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Abstract

In this work, we study the problem to identify an unknown source term for the
Atangana–Baleanu fractional derivative. In general, the problem is severely ill-posed
in the sense of Hadamard. We have applied the generalized Tikhonov method to
regularize the instable solution of the problem. In the theoretical result, we show the
error estimate between the regularized and exact solutions with a priori parameter
choice rules. We present a numerical example to illustrate the theoretical result.
According to this example, we show that the proposed regularization method is
converged.
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1 Introduction

In the last decade, the fractional derivative was used in many physical problems, see [1–

9]. One type of newly defined fractional derivatives without a singular kernel has been

suggested, namely, the fractional derivative that was defined by Atangana and Baleanu.

The Atangana–Baleanu fractional derivative definition uses a Mittag-Leffler function as

a nonlocal kernel. This fractional derivative is more suitable for modeling the fact prob-

lems than classical derivatives. The derivative has several interesting properties that are

useful for modeling in many branches of sciences, with applications in real-world prob-

lems, see [10, 11]. For instance, Atangana and Baleanu have studied some useful proper-

ties of the new derivative and applied them to solving the fractional heat transfer model,

see [12]; they applied them to the model of groundwater within an unconfined aquifer,

see [13]. Alkahtani et al. used the Atangana–Baleanu derivative to research Chua’s circuit

model, see [14]. Although there have been many research results on ordinary differential

equations for this ABC-fractional derivative, the results on partial differential equations

for this derivative are also limited. Especially, the results for the problem of determining

the source function are almost not found in recent years. Therefore, we focus on the frac-

tional diffusion equation with the fractional derivative of Atangana–Baleanu to determine
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an unknown source term as follows:

⎧
⎪⎪⎨
⎪⎪⎩

ABC
0 D

γ
t u(x, t) –�u(x, t) = Φ(t)f (x), (x, t) ∈ Ω × (0,T),

u(x, t) = 0, (x) ∈ ∂Ω , t ∈ (0,T],

u(x, 0) = 0, x ∈ Ω .

(1.1)

Here, the Atangana–Baleanu fractional derivative ABC
0 D

γ
t u(x, t) is defined by

ABC
0 D

γ
t u(x, t) =

L(γ )

1 – γ

∫ t

0

∂u(x, s)

∂s
Eγ ,1

(
–γ (t – s)γ

1 – γ

)
ds, (1.2)

where the normalization function L(γ ) can be any function satisfying the conditions

L(γ ) = 1 – γ + γ

Γ (γ )
, here L(0) = L(1) = 1 (see Definition 2.1 in [15]) and Eγ ,1 is the Mittag-

Leffler function which is introduced later in Sect. 2. Our inverse source problem is finding

f (x) from the given dataΦ and themeasured data at the final timeu(x,T) = g(x), g ∈ L2(Ω).

In practice, the exact data (Φ , g) is noised by observation data (Φǫ , gǫ) with order of ǫ > 0

‖Φǫ –Φ‖L∞(0,T) < ǫ, ‖gǫ – g‖L2(Ω) < ǫ, (1.3)

where ‖Ξ‖L∞(0,T) = sup0≤t≤T |Ξ (t)| for any Ξ ∈ L∞(0,T).

In the sense of Hadamard, the inverse source problem (1.1) with the observation data

satisfies that (1.3) is ill-posed in general, i.e., a solution does not depend continuously on

the input data (Φ , g). It means that if the noise level of ǫ is small, we have a large error

in the sought solution f . It makes a troublesome numerical computation. Therefore, a

regularization method is required.

The goal of this paper is to determine the source function f from the observation of g(x)

at a final time t = T by gǫ with a noise level of ǫ. To the best of author’s knowledge, there

are no results for the Atangana–Baleanu fractional derivative to solve the inverse source

problem (1.1). Motivated by the ideas mentioned above, in this work, to solve the frac-

tional inverse source problem, we apply the generalized Tikhonov method with variable

coefficients in a general bounded domain. We present the estimation of the convergence

rate under an a priori bound assumption of the exact solution and an a priori parameter

choice rule. Hence some regularization methods are required for stable computation of

a sought solution. The inverse source problem attracted many authors, and its physical

background can be found in [16], Wei et al. [17–19] Kirane et al. [20, 21]. In [22], Sümeyra

Uçar et al. and his group studiedmathematical analysis and numerical scheme for a smok-

ingmodel with Atangana–Baleanu fractional derivative. In this paper, the authorsmeticu-

lously study mathematical models for analyzing the dynamics of the smoking model with

ABC fractional derivative, the existence and uniqueness of problem (1.1) to the relevant

model are tested by fixed point theory. The numerical results are implemented by giving

some illustrative graphics including the variation of fractional order.

The content of this paper is divided into six sections as follows. In general, we intro-

duce our problem in Sect. 1. In the second section, some preliminary results are shown.

In Sect. 3, we present the ill-posedness of the fractional inverse source problem (1.1) and

conditional stability. In Sect. 4, we propose a generalized Tikhonov regularizationmethod.

Moreover, in this section, we show convergence estimate under an a priori assumption.
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Next, we consider a numerical example to verify our proposed regularized method in

Sect. 5. Finally, in Sect. 6, we give some comments as a conclusion.

2 Preliminary results

Definition 2.1 (Hilbert scale space, see [23]) First, let the spectral problem

⎧
⎨
⎩

�ek(x) = –λkek(x), x ∈ Ω ,

ek(x) = 0, x ∈ ∂Ω ,

admit the eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · with λk → ∞ for k → ∞.

