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Abstract
In this paper, we consider the problem of identifying an unknown source
F(x, t) = λ(t)δ(x − S) in the following system:
(∂t − D∂xx + V ∂x + R)u(x, t) = F(x, t), 0 < x < �, 0 < t < T

(∂t − D∂xx + V ∂x + R)v(x, t) = Ru(x, t), 0 < x < �, 0 < t < T

from measured data [{v(a, t), ∂xv(a, t)}, {v(b, t), ∂xv(b, t)}] for appropriate
points a and b. Assuming that the source F became inactive after the time
T ∗(i.e. λ(t) = 0 for t � T ∗), we prove an identifiability result and propose an
identification method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inverse source problems are important in many sectors of engineering. Among these,
we quote two for which there is an extensive literature: identification of environment
pollution sources and current dipolar sources in the so-called inverse electroencephalography/

magnetoencephalography problems (see [1–6, 8] and the references cited therein).
In this paper, we consider the problem of determining a source F(x, t) = λ(t)δ(x − S)

in the following advection–dispersion–reaction system:

(∂t − D∂xx + V ∂x + R)u(x, t) = F(x, t), 0 < x < �, 0 < t < T

(∂t − D∂xx + V ∂x + R)v(x, t) = Ru(x, t), 0 < x < �, 0 < t < T
(1.1)

where D,V,R are positive numbers, S ∈ ]0, �[ and λ ∈ L2(0, T ).
The main application (but not only the one) of our study is the identification of the source

pollution F of biological oxygen demand (BOD) in a river, from concentration measures of
dissolved oxygen (DO) at appropriate points. Here, the concentrations of BOD and DO are,
respectively, denoted by u and v.

0266-5611/07/052103+18$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2103

http://dx.doi.org/10.1088/0266-5611/23/5/017
mailto:abdellatif.elbadia@utc.fr
http://stacks.iop.org/IP/23/2103


2104 A El Badia and A Hamdi

As usual, to the evolution equations (1.1) one has to append initial and boundary
conditions. For the first one, there is no restriction to start the time interval at some moment
where no pollution has yet occurred. For the second one, physical considerations indicate that
things are different at the two extreme points of the observed portion of the river, denoted by
(0, �). Indeed, in most situations of interest, transport is unidirectional in nature. It means
that there is no significant transport upstream. Therefore, the null concentration at some
point situated upstream can be used as the boundary condition. On the other hand, there are
two options for modeling the downstream boundary: a zero gradient or a zero concentration
assumption. The first option corresponds better to the transport physics; however if the
downstream point is far enough from the source, the second one seems reasonable as well. To
simplify the presentation, we will consider here only the first option. That corresponds to the
following initial-boundary conditions, with initial-boundary conditions:

u(x, 0) = v(x, 0) = 0 for 0 < x < �

u(0, t) = v(0, t) = 0 for 0 < t < T

∂xu(�, t) = ∂xv(�, t) = 0 for 0 < t < T .

(1.2)

It is well known (see [9]) that the problem (1.1), (1.2) has a unique solution, denoted here by
(u = u(x, t;F), v = v(x, t;F)) where u belongs to the functional space

L2(0, T ;H 1(0, �)) ∩ C([0, T ];L2(0, �))

and

v ∈ C([0, T ];H 2(0, �)).

Thus, by the imbedding Sobolev theorem, for 0 < a < b < �, one can define the observation
operator

B[F ] := {v(a, t;F), ∂xv(a, t;F), v(b, t;F), ∂xv(b, t;F), 0 < t < T }.
That is the so-called direct problem. The inverse problem with which we are concerned here
is the following.

(ISP) Given the records {d1(t), d2(t), d3(t), d4(t), 0 < t < T } of the concentration v and
∂xv at two observation points a, b ∈ (0, �), find the source F such that

B[F ] = {d1(t), d2(t), d3(t), d4(t), 0 < t < T }. (1.3)

