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ABSTRACT

Methods are developed and defined for obtaining numerical solutions to three-dimensional,
free surface, inviscid, incompressible fluid flows and three-dimensional free surface Darcian flow in
porous media. Since those boundaries consisting of free surface are unknown a priori, a solution to
the space boundary value problem resulting from a formulation in the physical space is very
difficult, if not impossible, to obtain. Consequently, the methods described herein are based on a
formulation in a space defined by a potential function and two mutually orthogonal stream
surfaces whose intersections define the streamlines of the flow. In this space the positions of free
surfaces are known. The formulation considers the magnitudes of the cartesian coordinates x, y,
and z as the dependent variables.

The applicability of the methods are demonstrated by implementing them in a computer
program and by obtaining solutions to four problems with slightly different geometries of
three-dimensional Darcian seepage flow of water through a dam with a drain over only a portion of
the toe. Isometric drawing of the space flownets display the results from these solutions. Also a
number of regular flownets are given which were constructed by projecting the points of
intersection of the two stream surfaces and/or equipotential surfaces onto horizontal or vertical
planes.
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The equations given by 8 can be obtained by
differentiating each of the second set of the above
functional relationships with respect to x, y, and z
respectively, and subsequently solving each group of three
equations with respect to the inverse derivatives. Thus the
first line of equations is obtained from the solution of the
following three equations obtained by differentiating
x=f(®, , P *) with respect to x, y, and z, respectively.
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If the partial derivatives of F, G, and H with respect
to X, y, and z are considered unknown, then Eq. 8
represents a system of 9 equations in 9 unknowns. Solving
for these unknowns and substituting the results into Egs.
1, 2, and 3 gives the basic inverse equation. It is easier,
however, to substitute from both Egs. 8 and 10 into Egs. 1,
2, and 3. This latter procedure also yields the following
inverse equations:
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These last three basic equations define the inverse
functions x(®, ¥, ¥¥), y(2,¥,¥*), and z(2,¥,¥*) just as
Egs. 1, 2, and 3 formed the basic equations defining the
potential function and the two stream functions in the
physical space. Consequently, Eqgs. 11, 12, and 13, when
associated with appropriate boundary conditions for a
particular problem, constitute an inverse mathematical
formulation of potential fluid or porous media flow. The
major effort of this investigation has been devoted to the
development of methods for solving Eqs. 11, 12, and 13
with appropriate associated boundary conditions.

Method of Solution

Since Eqs. 11, 12, and 13 (the basic equations for
which a solution is sought) are nonlinear, and each of the
equations contain all three of the unknown functions
x( 8,9, V*), ¥(@,y,9*), and z( @,y , p*), numerical meth-
ods offer the best present approach to obtaining a
solution. No effort in this investigation has been devoted
to seeking transformations, etc., which might make a
closed form solution possible for certain problems with
idealized boundary conditions. Rather, the effort has been
to examine possible numerical approaches which are
workable and feasible in solving problems of a general
nature.

A number of variations of commonly used finite
differences methods have been implemented in attempting
to obtain such a solution. The method described as an
integral part of this report does provide such a solution
capability provided its implementation is adapted to
certain features of the particular problem being solved.
Two alternate methods of solution are also being studied
further. With the exception of these three approaches the
attempts at solution by common methods meet with
limited success. One of the alternative methods utilizes
finite difference operators based on all possible combina-
tions of first order forward and backward differences of
the basic Egs. 11, 12, and 13 and weights the results in
proportion to the distance the grid point is from the
various boundaries of the problem. This alternative is
being studied by a Ph.D. candidate who is attempting to
obtain the solution to the problem of potential flow at
the free overfall end of an open channel. In this
alternative the successive overrelaxation method has been
modified by using Newton’s method to simultaneously
obtain solutions to the various finite difference operators
obtained from Egs. 11, 12, and 13 as well as from the
boundary conditions at each mesh point. The details of
this method, as well as the results of solutions, will be
forthcoming.

The second alternative which combines direct meth-
ods for solving finite differenee equations with iterative



Table 1. Second order equations obtained from Egs. 11, 12, and 13 under the assumption that variables are known from adjacent planes.
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(Three other equations can be obtained which apply in the LJJL]J* plane.)




terms is very small in comparison to the other. The
second criteria helps insure that the equation has some
resemblance to the Laplace equation upon which many
numerical as well as other solutions have been based. If
this criteria is poorly satisfied, a solution in each
individual plane can be obtained with few iterations by
solving the system along the grid line in the direction of
the dependent variable with the larger coefficient. But
since the problem is of the elliptic type, this would mean
that a high dependency exists between the values on this
plane and the values on adjacent planes. Consequently,
the reduction in arithmetic calculation in obtaining
tentative solutions in separate planes would be more than
offset by additional cycles of calculations resulting be-
cause of the slower convergence in the cycle from plane to
plane. Furthermore, the process of solution may be less
likely to converge than if this criteria were maintained.
The third criteria is closely associated with the above two
reasons.

To illustrate how the selection of the best equations
from those listed in Table 1 might be arrived at, consider a
three-dimensional potential flow with the major com-
ponent of velocity throughout the majority of the region
as being in the x-direction. The velocity components in
the y-direction in general are also greater than those in the
z-direction. Furthermore assume, because of the nature of
the particular problem, that a boundary of the problem
along which ¢ is selected to be held constant is normal to
the y-direction, and another boundary at right angles to
this boundary is selected as a {f*=constant surface. In this
problem the major changes in the flow field exist within
@y planes with lesser changes occurring between adjacent
@y planes. Consequently, derivatives of x and y with
respect to Y* will generally be of smaller magnitude than
those with respect to ¢ and . A logical choice,
therefore, would be to select equations for solving for x
and y which apply on ¢y planes and an equation for z
which applies on ¢y * planes. In other words the variables
X, ¥, and z would each be obtained by use of the equation
which applies in the plane where the greatest action of
that variable is. Therefore either Eq. 18 or Eq. 20 should
be used in solving for x. Proceeding with this selection it is
clear that Eq. 18 is better suited for a solution than Eq.
20 because the magnitude of e = 9z/ 9y *, the coefficient
for the second derivative in Eq. 18 is close to unity
whereas the value of f = 3 y/3y * in Eq. 20 is much
smaller. Consequently Eq. 18 would constitute a good
choice for solving for x. Likewise Eq. 19 constitutes a
good selection of the equation for use in solving for y.
Since the equation for z is to apply in &Y* planes, the
choice is between Eqs. 27 and 29. For this problem the
magnitude of d is nearer unity than the magnitude of i,
and Eq. 27 should be used.

For other problems the equations to be used might
be different, but their selections would be based on a
physical understanding of the flow situation and similar
criteria. Conceivably, in certain types of problems in
which the nature of the flow changes drastically in

different portions of the flow field, it may actually be
advantageous to use different equations in different
regions of the @y * space.

In Egs. 30, 31, and 32 opposite signs accompany
the coefficients of the two second order derivatives. Since
the differential equations must be of the elliptic type, it
follows that the coefficients must have opposite signs
associated with them, i.e. if the product of fh in Eq. 30 is
positive then the product id must be negative or con-
versely, etc., for Egs. 31 and 32. Should the sign of the
coefficients in these equations be the same, the equations
would be hyperbolic, in contradiction to physical facts of
ideal incompressible fluid flow. Therefore in initializing
the field values of a problem which is to use Egs. 30, 31,
or 32 in its solution, it is necessary to insure that value of
the products which constitute these coefficients are of
opposite sign. To do otherwise would probably cause
divergence or other difficulties in attempting a numerical
solution. Since in the iterative solution process it is
conceivable that the coefficients to these equations may
take on the same sign, it may also be necessary to add
some additional constraint to prevent this from occurring.
In the problem solved in this report, any such difficulties
have been avoided by solving only equations that apply in
the ¢y and @y* planes.

Finite difference operators

In finite difference solutions to partial differential
equations, the continuous variables are replaced by
discrete values at the finite difference grid points placed
throughout the region. For the applications which have
been considered in this report, a system of grid points has
been used which forms cubes throughout the region of
flow. Thus in differencing the partial differential equa-
tions, Ay *=Ay=A%. Furthermore each of the in-
crements A®, AY,and AY* have been assumed to have a
unit value. This is possible in the inverse formulation and
solution methods used because the region of the problem
is defined by specifying the number of A®, Ay, and
A¢* increments in each of the inverse coordinate
directions, and thus several dimensions of the physical
problem become part of the solution.

The finite difference operators for the interior grid
points have all been obtained by replacing the derivatives
by second order central differences. Table 2 gives these
finite difference operators for the equations in Table 1
with the terms contained within the square brackets. The
equations which define the o’s in each finite difference
operator are given in the right portion of the table. Table
3 gives the equivalent operators for the equations using
the replacement term above the square bracket in Table 1.

The operators may be written in a number of
different forms. The form in which they are given in
Tables 2 and 3 conforms to that needed to apply the line
successive overrelaxation iterative (LSOR) method (see
Forsythe and Wasow, 1960, or Varga, 1962) along lines



Table 2. Finite difference operators which are based on the partial differential equations in Table 1.
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‘Table 2. Continued.
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Table 3. Finite difference operators which are based on the alternate partial differential equation in Table 1.
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defined by the incremented subscripts on the left side of
the equation within the plane to which the particular
equation applies. The operators can readily be modified to
represent the form needed to apply them in the LSOR
method in the other coordinate direction by solving for
the present operator in terms of the value of the variables
presently on the right side of the equation and the values
of the variable at the grid point in question (ijk). The
operator could be made suitable for direct application in
the successive overrelaxation method (SOR) by writing
the equation so that only the value of the variable at the
grid point in question (ijk) is on the left side of the
equation.

In order to evaluate which method would minimize
the amount of computer execution time required to
obtain a tentative solution in individual planes,
FORTRAN subroutines were written to implement both
the LSOR and the SOR methods (each with the over-
relaxation factor equal to 1.4) for each operator in Tables
2 and 3, to solve a Dirichlet type boundary value problem
in a plane. The comparison was close but did favor the
LSOR method. Since the total execution time depends to
some extent on the efficiency of the computer system in
handiing triple subscripted arrays, the comparison of the
two methods may be different on different computer
systems even though the identical programs were used in
the comparison. In the LSOR method more computations
are involved per iteration but fewer iterations are required
for a solution than with the SOR method. Since the
additional computations per iteration are primarily with
nonsubscripted variables or single arrayed variables, the
LSOR method requires fewer operations with the triple
subscripted arrays. The comparisons referred to above
were made on the UNIVAC 1108 system, under EXEC 8§,
at the University of Utah. Coefficients, which are com-
posed of the o’s in the operators, were in each case
computed only during the first iteration and stored for
use during subsequent iterations. Doing this is justified
because the ¢’s are either determined from values on
adjacent planes which do not vary or they are of relatively
small magnitudes, and their values will be adjusted during
the next cycle of solutions anyway.

Line successive overrelaxation method

While the LSOR method is well documented in a
number of references, two of which are given previously, a
brief description of this method is given here for
completeness.

To understand the LSOR method it should be noted
that when any one of the operators in Tables 2 or 3 is
applied across all interior grid points of a line, a system of
linear algebraic equations results, with the following form

in which X and B are column vectors and A is the (nxn)
matrix given by

12

12
321 %22 %23
832 %33 P34
A = .. .(39)
amm—l mm amm+1
L *m-1 ®nn i

and n represents the number of grid points at which the
operator has been applied. If Dirichlet boundary con-
ditions exist at both ends of the grid line, this number is
two less than the number of grid points on the line
including the boundary points. For non-Dirichlet
boundary conditions a finite difference operator from
that condition gives the first, the last, or both the first and
last equations of the system, Eq. 33.

The simple tridiagonal coefficient matrix A is an
important feature of the method from a computational
viewpoint, since the system of equations with such a
coefficient matrix can be solved by a single pass through
the rows with a Gaussian elimination. The solution is
subsequently obtained by back substitution. The method
for accomplishing this has been referred to as the Thomas
algorithm (Thomas, 1949) by some writers. This method
defines the following elements, along and above the
diagonal by the vectors q, r, and s respectively, and also
defines elements of the vectors f and g by

b

1 1
f = T, g = —_—_
1 1'1 1 »1'1

Sm

fm = f

1‘rn- m-1 qrn

2<m =n. (352)

grn = frn(brn-qnngrn-l)/srn

in which the b’s are the elements of B. Then the solution
vector X can be obtained from

. . (35b)

-f -1 2 >
m mxrn+1’nl m =1

Should the elements of all off-diagonal terms in A be
equal to -1, as is the case for many of the operators in
Table 3, then the algorithm becomes

£ T 5 =i 0
f = L
m r _fm—l
m 25m5n..(36a)
Em ~ fm(bm+gm—l)



and

In executing the algorithm given by either Eq. 35 or
Eq. 36, it is not necessary to set aside storage for a new
array f. Rather, since the values of r need not be retained,
the values of f may be stored in the former array positions
forr.

Upon obtaining the solution vector X which repre-
sents the values of the variable of the finite difference
operator across an entire grid line, they are immediately
adjusted by the formula

<P

p
= w -
ik x_1 + 1 (xi X, .