The corresponding eigenfunctions ek ∈ H1
0 (Ω). The Hilbert scale space H

m+1 (m > 0) is

defined by

H
m+1(Ω) :=

{
f ∈ L2(Ω) :

∞∑

k=1

λ
2(m+1)
k 〈f , ek〉2L2(Ω)

< ∞

}
, (2.1)

with the norm

‖f ‖2
Hm+1(Ω)

=

∞∑

k=1

λ
2(m+1)
k

∣∣〈f , ek〉L2(Ω)

∣∣2 <∞. (2.2)

Let X be a Hilbert space, we denote by C([0,T];X) and Lp(0,T ;X) the Banach spaces of

measurable real functions f : [0,T] → X measurable such that

‖f ‖Lp(0,T ;X) =
(∫ T

0

∥∥f (t)
∥∥p
X
dt

)1/p

<∞, 1≤ p < ∞,

‖f ‖L∞(0,T ;X) = ess sup
0≤t≤T

∥∥f (t)
∥∥
X
< ∞, p = ∞,

and

‖f ‖C([0,T];X) = sup
0≤t≤T

∥∥f (t)
∥∥
X
< ∞.

Lemma 2.1 ([24]) The definition of the Mittag-Leffler function is as follows:

Eα,β (z) =

∞∑

k=0

zk

Γ (αk + β)
, z ∈C, (2.3)

where α, β are arbitrary constants.

Lemma 2.2 ([25]) For β > 0 and α ∈R, we obtain

Eβ ,α(y) = yEβ ,β+α(y) +
1

Γ (α)
, y ∈C. (2.4)



Can et al. Advances in Difference Equations        ( 2020)  2020:210 Page 4 of 18

Lemma 2.3 ([25]) Let ξ > 0, then we obtain

d

dt
Eγ ,1

(
–ξ tγ

)
= –ξ tγ–1Eγ ,γ

(
–ξ tγ

)
, t > 0, 0 < γ < 1. (2.5)

Lemma 2.4 ([25]) For 0 < γ < 1 and ζ > 0, we obtain 0 < Eγ ,γ (–ζ ) < 1
Γ (γ )

. However, Eγ ,γ is

a monotonic decreasing function with ζ > 0.

Lemma 2.5 ([24]) Let 0 < γ0 < γ1 < 1. Then there exist positive constants A1, A2, A3 de-

pending only on γ0, γ1 such that, for all γ ∈ [γ0,γ1] and

A1

1 + y
≤ Eγ ,1(–y) ≤

A2

1 + y
, Eγ ,α(–y) ≤

A3

1 + y
for all y ≥ 0,α ∈ R. (2.6)

Lemma 2.6 ([25]) For any λk satisfying λk ≥ λ1 > 0, there exist positive constants A4 de-

pending on γ , T , λ1 such that

A4

λkTγ
≤ Eγ ,γ+1

(
–λkT

γ
)
≤

1

λkTγ
. (2.7)

Lemma 2.7 For γ ∈ (0, 1) and λk ≥ λ1, ∀k > 1, one obtains

(a)
1 – γ

γ
≤

L(γ ) + λk(1 – γ )

γ λk

≤
L(γ )

γ λ1

+
1 – γ

γ
.

(b)
(L(γ ) + λk(1 – γ ))2

γL(γ )
≤

( L(γ )
λk

+ (1 – γ ))2

γL(γ )
λ2
k ≤

( L(γ )
λ1

+ (1 – γ ))2

γL(γ )
λ2
k .

Lemma 2.8 For any λ1 < λk ∀k ∈N and γ ∈ (0, 1), we denote

Ak(γ ) =
(
γL(γ )

)–1(
L(γ ) + λk(1 – γ )

)2
,

Hγ (λk , s) = Eγ ,γ

(
–

γ λk(T – s)γ

L(γ ) + λk(1 – γ )

)
(T – s)γ–1.

(2.8)

Using Lemma 2.7, we obtain

(
1 – γ

γ

)(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))
≤

∫ T

0

Hγ (λk , s)ds

≤
L(γ ) + λk(1 – γ )

γ λk

. (2.9)

Proof For Eγ ,γ (–y) ≥ 0 for 0 < γ < 1 and y≥ 0, we obtain

∫ T

0

Hγ (λk , s)ds≥
(
L(γ ) + λk(1 – γ )

γ λk

)(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))

≥
(
1 – γ

γ

)(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))
(2.10)

and

∫ T

0

Hγ (λk , s)ds = –
L(γ ) + λk(1 – γ )

γ λk

∫ T

0

d

ds

(
Eγ ,1

(
–γ λk(T – s)γ

L(γ ) + λk(1 – γ )

))
ds
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=
L(γ ) + λk(1 – γ )

γ λk

(
1 – Eγ ,1

(
–γ λkT

γ

L(γ ) + λk(1 – γ )

))

≤
L(γ ) + λk(1 – γ )

γ λk

. (2.11)

�

Lemma 2.9 Assume that there exist positive constants |Φ0|, ‖Φ‖L∞(0,T) such that |Φ0| ≤
|Φ(t)| ≤ ‖Φ‖L∞(0,T) ∀t ∈ [0,T]. Choosing ε ∈ (0, |Φ0|

4
), we obtain

|Φ0|
4

≤
∣∣Φε(t)

∣∣ ≤ S
(
|Φ0|,‖Φ‖L∞(0,T)

)
. (2.12)

Proof We notice that

∣∣Φ(t)
∣∣ ≤

∣∣Φε(t)
∣∣ +

∣∣Φ(t) –Φε(t)
∣∣ ≤

∣∣Φε(t)
∣∣ + ‖Φε –Φ‖L∞(0,T) ≤

∣∣Φε(t)
∣∣ + ε. (2.13)