The above inverse problem (ISP) is different to that considered in our previous study [3],
although we are in both cases interested in the identification of source pollution in a river.
Indeed, in [3] only the first equation in (1.1) has been considered where the measurements are
taken directly on the concentration u. However, in our present study we consider the coupled
equations given by (1.1), (1.2) where the measurements are made on the concentration v

which completely changes the nature of the problem. In our two studies, we aim to determine
the location of the BOD source and to recover its intensity function from some concentration
measurements. The principal advantage of using measurements on v is the reduction of
the long time required in [3] (5 days; see [7, 10]) in order to get the identification results.
Nevertheless, the numerical results, carried out on the same example, show that those obtained
by the first method are more accurate than those obtained by the second one, which was
foreseeable. The organization of this paper is as follows. The main theorem on the uniqueness
in our inverse problem is firstly presented in section 2 followed by some new lemmas.
Section 3 is devoted to a numerical algorithm. Some numerical experiments are given in
section 4.
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2. Main theorem

As stated in (ISP), the measurements of DO are made at two interior points. We also
assume that, from some a priori knowledge of the localization of the source, one of the
two points is chosen upstream and the other downstream with respect to the source, that is
0 < a < S < b < �. The main result (theorem 1) as in [3] also appeals to the concept of
strategic point that we recall here for convenience of the reader.

Definition 1. Let {ψn} be a complete orthonormal family of continuous functions in L2(0, �).
Then a point x0 ∈ (0, �) is said to be a ‘strategic point’ relative to the family {ψn} if

ψn(x0) �= 0 ∀ n.

In particular, let {ψn} denote the complete orthonormal family of eigenfunctions for the
following Sturm–Liouville problem, in which the parameters, D,V,R are those from the
operator

L := ∂t − D∂xx + V ∂x + R

−Dψ ′′(x) + �ψ(x) = µψ(x), 0 < x < �

ψ(0) = ψ ′(�) − αψ(�) = 0,

(2.1)

where

α = −V

2D
and � = α2D + R. (2.2)

One can easily verify that ψn(x) = cn sin(βnx) where (βn), n � 0 is solution to β cot(β�) = α

listed in increasing order and cn is a normalization coefficient. The associated eigenvalues µn

to ψn are

µn = � + Dβ2
n.

Thus,

βn = (2n + 1)
π

2
− εn with 0 < εn < π/2 and lim

n→∞ εn = 0,

so that

� < µn < µn+1, µn ∼ D2

�2
π2n2 at infinity. (2.3)

2.1. Main theorem

Theorem 1. Suppose Fj (x, t) = λj (t)δ(x − Sj ) where λj ∈ L2(0, T ) is such that for
j = 1, 2, λj (t) � 0 with λj (t) = 0 for T ∗ < t < T, and Sj ∈ (a, b)j = 1, 2.

If at least one of the points a or b is strategic with respect to the family {ψn}, then
B[F1] = B[F2] implies S1 = S2 and λ1(t) = λ2(t) a.e. in (0, T ).

2.2. Some preliminary results

Let (uj , vj ), j = 1, 2 be the solutions to (1.1), (1.2). We define the differences w = u2 − u1

and z = v2 − v1 and obtain
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L[w](x, t) = λ2(t)δ(x − S2) − λ1(t)δ(x − S1), 0 < x < �, 0 < t < T,

L[z](x, t) = Rw(x, t), 0 < x < �, 0 < t < T,

w(0, t) = z(0, t) = 0, 0 < t < T,

∂xw(�, t) = ∂xz(�, t) = 0, 0 < t < T,

w(x, 0) = z(x, 0) = 0 0 < x < �,

(2.4)

while B[F1] = B[F2] means that

z(a, t) = ∂xz(a, t) = 0 for 0 < t < T (2.5)

and

z(b, t) = ∂xz(b, t) = 0 for 0 < t < T . (2.6)

Henceforth, throughout this paper, we choose b as a strategic point relative to the family {ψn}.
Furthermore, ri, i = 1, 2, denote the solutions to the characteristic equation

Dr2 + V r − R = 0

which are given explicitly by r1 = −V −
√

V 2+4RD
2D

and r2 = −V +
√

V 2+4RD
2D

.

Lemma 1 (observability). Let T ∗ < T . Let (w, z) be the solution to (2.4). Then

z(b, t) = 0,∀ t ∈ ]T ∗, T [ �⇒ w(., T ∗) = 0 and z(., T ∗) = 0 in L2(0, �).

Proof. Since λ(t) = 0 for T ∗ < t < T , the functions w and z satisfy

L[w](x, t) = 0, 0 < x < �, T ∗ < t < T,

L[z](x, t) = Rw(x, t), 0 < x < �, T ∗ < t < T,

w(x, 0) = z(x, 0) = 0 0 < x < �,

w(0, t) = z(0, t) = 0, T ∗ < t < T,

∂xw(�, t) = ∂xz(�, t) = 0, T ∗ < t < T .

