987 7.97Q 1.910 1.959 7.941 1.933 7.917 7.901 

8.041 B.027 B.017 8.010 8.004 7.938 1.993 1.987 7.980 1.912 1.963 7.9~3 7.941 1.927 7.913 1.897 

R.040 8.074 8.013 8.005 7.99R 7.992 7.985 7.980 7.913 7.9~5 7.956 7.946 7.9]4 7.921 1.901 7.893 

8.039 8.022 8.010 8.001 7.994 7.987 7.9QO 1.913 1.955 7.q~7 7.947 7.937 7.925 7.913 7.900 7.887 

8.[]~9 3.0?] 8.01£1 8.rO) 7.99Ll 7.9P'f, 7.<')7° 7.911 1.9Fl 7.951 7.940 7.928 7.915 7.901 7.88~ 7.R7] 

8.039 8.02S 8.01R 8.012 R.DOr:. B.OGO 7.994 7.9R6 7.917 7. a r:.7 7.95~ 7.9437.9307.917 7.904 7.R91 

X -c 00 PO IN 1\ T E5 FOR K= 1 (] 

.onc .751 1.502 2.242 2.964 3.b51 4.328 4.961 5.558 6.115 ~.633 7.109 7.544 7.935 8.2R~ 8.58~ 

.COO .755 1.5IG ??S4 ?918 3.G7a 4.347 4.981 5.579 6.137 E.6~5 7.131 7.56~ 7.957 8.30u 8.607 

.non .758 1.5~4 2.2~A 3.0:?? 3.179 4.404 5.042 5.542 b.203 F.721 7.198 7.,,32 8.023 8.359 8.570 

.00Ii .7~q l.5H- 2.3483.097 3.81f) 4.499 5.145 5.749 6.312 6.83~ 7.310 7.7438.133 8.477 8.776 

.000 .8?1 1.638 7.43F: 3.2l16 3. cJ41 4.f)]7 5.290 5.9016.467 5.C!8C! 7.4~E 7.~9° 8.2BG 8.628 fl.<J?4 

.000 .8G7 1.725 2.5S8 ~.3S5 4.1(J9 4.81 0 5.482 h.098 6.667 1.191 7.G57 P.098 8.483 8.827 9.113 

.o~o .932 1.847 2.772 3.550 4.325 5.04<,) 5.721 6.342 G.91S 7.438 7.914 8.342 B.723 9.057 9.344 

.DOfl 1.078 2.016 ?941 3.8110 4.:'% 5.331 6.011 6.63f, 7.709 7.132 B.205 8.630 9.nnF 9.:nl~ 9.G15 

.0001.1822.2503.733 1<.11B 4.929 5.G72 6.3555.9817.5538.073 B.541 8.91;0 9.~30 9.6519.924 

.(Jon 1.4632.620 3.6?2 4.519 5.3)4 f:..079 G.76U 7.381l 7.9518.11658.9279.338 9.G99Hl.OlllO.274 

V-COORDINATES FOP K= 10 

.000.000 .UOfl .000.000.000.000.000.000.000.000.000 

.808 .904 .79:? .777 .746 .714 .e17 .638 .595 .550 .504 .456 

1.r-l4 1.616 1.597 1.~51 1.4')71.432 1.35R 1.278 1.1911.101 I.U08 .913 

2.4582.445 2.405 2.343 2.25P 2.158 2.044 1.92[1 1.789 1.65~ 1.512 1.368 

3.32IJ 3.3013.2443.152 3.nn 2.8932.7362.5672.3892.2042.0151.822 

4.;??4 4.195 4.114 3.'Hn 3.826 3.1040 3.43') 3.218 2.99n 2.756 2.517 

5.1g7 5.144 5.027 4.853 4.b4r 4.400 4.147 3.812 3.5Q3 3.307 3.017 

5.241 f>.168 5.'3,]? 5.7525.4755.1734.1151': 4.C)?? 4.1<:15 3.8513.514 

7. 457 7. 2 'l G 7. C 18 f,. f:, R 7 1;. 3 ? 9 5. CJS 6 5.574 5.1 81 4.7 96 4.403 4.008 