From (2.13), we obtain

∣∣Φε(t)
∣∣ ≥

∣∣Φ(t)
∣∣ – ε ≥ |Φ0| – ε ≥

|Φ0|
4

. (2.14)

Similarly, we get

∣∣Φε(t)
∣∣ ≤ ‖Φ‖L∞(0,T) + ε < ‖Φ‖L∞(0,T) +

|Φ0|
4

. (2.15)

Denoting S(|Φ0|,‖Φ‖L∞(0,T)) = ‖Φ‖L∞(0,T) +
|Φ0|
4
, combining (2.14) and (2.15) leads to

(2.12) holds. �

3 Regularization and error estimate for unknown source (1.1)

Assume that problem (1.1) has a solution u which has the form u(x, t) =
∑∞

k=1 uk(t)ek(x)

with uk(t) = 〈u(x, t), ek(x)〉, then we have the fractional integro-differential equation in-

volving the Atangana–Baleanu fractional derivative in the form

ABC
0 D

γ
t u(x, t) –�u(x, t) = Φ(t)f (x), (3.1)

and the following condition uk(0) = 〈u0(x), ek(x)〉. We have the solution of the initial value

problem as follows (see [26]):

uk(t) =

(
L(γ )

L(γ ) + λk(1 – γ )

)
Eγ ,1

(
–γ λkt

γ

L(γ ) + λk(1 – γ )

)〈
u0(x), ek(x)

〉
ek(x)

+

∞∑

k=1

(
1 – γ

L(γ ) + λk(1 – γ )

)
Φ(t)

〈
f (x), ek(x)

〉
ek(x) +

∞∑

k=1

γL(γ )

(L(γ ) + λk(1 – γ ))2

×
(∫ t

0

Eγ ,γ

(
–

γ λk(t – s)γ

L(γ ) + λk(1 – γ )

)
(t – s)γ–1Φ(s)

〈
f (x), ek(x)

〉
ds

)
. (3.2)

From (3.2) we obtain

u(x, t) =

∞∑

k=1

(
L(γ )

L(γ ) + λk(1 – γ )

)
Eγ ,1

(
–γ λkt

γ

L(γ ) + λk(1 – γ )

)〈
u0(x), ek(x)

〉
ek(x)
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+

∞∑

k=1

(
1 – γ

L(γ ) + λk(1 – γ )

)
Φ(t)

〈
f (x), ek(x)

〉
ek(x) +

∞∑

k=1

γL(γ )

(L(γ ) + λk(1 – γ ))2

×
(∫ t

0

Eγ ,γ

(
–

γ λk(t – s)γ

L(γ ) + λk(1 – γ )

)
(t – s)γ–1Φ(s)

〈
f (x), ek(x)

〉
ds

)
ek(x). (3.3)

From (3.3), applying u(x, 0) = 0 and letting t = T , we have

u(x,T) =

∞∑

k=1

1 – γ

L(γ ) + λk(1 – γ )
Φ(T)

〈
f (x), ek(x)

〉
ek(x) +

∞∑

k=1

γL(γ )

(L(γ ) + λk(1 – γ ))2

×
(∫ T

0

Eγ ,γ

(
–

γ λk(T – s)γ

L(γ ) + λk(1 – γ )

)
(T – s)γ–1Φ(s)

〈
f (x), ek(x)

〉
ds

)
ek(x). (3.4)

Next, replacing u(x,T) = g(x) and adding to Φ(T) = 0, we get

g(x) =

∞∑

k=1

γL(γ )〈f (x), ek(x)〉
(L(γ ) + λk(1 – γ ))2

×
(∫ T

0

Eγ ,γ

(
–

γ λk(T – s)γ

L(γ ) + λk(1 – γ )

)
(T – s)γ–1Φ(s)ds

)
ek(x). (3.5)

A simple transformation gives

〈
f (x), ek(x)

〉
=

(γL(γ ))–1(L(γ ) + λk(1 – γ ))2

(
∫ T

0
Eγ ,γ (–

γ λk (T–s)
γ

L(s)+λk (1–γ )
)(T – s)γ–1Φ(s)ds)

〈
g(x), ek(x)

〉
. (3.6)

From (3.6), we can see that

f (x) =

∞∑

k=1

(γL(γ ))–1(L(γ ) + λk(1 – γ ))2

(
∫ T

0
Eγ ,γ (–

γ λk (T–s)
γ

L(γ )+λk (1–γ )
)(T – s)γ–1Φ(s)ds)

〈
g(x), ek(x)

〉
ek(x). (3.7)

Next, we recallAk(γ ) andHγ (λk , s) in Lemma 2.8, we have the source function f as follows:

f (x) =

∞∑

k=1

〈g(x), ek(x)〉ek(x)
[Ak(γ )]–1(

∫ T

0
Hγ (λk , s)Φ(s)ds)

. (3.8)

3.1 The ill-posedness of the inverse source problem

Theorem 3.1 The unknown source problem (1.1) is not well-posed.