(2.7)

Let now

yw(x, t) = eαxw(x, t) and yz(x, t) = eαxz(x, t) with α given in (2.2).

Then, w and z are solutions to (2.7) if and only if yw and yz are, respectively, solutions of the
following heat equations:

∂tyw − D∂xxyw + �yw = 0, 0 < x < �, T ∗ < t < T

yw(0, t) = ∂xyw(�, t) − αyw(�, t) = 0, T ∗ < t < T,

yw(., T ∗) = eαxw(., T ∗), 0 < x < �,

and

∂tyz − D∂xxyz + �yz = R eαxw, 0 < x < �, T ∗ < t < T

yz(0, t) = ∂xyz(�, t) − αyz(�, t) = 0, T ∗ < t < T,

yz(., T
∗) = eαxz(., T ∗), 0 < x < �,

which are given by the Fourier expansion

yw(x, t) =
∑
n�0

en(t)ψn(x) and yz(x, t) =
∑
n�0

fn(t)ψn(x)
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where en and fn are, respectively, solutions to

e′
n(t) + µnen(t) = 0, T ∗ < t < T

en(T
∗) = 〈yw(., T ∗), ψn〉L2

and

f ′
n(t) + µnfn(t) = R < eαxw(., t), ψn >L2 , T ∗ < t < T,

fn(T
∗) = 〈yz(., T

∗), ψn〉L2 .

Here � is given in (2.2), (µn, ψn) denote the eigenvalues and eigenfunctions defined by (2.1).
Thus, one gets

w(x, t) = e−αx
∑
n�0

〈yw(., T ∗), ψn〉L2ψn(x) e−µn(t−T ∗) (2.8)

and then

z(x, t) = e−αx
∑
n�0

〈yz(., T
∗), ψn〉L2 e−µn(t−T ∗)ψn(x)

+ e−αxR
∑
n�0

ψn(x)

∫ t

T ∗
〈eαxw(., r), ψn〉L2 e−µn(t−r) dr

where 〈f, g〉L2 denotes the L2(0, �) inner product
∫ �

0 f (x)g(x) dx.

Now, by substituting w given by (2.8) into the above expression of z, we obtain

z(x, t) =
∑
n�0

γn(x, t) e−µn(t−T ∗) (2.9)

where

γn(x, t) = e−αx{R(t − T ∗)〈yw(., T ∗), ψn〉L2 + 〈yz(., T
∗), ψn〉L2}ψn(x). (2.10)

Actually, from (2.3), one sees that the expansion on the RHS of (2.9) is uniformly convergent
for all t � t0 > T ∗ and represents a real analytic function in ]T ∗,∞[ for every x ∈ (0, �).
That gives a sense to z(b, t) and w(b, t) for t > T ∗.

Now, since

z(b, t) = 0, ∀ t ∈ ]T ∗, T [,

by analytic continuation we conclude that∑
n�0

γn(b, t) e−µn(t−T ∗) = 0, ∀ t ∈ ]T ∗, +∞[, (2.11)

where γn is given by (2.10). Therefore, using again (2.3), one can successively deduce that
all the coefficients of e−µn(t−T ∗) in the series (2.11) are such that

lim
t−→+∞ γn(b, t) = 0, ∀ n ∈ N.

Indeed, by rewriting (2.11) as

γ0(b, t) +
∑
n�1

γn(b, t) e(µ0−µn)(t−T ∗) = 0,

taking t −→ ∞, one obtains

lim
t−→+∞ γ0(b, t) = 0
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since the series∑
n�1

γn(b, t) e(µ0−µn)(t−T ∗)

converges uniformly on [t0, +∞[, with t0 > T∗ and

lim
t−→+∞ γn(b, t) e(µ0−µn)(t−T ∗) = 0.

By repeating the argument for n = 1, 2, etc, one proves that

lim
t−→+∞ γn(b, t) = 0, ∀ n � 1.

Now, since b is strategic, one has from (2.10)

lim
t−→+∞ R(t − T ∗)〈yw(., T ∗), ψn〉L2 + 〈yz(., T

∗), ψn〉L2 = 0, ∀ n ∈ N.