Yoo (37)
ijk

in which x;, with the single subscript, represents the
solution as described and x j5  with the triple subscript, is
the value of the variable at the grid point in question. The
superscript p represents the number of the iteration, and
W, is the overrelaxation factor with a value between zero
and unity. It should be noted that Eq. 37 is not the usual
form of the overrelaxation equation, which is

p+l _ . p
xijk = x +W(xi-x

P
ijk )
in which W=W1 +1.

ijk

It is easy to demonstrate that Eqs. 37 and 38 are
identical. In a computer solution it is more efficient to use
Eq. 37 since core positions from the triple subscripted
array Xz, need only be located once instead of twice as
required by Eq. 38, and since x; may be a non-
subscripted variable.

The LSOR method proceeds from line to line until
the value of the variables across all lines within the plane
have been adjusted. Upon completing the last line the
entire process is repeated as the next iteration. The
iterations are continued until changes of the variables
between consecutive iterations are smaller than some
prescribed error criteria. An often used and easily applied
criterion is to continue the iterations until the sum, over
all grid points, of the absolute values (or sum of squares)
of the quantity within the parentheses in Eq. 37 is less
than a small specified error parameter.

Three-dimensional Seepage Through
Dam with Partial Toe Drain
Formulation
The inverse formulation and method of solution

described earlier have been applied to a relatively simple
three-dimensional problem in order to obtain a numerical
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solution and verify the applicability of the methods. The
problem selected for this initial application consists of the
saturated seepage flow through a dam with a vertical face
which rests on an impervious horizontal base with a
partial opening on the base through which water can
drain. Furthermore, the dam lies between two vertical side
walls. An isometric sketch of this problem is shown in the
upper portion of Fig. 1. This problem was selected
because it represents a number of possible real situations
and has relatively simple boundary conditions associated
with it. Unfortunately it also contains mathematical
singularities where the theoretical velocity becomes either
infinite or zero.

The problem illustrated in the upper portion of Fig.
1 is also sketched in the ®yyP* space in the lower portion
of the figure. This space has been selected such that the
impervious bottom defines the { =0 stream surface and
the left vertical wall (when facing downstream) defines
the {*=0 stream surface. The right vertical wall then
defines the final y*=constant surface, i.e. {j; *, and the
phreatic surface (i.e. the surface between the saturated
flow and zero flow regions at atmospheric pressure)
becomes the final Y=constant surface, i.e. ¢ . The front
face through which the water enters has a constant
hydraulic head and consequently represents an equipo-
tential surface, as does the drain surface through which
water leaves the region of interest. Through Darcy’s Law,
given by

in which V is the velocity vector, K (assumed constant) is
the hydraulic conductivity with dimensions of velocity
and h is the hydraulic head, the potential function is given
by

® = - Kh+ Constant
Consequently the face through which water enters is an
equipotential surface which can be defined by ®=0 and
the drain surface coincides with the final ®=constant
surface, i.e. op.

With this definition of the &Yy * space, the
following boundary conditions can be developed. (Obvi-
ous boundary conditions are also shown by an equation
by that boundary in the lower portion of Fig. 1 to help
identify that boundary in the &yy* with the physical
problem.)

A. Bottom 4, 5,9, 10

x(®,0,0%) =



The finite difference operator for either Eq. 43 or
46 is
+a

1
TZjk T [1 Ta

1 @3-l
3] Zijict [1+a] [1 +a] k-1

............ 67
[1 +d. 1Jk+l ©7)
in which
32
3y 13y 3% L 363¢
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and j=1 or j=M respectively depending upon whether Eq.
67 applies to the bottom or to the phreatic surface. Prior
to adjusting the values along the interior lines on the
bottom and on the phreatic surface by means of the
operator Eq. 67, the values of z along the 2=0 lines of
these surfaces are obtained from the equation

The solution of Eq. 68 follows the approach described for
solving Eq. 42.

The boundary conditions, Eqs. 48, for y on the
upstream face, are obtained by noting that since this
vertical face is an equipotential surface, the streamlines
intersect with it normally. Therefore, 3y/3% =0,
9x/3y =0, and h= 9x/3 ¥ *=0 and Eq. 19 reduces to
Eq. 48a. The finite difference operator for y on the front
face is obtained by first differencing Eq. 48a and then

noting from Eq. 48b that y; e = Vjsjx - The resulting
operator is
Vi = gt S 1O H0V 0+ @ 20y gy
ROTH(14G)) (69)
in which
a = ez, a, =%e§—$ and o, = eaa—(ig—)

The boundary condition Egs. 51 and 54, for x along
the left and right sides of the problem, are obtained from
Egs. 11 and 12 and from the fact that along the sides z is
constant. The latter fact leads to g= 3z/3y =0 and
9z/ 9% =0, and consequently

Ox _ 9y Oz . . . . . ... (70)
3 - dy ouF
and
dy _ 3 2
TSy R (71)
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Differentiating Eq. 70 with respect to & and Eq. 71 with
respect to {.and combining leads to Eqs. 51 and 54.
Alternatively Egs. 51 and 54 can be derived by setting g
equal to zero in Eq. 18.

The finite difference operator for Eqs. 51 and 54 is

1+a a,_ -
-x +2 —1L x,.. + 2 X
i-1jk 1+a,) Mgk (@, + 1) Titljk

= [(Cl -Q )X

1 ij-1k (a +0L)x

jd/ @3+ 1)

in which

=L
T 2e
and the subscript k equals either 1 or N respectively,

depending upon whether the operator Eq. 72 is applied to
the left or right side of the problem.

The boundary condition Egs. 52 and 55 for y along
the sides are also obtained from Egs. 70 and 71.
Differentiating Eq. 70 with respect to ¥ and Eq. 71 with
respect to ® leads to these boundary conditions. Alter-
native Eqs. 52 and 55 can be obtained from Eq. 19 with g
set equal to zero. The finite difference operator for Eqs.

52 and 53 is,
.5 1+ Gl . G3—1
“Yioljk a, +1 Yijk o, +1 Yit1jk
= (@) =)y 1 ¥ @y Y550 @5+ D)
............ (73)
in which
2 e de 1 Je
G e % T %M T e 2

and as before k=1 or N depending respectively upon
which of the two sides is being considered.

Method of solution

An examination of the problem as defined earlier,
indicates that the flow is principally in the x direction in
the vicinity of the vertical front face and in the y
direction upon leaving the dam. Consequently in general
the variables x and y vary more within ®V planes than
within ®y* or Yy planes of the oYy* space. The
regions of the problem in which an exception to this
occurs are the small spaces in the vicinity of the bottom
and vertical sides at the drain end of the flow. In these
regions singularities (i.e. stagnation lines) exist which
should be given special consideration in order to improve
the accuracy of the finite difference solution. Since the
primary purpose of this study was to examine inverse
formulations for three-dimensional problems and methods
of solution, this special consideration has not been given



to these regions, with the consequence that details of the
solution in these regions must be accepted with reserva-
tion. In addition this examination of the problem indi-
cates little change of the variable z occurs within @y
planes and much more variation of z occurs within & P*
or ip* planes.

Therefore, by using the criteria outlined earlier for
selecting the planes on which tentative solutions for each
variable will be obtained, it is obvious that x and y should
be solved for on ¢ planes, and that tentative solutions
for z should be either on individual &y * or Y y* planes.
Since the equations on the ¢y* planes generally require
less arithmetic to obtain a solution than do the equations
which apply on the yy* plane as well as the possible
difficulties which result if the coefficients of the second
derivative terms should take on like signs during the
solution process, z will be solved for on ¢y* planes. An
examination of the equations in Table 1, which may be
used for solutions of x, y, and z on the planes as indicated
previously reveals the following:

1.  Eq. 18 or Eq. 20 can be used for the solutions

of x.

2. Eq. 19 or Eq. 22 can be used for the solutions
of y.

3. Eq. 27 or Eq. 29 can be used for the solutions
of z.

Further examination of Eqgs. 18 and 20 indicates
that the coefficient, e2, for 9 2x/81[)2, is close to unity for
this particular problem throughout most of the region in
Eq. 18 whereas this same coefficient f 2 for Eq. 20 is
relatively small. Based on the second criteria given earlier,
Eq. 18 will be used to solve for x. Based on the same
criteria the solutions for y will be based on Eq. 19.
Comparing the magnitudes of the coefficients d2 and i2
for the term 9%z/ 3y *2 in Egs. 27 and 29 shows that d2
in general will be larger than i2and therefore Eq. 27 will
be used to obtain the solutions for z. The equation
numbers to be used in solving for x, y, and z have been
underlined in the previous paragraph.

To help describe the procedure used in obtaining
the finite difference solution to the three-dimensional
seepage flow through a dam, the following terminology
will be used.

(a) Tentative solution—refers to a solution based on
any of the finite difference operators in Tables 2 and 3 or
any of the operators for a boundary condition. These
solutions are obtained on a specified plane within the
@1 P* space and are based on the assumption that certain
quantities, which are given by single letters in the finite
difference operator, are known. Actually these quantities
will have their values adjusted as the solution proceeds.
All of these tentative solutions in the current computer
program are obtained by the line successive overrelaxation
(LSOR) method as described earlier.
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(b) Iteration number—refers to the number of times
the LSOR method adjusts the values of x, y, or z on any
single plane in obtaining a particular tentative solution.

(¢) Cycle number—refers to the number of times all
tentative solutions are obtained. Thus during the first
cycle all tentative solutions for x, y, and z will be
obtained as well as tentative solutions for these variables
on the boundary plane which are not of the Dirichlet
type. The same process is repeated for the second cycle,
etc.

The procedure followed in the computer program
for obtaining the solutions is illustrated in the gross flow
chart given in Fig. 2. There is no reason why this exact
procedure needs to be followed, and it would be of
interest to study whether solutions can be obtained in
fewer cycles by altering the order in which tentative
solutions are obtained. The present program first obtains
all the tentative solutions for x, then obtains all the
tentative solutions for y, and finally obtains all the
tentative solutions for z. Furthermore, the tentative
solutions for the boundaries are obtained in general prior
to obtaining the tentative solutions for that variable on
planes within the interior of the region. The additional
feature has been incorporated within the program, so that
any of the tentative solutions on boundary planes need
not be obtained during any cycle number. This feature
provides a means for settling the values at interior grid
points prior to adjusting the values on the boundary
planes, and also permits control to be exercised in not
adjusting certain boundary values during some cycles
should one decide to do this. Boundary values, for which
this latter feature may be used, are the x values on the
bottom and phreatic surfaces, or the x and z values on the
drain surface. These values are obtained by a numerical
differentiation and integration process. For x on the
bottom this integration starts at the upstream face and
proceeds toward the drain, and consequently any error is
accumulative. This accumulative error, if it changes the x
values each cycle, in turn prevents the interior values from
settling very fast. By permitting the interior values to
become fairly well settled before adjusting the x values on
the bottom, phreatic surface, and drain, and then adjust-
ing these values only during part of the cycle numbers,
results in more rapid convergence to the final solution.

The manner in which each of the tentative solutions
is obtained is slightly different depending upon which
variable is involved and depending upon whether the plane
is interior or a boundary plane. For those tentative
solutions which are obtained by the LSOR method, the
flow chart in Fig. 3 outlines the procedure used. The
LSOR method is used for all the solutions on interior
planes and on all boundary planes with the exception of
the following five: (1) The x-values on the bottom, (2) the
x-values on the phreatic surface, (3) the x-values on the
drain, (4) the z-values on the drain, and (5) the z-values-on
the upstream face. These five boundary values are
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Fig. 2. Flow chart of computer program for solving problems of three-dimensional flow through a dam.
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Fig. 3. Flow chart of the computer program subroutines which obtain the tentative solutions by the LSOR-Method.
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obtained by the numerical differentiation integration
process which has been described earlier.

The procedure followed in obtaining each of the
tentative solutions is first to establish the system of
equations which results from simultaneous application of
the finite difference operator across the particular line
being considered. The coefficients which are needed to do
this are actually only computed during the first iteration
of any tentative solution. Next the tridiagonal system is
solved and the values of that variable along the line are
adjusted by the overrelaxation factor. The procedure is
repeated for subsequent lines until all lines within the
plane have been adjusted. This entire process constitutes
one iteration. [terations are continued until either the sum
(across all grid points within the plane) of absolute
differences in values between consecutive iterations is less
than the prescribed error parameter or the iteration
number exceeds the maximum specified as allowable. In
the case of the subroutines which obtain the tentative
solution on interior planes, the program allows that this
process of obtaining tentative solutions on consecutive
interior planes will be repeated either a limited number of
times or until the maximum iteration number required to
obtain the tentative solutions is less than a specified
number. By allowing this to occur, it is possible to obtain
tentative solutions before leaving that subroutine, such
that the variable being solved for will no longer change
because of changes in its values on consecutive planes.

All lines in the LSOR method have been taken in
the direction of ®. In other words, the lines are defined
by either holding { or y* constant depending, respec-
tively, on whether the solution is obtained on a @y ora
®Y* plane. An earlier version of the program used lines
taken in the direction of ¢ * when using the LSOR
method to adjust the values of z in the bottom and
phreatic surface planes. This choice was arbitrary and was
not based upon considerations of increasing convergence
rates, etc. Since the performance of the program showed
no appreciable difference with direction of the lines, the
final version of the program which is given in Appendix B
uses lines in the direction of @ for computing z on these
planes.