Proof First of all, we define a linear operator as follows:

P f (x) =

∞∑

k=1

[∫ T

0

Hγ (λk , s)Φ(s)ds

][
Ak(γ )

]–1〈
f (x), ek(x)

〉
ek(x)

=

∫

Ω

g(x, ξ )f (ξ )dξ , (3.9)

in which

g(x,ω) =

∞∑

k=1

[∫ T

0

Hγ (λk , s)Φ(s)ds

][
Ak(γ )

]–1
ek(x)ek(ω). (3.10)



Can et al. Advances in Difference Equations        ( 2020)  2020:210 Page 7 of 18

From the property k(x,ω) = k(ω,x), we can see that P is a self-adjoint operator. In the

next step, we prove its compactness. To do this, we define the finite rank operator PN as

follows:

PN f (x) =

N∑

k=1

[∫ T

0

Hγ (λk , s)Φ(s)ds

][
Ak(γ )

]–1〈
f (x), ek(x)

〉
ek(x). (3.11)

Then, from (3.9) and (3.11), we obtain

‖PN f –P f ‖2
L2(Ω)

=

∞∑

k=N+1

[∫ T

0

Hγ (λk , s)Φ(s)ds

]2[
Ak(γ )

]–2∣∣〈f (x), ek(x)
〉∣∣2

≤ ‖Φ‖2L∞(0,T)

∞∑

k=N+1

γ [L(γ )]2

λ2
k(L(γ ) + λk(1 – γ ))2

∣∣〈f (x), ek(x)
〉∣∣2

≤
γ [L(γ )]2‖Φ‖2L∞(0,T)

λ2
N (L(γ ) + λN (1 – γ ))2

∞∑

k=N+1

∣∣〈f (x), ek(x)
〉∣∣2. (3.12)

This implies that

‖PN f –P f ‖L2(Ω) ≤
γ 0.5L(β)‖Φ‖L∞(0,T)

λN (L(γ ) + λN (1 – γ ))
‖f ‖L2(Ω). (3.13)

At this stage, ‖PN – P‖L2(Ω) → 0 in the sense of operator norm in L(L2(Ω);L2(Ω)) as

N → ∞. Moreover, P is a compact operator.

Next, the singular values for the linear self-adjoint compact operator P are

Ξk =

[∫ T

0

Hγ (λk , s)Φ(s)ds

][
Ak(γ )

]–1
, (3.14)

and ek are corresponding eigenvectors; we also know it as an orthonormal basis in L2(Ω).

From (3.9), what we introduced above can be formulated as

P f (x) = g(x), (3.15)

by Kirsch [27].

We give an example to illustrate the ill-posedness of our problem. Let us choose the

input final data. Indeed, let g j be as follows g j := λ–1/2
j ej. First, we assume that the other

input final data g = 0. Then, using (3.7), the source term corresponding to g is f = 0. We

obtain the following error in the L2 norm:

‖g j – g‖L2(Ω) =
∥∥λ–1/2

j ej(x)
∥∥
L2(Ω)

= λ–1/2
j → 0, as j → ∞. (3.16)

And the source term corresponding to g̃j is

f j(x) =

∞∑

k=1

〈g j(x), ek(x)〉ek(x)

[Ak(γ )]–1(
∫ T

0
Hγ (λk , s)Φ(s)ds)

=

∞∑

k=1

〈λ–1/2
j ej(x), ek(x)〉ek(x)

[Ak(γ )]–1(
∫ T

0
Hγ (λk , s)Φ(s)ds)

. (3.17)
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Using Lemma 2.8, we obtain

f j(x)≥
(L(γ ) + λj(1 – γ ))λ

1
2
j ej(x)

‖Φ‖L∞(0,T)L(γ )
=

L(γ )
λj

+ (1 – γ )

‖Φ‖L∞(0,T)L(γ )
λ

3
2
j ej(x). (3.18)

And the error estimation between f and f j is as follows:

‖f j – f ‖L2(Ω) ≥
∥∥∥∥

L(γ )
λj

+ (1 – γ )

‖Φ‖L∞(0,T)L(γ )
λ

3
2
j ej(x)

∥∥∥∥
L2(Ω)

=

L(γ )
λj

+ (1 – γ )

‖Φ‖L∞(0,T)L(γ )
λ

3
2
j . (3.19)

Combining (3.16) and (3.19), we know that

lim
j→+∞

‖f j – fj‖L2(Ω) ≥ lim
j→+∞

L(γ )
λj

+ (1 – γ )

‖Φ‖L∞(0,T)L(γ )
λ

3
2
j −→ +∞. (3.20)

Thus our problem is ill-posed in the Hadamard sense in the L2(Ω)-norm. �

3.2 Conditional stability of source term f

At the beginning of this section, we introduce a theorem to prove the stability condition.

Theorem 3.2 Let E be a positive number such that

‖f ‖Hm+1(Ω) ≤ E for E > 0. (3.21)

Then

‖f ‖L2(Ω) ≤D(γ ,Φ0,λ1,T ,m)E
1

m+1 ‖g‖
m

m+1

L2(Ω)
,

whereby

D(γ ,Φ0,λ1,T ,m) =

(
γm(

L(γ )
λ1

+(1–γ )

βL(γ )
)m+1

(1 – γ )m‖Φ0‖m(1 – Eγ ,1(
–γ λ1Tγ

L(γ )+λ1(1–γ )
))m

) 1
m+1

. (3.22)

Proof Thanks to the Hölder inequality and (3.7), we get

‖f ‖2
L2(Ω)

=

∞∑

k=1

∣∣∣∣
Ak(γ )〈g(x), ek(x)〉∫ T

0
Hγ (λk , s)Φ(s)ds

∣∣∣∣
2

=

∞∑

k=1

[Ak(γ )]
2|〈g(x), ek(x)〉|

2
m+1 |〈g(x), ek(x)〉|

2m
m+1

|
∫ T

0
Hγ (λk , s)Φ(s)ds|2

≤
∞∑

k=1

[
Ak(γ )