Therefore,

〈yw(., T ∗), ψn〉L2 = 0 and then 〈yz(., T
∗), ψn〉L2 = 0, ∀ n ∈ N

which means

yw(., T ∗) = yz(., T
∗) = 0 in L2(0, �)

and consequently,

w(., T ∗) = z(., T ∗) = 0 in L2(0, �).

This proves lemma 1. �

Lemma 2. Let (w, z) be the solution to the system (2.4), satisfying (2.5) and such that
z(b, t) = 0,∀ t ∈ ]0, T [. Then∫ T ∗

0
w(a, t) dt =

∫ T ∗

0
∂xw(a, t) dt = 0.

Proof. Since a < S, one has

L[w](x, t) = 0, 0 < x < a, 0 < t < T ∗,

L[z](x, t) = Rw(x, t), 0 < t < T ∗,

w(x, 0) = z(x, 0) = 0, 0 < x < a,

w(0, t) = z(0, t) = 0, 0 < t < T ∗.

(2.12)

Let now f0 be the solution of the differential equation

Df ′′
0 (x) + Vf ′

0(x) − Rf0(x) = θ0(x) in ]0, a[

f0(0) = f0(a) = 0,
(2.13)

where θ0 = θ1 − θ2.
Multiplying respectively the first equation of (2.12) by f0, the second equation by θ0 and

integrating with respect to x and t over ]0, a[×]0, T ∗[, one has∫ a

0
f0(x)w(x, T ∗) dx +

∫ T ∗

0
[−D∂xwf0 + Dwf ′

0 + V wf0]a0 dt =
∫ T ∗

0

∫ a

0
w(x, t)θ0(x) dx dt

and∫ a

0
θ0(x)z(x, T ∗) dx +

∫ T ∗

0
[−D∂xzθ0 + Dzθ ′

0 + V zθ0]a0 dt = R

∫ T ∗

0

∫ a

0
w(x, t)θ0(x) dx dt.
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Here, [z]ba denotes z(b) − z(a).
Thus,

RDf ′
0(a)

∫ T ∗

0
w(a, t) dt =

∫ T ∗

0
[{Dθ ′

0(a) + V θ0(a)}z(a, t) − Dθ0(a)∂xz(a, t)] dt

+
∫ a

0
[z(x, T ∗)θ0(x) − Rw(x, T ∗)f0(x)] dx. (2.14)

In addition, multiplying the first equation of (2.12) by θ0 and integrating with respect x and t
over ]0, a[×]0, T ∗[, one gets

Dθ0(a)

∫ T ∗

0
∂xw(a, t) dt =

∫ a

0
w(x, T ∗)θ0(x) dx + {Dθ ′

0(a) + V θ0(a)}
∫ T ∗

0
w(a, t) dt.

(2.15)

Moreover, f ′
0(a) �= 0. To see that, it suffices to multiply (2.13) by θ0 and integrate by parts

over [0, a].
Now, since λj (t) = 0 in ]T ∗, T [ and z(b, t) = 0 in ]0, T [, one has from lemma 1

w(., T ∗) = 0 in L2(0, �). From this and according to (2.14), (2.15) one obtains∫ T ∗

0
w(a, t) dt = 0

and then ∫ T ∗

0
∂xw(a, t) dt = 0.

�

In addition, by the same method we get a similar result at the point b which is given by the
following lemma.

Lemma 3. Let (w, z) be the solution to the system (2.4), satisfying (2.6). Then,∫ T ∗

0
w(b, t) dt =

∫ T ∗

0
∂xw(b, t) dt = 0.

Proof 3. Since S < b, one gets

L[w](x, t) = 0 b < x < �, 0 < t < T ∗,

L[z](x, t) = Rw(x, t) b < x < �, 0 < t < T ∗,

w(x, 0) = z(x, 0) = 0 b < x < �,

∂xw(�, t) = ∂xz(�, t) = 0 0 < t < T ∗.

(2.16)

To prove lemma 3, we proceed in several steps.

Step 1. Let θb = θ1 − e(r1−r2)bθ2, which satisfies θb(b) = 0. For reader’s convenience, we set

Ii(x) = Dθ ′
i (x) + V θi(x) i = 1, 2, b.