Solution Results

The results from the inverse formulation given in
this paper are in terms of the magnitude of x, y, and z at
the intersection points of the potential surfaces with the
two stream surfaces defined by holding { and y* equal
to constants. As a consequence a three-dimensional
flownet can readily be plotted by simply connecting the
points defined by the x, y, and z coordinates given at each
grid point throughout the &yPy* space by lines and
visualizing the small planes defined by these lines as
representing sides of the parallelepiped elements of the
space flownet.
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The solution results can also readily be used to
obtain other quantities of interest about the flow. For
instance the velocity at any point within the flow space is
given by the following equation

1
2 2 27 1/2 '(74)
), )7, (2=
) ) oo
To derive Eq. 74 first note (from the definition of
‘the Jacobian determinant J given below Eq. 8) that upon

expanding the determinant for J at the top row results in

Z:VZ

= 112+V2+W

J

In other words the Jacobian determinant equals the
velocity of the flow squared. Next note that the first
equation from each set of three equations in Eq. 8 can be
written as follows
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23y (76b)
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29z _ ... .. .. 76¢)
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Upon squaring Eqgs. 76a, 76b, and 76¢ and subsequently
adding the resulting squares and finally solving for the
magnitude of the total velocity leads to Eq. 74.

By using the inverse relationships given earlier or the
inverse Egs. 11, 12, and 13 a number of other possible
equations for computing the velocity can be derived.

From the numerical solution results, the velocity is
actually computed by approximating the derivatives by
differences. Using second order central differences gives
the following equation for the velocity at a grid point

(ijk)-

Vv
ijk
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2
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To obtain the direction of the velocity vector at any
point within the flow space, it is necessary to use Eqgs.
76a, 76b, and 76¢ in conjunction with Eq. 74. The angles
o, B, and Y which the velocity vector makes with the
positive direction of the physical coordinate axes x, y, and .

Z are:
a = cos ! LV g%j ...... (78a)
B = cos * Ez%} ...... (78b)
Y = cos”! E,a%zJ ...... (78¢)



In other words the quantities Vox/3 &, Vay/ 3% and
V3z/3® are the direction cosines of the velocity vector.

By varying the specifications which define variations
of the basic problem described earlier, four separate
solutions have been obtained to three-dimensional seepage
through a dam with a vertical face and a drain over a
portion of the horizontal bottom. A summary of the
essential specifications for these problems is given in Table
4. In all four of the problems, 21 potential lines were
specified, and in each problem the same number of
Y=constant and Y*=constant grid lines were specified.
This latter specification requires, in each problem, that
the width between vertical walls equals the depth of water
on the upstream face, since as implemented in the
computer program Ay = Ay*= A® An example of the
final solution for Problem No. 2 showing the magnitudes
of x,y,and z at each grid point within the ®yi* space is
given as Appendix C.

Table 4. Summary of problem specifications.

Problem Number
Specification
1 2 3 4a

No. of &-grid lines 21 21 21 21
No. of -grid lines 11 10 9 11
No. of y*-grid lines | 11 10 9 11
Height of water on 10.0 90| 100 | 100

dam face
Width of dam 10.0 9.0 | 100 | 100
Dist. z | to beginning 1.0 1.0 0.5 1.0

of drain
Dist. z , from drain 1.0 0.0 1.0 1.0

to right side

3The specifications to this problem were the same as Problem
No. 1 with the exception the drain was not specified as rectangular
in shape.

In the first problem the distance z; was specified
equal to z, = 1; thus resulting in symmetry about the
center Y *=constant grid line. Clearly a symmetric prob-
lem such as this first one should be solved using only
one-half of the region in the formulation. However, during
the process of developing and debugging the computer
program it was desirable to use the entire region in order
to provide for an internal check on the solution capabil-
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ity. Should a nonsymmetric flow field result as the
solution to a symmetrically specified problem, an error
must exist in the computer program, in one of the
equations, or the method of approach.

- The final solution to this first problem was obtained
in a piecemeal manner as the computer program was being
developed. That is, as the various components of the
program were completed they were used to adjust the
value of the variables through a few iterations or cycles,
but the results were always stored on tape and used to
initialize the problem for the next phase in the program
development and debugging. During this process, since
there were mistakes in some of the program components
to begin with, the values of x, y, and z showed
considerable deviation from symmetry. As the mistakes in
the program were eliminated, the variables took on
magnitudes which represented the proper symmetry. The
final results are not symmetric to all three digits beyond
the decimal point which are printed out, but in general
symmetry does exist in the final solution to at least two
digits beyond the decimal point.

There are a number of other items from the
solutions which indicate the accuracy of the numerical
approach. For example in implementing Eq. 49 in
obtaining the z values on the upstream face of the dam by
a numerical integration, the final values of z on each of
the Y =constant grid lines on the face should equal the
width of dam between the side walls. During the last
cycles in the solutions these values showed agreement to
within a few percent of the specified values. For the first
solution, the average value computed from the integration
during the latter cycles settled to a value of 10.021
instead of 10.000. The largest difference in the z on the
right side occurred at the bottom where the final z from
the integration was 10.044 and the smallest occurred on
the phreatic surface and was equal to 9.999.

For the second solution the final average value for z
from integrating along the ¥ =constant lines on the
upstream face from the latter cycles was 9.008 instead of
9.000, with the largest value equaling 9.013 just above the
bottom and the smallest equaling 9.005 near the phreatic
surface.

The same comparison for the third solution shows
the largest value occurring at the phreatic surface equal to
10.026 and the smallest at the bottom equal to 10.005.
The average width between sides was computed equal to
10.013 instead of 10.000 units. The largest difference at
the phreatic surface represents a .26 percent error. Errors
in this integration of the fourth solution were of similar
magnitude with the average computed value between side
walls equaling 9.932 instead of 10.0.

With one exception, in all four of the solutions, the
greatest difference in these values of z either occurred on
the bottom or the phreatic surface where the evaluation



of the derivatives, needed in the numerical integration,
had to be based on forward or backward differences.

The accuracy in evaluating x along the bottom and
phreatic surface would be expected in general to be
subject to error of about the same magnitude as that for z
on the upstream face, with the exception that at the drain
end near the side walls in the vicinity of the line
singularity the error may be larger.

The writer is the least satisfied with the methods for
determining the non-Dirichlet boundary values of x and z
on the drain by means of Egs. 57 and 58 respectively.
This lack of satisfaction occurs 1) because both Eq. 57
and Eq. 58 come directly from Eq. 12 making the values
of z strongly dependent upon the values of x as
determined on the drain surface and x in turn dependent
upon the values determined for z, and 2) because in the
process of obtaining the solutions the equation for z
produced greatly erroneous values when used prior to
having the interior values (particularly for x) adjusted by
their operators. Future study needs to be directed toward
better procedures or formulations of boundary conditions
for evaluating x and z on surfaces such as the drain surface
of the dam problem.

In the following four subsections flownets for the
four solutions are presented and certain features of the
flows, as given by the solution results, are discussed. To
fully understand the flow field from a three-dimensional
problem, the reader must visualize the flow in space from
flownets on the plane of a printed page. To help in this
visualization process, a complete isometric flownet show-
ing all interior cubes of the flow field was initially
prepared by use of a computer driven plotter. All of this
detail resulted in too many lines to give a clear visual
picture of the space flow field. Subsequently isometric
drawings were prepared which show only the top and
right sides of the three-dimensional flownets along with
the container of the dam which is assumed to be
transparent so that the imaginary seepage lines are visible.
These latter isometric drawings are given for Problems
Nos. 1, 2, and 3. In addition, flownets from each of the
solutions are given which result from projecting the flow
patterns upon planes either parallel to the sides of the
dam, parallel to the bottom of the dam, or parallel to the
front face of the dam. These individual flownets are
obtained from plotting the magnitudes of x and y, the
magnitudes of x and z, or the magnitudes of y and z from
individual @V planes, y* planes or yy* planes within
the &y y* space respectively.

Problem No. 1

An isometric flownet drawn from the solution for
Problem No. 1 is given in Fig. 4. Figures 5 through 10 are
flownets from separate @&y planes for j = 1,2,...6
respectively. Since Problem No. 1 is symmetric about the
center j =6 1 plane, the remaining 5 flownets from ¢y
planes which could be plotted from the solution are
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identical to those given in Figs. 5 through 10. The flownet
from j =7 is identical to that from j = 5; the flownet from
j = 8 is identical to that from j = 4; etc., until the flownet
from j = 11 is identical to that from j = 1.

These flownets (Figs. S5 through 10) represent
plottings of the magnitudes of x and y onto a vertical
plane parallel to the sides of the dam, and as such do not
show any of the change in the z-direction of the
streamlines and stream surfaces of the flownet. In the
outer portions of the dam in the vicinity of the drain the
seepage velocity has a sizable component in the z-
direction. To illustrate changes of the stream surfaces in
the z-direction, flownets have also been plotted from the
solution to Problem No. 1 which result by projecting the
magnitudes of x and z from separate ®y* planes within
the @yy* space upon a horizontal plane. Figures 11, 12,
and 13 are such flownets obtained from the 1 * planes
with k=1, 6 and 11 respectively. Figure 11, therefore,
represents the flownet on the bottom of the dam, and Fig.
13 the plan view of the flownet of the phreatic surface. In
these last three flownets a dashed line is shown entering
the outer edge of the drain. This line has been drawn to
point out that the outside stream surfaces move inward
abruptly and actually leave the region of interest within
the area of the drain. The very outside stream surface
actually abruptly changes from vertical to horizontal and
then to vertical again at the bottom and sides of the drain.
The resulting discontinuities in the variables of the
problem are poorly approximated in this region by the
polynomials resulting from the finite differences. Con-
sequently details of the solutions, particularly in the
immediate vicinity of these singularities, cannot be con-
sidered very accurate.

Flownets obtained by plotting the z and y coordi-
nates from individual Y * planes are given in Figs. 14, 15,
and 16. The y* plane of Fig. 15 is associated with i=11;
and the Yy* plane of Fig. 16 with i=1.

The flownets taken from the various planes illus-
trate various features of this flow. From them it can be
noted that 60.5 percent of the total flux entering the face
of the dam enters through the lower half of the face. At
approximately two-thirds the distance from the face to
the drain or at the i=11 yy* plane, on the other hand,
50.8 percent of the flux crosses the lower half of the
seepage region between the bottom of the dam and the
phreatic surface. At the front face 52.0 percent of the
flux enters through the center half midway between the
two side walls and 48 percent enter through the two
outside quarters of the front face. At the i=11 1 y* plane,
52.4 percent of the flux is still moving through the center
half of this equipotential surface. Through the 1 * plane
with i=18 on the other hand, 56 percent passes through
the center half and 44 percent through the outer halves.

An examination of the length of flow leaving
through the drain reveals that the length at the outside of
the drain opening is 3.591 units, and the length at the
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Fig. 13. Flownet from the &U* plane comcident with the phreatic surface (ie. j=11)
obtained by plotting the magnitudes of x and z from the solution to Problem No. 1
onto a plane parallel to the bottom of the dam.
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Fig. 14. Flownet from the u* plane associated with i=15 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 1 onto a vertical plane
parallel to the face of the dam.
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Fig. 15. Flownet from the Jy* plane associated with i=11 obtained by plotting the
magnitudes of z and y from the solution (o Problem No. 1 onto a vertical plane
parallel to the face of the dam.
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Fig. 16. Flownet from the Y * plane coincident with the face of the dam (ie. i=l)
obtained by plotting the magnitudes of z and y from the solution to Problem No. 1

—_——

/7 '

’ ! 1
i - 1
| 7 i
|z 2
1”5,
| ]
I |
I
I | !

e ) AV A SV SRV s A & - x
| 2] 7 — £
I ’ Z
| © 2 | Z
| &
| 7 & “ ¥

7 o

|| / V 1 o
| *
I van '
|

7
: /7 //
i 4 '

Z// — - — 9-38) ——4‘1'4924

Fig. 17. Isomeiric plotting of space flownet from solution to Problem No. 2.
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Fig. 18. Flownet from the &y plane associated with k=1 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
pazallel to the sides of the dam.
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Fig. 19. Flownet from the & plane associated with k=2 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
parallel to the sides of the dam.
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Fig. 20. Flownel from the @y plane associated with k=3 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
parallel to the sides of the dam.
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Fig. 21. Flownet from the &y pilane d with k=4 obtained by ji the

magnitudes of x and y irom the solution to Problem No. 2 onto a vertical pl:me
parallel to the sides of the dam.
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Fig. 22. Flownet from the ®y plane d with k=5 obtained by the
magnitudes of x and y from the solution to Problem No. 2 onto a vemcal plane
parallel to the sides of the dam.