]2
(

|〈g(x), ek(x)〉|2

|
∫ T

0
Hγ (λk , s)Φ(s)ds|2m+2

) 1
m+1

( ∞∑

k=1

∣∣〈g(x), ek(x)
〉∣∣2

) m
m+1

≤
∞∑

k=1

(
A
2(s+1)
k (γ )|〈f (x), ek(x)〉|2

|
∫ T

0
Hγ (λk , s)Φ(s)ds|2m

) 1
m+1

‖g‖
2m
m+1

L2(Ω)
. (3.23)
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Using Lemma 2.8 part (c), we can easily see that

(∫ T

0

Hγ (λk , s)Φ(s)ds

)2m

≥ ‖Φ0‖2m
(
(1 – γ )

γ

)2m(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))2m

, (3.24)

and this inequality leads to

∞∑

k=1

A
2(m+1)
k (γ )|〈f (x), ek(x)〉|2

|
∫ T

0
Hγ (λk , s)Φ(s)ds|2m

≤
∞∑

k=1

γ 2m(
L(γ )
λ1

+(1–γ )

γL(γ )
)2(m+1)λ

2(m+1)
k |〈f (x), ek(x)〉|2

(1 – γ )2m‖Φ0‖2m(1 – Eγ ,1(
–γ λ1Tγ

L(γ )+λ1(1–γ )
))2m

. (3.25)

Combining (3.23) and (3.25), we get

‖f ‖2
L2(Ω)

≤D(γ ,Φ0,λ1,T ,m)‖f ‖
2

m+1

Hm+1(Ω)
‖g‖

2m
m+1

L2(Ω)
. (3.26)

�

4 A generalized Tikhonovmethod

According to the ideas mentioned above, we apply the generalized Tikhonov regulariza-

tion method to solve problem (1.1), which minimizes the function f satisfies

P(f ) = ‖Kf – g‖2 + α(ǫ)‖f ‖2
Hm+1(Ω)

, m ∈ R
+. (4.1)

Let f α(ǫ) be a solution of problem (4.1) f α(ǫ) satisfying

P
∗
P f α(ǫ) + α(ǫ)(–A)m+1f α(ǫ) =P

∗g(x). (4.2)

From the operator P is compact self-adjoint in [27], we obtain

f α(ǫ)(x) =

∞∑

k=1

[Ak(γ )]
–1(

∫ T

0
Hγ (λk , s)Φ(s)ds)

α(ǫ)λm+1
k + |[Ak(γ )]–1(

∫ T

0
Hγ (λk , s)Φ(s)ds)|2

〈
g(x), ek(x)

〉
ek(x). (4.3)

If the measured data (Φǫ(t), gǫ(x)) of (Φ(t), g(x)) with a noise level of ǫ satisfies

‖g – gǫ‖L2(Ω) < ǫ, ‖Φ –Φǫ‖L∞(0,T) < ǫ, (4.4)

then we present the following regularized solution:

f α(ǫ)
ǫ (x) =

∞∑

k=1

[Ak(γ )]
–1(

∫ T

0
Hγ (λk , s)Φǫ(s)ds)

α(ǫ)λm+1
k + |[Ak(γ )]–1(

∫ T

0
Hγ (λk , s)Φǫ(s)ds)|2

〈
gǫ(x), ek(x)

〉
ek(x), (4.5)

and denote

Pγ (λk , s,Φ) =
[
Ak(γ )

]–1
(∫ T

0

Hγ (λk , s)Φ(s)ds

)
. (4.6)
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Therefore, from (4.3), (4.5), and (4.6), one has

f α(ǫ)(x) =

∞∑

k=1

Pγ (λk , s,Φ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φ)|2

〈
g(x), ek(x)

〉
ek(x) (4.7)

and

f α(ǫ)
ǫ (x) =

∞∑

k=1

Pγ (λk , s,Φǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ)|2

〈
gǫ(x), ek(x)

〉
ek(x). (4.8)

4.1 Convergence estimates of the generalized Tikhonov regularizationmethod

under a priori parameter choice rules

As themain objectives of this section, we will prove an error estimation for ‖f – f α(ǫ)
ǫ ‖L2(Ω)

and show the convergence rate by using an a priori choice rule for the regularization pa-

rameter.

Theorem 4.1 Let Φ , Φǫ satisfy Lemma 2.9. Assume an a priori bounded condition (3.21).

Then the following estimate holds:

(a) If 0 <m < 3 and choosing α(ǫ) = ( ǫ
E
)

4
m+1 from (4.18) and (4.29), we receive

∥∥f – f α(ǫ)
ǫ

∥∥
L2(Ω)

is of order ǫ
4

m+5 . (4.9)

(b) If m ≥ 3 and choosing α(ǫ) = ǫ
E
, from (4.18) and (4.29), we receive

∥∥f – f α(ǫ)
ǫ

∥∥
L2(Ω)

is of order ǫ
1
2 . (4.10)

Proof From (4.3), (4.5) and using the triangle inequality, we get

∥∥f α(ǫ)
ǫ – f

∥∥
L2(Ω)

≤
∥∥f α(ǫ)

ǫ – f α(ǫ)
∥∥
L2(Ω)︸ ︷︷ ︸

S1+S2+S3

+
∥∥f α(ǫ) – f

∥∥
L2(Ω)︸ ︷︷ ︸

I2

. (4.11)

We prove this theorem through the following two lemmas.