Multiplying the first equation of (2.16), by θb, integrating with respect x and t over
]b, �[×]0, T ∗[ and from lemma 1, one gets

Ib(�)

∫ T ∗

0
w(�, t) dt = Dθ ′

b(b)

∫ T ∗

0
w(b, t) dt. (2.17)
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Step 2. Consider now the differential equation

Df ′′(x) + Vf ′(x) − Rf (x) = θ(x) in ]b, �[

f (b) = f (�) = 0,
(2.18)

and denote by fb and f1 the solutions associated respectively to (2.18) with θ = θb and θ = θ1.
Then, multiplying the first equation of (2.16) by fb, the second by θb, integrating with

respect x and t over ]b, �[×]0, T ∗[ and from lemma 1 and (2.6), one obtains, respectively,

Df ′
b(�)

∫ T ∗

0
w(�, t) dt − Df ′

b(b)

∫ T ∗

0
w(b, t) dt =

∫ T ∗

0

∫ �

b

θb(x)w(x, t) dx dt

and

RIb(�)

∫ T ∗

0
z(�, t) dt =

∫ T ∗

0

∫ �

b

θb(x)w(x, t) dx dt.

Thus,

RDf ′
b(�)

∫ T ∗

0
w(�, t) dt − RDf ′

b(b)

∫ T ∗

0
w(b, t) dt = Ib(�)

∫ T ∗

0
z(�, t) dt. (2.19)

In a similar way as above, multiplying the first equation of (2.16) by f1, the second by θ1,
integrating with respect to x and t on ]b, �[×]0, T ∗[, one gets from lemma 1 and (2.6)

RDf ′
1(�)

∫ T ∗

0
w(�, t) dt − RDf ′

1(b)

∫ T ∗

0
w(b, t) dt = I1(�)

∫ T ∗

0
z(�, t) dt

from which and (2.19) one deduces

[I1(�)f
′
b(�) − Ib(�)f

′
1(�)]

∫ T ∗

0
w(�, t) dt = [I1(�)f

′
b(b) − Ib(�)f

′
1(b)]

∫ T ∗

0
w(b, t) dt.

(2.20)

Step 4. Multiplying the first equation of (2.16), by θ1, integrating with respect to x and t over
]b, �[×]0, T ∗[ once again from lemma 1 one gets

Dθ1(b)

∫ T ∗

0
∂xw(b, t) dt + I1(�)

∫ T ∗

0
w(�, t) dt − I1(b)

∫ T ∗

0
w(b, t) = 0. (2.21)

Step 5. To complete the proof of lemma 3, it suffices to consider (2.17), (2.20) and show that
the quantity

� = Ib(b)[I1(�)f
′
b(�) − Ib(�)f

′
1(�)] − Ib(�)[I1(�)f

′
b(b) − Ib(�)f

′
1(b)]

is not null. We therefore obtain∫ T ∗

0
w(b, t) =

∫ T ∗

0
w(�, t) = 0

and then from (2.21)∫ T ∗

0
∂xw(b, t) dt = 0.

Indeed, at first, since

r1 = −V −
√

V 2 + 4RD

2D
and r2 = −V +

√
V 2 + 4RD

2D
,

one can easily see that

I1(�) = (Dr1 + V ) er1� < 0, I2(�) = (Dr2 + V ) er2� > 0
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and then

Ib(�) = I1(�) − e(r1−r2)bI2(�) < 0.

Moreover, for x > b one has

θb(x) = θ1(x) − e(r1−r2)bθ2(x) = er1 [er1(x−b) − er2(x−b)] < 0.

Thus,

θ = θ1 − I1(�)

Ib(�)
θb > 0 in [b, �].

Furthermore, let σi(x) = esix be the solution to the differential equation

−Dσ ′′ + V σ ′ + Rσ = 0

where s1 = −r1 and s2 = −r2.
Consider the function

σb = σ1 − e(s1−s2)bσ2

which satisfies σb(x) = es1b es1(x−b) − es2(x−b) > 0 for x > b since s1 > s2.
Now, if we multiply (2.18) with θ = θ1 − I1(�)

Ib(�)
θb, respectively by σ2 and σb and integrate

by parts over [b, �], we get[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]
es2� −

[
f ′

1(b) − I1(�)

Ib(�)
f ′

b(b)

]
es2b =

∫ �

b

θ(x)σ2(x) dx > 0 (2.22)

and

σb(�)