(

9:0

y

f

90

l—— 9-38! _— -4-‘-'1'790-1

Fig. 23. Flownet from the &Y plane associated with k=6 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
parallel to the sides of the dam.
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Fig. 24. Flownet from the &y plane d with k=7 obtained by the

magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
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parallel to the sides of the dam.
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Fig. 25. Flownet from the &y plane associated with k=8 obtained by projecting the

magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane

parallel to the sides of the dam.
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Fig. 26. Flownet from the ¢y plane associated with k=9 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane
parallel to the sides of the dam.
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Fig. 27. Flownet from the &y pline associated with k=10 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 2 onto a vertical plane

parallel to the sides of the dam.
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Fig. 28. Flownet from the ®y* plane coincident with the bottom of the dam (ie.
obtained by plotting the magnitudes of x and z from the solution to Problem No. 2.

z i
HER ll
I
mill|
HERRERREN
RN
HEERREY ¢

I"—— 10.-472 —— e

Fig. 29. Flownet from the YV * plane associated with j=5 obtained by plotting the
magnitudes of x and z from the solution to Problem No. 2 onto a plane paralle! to
the bottom of the dam.
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Fig. 30. Flownet from the ®y* plane coincident with the phreatic surface (i.e. j=10)
obtained by plotting the magnitudes of x and z from the solution to Problem No. 2
onto a plane parallel to the bottom of the dam.
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Fig. 31. Flownet from the y* plane associated with i=18 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 2 onto a vertical plane
parallel to the face of the dam.
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Fig. 32. Flownet from the y* plane associate; with i=15 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 2 onto a vertical plane
parallel to the face of the dam.
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Fig. 33. Flownet from the * plane associated with i=11 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 2 onto a vertical plane
parallel to the face of the dam.
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Fig. 34. Flownet from the (i* plane associated with 1=5 obtained by plotting the

magnitudes of z and y from the solution to Problem No. 2 onto a vertical plane
parallel to the face of the dam.
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Fig. 35. Flownet from the {{* plane coincident with the face of the dam (i.e. i=l)
obtained by plotting the magnitudes of z and y from the solution to Problem No. 2.
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Fig. 36. Flownet from the $U#* plne coincident with the drain of the dam (i.e. i=21)
obtained by plotting the magnitudes of z and x from the solution to Problem No. 2
onto a horizontal plane.
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Fig. 37, lsvmedric plotling of space flownet {rom solution to Problem No. 3.
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Fig. 38, Flownet from twe & plne assaciated with k=1 obtsimed by projecting the

magnitudes of x and y from the solutlon to Problem Mo, 3 onto a vertical plane

sices of tlee dom,

paratiel to the

3l



€

]
/

I_—444 — 10:0

[ 15-078

Fig. 39. Flownet from the ®U plane i with k=2 obtained by proje g the
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane
parallel to the sides of the dam.
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Fig. 40. Flownet from rthe & plane iated with k=3 obtained g the

by projecti
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane
parallel to the sides of the dam.

1.522 |~

o
(=]
)
!_4 15078 —4 .41l L...

Fig. 41. Flownet from the ®{ plane i with k=4 obtained by projecting the

magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane

parallel to the sides of the dam.
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Fig. 42. Flownet from the ®{ plane associated with k=5 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane
parallel to the sides of the dam.
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Fig. 43. Flownet from the ®{¢ plane iated with k=6 obtained by jecting the Fig. 45. Flownet from the &y plane iated with k=8 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane
parallel to the sides of the dam. paraliel to the sides of the dam.
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Fig. 44. Flownet from the ®y plane iated with k=7 obtained by projecting the Fig. 46. Flownet from the ®U plane associated with k=9 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane magnitudes of x and y from the solution to Problem No. 3 onto a vertical plane

parallel to the sides of the dam. parallel to the sides of the dam.






<

-

1000 | I

I
il

+
1

l__S'O —

z

Fig. 50. Flownet from the {g* plane associated with i=15 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 3 onto a vertical plane
parallel to the face of the dam.
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Fig. 53. Flownet from the &y plane associated with k=2 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 4 onto a vertical plane
paraliel to the sides of the dam.
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Fig. 51. Flownet from the J* plane coincident with the face of the dam (i.e. i=1)
obtained by plotting the magnitudes of z and y from the solution to Problem No. 3.
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Fig. 54. Flownet from the ®y plane iated with k=3 obtained by proj
magnitudes of x and y from the solution to Problem No. 4 onto a verti
parallel to the sides of the dam.
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Fig. 52. Flownet from the & plane associated with k=1 obtained by projecting the Fig. 55. Flownet from the ®¢ plane associated with k=4 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 4 onto a vertical plane magnitudes of x and y from the solution to Problem No. 4 onto a vertical plane
parallel to the sides of the dam. parallel to the sides of the dam.
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Fig. 56. Flownet from the ®¥ plane associated with k=5 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 4 onto a vertical plane
parallel to the sides of the dam.
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Fig. 57. Flownet from the ®{ plane associated with k=6 obtained by projecting the
magnitudes of x and y from the solution to Problem No. 4 onto a vertical plane
parallel to the sides of the dam.
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Fig. 58, Flownet from the ®%%* plane coincident with the bottom of the dam (i.e. =
obtained by plotting the magnitudes of x and z from the solution to Problem No. 4.
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Fig. 59. Flownet from the ®y* plane coincident with the phreatic surface (i.e. j=I1)
obtained by plotting the magnitudes of x and z from the solution to Problem No. 4
onto a plane parallel to the bottom of the dam.
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Fig. 60. Flownet from the a* plane associated with i=15 obtained by plotting the
magnitudes of z and y from the solution to Problem No. 4 onto a vertical plane
parallel to the face of the dam.
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Fig. 61. Flownet from the Jap* plane coincident with the face of the dam (ie. i=l)

obtained by plotting the magnitudes of z and y from the solution to Problem No. 4.
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Conclusions

The methods defined in this report show promise
for obtaining finite difference solutions to three-
dimensional problems with free surfaces. By changing the
conventional roles played by the variables of the problem,
a free surface, with an unknown position in the physical
space, can become a plane of known position in an inverse
space, and consequently an inverse formulation such as
that given in this report for potential flows has definite
advantages. These advantages occur at the expense of
more complex partial differential equations which must
be solved.

The methods used in this report for solving the
inverse partial differential equations from three-
dimensional ideal fluid flows are practical with presently
available high speed digital computers. The computer time
required for a solution will depend upon a number of
factors such as the number of finite difference grid points,
the initialization used, the nature of the particular
problem, and the accuracy required before terminating
the iterative (i.e. cyclic) solution process. The solutions
obtained in this report required approximately 15 to 20
minutes each of execution time in the UNIVAC 1108
system at the University of Utah. These problems used
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2541 grid points (fewer were used for Problem Nos. 2 and
3) throughout the space of the problem. Since the three
unknowns x( @, Y, ¥*), y(@,¥,¥*), and z(®,¥,¥*) must
be solved simultaneously, three times this many finite
difference grid points, or 7623, were actually used.
Additional study should produce more efficient means for
solving the resulting space boundary value problem than
the method used in this report. At that time the merits of
inverse formulations will be even greater.

The principal objectives of this study were to
develop the inverse formulation and demonstrate its
applicability in solving a three-dimensional problem.
Consequently, major emphasis was not given to obtaining
as accurate a solution as would be possible. For the
problem investigated, greater accuracy could be achieved
by giving special consideration to the singularities of the
problem. Methods for improving the finite differences
solution to two-dimensional problems in the vicinity of
singularities can be modified to improve the finite
difference solution to three-dimensional problems. The
method of “patching in” an appropriate analytic solution
should be quite easily adapted to three-dimensional flows.
Despite the fact that no special consideration was given to
the singularity, the methods used in this report yield what
appear to be reasonably accurate solutions.
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APPENDIX A—DESCRIPTION OF BLOCK ITERATIVE METHODS

INVESTIGATED FOR SIMULTANEOUS SOLUTIONS OF FIRST

ORDER PARTIAL DIFFERENTIAL EQUATIONS

Since the basic inverse partial differential equations
which describe ideal three-dimensional fluid flow are first
order and three in number, and since these three
equations cannot be combined by differentiation to give a
single equation for each of the three dependent variables
which is not extremely complex, an’initial study investiga-
ted the feasibility of using block iterative methods to
obtain finite difference solutions to simultaneous first
order partial differential equations. This study utilized the
first order inverse equations

9y _9x _ i

5" 5 ° 0. « « « v .. (A-1)
and

Ox

X T a0 (A-2)

which apply to ideal two-dimensional flows and which are
derived by inverting the two equations which result from
expressing the horizontal and vertical components of
velocity in terms of the potential function and the
two-dimensional stream function.

Actually none of the methods investigated that used
second or higher order differences were convergent. They
are described here to prevent other researchers from
devoting effort investigating similar unsuccessful solution
methods. The writer knows of no easier method for
demonstrating convergence or nonconvergence of the
block iterative methods used than to actually implement
them in a computer program for solving a simple problem,
and this has been done. This Appendix describes the
methods used.

The first method solved the finite difference equa-
tions across the 1 equal constant grid lines simultaneously
before proceeding to the next { equal constant line in the
iterative process. The finite difference operator was based
on a third degree polynomial passing through four
consecutive grid points. For a grid network with A® = Ay,
these operators for Egs. A-1 and A-2 are:

39

1 1 1 1

T3 Y550172 Vi P Yae T Yige2 T3 K1 T2 Ky T Ry
6 Xi+2j =0 v e e e e e e e e (A-33)

and

—l-x - - -l-x 1 = +

3 %55-172 %45 T T4+ 76 Fige2 73 Yio1j T 2 Yij Vi1
1
6 Yi+2_] ............ (A-4a)

for i=2,3,... u-2

and for the final grid point adjacent to the final ¢ equal
constant boundary

1 1 1 1
"3 Yn-15-1 72 V015 TVn-1541 76 Yn-1j42 T 3 Fnj
lx +x lx =0
2 "n-1j " *n-2j" *n-2j 76 "n-3j -
......... (A-3b)

and

1 1 1 1
T3 %n-1-17 2 %n-1j T Fno1j41 76 *n-1j42 T3 Vg

. . .(A-4b)

1 1
L= - - =
2Vn-15 " Yn-25 T8 Vn-3y 7 0

inwhichi=1+ ¢/A® andj=1+y/Ay. For the last ¢
equal constant grid line adjacent to the upper boundary of
the problem, Eqgs. A-3 and A-4 must be changed in a
manner similar to the change between the (a) equation
and the (b) equation such that the value of j does not
exceed the number for the top ¥ equal constant
boundary.

Upon applying Eq. A-3 and then A-4 at each grid
point across the { equal constant grid lines results in the
following system of equations, written in matrix form.