Lemma 4.1 Let us assume that (4.4) holds. Then we have the estimation as follows:

∥∥f α(ǫ)
ǫ – f α(ǫ)

∥∥
L2(Ω)

≤
ǫ‖f ‖L2(Ω)

|Φ0|
+

(γL(γ ))2

(L(γ ) + λ1(1 – γ ))4
ǫ‖f ‖L2(Ω)

|Φ0|
+

ǫ

2(α(ǫ)λm+1
1 )1/2

. (4.12)

Proof From (4.11), we have

f α(ǫ)
ǫ – f α(ǫ)

=

∞∑

k=1

(
Pγ (λk , s,Φ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φ)|2

–
Pγ (λk , s,Φǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ))|2

)〈
g(x), ek(x)

〉
ek(x)

+

∞∑

k=1

Pγ (λk , s,Φǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ)|2

〈
g(x) – gǫ(x), ek(x)

〉
ek(x)

≤ S1 + S2 + S3, (4.13)
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in which S1, S2, and S3 are as follows:

S1 =

∞∑

k=1

α(ǫ)λm+1
k Pγ (λk , s,Φ –Φǫ)〈g(x), ek(x)〉ek(x)

(α(ǫ)λm+1
k + |Pγ (λk , s,Φ)|2)(α(ǫ)λm+1

k + |Pγ (λk , s,Φǫ)|2)
,

S2 =

∞∑

k=1

Pγ (λk , s,Φ)Pγ (λk , s,Φ)Pγ (λk , s,Φ –Φǫ)〈g(x), ek(x)〉ek(x)
(α(ǫ)λm+1

k + |Pγ (λk , s,Φ)|2)(α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ)|2)

,

S3 =

∞∑

k=1

Pγ (λk , s,Φǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ)|2

〈
g(x) – gǫ(x), ek(x)

〉
ek(x).

(4.14)

Step 1: Estimating ‖S1‖L2(Ω), using the inequality a
2 + b2 ≥ 2ab, ∀a,b≥ 0, we obtain

‖S1‖2L2(Ω)
≤

∞∑

k=1

(
α(ǫ)λm+1

k |Pγ (λk , s,Φ –Φǫ)|
4α(ǫ)λm+1

k |Pγ (λk , s,Φ)||Pγ (λk , s,Φǫ)|

)2∣∣〈g(x), ek(x)
〉∣∣2

≤
∞∑

k=1

( |
∫ T

0
Hγ (λk , s)(Φ(s) –Φǫ(s))ds|
4(
∫ T

0
Hγ (λk , s)Φǫ(s)ds)

)2 |〈g(x), ek(x)〉|2

|Pγ (λk , s,Φ)|2

≤
‖Φ –Φǫ‖2L∞(0,T)

|Φ0|2
∞∑

k=1

∣∣〈f (x), ek(x)
〉∣∣2

=
‖Φ –Φǫ‖2L∞(0,T)

|Φ0|2
‖f ‖2

L2(Ω)
. (4.15)

Step 2: Estimate ‖S2‖L2(Ω) as follows:

‖S2‖2L2(Ω)
≤

∞∑

k=1

[Ak(γ )]
–2|Pγ (λk , s,Φ –Φǫ)|2

(
∫ T

0
Hγ (λk , s)Φǫ(s)ds)2

|〈g(x), ek(x)〉|2

|Pγ (λk , s,Φ)|2

≤
‖Φ –Φǫ‖2L∞(0,T)

|Φ0|2
∞∑

k=1

(γL(γ ))4

(L(γ ) + λk(1 – γ ))8

∣∣〈f (x), ek(x)
〉∣∣2

≤
‖Φ –Φǫ‖2L∞(0,T)

|Φ0|2
(γL(γ ))4

(L(γ ) + λ1(1 – γ ))8

∞∑

k=1

∣∣〈f (x), ek(x)
〉∣∣2

=
(γL(γ ))4

(L(γ ) + λ1(1 – γ ))8

‖Φ –Φǫ‖2L∞(0,T)

|Φ0|2
‖f ‖2

L2(Ω)
. (4.16)

Step 3: Finally, ‖S3‖L2(Ω) can be bounded by

‖S3‖2L2(Ω)
≤

∞∑

k=1

∣∣∣∣
Pγ (λk , s,Φǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φǫ)|2

∣∣∣∣
2∣∣〈g(x) – gǫ(x), ek(x)

〉∣∣2

≤
1

4α(ǫ)λm+1
1

∞∑

k=1

∣∣〈g(x) – gǫ(x), ek(x)
〉∣∣2

=
‖g – gǫ‖2L2(Ω)

4α(ǫ)λm+1
1

≤
ǫ2

4α(ǫ)λm+1
1

. (4.17)



Can et al. Advances in Difference Equations        ( 2020)  2020:210 Page 12 of 18

Combining (4.15) to (4.17), we obtain

∥∥f α(ǫ)
ǫ – f α(ǫ)

∥∥
L2(Ω)

≤ ‖S1‖L2(Ω) + ‖S2‖L2(Ω) + ‖S3‖L2(Ω)

≤
ǫ‖f ‖L2(Ω)

|Φ0|
+

(γL(γ ))2

(L(γ ) + λ1(1 – γ ))4
ǫ‖f ‖L2(Ω)

|Φ0|
+

ǫ

2(α(ǫ)λm+1
1 )1/2

. (4.18)

The proof is completed. �

Next, we estimate the second term of I2 as follows.

Lemma 4.2 Let f ∈ H
m+1(Ω), subtract (4.7) and (3.8), we thus see that

∥∥f α(ǫ) – f
∥∥
L2(Ω)

≤

⎧
⎨
⎩
[α(ǫ)]

1
2 λ

3–m
2

1 Qγ (λ1,T ,E), m≥ 3,

[α(ǫ)]
m+1
m+5Qγ (λ1,T ,E), 0 <m < 3,

(4.19)

in which Qγ (λ1,T ,E) is defined in (4.30).