[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]
=

∫ �

b

θ(x)σb(x) dx > 0. (2.23)

On the other hand, one has

Ib(b)

Ib(�)
= γ es2(�−b) (2.24)

where

γ = 2
√

V 2 + 4RD

V +
√

V 2 + 4RD + [
√

V 2 + 4RD − V )] e(r1−r2)(�−b)
> 1. (2.25)

Therefore, from (2.22), (2.23), and (2.25), we obtain[
f ′

1(b) − I1(�)

Ib(�)
f ′

b(b)

]
< es2(�−b)

[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]

< γ es2(�−b)

[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]
and from (2.24)

f ′
1(b) − I1(�)

Ib(�)
f ′

b(b) −
[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]
Ib(b)

Ib(�)
< 0.

Thus,

� = I 2
b (�)

{
f ′

1(b) − I1(�)

Ib(�)
f ′

b(b) − Ib(b)

Ib(�)

[
f ′

1(�) − I1(�)

Ib(�)
f ′

b(�)

]}
< 0.

�

Lemma 4 (uniqueness). Let S = S1 = S2 and (w, z) be the solution to the system (2.4). If
z(b, t) = 0,∀ t ∈ ]0, T [, then λ = 0 in L2(0, T ).
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Proof. Let us set yw(x, t) = eαxw(x, t) and yz(x, t) = eαxz(x, t) with α given in (2.2). Then,
(w, z) is solution of (2.4) with S = S1 = S2 if and only if (yw, yz) is solution of the following
system:

∂tyw − D∂xxyw + �yw = eαS[λ2(t) − λ1(t)]δ(x − S), 0 < x < �, 0 < t < T ∗

∂tyz − D∂xxyz + �yz = R eαxw, 0 < x < �, 0 < t < T ∗

yw(0, t) = ∂xyw(�, t) − αyw(�, t) = 0, 0 < t < T ∗

yz(0, t) = ∂xyz(�, t) − αyz(�, t) = 0, 0 < t < T ∗

yw(x, 0) = yz(x, 0) = 0, 0 < x < �,

which is given by the Fourier expansion

yw(x, t) =
∑
n�0

en(t)ψn(x); yz(x, t) =
∑
n�0

fn(t)ψn(x)

where en and fn are, respectively, solution to

e′
n(t) + µnen(t) = eαS [λ2(t) − λ1(t)] ψn(S), 0 < t < T ∗

en(0) = 0

and
f ′

n(t) + µnfn(t) = R < eαxw(., t), ψn >L2 , 0 < t < T ∗

fn(0) = 0.

Thus,

w(x, t) = eα(S−x)
∑
n�0

ψn(S)ψn(x)

∫ t

0
[λ2(r) − λ1(r)] e−µn(t−r) dr (2.26)

and

z(x, t) = R e−αx
∑
n�0

ψn(x)

∫ t

0
< eαxw(., r), ψn >L2 e−µn(t−r) dr. (2.27)

Now, by substituting (2.26) into (2.27) one gets

z(x, t) = R eα(S−x)
∑
n�0

ψn(x)ψn(S)

∫ t

0

∫ r

0
[λ2(η) − λ1(η)] e−µn(t−η) dη dr

which can be rewritten as follows:

z(x, t) = R eα(S−x)
∑
n�0

ψn(x)ψn(S)

∫ t

0

∫ t

η

[λ2(η) − λ1(η)] e−µn(t−η) dr dη

which means

z(x, t) = R eα(S−x)
∑
n�0

ψn(x)ψn(S)

∫ t

0
[λ2(η) − λ1(η)](t − η) e−µn(t−η) dη.

Thus,

z(x, t) =
∫ t

0
[λ2(η) − λ1(η)]�(x, t − η) dη

where

�(x, t − η) = R eα(S−x)
∑
n�0

ψn(x)ψn(S)(t − η) e−µn(t−η). (2.28)
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The above inversion of integration and summation is justified by Lebesgue’s theorem of
dominated convergence.

Now, since z(b, t) = 0 for 0 < t < T, one gets∫ t

0
[λ2(η) − λ1(η)]�(b, t − η) dη = 0, ∀ t ∈ ]0, T [.