DC 21 J=2.M PETURN

IH=1-1 END
XAXZVICIM K I+ DTF1aV1CIMK) AFNRL.IS RZTNPB,BZTOPR
DF 7= XX-X (L +MsK) SURROUTINE ZTOPB(NROT.IZFRST+ZFINL»ZENDL)
XCTeMoK)ZXX COMMON X {21 ¢1ls21 oY (210129210 220210 1s11)+C1(19:915C2(19:92,C3419
ABTZVILIMAK) $09)0CU(19191+C5019+3)0A019) ¢ H(19)46(12) sHoFL,
£1 DBT=(ART-DFTI/FM SFM L FNoDEL 1 ZFeZ 19 ERR oL aLMoMaMMoN oNM 2L 2 1M2¢ N2 MAX e MAXCToNRT
DO 22 JZ2eMM $427011)
22 X(TeJoK}=X{IodsK)+ ART-DRTsFLOAT(U-1) C COMPUTES Z-CORD. ON YOP OR BOTTMM.IF NBOT=0 THEN POTTOM
21 CONTINUE C IF IZFRST=0 DO NOT DFTERMINF 7=C BY INTEGRATING NEAR FRONT
DRTZ (A (K)-XXMe X(LoMeK) )/ FH Wiz.u
DO 35 Jz2eMM SUML=7(1s1N)
35 X(LeJeK) ZX (L vdeK )¢ AUK) -DRT #F LOAT (J~1) IF INROT «GTe N) GO TO 1
X(LeMoK) ZXXM JJzt
Go Yo 20 J1=2
33 D0 25 I=2+LM G0 TO 2
mM-I-1 1 JJ=M
XXZVZEIMe 1) e DIF1oV20IMy 1) J1zMM
DFTZXX =X (L oMoK) 2 IFLIZFRST .E0. 0) 6O TO 10
X(ToMoK)ZXX ZT11120.0
ARTZV2(IMe3) SUM=0.0
62 DBT=(ARY-DFT)/FM 54166667
DO 23 Jz2eMM E?2=.04166667
23 X(IeJoK) ZX(IsJvK)+ ABT-0BTeFLCATIU-1) E3-.66666667
?5 CONTINUE E 08333333
DBT=(AAL-XXMXIL sM oK) /FM DO 3 JUz2.M2
DO 36 JT2eMM Jz=d4-2
3E X{LeJeK) =X GLvJdeK b+ AA}-DBTFLCATEJ-1) -1
XCLoMoK) XXM Pyl
G0 YO 20 JO=J+2
24 DO 26 I=2eLM DXIZEZS(X(Gadel} =X {2ode 1)) -Elie (X{Seds 1)=-X(10ds}))
MzI-1 DX2ZE I (X(Gede2) X {2049 2)) -Els (X{Ssdy 2)-X(10Je2))
XXZV2(IMe2)eDTF LoV 2( TH. 2) DXI=ETo (X 803D =X {2030 31) —Els (X(SeJs X)=X{10ds3) )
DF T=XX-X{IoMoK) DYIZEZs(Y(3ePo1)-YU34UMe 1)) FUe Y (3s30,1)-¥{3002413)
XCTeMoK) ZXX DYZZEIS(Y(3+JP 92 1-Y(30uUMe?)) €8¢ (Y 13440420 -Y{30J2:2))
3 ABT=V2(IMs4) DYZZE3I#{Y(30JPa3)=Y(20UMe3)) E60 Y (3000431-Y13:J2:3))
DRT=(ART-DFT)/FM D1=DX1/0Y1
00 27 Jz2.MM D2:=Dx2/DY2
27 XUTeJeK) X (IeJsK )+ ART-DBTeFLCAT(J-1) D3=DX3/DY3
?6 CONTINUE 2T(21=.5%(D1+D2)
DBRTZ (AA7-XXMaX (L oM oK I) /FM Z01:402) 22142
DO 37 JS2WMM DO 4 K=3eNM
37 X(LeJdoK)=X(LsJsK )¢ AAP-DBTeFLOAT(J-1} KP=K +1
X{LeMsK) ZXXM DXUZE (X (4 eJeKP )= X( 22 JoKP)) F e {X 150 JrKPI=XU1sJsKP))
20, CONTINUE DYUIEI*(Y(3eJPoKP) =Y (3eJMeKP ) ~E4 & (Y {30J0eKP)I-Y (R0 J2+KP) )
RE TURN DU=Dx4 /DYy
10 SUMz0.D ZTUKI=ZT UK -1)+E1+(D?+D3) -£ 2 (D1 +00)
DO 9 K=1sN Z0leJ oK) =2T(KY
9 SUMZSUMFXT(K) D1=n2
SUM=SUM/FLOAT{N) D2-03
64 DO 11 K=1eN2 4 D3=0D4
IFINTBD .EQ. 0O) GO TN &S ZTIN)=ZV INMY +. 5% (D 3+ D7)
IF INNOT .EG. 0O) GO TO 66 ZE1le NI ZZTIN)
SUM=XT (K} IF INRT .GT. 1002 GO 70 3
G0 T6 &S WRITE(6+100) (2T (K)oK=EeN)
£€ FKZK-KCET 1IN0 FOPMAT (1H +16F8.3)
FK2=FK+F K 3 SUMSSUM+ZTIN)
SUM=BO +B1sFK+B2% FK 2+ BIsF K¢ FK 2 SUM=SUM/FLOAT(MM-3)
65 DIF=(SUM=XT(K)}/XTI(K}+1.D WRITE(ReL15} SUMZFINL
WRITE(Hs109) KiDIF,SUH . 115 FORMAT(® AVE Z=*+F10.4s° ZFINALZ'+F1l0.4)
00 12 I=ZeLM IFLI7FRST .LT. 0) SUM=ZF INL
™I~ 00 & J=ZeM2
IF(NTRT) 8071480 DIFZ (761 edsNI=SUM /Z01sdeN)
71 XXSDTF*X(Iv1.K) 00 21 KZ24NM
60 TO 72 21 ZU1eJeKIZZ(10deK)=DIFeZE1ed oK)
B0 XX=DIFsVI(IM.K) 6 201eJoN) ZSUM
72 VI(IMeK) ZXX-XUTe14K) IF(IZFRST .LT. -1) GO TO 24
12 XUT+3+K)ZXX DC 5 TZ1.LM
ACK) SSUM=X (Lo 1K) 00 § J=1eM
11 X(Le1eKIZSUM § ZCIsJaN)ZSUM
IF(NTIAD .E6. 0) 6O T0 &7 00 7 JU=leM
IFINMOT EG. D) GO TO 68 ZtLede 11 =21
SUM=XT (NM} 7 Z(L+JaN) ZZENDIL
GO TO 67 24 B0 8 K=2.N
A8 FK=NM-KCFT Z2(102+K)=2(1e3K)
FK2=FK «F K ZEVe 10K =201 e 30K )
SUMZBC+B1«FK+A2¢FK 2+ BT4F Ka FK 2 ZC1eMMIKDIZZ(L o M24K )
&7 DIF=(SUM-XT(M)) /XTI(NM)+ 1.0 8 ZU1eMeKIZZ(1eM24K)
WRITEL6+109) MMeDIFeSUM IF (ARS (SUM-SUM1) .LT. .1) GO TO 10
DO 43 I=2.LM DIFZ(SUM-SUM1) /FN
™=I-1 DO 16 K=
TFINTRT) 73,74,73 FKzDTF+FLOAT (K-1)
T4 XX=DIF*X(IoleNM) 00 16
6¢ TO 75 DO 16 Iz
73 XX=DIFsV2(IM,1) 16 Z01eJdeK)ZZ(LsJdeK )¢ FK
75 V2 (IMe3) ZXX-X(Ty1sNM) 10 NCT=0
43 X{TeloNMI=XX NENN]
AAIZSUM-X[Ls1+NM) 20 SUM=D.0
X(LeloNMIZSUM DO 11 K=2enNM
IFINTRN .EG. () GO TP 69 KP =K +1
IFINMOT .EB. M) GO TO 70 KM =K -1
SUM=XT (N) DO 12 I=2.LM
GO TO B9 =
70 FR=N-KCET M=1-1
FK2=FK+F K IF(NCT .GT. M) GO TO 13

SUM=8N +B8 1#FK +A2¢ FK 2+ RT#F K& FK 2 COZYUTvdleKI=Y(LsJeK}
69 DIFZ(SUM-XTINII/ZXT{(NI+1.D
WRITF{E«1M19) N +DIFSUM

DO 14 I=2+LM

25%CD8 IVATod o KP =Y U Ted o KP I=Y L ToJ1akKM ) #¥Y (T vd oK M) )
PERCYLIP o JY oK) =Y ITPoJsK) ~Y (IMsJ1aK)+Y (IMyJeK)} /CD

TMzI-1 A31=1.0/ (A3+14)
TFINIRTY 76.77+76 CLITMIKMIZAZTs (2,48142,)
T7 XXZDIFeX{IsleN} C2(TMoKMITASI» (A3-1.)
G0 TO 7R C3(IMVKM)IZA31e (A1-A2)
T6 XXZDTIF+V2{IMe2) CHUTM KMITAZ14 (A1+A2)
78 V2 (IMeu) TXX-X{T41eN) 13 ACIMIZCLEIMAKM)
14 XCTe}eN) 2XX GUIMIZC2(IMeKM)
BAZZSUM-X{La1 o N) 12 BUIMIZCI(IMaKM I Z(ToJoKMI+CU (TM KMo 2 (T2 JsKP)
X(LelsN)ZSUM REIIZP (L) #2010 deK)

45



L]
204

3

aFNR,

BIL?2)=B(L2)-CGIL2)*%Z{L+JeK)
D0 14 Iz2.L2

™M=T-1

ACT) AL +GUTIMI/ACTM)
A(I)ZRII)+BIIMI/ALTIMY
I-L2

TZ=B(I)/7ALTY
DIF=TZ-Z(LM+JeK)
SUMZSUM«ABSI(DIF)
ZOLM»JeK I=TZ+W1+DIF
Pl

I=1-1
TZH(RII)-G(II+TZ)/7AC T
DIF=TZ-2(IPsJsK)
SUM=SUM+ ABS(DTIF)
ZUIP s S sKI=TZ+W1¢DIF

11

10
4

11

IF(I .GT. 1) GO TO 15

CONTINUE

NCT=NCT«1

FOPMAY {* NCT="yI5+"' SUM=*+E17.6)

IF(SUM .GT. 3000.) GO TO &u

IF(SUM .GT. FRR AND. NCT .L 7. MAX) GO TO 20

WRITE(6+204) NROT.NCT.SUM k4
FORMAT(® Z NBOT='+I3s" NCTZ*+sIS5+° SUMZ'+E12.5)

IF(NRT LGT. 1N0) RETUPN

DO 31 KZ1eN
WRITE(6+100)
RETURN

END

IS XSIDE.XSIDE

SUBROUTINE SIDEX(JBEG)

INTEGER IEND (10}

COMMON X (21 ellv11) oY (21011011) 9282101101210+ C21(19+914C2(19.9),C3(13
$19)ef8(19+¢9)+C5(19+314A019)¢P119)e5(1A)sHoFL

SFMeFNsDELeZF ¢ 21 ¢ERReLeLOMe Mo MMy NeNMoLN2 oM 2o N2 9 MAX ¢ MAXCT+ NRT
$e2TC11)

CZ2{TedeK) e IZ1oL )

ks

Wlz.b
K=1
Kpz=2

31

N

~

&

2

-

B0 30 J=JBEGWMM

IEND {J)=LDM

SumM=0.

00 1 JZJBEG.MM

M =d-1

JP=J41

LMZLDM

IF(IENDUJ) .FO. LDOM) GO TO 31
LMZIENDUJ}

L27LM-1

DO 2 Tz=2.LM

M=I-1

IP-T+1

IF(NCT .GT. ) GO TO 3

ZSTZAI oJeKP) = Z I vdeK)
A3z 280 Z(IP v dsKP) =7(IPeJeK) -Z (IMeJeKP I4Z (IMeJsK 1) /2S

AZ1=1.0/(1.0+A31
IF(J .6T. 1) GO TO 17
A1Z2.%25%7S

CSUTMe 1) ZA31n(A1+2.)

CSH{TM2) AT 1*(A3-1.)

CStIM.3)-A31281]

G0 TO 15

A1225%7S
A2=F2542S*«(2(TodPeKPI-Z{ToUMeKP)=Z{T+sJP+K)+Z[TeJMeK})
ClEIMsUMIZAZI*(2.42.0A1)

C2(IMs UM)I= A3}« (A3-].)

1

C3I{IM»UM 31+ (21-22) 1
CU(IMy UMIZAZI*(AL+82)
IF(J «GT. 1) GO TO 13

ACTIMIZCSH{IMe1}
GUIMIZCS(IM.?)
BOIMIZCS(IMe3) #X (I eJPeK)
6C TO 2

ACIMIZCI(IMeJM)
GUIMIZC2(IMyIM)

FOIMIZCI(IMeIMIAX{ T o IMeK D¢ CALIM e IM I+ X(ToeJPsK) 10
CONTINUE

ACL2IZRIL2)I-CGIL2)eX{ Lo JeK}

DO 4 T1=2..2 S
TL=T-1

A(T)ZALIDI+GITLI/ACTD)

BCIIZRITIBUILI/ALTID) 61
I=L? 2

XT=B(I)/7 201
DIFZXT-X LMy JeK)
SUMZSUM+ ABS{DIF)
X(LMeJd eKI=XT+W1«DIF
1°=1

I=1-1

XTZ(ROI) -GUII#XT I/ ACT)
DIFSXT-X(IPeJsK)
SUMZSUM+ABS(NIF)
XCIP+J 9K )ZXT+W1sDIF
IF(T .GT. 1} GO TO S
LPLSZL M+ 1
XTZXALPLS»JoK)

IZLmM

TFAX(IeJeK) oLTe XT) GO T0 1
X(TedoK) ZXT-20154F LOAT(LPLS- D
I-1-1

IENDtUYZT

GO T0 37

CONTTMUE

NCTZMCTe1

2n

2

26

3

4
2

6
4

IFC SUM .GT. 3000.) GO YO 6

IF(SUM .GT. FRR .AND. NCT .LT. MAX) GO TO 20
WRITE({Be113) KeNCT,SUM

FOPMAT(* XSIDE="+I3+°* NCTZ"sI5s7 SUMZ',E]12.6)
IF(NRT .GT. 100) GO TO 42

DO & Jz1eM

WRITE(GEs100) (X(TeJdeK)oIZlob)

FORMAT(1H ¢1FF643¢5F7.3)

IF(K «GT. 1) PETURN

K=N

KP=NM

60 T0 1D

WRITE(Gell4) KeNCToSUM

FORMAT (Y XSIDE='+I3¢* NCT="¢15,°% SUM=*4F12.5,° SOLUTION BLEW UP*)
STOP

END

AFCRVIS SZINTeSZINT

SUBROUTINE ZINTEP
COMMON X (21e11e11) oY (2102110110 0Z(230e11s1119C1(19+93)¢C2¢19+9),+C3(19

$+9),C8(1909) »CSC19+9)s801°143(131eC(1I)eHeFLY
GFM o FNsDEL s ZF o 71 e ERRo Lo LMeMoMMeNsNMoL2 sM2o N2 e MAX s MAXCToNRT

(3

1]

[

~

&

-

1]

)

3

204 FORMAT(®

1]

26

NCCUNT =1

SUMMz0.0

NCTMAX =0

DO 725 J=2eMM

JMZJ -1

NS

NCT=D

SUMZ=0.0

DO 1 K=2+NM

KMZK -1

KP =K +1

DO 2 I=2.LM

MZI-]

IP=T+1

IFINCT .GT. 0) GO 70 3

COZeS* (YL sdP oK) Y (I UMsK))

A1:=CD*CD

1252 (Y T oJP sKP) =Y (I »JMeKP I=Y (To JPsKM) +Y (Lo JMeKM))
D=ONY

126 (Y(IPeJP oK I=Y{ IPsJMsK) =Y (IMeUP oK) ¢Y(IMeJMeK) )/ CD
Sa (YT eJeKP) =Y (T eJsK¥} )