Proof By using Parseval’s equality, (3.7), and (4.3), we obtain

I2 :=
∥∥f α(ǫ) – f

∥∥
L2(Ω)

≤
+∞∑

k=1

[α(ǫ)λm+1
k ]2|〈g(x), ek(x)〉|2

|Pγ (λk , s,Φ)|2[α(ǫ)λm+1
k + |Pγ (λk , s,Φ)|2]2

≤ sup
k∈N

∣∣G(k)
∣∣2

+∞∑

k=1

λ
2(m+1)
k |〈g(x), ek(x)〉|2

|Pγ (λk , s,Φ)|2

≤ sup
k∈N

∣∣G(k)
∣∣2‖f ‖2

Hm+1(Ω)
, (4.20)

where

G(k) =
α(ǫ)

α(ǫ)λm+1
k + |Pγ (λk , s,Φ)|2

. (4.21)

The function G can be bounded as follows:

G(k) ≤
α(ǫ)

2(α(ǫ)λm+1
k )

1
2 |Pγ (λk , s,Φ)|

≤
[α(ǫ)]

1
2

2λ
m+1
2

k Pγ (λk , s,Φ)

≤ λ
3–m
2

k

[α(ǫ)]
1
2 ( L(γ )

λ1
+ (1 – γ ))2

2γL(γ )|Φ0|

×
(
1 – γ

γ

)–1(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))–1

. (4.22)

From (4.22), we divide into two cases.

Case 1st: m ≥ 3. We have

λ
3–m
2

k =
1

λ
m–3
2

k

≤
1

λ
m–3
2

1

= λ
3–m
2

1 . (4.23)



Can et al. Advances in Difference Equations        ( 2020)  2020:210 Page 13 of 18

Combining (4.20), (4.23), we obtain

∥∥f – f α(ǫ)
∥∥
L2(Ω)

≤
[α(ǫ)]

1
2 λ

3–m
2

k ( L(γ )
λ1

+ (1 – γ ))2

2γL(γ )|Φ0|

(
1 – γ

γ

)–1

×
(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))–1

‖f ‖Hm+1(Ω). (4.24)

Case 2nd: 0 <m < 3. We set N =V1 ∪V2 and choose any ℓ such that ℓ ∈ (0, 3), where

V1 =
{
k ∈N,λ

3–m
2

k ≤
[
α(ǫ)

]–ℓ}
, V2 =

{
k ∈N,λ

3–m
2

k >
[
α(ǫ)

]–ℓ}
. (4.25)

In this case, we also continue to divide into two cases as follows:

(a) If k ∈V1, one has

∥∥f – f α(ǫ)
∥∥
L2(Ω)

≤
[α(ǫ)]

1
2–ℓ( L(γ )

λ1
+ (1 – γ ))2

2γL(γ )|Φ0|

(
1 – γ

γ

)–1

×
(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))–1

‖f ‖Hm+1(Ω). (4.26)

(b) If k ∈V2, using the inequality a + b ≥ 2
√
ab, ∀a,b > 0 gives

∥∥f – f α(ǫ)
∥∥
L2(Ω)

≤
[α(ǫ)]

2ℓ(m+1)
3–m ( L(γ )

λ1
+ (1 – γ ))2

2γL(γ )|Φ0|

(
1 – γ

γ

)–1

×
(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))–1

‖f ‖Hm+1(Ω). (4.27)

Combining (4.25) to (4.30), we have thus proved

∥∥f – f α(ǫ)
∥∥
L2(Ω)

≤
([

α(ǫ)
] 1
2–ℓ

+
[
α(ǫ)

] 2ℓ(m+1)
3–m

)
Qγ (λ1,T ,E). (4.28)

Choosing ℓ = 3–s
2(s+5)

and from ‖f ‖Hs+1(Ω) ≤ E, this implies that

∥∥f – f α(ǫ)
∥∥
L2(Ω)

≤
[
α(ǫ)

]m+1
m+5Qγ (λ1,T ,E), (4.29)

where

Qγ (λ1,T ,E)

=
( L(γ )

λ1
+ (1 – γ ))2

2γL(γ )|Φ0|

(
1 – γ

γ

)–1(
1 – Eγ ,1

(
–γ λ1T

γ

L(γ ) + λ1(1 – γ )

))–1

E. (4.30)

�

Combining (4.15) to (4.17), the proof is completed by showing that

(a) If 0 <m < 3 and choosing α(ǫ) = ( ǫ
E
)

4
m+1 from (4.18) and (4.29), we get

∥∥f α(ǫ)
ǫ – f

∥∥
L2(Ω)

is of order ǫ
4

m+5 . (4.31)
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(b) If m ≥ 3 and choosing α(ǫ) = ǫ
E
, from (4.18) and (4.29), we get

∥∥f α(ǫ)
ǫ – f

∥∥
L2(Ω)

is of order ǫ
1
2 . (4.32)

�

5 Simulation example

In this section, we present an example to simulate the theory presented. By choosingT = 1,

m = 1, and γ = 0.75, γ = 0.85 and γ = 0.95 are shown in this section, respectively. The

computations in this paper are supported by the Matlab codes given by Podlubny [28].

Here, we compute the generalized Mittag-Leffler function with P = 10–10. We consider

the problem as follows:

ABC
0 D

γ
t u(x, t) –�u(x, t) = Φ(t)f (x), (x, t) ∈ Ω × (0,T), (5.1)

whereby ABC
0 D

γ
t u(x, t) is the Atangana–Baleanu fractional derivative.

Let �u = ∂2

∂x2
u on the domain Ω = (0,π ) with the Dirichlet boundary condition such

that u(0, t) = u(π , t) = 0, t ∈ (0, 1). Then we have the eigenvalues and corresponding eigen-

vectors: λk = k2, k = 1, 2, . . . , and ek(x) =
√

2
π

sin(kx), respectively.