According to Titchmarsh’s theorem on convolution of L1 functions [12], the functions λ and
� must vanish identically at least in intervals ]0, T ′[ and ]0, T ′′[, respectively, with T ′ and T ′′

such that T ′ + T ′′ � T .
Now, if � = 0 in ]0, T ′′[ with T ′′ > 0. By analytic continuation, one has � = 0 in

]0, +∞[ and therefore ψn(S)ψn(b) = 0 ∀ n.
Since b is strategic, we obtain ψn(S) = 0 ∀ n, which is impossible according to (2.3).

Thus,

λ2 = λ1, a.e. in ]0, T [. �

2.3. Proof of the main theorem

Multiplying the first equation of (2.4) by θi = erix, i = 1, 2, integrating with respect to x and
t over ]a, b[×]0, T ∗[ and, therefore, by using (2.5), (2.6) and from lemmas 1–3 we get{

λ2 er1S2 = λ1 er1S1

λ2 er2S2 = λ1 er2S1

where λi = ∫ T ∗

0 λi(t) dt, i = 1, 2. Since r1 �= r2 and λi > 0, one has S1 = S2 and then
λ1 = λ2.

Then from lemma 4 one has λ1 = λ2 a.e. in ]0, T [. This ends the proof of the theorem. �

3. Identification

Given the records data di(t), i = 1 � 4, 0 < t < T , that is {v(a, t;F), ∂xv(a, t;F)},
{v(b, t;F), ∂xv(b, t;F)}, for 0 < t < T , we would like to determine the scalar S and the
function λ(t). To that, the method we will present requires, based on the knowledge
of, u(x, T ∗), v(x, T ∗) for 0 < x < �,

∫ T ∗

0 u(a, t) dt,
∫ T ∗

0 u(b, t) dt,
∫ T ∗

0 ∂xu(a, t) dt and∫ T ∗

0 ∂xu(b, t) dt , the prior estimation of u(x, T ∗) and v(x, T ∗).
For the reader’s convenience, we proceed in several steps.

Step 1. The functions u(x, T ∗) = uT ∗ and v(x, T ∗) = vT ∗ are determined from data d1(t) and
d3(t), T

∗ < t < T by using the system

L[u](x, t) = 0, 0 < x < �, T ∗ < t < T,

L[v](x, t) = Ru(x, t), 0 < x < �, T ∗ < t < T,

u(0, t) = v(0, t) = 0, T ∗ < t < T,

∂xu(�, t) = ∂xv(�, t) = 0, T ∗ < t < T,

u(x, T ∗) = uT ∗(x) 0 < x < �,

v(x, T ∗) = vT ∗(x) 0 < x < �,
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where the right-hand side of the first equation is null because λ(t) = 0 for T ∗ < t < T . It is
a classical observability problem for which we use a least-squares regularized method.

Step 2. The data di(t), i � i � 4, 0 < t < T ∗, are used in equations from section 2
to evaluate several integral quantities needed in the next step as follows. As identifiability
techniques, we use the measurement data, respectively, d1(t), d2(t) for 0 < t < T ∗ and
d3(t), d4(t) for 0 < t < T ∗ to compute, respectively,∫ T ∗

0
u(a, t) dt,

∫ T ∗

0
∂xu(a, t) dt and

∫ T ∗

0
u(b, t) dt,

∫ T ∗

0
∂xu(b, t) dt.

Indeed, ∫ T ∗

0
u(a, t) dt and

∫ T ∗

0
∂xu(a, t) dt

are obtained from formulae (2.14) and (2.15) where we replaced w by u, z by v, z(a, t) by
d1(t), and ∂xz(a, t) by d2(t). In a same way, by considering formulae similar to (2.17), (2.19),
(2.20) and (2.21) where we replace w by u, z by v, z(b, t) by d3(t) and ∂xz(b, t) by d4(t), we
determine the quantities∫ T ∗

0
u(b, t) dt and

∫ T ∗

0
∂xu(b, t) dt.

Step 3. The results from steps 1 and 2 together with the system below determine the parameters
S et λ̄ as follows:

L[u](x, t) = λ(t)δ(x − S), 0 < x < �, 0 < t < T ∗,

L[v](x, t) = Ru(x, t), 0 < x < �, 0 < t < T ∗,

u(0, t) = v(0, t) = 0, 0 < t < T ∗,

∂xu(�, t) = ∂xv(�, t) = 0, 0 < t < T ∗,

u(x, 0) = v(x, 0) = 0, 0 < x < �.