Se (X (T sdP oK) =X(TsJIMeK))
DFT=Y(TaJoKP)+Y{ToJdeKM)=2.2Y (L vdrK)

DIP= 25« AXAIPsUP oK }=X{ IPeJMesK) =X tIMeJP oK) ¢ X(IMsIMeK))
CG=aS*{Z UL eJPeK) -2 [T sJMsK})

DF Pz o256 {Y(IPsJsKPI-Y( IPsJ s KM -V IIMsJeKPI+Y(IMeJ KM )
DGTZ o256 (ZtT o JPaKP I=Z( Ta UMsKP) ~Z(T+JP e KM} ¢Z(To JMsKM) )
A5=24%A2+CI*CF-CO* (CF«DGT+CG+*DFT}-CI*DFP-CF=DIP
OBINZ1.0/(1.0¢A2)

C1(IMeKMIZ2.% (1.+A1)+0BIN

C2(IMeKMIZDBIMA(A2-1.0)

CI(IMsKMIZDBINS(AL-A3)

Cu(IMsKMIZDBIN=(AL+AZ)

C5(TMKMITAS+DBIN

ACIMIZCL(IMKM)
CeIm C2(IMaKM)
BOIMIZ C3(IMeKM) #Z (T o JoKM) +CUCIMIKM) #2 (Lo JoKP ) +C5( IM0KM)

BUIYZR(1)+2(1+d +K)
BUL2I=ZRILZ2)-CLL21xZ(LeJeK)
DO 14 I=2.L2

I1=I-1
ACTIZA(L)¢CCT1I/ALTLY
BCIY=R(I)+B(TL)/7ACTY)
I=L2

pEEN]

2T=8(I)/7ACT)
DIF=7(IPJKI-2T
SUMZ =SUMZ+A3<(DIF)
Z{IP s I WK I ZT+, 4« DIF
1PzI

ZT(BUTI -CUII*2ZT )7 8(T)
DIFZ7CIP+JeK)I-ZT
SUMZ=SUMZ+ABS(DIF)
Z(IP+J WK I1=ZT+.4xDIF

IF(I .6T. 1Y GO TO 15

CONT IMUE

NCT=NCTe1

FORMAT (1H +»16FB.3)

IF(SU™ .GT. 1.E5) GO YO 56

IFI(NCT LT. MAX JAND. SUM7.GT.ERR
IFIMCT GT. NCTMAX) NCTMAXZNCT
IF(MOD(NCOUNTNRT) .GT. ) GO TO 86
D0 61 K=1.M
WRITE(G.100)
SUMM ZSUMM+SUM
WRITE(Gs20U) JeNCTsSUMZ

SOLUTION FCR Z IN PSI PSIS PLANE J=*eI3s°*

) GO TO 20

(ZUTeJeK)sTZ10L)

NCT="+I5+* SUM=

$*E12.6)

?5 CONTINUE
RS NCOUNTZ-NCOUNT+1

WRITE(6.200)
FORMATY (* NCOUNT=*+IS,"*
IF(SUM .GT. 1.ES) SToP
TFANCTYAX .GT. 3 . AND.
RE TURN

END

NCOUNT o SUMZ
SUM=*E12.6)

NCOUNT .L¥. MAXCT} GO TO 26

AFOR IS SYINTeSYINT

SUBROUTINE YINTER

COMMON X (21+11v11} eY(21e11911)9Z821911v11)eC1(1922)9C2(19+9)4C3(1°
509)0CHL19¢9)+C5(1999)+A019) A1) eGlTIA)eHIFL,

GFMoFNeDELe7F o7 1eERR oL o LM oMo MMe N NMoL 2 ¢M20 N2oMAX s MAXCToNRT

Wiz.u

NCOUNT =1

SUMMZO.

NCTMAX =0

DO 25 K=2.NM



20

KM =K -1
KPZK +1
NCTZO
SuMzD.0

DO 1 J=2+MM
Jmzd -1
JPTy+l

N0 2 T=2.LMm

E«CE

1754CE#(2(1e P oKP) =Z (I s JPeKMI=2( 1+ JMKP) +2 L1+ JMeKM )}

A3IDEP/CE

S* (X (LedeKP) =X (L sJdsKM))

(LvdPeK}=Z (L JMsK)

3eCH*CG

PZCE* 5% (Y(TodoKP) =Y ILodeKM ) (Z(ToIP oK) 4ZUTsdMeK) =2e4#2(TedeK] D+

$ o1 25¢CE# (Y(IoUPoKPI-Y(ToUPsKM —Y{IsUMsKPI¢Y(TeUMsKM) })

-

=

1

112

n
=

76
1n0
6

2ny

P3Z.25eCHO (ZIIPe P eKI-Z1IP s UMK =2 (TMs JPs KI+2 L IMrJMeK) )+ . 1254CG* (
SXETIP s J oK P) =XTIPeJe KMI=-X( IMyJ KPP ) +X (IMsJsKM})

B31-1.0/(1.0¢A3)

CLITMeUMITR31¢(2.42.2R1)

C2(IMeuM}I=BI14 (A3-1.

C3(IMsJHI=B31e (A]1-A2)

CY(IMeJMIZR31*(A]+A2)

CS{IMeUMI=B31a(P]1-P2-P3)

ACTMIZCLUIMaIM)

Z(IMe M) Y(ToJMeK )+ CUIMoIMIY(TeUPyKI¢CSIIMedM])
R(11+Y(1sdeK)

(L2)1=CIL2)*Y(LeJeK)

DO 4 T=2.L2

IMZT-1

ACT) A(II+GUIMIZACTMY

RCI) =R(I1+BOIMI/ZACTIM)

1=L2

YTZR(I/ZALY)

DIFSYT-Y(LMsJeK)

SUMZSUM+ABS(DIF)

Y(LMoJ oK )I=YT4W1e DIF

PI

1=1-1

YISURUTV -G (VYT )/ 8¢ TY

DIFSYT-YIIPsJeK)

SUM=SUMs ABS{DIF)

YUIP WJ WK )TYT+W1&DIF

IF(I «GT. 1) GH TO 5

SelZlledeKP) =ZLLedeKM})

EeCE

1252 CE2(7¢1 9o JP oKDY =7 (LsdPeKMI=7(1 o JMe KP} 47 L1sdMeKM )}
E* (oS4 (Y (12JoKP)I-Y{Lod oK™ 15 (Z {10 JPsKI+Z(1sJMeK) =2 oZ(1eJeK) )e
$.125002€ 10O oK I=Z0 10 JMsK 1P o0 Y2 e JPsKP) =Y (12 JPsKMI-Y (1 s JMsKP) Y (1r
FIMIKMY )

YE1oJoKI SUYI2 0 Jo Kl +. S8 (CAL4A2) s Y (1oJP oK) +(AL1~A2) *Y (1oJMeK) +A3} )}/
Fll.+21)

CONTINUE

NCT=NCT+1

FORMAT (* NCT=*+I5¢* SUMZ'+E12.6)

IF(SUM .GT. 3000.} GP TO 64

IF(SUM .GT. FRP .ANN. NCT ,LT. MAX) GO TO 20

IFAMCT L6T, NCT™AX) NCTMAXZNCT

IF (MOD(NCOUNT.NRT) .GT. 0) GO TO 86

DO 76 Jz1.M

WRITE(Re100) (YCTIsJeK)wIZ1el)

FORPMAT (IH +16F8.3)

SUMMZSUMMeSUM

WRITF(Ba204) KeNCToSUM

FOOMAT (* SOLUTION FOP Y IN PHI-PSI PLANE K='e+I5+° NCTZ'¢I5." SUMZ*
$+E172.6)

?5 CONTTNUE

NCOUNT=NCOUNT«]
WRITE(/+200) NCOUNTSUMM NCTMAX

200 FORMAT(* NCOUNT="¢IS5+* SUMMZ'+E12.6+" NCTMAXZ"+I4)

3F0 .

IF(SU™M .GT. 200D} STOP

IFINCTMAX .GT. 3 LANM, NCOUNT .LT. MAXCT) GO TO 26
PE TURN

END

TS XSPHI«XSPHT

SUBROUTINE XINTER(JBEG)

B1=CCeCC
BI=.5/CC«CPHI
B31=1./01.+83)
IF{J «6T. 1) GO TO 12
BI2=2.+81
C6(IMIZB31e[2.4R12)
C7eIm) 31%(R3~1.4)
CaI(IM)=B3198]2
G0 YO 15
12 B2Za1254CC*( 70T+ 0P sKP) ~Z (L s UPsKMI~ZI T eUMsKP) 47 (L sUM, KM} )
PLoaCuBIe{Y(ToJeKP =Y (TeJeKM)) o (7 (19 JPsK}~Z(TeIMsK))
P2ICCet 50 (XIIoJsKO) =X (TsJeKM )2 IIsJPsKI+2 (10 dMeK) =2.0Z2(T0JdeK) }
S 125 {ZU1vdP oK) =7 (L +dMeK) Jo (X CLeJPeKPI-X(TeJPeKM) -X (I sJMeKP )¢ X{ Te
S UM KM )
P3Z.125¢ (Y (I sJoKP)I =Y (ToJsKM) Yo (Z(IPsIPsKI-ZLIPeUMiK) =Z (IMsJP+K )¢
SZOIMedMeK) Do 012500 20 ToUP oK 1= 2C LodMaK ) ) (Y (IPo JoKP) =Y (IPs JoKM) =Y ( IM
SrJeKP) SY (IMeJsKM )
C5(IMeJMIZ(P3I-PL-P2) «B83)
CLITMeUMIZ(P.42.2B])9R3]
C2(IMe M 31+(B7-1.)
C3(IMedM 31+ (81-82)
C4lTMyIMIZB3YIs (B1+A2)
3 IF(Y «6T. 1) GN TO 13
15 ACIm R(IM)
BCIM BUIM) *X (L +JPsK)
GCIMIZCT(IM)
GO YO 2
13 ACIMIZCH(IMedM)
CUIMIZC2(IMeIM)
BUIMIZCIIIMa UM ) XCTo UMK 1o CHIMoeUM I XCToUP oK I+ CSITHeUM)
CONT INUE
BIL2)=BEL2)-G{L2} e X(LoJsK)
DO 4 I=2.L2
1=r-1
ACI) CA(I)+GUIL)IZACTIL)
R{T)ZB(IN«R(TLI/ACTY)
I=t2
XT=8II)/7 041
DIF=XT=X{LM¢JrK)
su UM+ ABSIDPIF)
X{LMvJsKIZXT+WIeDIF
w=r
I=I-1
XTS(BOI)~GUIIeXT )/ AL T)
DIF=XT =X ([PeJsK}
SUMZSUM« ABS(DIF)
XUIP »J oK I=XT+W1e DIF
IF(I .6T. 1) GO 70 §
LPLSZLHM+]
I=LM
XT=X(LPLSeJeK)
32 IF(X(I+JeK) LLTe XT) GO TO 1L
XCTaJeK)ZXT- (N1SeFLOAT(LPLS- D
I=1-1
IEND (U]
6o TO0 32
1 CONTINUE
NCTINCTe]
112 FORMAT (* NCT='4IS5¢" SUMZ',E12.6)
IF(SUM .GTe 100.) STOP
IF(SUM .GT. T00N.) GO TO 64
IF(SUM .GY. FRR AND. NCT .LT. MAX) 50 TQ 20
€4 TFINCT .GT. NFTMAX) NCTMAXINCT
IF(MODINCOUNT(NRT) .GT. ) GO TO 8A
DC 76 JTleM
76 WRITE(Ge1N0) CXCTeJdeKY o710l )
1rD FORMAT (1H +1FFB. )
86 SUMMZSUMMeSUM
WRITELRY205) KeNCToSUM
205 FORMAY (* SOLUTION FOP X IN PHI-PST PLANE K="+I3e® NCTZ's1S5,% SuMz*
$+E£12.6)
25 CONTINUE
NCOUNT=NCOUNT+]
WRITE(E+200) NCOUNT SUMMsNCTMAX
200 FORMAT (* NCOUNT=®*yJISs* SUMMZ*,E12.6+" NCTMAX
IF (SUMM .GT. °NN0.) STOP
TFINCTMAX 6T 3 JAND, NCOUNT .LT. MAXCT) GO TO 26
PE TURN
END
@FNe,T XDRAINWXDRAIN
SURROUTINE DRAINX
COMMON X {21 e114010) oY 422edboll) 02020l 1o111eCL019+93,C2819¢9)4+C3(19

~

=

w

v 14y

COMMON X (219119111 +¥ 0210119110 02(21s11¢11)9C1(19¢9)+C2¢19+9)14+C3119 Sr9)eCUILSe9) vC5019+9)2R(13) 0 KI19)eBI1 M) eHFL

$93)9CU(19¢9)+C5(1999)+A029)sBI19)s6(19YeHeFL
SFMoFNeDELvZF 71 vy FRReLoLDMe Mo Mo NeNMsLN2 eM29N2 s MAXe MAXCTo NRT
REAL C6(19)+C71192+C8(19)
INTEGER TEND(1D)
Wizt
NCOUNT =1

?6 SUMMZO.

3

20

=)

NCTHAXZ=Q

DO 25 KZ2.NM
KM=K -1

KPZK +1

Lz2=:L0?