9.uno 8.S50 B.l0r 7.6SG 7.200 6.750 f).30r 5.850 5.400 4.Q50 4.500 

l-COORDINflTE5 FOR K= 10 

2.274 

2.723 

3.169 

3.611 

4.050 

.000 .000 .00(1 .000 

.408 .358 .3 Oil .758 

.815 .71G .616 .'i15 

1.?21 1.073 .92? .771 

1.525 1.427 1.721 1.025 

2 .0 2 R 1. 71 9 1. 5 28 1. 2 76 

2.427 2.128 1.827 1.<)75 

2.822 2.473 2.123 1.711 

3.212 2.813 2.413 2.012 

3.600 3.150 2.70r 2.250 

9.uro 9.0ULJ 3.000 9.00n q.OOO 9.000 9.000 9.000 9.000 9.noo 9.000 9.000 9.000 9.0no 9.000 9.000 

'l.O!iO 'l.OOD 9.00D '1.000 'l.00n 9.DOO 9.000 C).OOO 9.000 9.00D 9.000 9.ll00 9.000 9.000 9.000 9.000 

C).OOO 9.000 9.00U 'J.llOO 9.GOO 9.nOD 9.000 9.000 C).O(1O 9.000 9.000 c).oClO g.ouo 9.0nn 0.00f! 9.0(10 

9.~OO 9.000 9.000 9.000 q.OUO 9.000 9.000 '1.000 9.000 9.000 9.000 9.000 9.000 9.0no 9.000 9.000 
9.000 Cl.ono 9.000 'l.OOO 9.0DO 9.[;UO 9.000 9.0009.0009.[1009.0009.0009.0009.0009.0009.000 

9.000 9.000 9.000 '3.000 <.).000 9.UUO 9.000 9.000 9.000 9.000 9.000 9.000 9.UOO 9.000 9.000 9.nOl 

9.000 9.ooe 9.000 9.00r 9.000 9.UDo 9.000 q.OOO 9.000 9.0De 9.000 9.000 9.000 9.000 9.000 9.00D 

9.0no 9.000 9.00(: 9.00[19.000 9.r'00 9.000 9.0009.000 9.UOO 9.000 9.0009.000 9.rne 0.0009.000 

9.000 9.000 9.000 9.000 9.o0G 9.00U 9.000 9.000 9.000 9.[100 9.000 9.000 9.GOO 9.00n 9.000 9.000 

9.0no 9.000 9.000 "1.000 q.ouo 9.0UO 9.000 9.000 9.0GO 9.00U 9.000 9.000 <.).GOO 9.0on 9.000 9.000 

7. aC! 5 

7 .a9 5 

1. d94 

7. il8 8 

7. BIl6 

7.883 

7.879 

7.874 

7. 3!" 7 

7.880 

8.842 

8.86 J 
8.925 
q .02C! 

9.173 

q .35 8 

q .58 2 

q. 847 

10.14 ':l 

10.490 

.000 

.207 

.413 

.618 

.a2l 
I .02 J 

1.222 

1 .41 8 

1 .611 

1.800 

q .000 

q .000 

9.000 

9.000 

9.000 

9.000 

9.000 

9.000 

9.000 

9.000 

7.880 

7.P 80 

7./\ 79 

7.873 

7.R 71 
7.P 6q 

7.867 

7.863 

7.844 

7.871 

9.052 

9.072 

9.133 

9.234 

Cl.374 

9.554 

"1.773 

18.031 

10.325 

10.658 

.000 

.155 

.310 

.464 

.f, 17 

.768 

.0 17 

1.065 

1.208 

1.350 

9.000 

9.000 

9.000 

9.GoO 

9.000 

9.000 

9.000 

9.000 

"1.000 

9.000 

.900 

7.867 

7 .8G 7 

7.8G7 

7 .!:sG 1 

7.860 

7.858 

7.856 

7.854 

7.834 

7.864 

9.213 

9.233 

9.292 

9.390 

9.525 

9.701 

9.915 

lo.1b6 

IIJ.453 

10.777 

.000 

.104 

.207 

.310 

.412 

.513 

.f> 12 
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