In addition, problem (5.1) satisfies the following condition:

u(x, 1) = g(x), x ∈ (0,π ). (5.2)

Then we have the following solution:

u(x, t) = t3 sin(2x). (5.3)

We have

g(x) =

√
2

π
sin(2x), Φ(t) =

(
Γ (4)t3–β

Γ (4 – β)
+ 4t3

)
. (5.4)

From (5.3) and (5.4), we can find that through some simple transformations

f (x) = sin(2x). (5.5)

The algorithm analysis steps are divided as follows.

Step 1: Considering the domain (x, t) ∈ (0,π ) × (0, 1), we use the following finite differ-

ence to discrete the time and spatial variable:

xk = k�x, 0 ≤ k ≤ N ,�x =
π

N
.

Step 2: The approximated data of (g,Φ) is noised by observation data (gǫ ,Φǫ) as follows:

Φǫ = Φ +
1

π
ǫ
(
2 rand(·) – 1

)
, gǫ = g +

1

π
ǫ
(
2 rand(·) – 1

)
. (5.6)
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Step 3: The relative error estimation is given by

Error =

(∑
N

k=1 ‖f α(ǫ)
ǫ (xk) – f (xk)‖2L2(0,π )∑
N

k=1 ‖f (xk)‖2L2(0,π )

) 1
2

. (5.7)

In addition, we can choose the regularization parameter α(ǫ) = ǫ
E
for the a priori param-

eter choice rule, where the value of E plays a role as the a priori condition computed by

‖f ‖H2(0,π ). Using the fact that (see [29])

∫ 1

0

xσ–1(1 – x)γ–1Eα,γ

(
z(1 – x)α

)
dx = Γ (σ )Eα,γ+σ (z). (5.8)

From (5.8), by replacing α = γ and z = – γ k2

L(γ )+k2(1–γ )
, we can find

∫ 1

0

xσ–1(1 – x)γ–1Eγ ,γ

(
–γ k2

L(γ ) + k2(1 – γ )

)
dx = Γ (σ )Eγ ,γ+σ

(
–γ k2

L(γ ) + k2(1 – γ )

)
. (5.9)

From (4.5), we have the following regularized solution with a truncation number N :

f α(ǫ)
ǫ (x)

=

N∑

k=1

[Ak(γ )]
–1(

∫ 1

0
Hγ (k

2, s)Φǫ(s)ds)

( ǫ
E
)k2m+2 + |[Ak(γ )]–1(

∫ 1

0
Hγ (k2, s)Φǫ(s)ds)|2

〈
gǫ(x), ek(x)

〉
ek(x), (5.10)

in which Ak(γ ) and Hγ (k
2, s) are defined in Lemma 2.8. From (5.9) and (5.10), we can

calculate the integral
∫ 1

0
Hγ (k

2, s)Φǫ(s)ds as follows:

∫ 1

0

Hγ

(
k2, s

)
Φǫ(s)ds

= Γ (4)Eγ ,4

(
–

γ k2

L(γ ) + k2(1 – γ )

)
+ 4Γ (4)Eγ ,γ+4

(
–

γ k2

L(γ ) + k2(1 – γ )

)

+
1

π
ǫ
(
2 rand(·) – 1

)L(γ ) + k2(1 – γ )

γ k2

(
1 – Eγ ,1

(
–γ k2

L(γ ) + k2(1 – γ )

))
. (5.11)

In these calculations, we choose N = 40. Figure 1 shows the 2D graphs of the source

function with the exact data and its approximation for the a priori parameter choice rule

with γ = 0.75 and its error estimates with ǫ = 0.1, ǫ = 0.01, and ǫ = 0.001. Figure 2 shows

the 2D graphs of the source function with the exact data and its approximation for the a

priori parameter choice rule with γ = 0.85 and its error estimates with ǫ = 0.1, ǫ = 0.01,

and ǫ = 0.001. Figure 3 shows the 2D graphs of the source function with the exact data

and its approximation for the a priori parameter choice rule with γ = 0.95 and its error

estimates with ǫ = 0.1, ǫ = 0.01, and ǫ = 0.001, respectively. Table 1 shows the error esti-

mates between the source function with the exact data and the measurement data for the

a priori parameter choice rule method with the third cases of γ . From the observations

on this table, we can conclude that the approximation result is acceptable. That means the

proposed method is effective.
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Figure 1 Graph of the regularized, exact solutions
and the corresponding errors with γ = 0.75

Figure 2 Graph of the regularized, exact solutions
and the corresponding errors with γ = 0.85

6 Conclusion

We used the generalized Tikhonov method to regularize the inverse problem to identify

an unknown source term for fractional diffusion equations with the Atangana–Baleanu

fractional derivative. By giving an example, we showed that this problem is ill-posed (in

the sense of Hadamard). In addition, we showed the result for the convergent estimate

between the sought solution and the regularized solution under a priori parameter choice

rule. Finally, we showed an example to simulate our proposed regularization. In the future

work, we will expand the research direction for this type of derivative such as consider-
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Figure 3 Graph of the regularized, exact solutions
and the corresponding errors with γ = 0.95

Table 1 The error between the regularized and exact solutions at γ ∈ {0.75, 0.85, 0.95} and
ǫ ∈ {0.1, 0.01, 0.001}

γ Error estimate

ǫ1 = 0.1 ǫ2 = 0.01 ǫ3 = 0.001

0.75 1.29742852 0.791564583 0.734862033
0.85 0.93781653 0.30710848 0.154005968
0.95 0.830517582 0.345906567 0.148680286

ing the regularity of solutions, continuity according to derivative, results of comparison

between the existing derivatives.
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