DO 30 JZJBEGwMM
IEND (J)=LDM
NCT=0

SuMz=D.Nn

DO 1 J=JREGeMM
BLI=NES S

JPzJeL

LML
IF(IENDC(JY .EQ. LDM) GO TO 31
LM=IENDLJ)
L2ztM-1

1 DO 2 T=2eLm

IMzT-1

IP=T+1

IF(NCT .GT. 0) GO 70 3

CCZeS* (2T odoKPI-Z(TedsKM) )

CPHI =260 (2(IP s eKPY =7 (IPsJs K™ 1=7 ( IMeJeKP) +Z{IMs JeKM))

SFUeFNeDELoZF o719 ERRo Lo LMoMaMMe N eNMoL2 «M2o N2oMAX s MAXCT#NRT
L3 -3
C DERIVATIVES BASFD ON FIOST AND SECOND OROER DIFFERENCES
02:=3.
£3-1.5
D4=.33333333
PS=.FREEBRRT
C FIRST ROW
ACI)=X(Lolol)
DO 1 JzZ24MM
JP=J +1
JMzJ-1
DD2Z (UXCLedeZ) =X (L oo 114 7(LedPol)=7(L oMo 1)) 5.54020Y (LMo Jel } -D3#
SY(L2vJ v ) ) eDUAY L0 U1V I/ (20 sd 0 2)~Z1 Lo Jel )}
IFG) LEQ. 2) DOL1=.5¢N02
ACJ) ZA (IM) +.52 (DD1+DD2?)
1 DD1zND2
OD2Z COXCLIMa2) =X (L oM s 1)) 007 (LoMod ) =2 (L oMMl ) )4DP0Y (LMaM,1)-D3+Y(L2
SeMal )eDUSYILI oMol J/ (7ML oMo 2)-7 (L oMol ) )
A(M)ZA(MM) 4.5« (DD1+DP?)
IFINRT LT, 12)WRITE(F1AD) (A{J) o] M)
100 FORMAT(IH +12F10.4)
XBIX(Loelel?
DIFZ (XL sMo1}=ACM) )/ (A {M)~XR)
00 3 J=2.MM
3 X(LoJel)ZALJIeDIFr (ALJ)-XR)
C CENTEP PORTION
DO 2 Kz=2+NM
ACE)SX(L el oK)

47



KM =K -1

KPzK +1

00 4 J=2.MM

JPzJ +1

JM=d-1

DO2= (. Se (X (L oJsKP) =X (LoJdokKM) 13 (ZHL +JP oK) =Z (Lo JMs K} J¢Bo2Y {LMeJeK) -
SD2+Y (L2e JeK) *0S5eYC(L30sJeK 1) /{Z(LeJeKPI-2(L s JoKM)}

IFJ .EQ. 2} OND1z.5«DN2

A(J) ZA(IM) +. 5+ (DD1+DD2)

4 DD1=DD2

5
2

6

~

AFOR,

c 8¢

N W

-

&

£

100
1M1

~

3

DDZ=CUXCLeMeKP I XU LoMoKM)) 2 { ZCL eMeK) =Z (Lo MMeK) 1462 Y (LMY MeK) D22 Y(
SL2 MK ) ¢DSaYILIsMeK) I/ (ZIL MKP)=Z (Lo MeKM) )

ALM) ZA(MM) +.5¢ (DD1+DD?)
IFINRT LT, 12)WRITE (Re100)
XB=X (Lol oK)
DIF=UX(L+MsKI=-AC(H) )7 (A (M)-XB)

DO 5 JZ2+MM

X(LeJeK) ZA{JI+DIF* {A(J)~XP)

CONTINUE

ACTY XL 21N

DO & J=2+MM

NLNEA!

JMzJ -t

DO2=COXILoJeNI =X (LedsNM) Ix (Z L v JPeN) ~Z (Lo JMeN} s 5402 Y (LM JsNI-D3
SY (L2eJeNY DG Y(L3eJeNI) /LZ0LoedeN)=Z(LoJeNM))

IF{J «EQ. 2) DD1=.5+002

ACJ) ZA(IM) +. S IDDL+002)

001=N02

DD2= U X{LeMeN) ~X (L oMoNM) Y% (2@ vMoNI-Z(LeMMyNI) +D2% Y(LMsMsNI-D3oY (
SL2eMeNI+DOSY ILI oMo NI I/ {ZIL s MoNDI=7 (LM eNM))
A{M) SA(MM) 4.5« (DD1+DN2)
IF(NRT LT. 12)WRITE(R,100)
XBX (Lol oN)
DIFZ (X (L sMsNI-ALMY I/ (A(M)-XR)
DO 7 J=2MM
X(LedeN) ZA(JI+DIF* (A LJ)-XB)
RE TURN
END

SURINsSURIN
SURROUYTINE INITAL(ZF+ZENOL)
REAL K1Z
COMMNON X (21 ¢11921) oY (21011911)+Z¢21+212011)C1(19+9)¢C2(19+9),C3019
$09)0C48019+9) eC5(19+9)+A(19)¢B(13)9Gl19)eHeFLy
SFMFNIDELeFZ1oZ1+ERRoL oL MoMeMMsNeNMIL 20 M2 s N2¢ MAX s MAXCT o NRT
TTOM AND TOP(Y AND 2}

CO-H/FL

(B (JYedzl o M)

(ALJ)ed=1 M)

I

aF

ZH3= (ZEND1-Z1) /FN
FK72=0.

FKZ1=N.

DO 1 KZ1.N

DO 2 I=1sL

Y(Is1eK}z0.0
KIZ=(FLOAT(I-1)/FL)e*3
2V7=(1.-KIZ)+FKZ1+KIZ*FKZ2
Z(Ie1eK)=Z7T

2¢TeMeKYZZT

Y(TeMeK) =H-CO+FLOAT(T-1)
00 3 JzZ2+MM
2010 09K =27
CONTTINUE
FKZ}<FKZ1+DEL
IF(K .EC. 1)
FK2?-FKZ2¢ZH3
IF(K JEQ. NM)
CONTINUE

DO & I=-1sL
DELYZY{L+Ms1)/FM

YT=DELY

00 4 J=24MM

Y(Iedel)=YT

YTZYT+DELY

NCT=0

SUM=N.

DO f JZ2+MM

Ni=NES]

JMzJ-1

YT=e25%(Y(1edP a1 )6 Y (1o dMe L) eZanY(20d0 1))
DIFZYT-Y(LlsJei}

SUMISUM«2BS(DIF)

Y(leJel) YT+ .RsDIF

DO & I=2.LM

YTZe258(YUTodP L) V(T odMs 1)+ Y(I-10Jdel}+Y(I+10dr1))
CIFSYT-Y(Iedel)

SUMZSUM+ ABSIDIF)

FKZ22=21

FK22=Z7F

Y(Tedel) Z¥Te.ReDIF

NCT=NCT+1

IF(SUM .GT. 001 . AND. NCT .LT. 40) GO TO 5
WRITE(S+100) NCT,SUM

FOPMAT(®* INITIALIZING Y — NCT=*,I5,° SUMZ'»F12.6)
FORMAT (1HO«L1F1N.3+s20( /9 1H +11F10.3})

00 7 T=lsL

DO 7 JTlM

YTZY(Tsds 1)

0o 7 ¥

YETedeKIZYT
OY1ZY(1leMel) =Y (1eMM, 1)
X(1eMol) =0,

Xt1els1}=Q.
DY3=Y(1v2s1)-Ytlelol)

PO 8 I=2.L
DY2=Y(1eMelV =Y (T MM, 1)
X(TeMol) X (I-1oMeld+ 5+ (DYL40Y2)
cyY=nyz
DY4=Y(Ie2+1)-Y(Ielel]
X(0Telol)=X{I-1ole]de
DY 3=DYy

Do 9 Izl.L

<S5« (DY34DY 4)

DELX=(X(IoMel) -X{Islol))/FM
DO 9 JZ2.MM
X(Tedoel) =X (Ledlel )¢ DELXSFLOAT (U-1?
NCT=0
SuMz=0.
DO 11 Jz2+MM
JPzJ+l
JMzJ-1
00 11 I=2«LM
XTZa258(X(TodP o 13+ XETeUMo 1) ¢XCT¢] adol) #XCI-10do 1))
DIFZXT-X(Isdel)
SUM=SUM+ ABS(DIF)
X(IeJel) ZXT+.E*DIF
NCT=NCT+1
IF(SUM .GT. .001 . AND.
WRITE(S.104) NCT.SUM
FORMAT(* INITIALIZING X
IFINRT (LT. 5G) WRITE(Ge101)
KPE=N+1
DLXZo2#(X(LeMel) =X(Lelel))
FNC=NC~-1
D0 12 K= 2.NC
KK =K PE -K
FK1={1.0-FLOAT(K-1)/FNC)2+2
XFIDLX*(1.-FK1)
DO 13 J=1.M
XCleJeKKIZXT{10Je 1)
XCledeKI=X(1edo 1)
DC 14 I=2.L
FIZXF=(FLOAT(E-1)/FL)*#1.5
XCTeMeK)=X(IeMs1)-FI
XCToMeKKIZX(T o MeK)
DO 14 J=1eMM
FU=FLNAT (J-))/FM
XXX (T odol)=FIF I
XETeJoKKDIZXX
X{TedeK) XX
CONTINUE
DO 15 1=
Do 15 J=
XCIeJoNI=XUToedol)
RE TURN
END

ZORAIN s ZDRAIN
SUBROUTINE ZNRANF(ZENDIL)
COMMON Xlz]v!lcll)-v(7l'llvll‘vZ(?ltllvll)vcl(lqva)qc?(lenﬁ)'C3(19
$+9)5CH(1949)9C5(19¢912A019)98(19)eGLA)eHFLY
$FM-FN'DEL~ZF-71-ERR-L-LN-N.WWN'NMvLZvMZ-NZ-HAX-HAXCT-NRT
$02T7C011)

DY (Y1e¥2+Y3eD2eN3,D4)=02+V1-D32Y2+0UsY3
DX2(X1sX29X30X4sDUsD5) =X 1~ DU »X2- .5+X3-D5 Xt

DX EX19X2oX3oXUsE3eEL) = E3# (X1-X2)-ElUr(X3-X4)

DOMMEX1+X2e X3 X4 9D49D5) =DU* X L4 56X 2-X3+D5x X4
DXMEX1eX29X3eX49DB1eD2+D3+D8) D1 +X1-N2%X2+D3=X3-Dys x4

N3=N-T

L3 -3

D1=1.83333333

10

-

MCT iT. 40) GO TO 10
NCT=*+I5¢" SUMZ'eE12.6)

CIX(Isde 1) edZ1eMIeI=1oL)

104

14
12

15

0R.1

33333333
16666RR7
5416666FR7
04166567
FBRBEE66RT
Fu=,83333333
00 2 J=2.M

2lLeJel) =271

J2=Jd-?

DYX=DY (Y (LMsJell oY (L2¢Jr1) e YL 3+Js1)sD2+D3,D4)
DYZ=DY (Y (LMo Je2) oY (L 20Je2) s Y (L3 ¢Je2)+D2+D3,04)
DY3=0Y (Y(LMeds3) oY (L2eJe 3V oY L 3+J+3),02+D3,08)
SXITD28X(LsJe2)-D1*X(Lods1)=DF4X(LsJds3)¢DUsX (LIt}
SX2=X({LeJe3)~a5eX{LeJe2) -DUeX{LoJel) -D5*X (Lo Jr8)
SXIZET#(X(Leded) =XLELvJs2)) —El% (XL oeJr» S)=X{LeJe1)}

IF(J .GT. 2} CO 70 3
DD1=(DY1+SX1*+DX2(Z(Ls3v1)s2(Leds1)s20Ls2s 1027 Lotind)sN4+D5))/
SOX2(XCLe3o1) s XML oloddeX({Le2el) e X{Lv84s1)sD4,05)
DD2=(DY2+SX2%DX2(Z(L+ 302107 (Lol e?)2Z il s20 2)9Z(Ls8e2)+DB4N5))/
SDX20XtLe3s2) e X(Lslo2)eX(LoZe2) o X{Lols2)sDUsD5)
OD3=(DY3+SX3#0X2(Z(Ls303)9Z0Le1031+Z(Ls2s31e2({Lste3)eDU4DS))/
FDX20XCLo3e3) e X{Ledo3VeX(Le293) o X{Lo4r3)sDbs05)

G0 TO 4
3 IF(J .EG. MM) GO TO &
IFGS .E0. M) GO TO €

DD1=(NYL+SX1*DX(Z(LedPe12eZlLeIMe1)sZ Lo J0r k) eZ (Lo d2e1)eF3sEU) D}/
S DXUXCLo P 1) o Xt LedMe1)eX(LordOs» L) eXtLeJ2v 1)eE3.E4)
DD2-(0Y24SX2¢0X{Z(LeJP12)eZ Lo UMs2)eZ(LeJ0e2)e7(LeJ2e2)sE3sEL))/
S DXOXTILeJPo2) e X{LoedMs2) e X{LeJOs 2)eXUL v J2s 2)¢E3eED)
DD3=(DYI+SXI*NXCZ2{LedO¢31eZ0LedMs T)0Z2{LeJ0r 31 eZlLeJ2e3)+E34E4T1 Y/
$ DXUXCLoJPs3) e X(LoJMe3) e XILvJOs3)eXCLvJ2e 3)sE3eF4)
G0 TO 4
5 DDIZ(DYL+SXIsDMMIZILoJP o1} 92 A e Jds 1) eZiLsdMel) o7 (Lo d2:1)+04eD5))/
S OMMIEX AL odPel) e X (L oJdr3)eX{LeJdMs 12 eX{L+J2y 13+04,05)
CD2=(DY2+4SX2*DMM (Z UL o JPe2) ¢ Z (L s Je 2207 L+ IMe2)02(LeJ2¢2)eDl405) )/
S DMM X (L odPe2}eX(Lode2)eX(LodMe2)eX(LvJ2s 2)+D4,D05)
DD3={DY3+SX3I+DOMMIZ (L +dPe3) 7 (L s Jr 3102 (L v¥IMe3)0Z(LvJ2e3)eDUS0D5) )/
$ DMMAIX (L oJPe3taX(Lode3)eX{LeMr3)eXtLed2v3)+D4,05)
€0 TO 4
6 J3=J-3
ODI=(OYL+SXL*OXM 7 L eds 1)o7 (Le UM 1) eZ L od2e k)0 Z¢LeJ3e1)9D1sD2+D30
FOUIIZDXM XL v ol b o X{L oMol e X(Lod2e1) e X{L ¢eJ3s1)eD1+D2.D3.04)
DD2=(PY24SX28DXM(Z AL od e 20 Z{LedMe?)eZ(L1J2¢2)14ZCLeJd3e2)eN1sD24+D30
SOU))/DXMEX (L od o 2) e XELeUMy2) v XIL 9 U202 e X{L ¢eJ30?)eD1eDN2s034D4)
DD3=INY3+SX3+DXM(Z L e o317 Lo UMy 3)eZlLsJ2¢3702CLeJ3¢3}eN1eD203,
SD4)) /DXMAXIL e o3 e X{LeJMe3) e XCLoJ2e3VeX{LeJ343)eD14D2+03,04)
4 2T(2)=Z1+.5+(DP1+002)



8

10 DOS=(DY4+SXU*DMMIZUILoJP s I) o Z W oo T)eZ(LodMeI)eZCLoJ2+T)sDU4+D5))/

00 7 K=3.NM

IzK+)

KM =K -1

KP =K +?

K2:zK -2

K3=K +3

DYUZPY (Y (LMsJeT) oY (L29Js TV oY (L30deI)eD2+D3sD4)

IF(K .FEQ. NM) GO TO 13

IFIK «FG. N2Y GO TO 15
SXUZEZIU{XILeJdeKP )= X{LeJdeK) I-Flus(X{LovJeK3I-X(LeJdsKM))
GO TO 8
SXUZDT1sX(LsJeNI-D2#X (Lo JeNM) +D3eX (Lo JeN2)-DUSX (L oJeN-3)
G0 TO0 9

SXUZDUsX (L s doNDI+ . SoX (L eJeNM) =X (L s JsN2) +D5¢X(LeJsN-3)
IF(J .GT. 2) GC 10 8

DDUZ(DY4+SXL*DX2(7(Le3vI)eZ(Lsl oIV o7 (Le2¢T)e?(LsldsI)oeDUSDSII/

SOX20XCLeSoI) e XL odoldeXULe2o Dy X(Lo4sT)esD4sDS)
€0 YO 14

IF(J .EG. MM) GO TO 1IN

IF(J .F@. M) GO 70 11

CO4=(DY4+SXU*DXCZILsIPo I e2CLoUMeT )oZILoJOeTVeZ{LeJ2sT)sE3eEUII/

$ DXCXCLeJP eI b eXCLoJMoT ) o X(LoJOeI)eX{LoJ2eI)eE3WEY)
60 TO 14

S DMMAX (L o JPoI) o X(LodoT) o X{L o MeI)eX(LeJ2eI)eD4yD5)
GO TO 14

11 ODUZ(DYU+SXUSDXM(ZAL oo L) eZlLoJMiTDeZ L eJ2¢I)sZ Lo J3eT)eD1eD2+03s

14

7

B3040 /DXMAXILsd e D)o Xt LeIMeT ) e XUL oJ2sI) e XtLeJU3sT)eD1sD2+D30D4)

ZT(K)IZZT (KM) +E 1+ (0D2+003)-E2+( DD1+0D4)
po1=DD2

DO2=DPD3

DD 3=DD4

ZTANIZZT (NM) +. 5+ (DD2+DD3)
DIF=(ZENDL=-2TI{N) )/ LZT(N)~Z1)

49

?

~N

24

2

w

DO 17 K=2eNM

ZELe JoK)IZZT(KY +DIF s{ 7Y (K)-2Z 1)
WRITE(G4258) JoZ1e (7TUKI+KZ2sN)
FORMAT (1H «I2¢11F11.4)
ZCLe JeN) ZZENDI

DO 12 KZ1sN

Z(Le oK} ZZ(L +v24K )}

NMID=M/2-1

NMID?ZNMID+2

CO 22 KZ1eNMID

KP =K +1

DO 72 J=2.MM

JP=J

SLOPI= (XL oJ oK I=XULeJeKP D)) /{70 L edeKPI=Z(L s JsK))
XDIF ZX (L o JPeKPI=X(LeJeKP)
SLOP2=(Z(L +JPeKP )=Z{LsJsKP}) /XDIF

IFASLOPL ¢.11 .GT. SLOP? LANM. SLOPl-.11 .LT. SLOP2)
2ULeJP +KP) ZXNIF&SLOP 1+ Z{LsJeKP)

CONTINUE

K=N

KMZK -1

D0 23 J=2.MM

JP=J+1

SLOP1IZUX (L vJeKI-X{LeJeKMN Z/LZ0L e JeK)—-Z (Lo JeKM))
YOIF ZX (L o JPeKMI=-X(LeJsKM)

SLOP?=(ZIL+JPeKM)»-Z(Lsd +sKM} )/ XOTIF

IF(SLOPL +.11 .GT. SLOP2 .AND. SLOPL1-.11 .LT. SLOP?)
ZCLeJP oKM) Z2{L v J oK M) -XDIF*SLOP]

CONTINUE

K=K-1

IF(K .GT. NMID2) GO 70D 24

oFf TURN

END
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X~-COORDINATES FOR

<000
. 200
<G00
000
-000
- 0on
« 006
. 00n
-uan
. 000

«894
-300
«913
«936
«971
1.019
1.6087
1.1386
I.341
1.621

1.760
1.770
1.797
1.842
1.209
2.000
24124
2.292
2.529
2.873

Y-COORDINATES FOR

.00
- 866
1.739
2.625
3.523
4,442
5.398
6.419
7.558
9.000

Z-COORDINATES

.0D0
. 020
.0no
.oon
.000
.0U0
000
-0an
. 000
-000

X-COORD INATES

.00
.000
~0on
.000
.000
- 000
. 000
- 000
- 00U
.000

.000

<861
1.731
2.€11
3.502
4.411

250
6.336
7.395
8.550

- 000
-.000
-00u
-00u
.000
000
- 000
.000
-000
-000

.88¢
«8R9
.903
<327
- 964
1.014
1.085
F.188
1.349
1.6%8

.ooe
- 849
1.706
2.570
3.442
4.325
5.226
6.150
7.108
2.100
FOR
~000
- 00U
~000
.0on
. 0on
000
.00e
.0on
-000
-nan
FOR
1.742
1752
1.780
1.827
1.89¢
1.9
2.120
24296
2.542
2.8922

Y-COORDINATES FOR

.000

.849
1.707
2.578
3.468
4.334
Se344
6.376
T7.543
9.000

. 00g
<845
1.698
2.564
3.448
4.352
5.294
6232
7.371
Re S5

- 000
«832
1.672
2.521
3.383
4,267
5.1568
6.105
7.0832
8.100

Z-COORDINATES FOR

1.019

«993

«975

4.164
4.183
4.2u41
4.337
4,472
4.646
4,862
5.122
5.47%2
5.803

000

« 774
1.5%2
2.328
3.099
3.060
4.607
5.338
6.M49
6. 750

- 000
«u00
- L 00
-Noo
.G0o
~000
-.000
-000
- 000
-000

4.132
4,152
4.209
8.306
4.443
4.622
4.847
5.121
S. 450
54845

.000

« 753
1.510
2.268
3.026
3.782
4,534
S."e0
6.017
6.750

- 342

4.889
4,910
4.976
5.084
S5.234
5.425
5.656
5.928
£.243
6.611

~000

«739
1.482
2.221
2.950
3.665
4.360
S.030
5.673
6.300

-000
.000
.000
.000
.0 0o
-000
.000
.000
.000
<000

4,853
4.875
4.939
S.0u46
5.197
5.393
5.633
%.920
6.258
F.ES53

.000

+ 717
1.437
2.156
2871
3.580
4.280
4.966
5.538
6.300

933
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5.570
5.59%
5«6 66
5.786
5.949
6.154
6.398
6.678
6.995
7.357

-.000

«702
1.407
2.105
2792
3460
4.103
4.715
5.293
5.850

000
.0 00
.000
.000
.000
.000
000
000
-.000
.00

5.530
5.554
546 24
5.740
5.903
6.110
6.362
6.658
7.000
7.395

.000

<678
1.357
2.035
2.706
3.367
4.014
4.643
5.263
5.850

.9725

2@, 4, 0%), y@, 0, 9%), 2@, 4, )

6.706
6.232
6.311
6.84]1
6.617
6835
7.089
7.375
7.692
8.046

000

<662
1.326
1.983
2625
3.246
3.837
4.392
4.9069
S.400

-0 00
-000
-0no
-.00on
-000
000
-000
-000
-0 00
<000

6.161
6.187
6.262
6.386
6.558
6.775
7.036
7.339
7.683
8.075

.0 00

<636
1.274
1.907
2.533
3.146
3.741
4.314
4.864
5400

<9320

6.795
6.823
6.909
7.050
7.2 38
T.4R9
7.733
8.025
8.340
8.685

-000

621
1.242
1.855
2.451
3.024
2.563
4.063
4,521
4.950

-000
.000
.000
-000
.000
-000
-000
000
.000
-000

6.746
6.773
6.853
6.984
7.164
7.389
7.657
7.964
8.309
B.698

.000

<592
1.186
1.774
2.353
2.917
2.461
3.979
4.473
4.950

-917

7.336
7.367
7.461
7.612
7.814
8.057
84332
8.629
8.941
9.276

-000

«577
1.153
1.720
2.270
2794
3.282
3.727
4.130
4 .500

-000
.000
-000
-.000
-000
<000
-0ao
-000
-000
-00n

7.282
7.311
7.395
7.532
7.720
7.953
84227
8.536
8.880
9.265

-000

«5u7
1.094
1.636
2.168
2.683
3.175
3.640
4.078
4.500

.919

7.82¢9
7.863
7.965
8.128
8.345
8.602
2.888
9.189

.000

-531
1.061
1.580
2.081
2.555%
2.991
3.384
3.733
4.050

.000
.000
.000
000
.000
-000
.000
000
-000
.000

7.768
7T.799
7.887
8.032
8.227
8.468
8.746
9.056
9.398

.000

<500

<999
1.493
1.376
2.442
2.883
3.296
3.682
4.0%0

-930

8.272
8.310
8.421
8.598
8.830
9.103
3.400

-0oo0

«482

«963
1.437
1.884
2.306
2.691
3.032
3.332
3.600

-000
-000
.G00
-00N0
-000
<000
-.000
-000
-000
-G00

8.202
8.235
8.328
8.u81
8.685
8.9232
9.214
9.526

-0No

450

«899
1.344
1.778
2.193
2.584
2 <946
3.282
3.600

-952

8.662
8.70%8
8.827
9.019
9.269
9.55¢2

8.992 9.243
9.042 9.308
9.176 9.u453
9.385 9.686
9.655 9.982
9.96310.214

9.86810.28810.657
9.70810.18210.61110.992
9.50010.01710.497210.92411.309
9.82410.33110.79811.22711.614

.000

-4 31

-860
1.277
1.676
2.0u6
24379
2.672
2.926
3.150

-.0nn
-000
-.000
000
-0 00
-000
-000
<000
000
-000

8.581
8 .F 16
8.71%
8.876
9.0%0
S.34°
9.6 32

+006 .000
«377 .319
«750 .634

1.112 .939
1.457 1.227
14772 1.490
2.056 1.724
2303 1.926
2515 2.100
2.700 2.250

D00 .000
000 .00C
000 .000
.000 .0O0O0
-.000 .000
000 .000
000 .000
-000 .000
-000 .00C
000 .000

8.892% 9.149
B+937 9.191
3.0u43 9.306
9215 9.491
9.440 9.730
9.70410.006
9.99710.306

9.94410.31010.k22
9.86410.27810.64010.950
9.77910.23910.64611.00011.300

<000

-398

«79%
1.18¢
1.572
1.937
2.2179
2.592
2.880
3.150

<99t

-.000c .000
344 ,287
-687 .573

1.027 .858
1.357 1.1%
1.672 1.397
1.965 1.642
24231 1.864
2.474 2.066
2.7006 2.250
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