(3.1)

Multiplying the first equation of (3.1) by θi , integrating with respect x and t over
]a, b[×]0, T ∗[ and by using Green formula, one has

λ̄ eriS =
∫ b

a

u(x, T ∗) erix dx

+
∫ T ∗

0

{
[(Dri + V ) erixu(., t)]ba − D[erix∂xu(., t)]ba

}
dt i = 1, 2. (3.2)

Therefore, one obtains S and then λ.
Step 4. A first-kind integral equation for λ(t) is derived and a numerical solution algorithm is
presented as follows.

First, the solution (u = u(x, t), v = v(x, t)) of (3.1) is given by

u(x, t) = eα(S−x)
∑
n�0

ψn(S)ψn(x)

∫ t

0
λ(η) e−µn(t−η) dη, (3.3)

and

v(x, t) = R e−αx
∑
n�0

ψn(x)

∫ t

0
< eαxu(., r), ψn > e−µn(t−r) dr. (3.4)
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Figure 1. uT ∗ obtained from data d1 at a = 300 m with infinite relative error 25.21%.

Then, by substituting (3.3) into (3.4) one obtains

v(x, t) =
∫ t

0
λ(η)�(x, t − η) dη

where the function � is given by (2.28).
So the problem that we have to solve here is the following: given {d3(t), 0 < t < T ∗},

determine λ such that

d3(t) =
∫ t

0
λ(η)�(b, t − η) dη, 0 < t < T ∗.

The choice of data d3(t) is justified in section 4.
Finally, we present below a numerical method for solving the above deconvolution

problem. This method consists in replacing the above convolution equation by its approximated
version.

Set

h = T ∗

M
, tm = mh,m = 1, . . . , M, 0 < t1 < · · · < tm < · · · < tM−1 < tM.

and

ym = d3(tm) and λm = λ(tm).

In each interval ]tk, tk+1[ we approximate the integral
∫ tk+1

tk
λ(ζ )�(b, tm − ζ ) dζ by the

trapezoidal rule:
h

2
(�(b, tm−k−1)λ

k+1 + �(b, tm−k)λ
k).

Thus, 


ym = h

2

m−1∑
k=0

(�(b, tm−k−1)λ
k+1 + �(b, tm−k)λ

k)

m = 1, . . . ,M

.

Which leads to a linear system

A� = Y. (3.5)
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Figure 2. uT ∗ obtained from data d3 at a = 800 m with infinite relative error 14.92%.
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Figure 3. vT ∗ obtained from data d1 at a = 300 m with infinite relative error 16.23%.

4. Numerical results

The numerical results are obtained where the length of the considered portion of a river is
� = 1000 m. Moreover, we suppose observing this portion during a period T = 4 h and
T ∗ = 3 h. In addition, R = 1.01 × 10−5 s, V = 0.66 m s−1 and D = 29 m2 s−1 [11]. The
source is located at S = 600 m with the intensity

λ(t) =
3∑

i=1

αi e−βi (t−τi )
2
.

where α1 = 1.2, α2 = 0.4, α3 = 0.6, β1 = 1 × 106, β2 = 5 × 105, β3 = 1 × 106, τ1 =
4500 s, τ2 = 6500 s, τ3 = 9000 s.

The purpose of this numerical work is to identify the location S and the intensity λ by
using the method described in section 4.
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Figure 4. vT ∗ obtained from data d3 at a = 800 m with infinite relative error 9.58%.
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Figure 5. Noise 3%, with SVD regularization.

The unknown functions uT ∗ and vT ∗ have been determined by using Tikhonov
regularization method with a regularization parameter ε = 0.1. They are obtained in two
ways. The first one by considering the upstream measures d1(t), T

∗ < t < T at a = 300 m.
The result concerning uT ∗ is given in figure 1, while that which concerns vT ∗ is given in
figure 3. The second one by considering the upstream measures d3(t), T

∗ < t < T at a =
800 m. The result concerning uT ∗ is given in figure 2, while that which concerns vT ∗ is given
in figure 4.

Then, since (3.2), we then obtain S = 576 m.
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Figure 6. Noise 3%, with SVD regularization and relative error 46.4%.
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Figure 7. Noise 5%, without regularization.
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Figure 8. Noise 5%, with SVD regularization and relative error 72.3%.

Finally, we determine the intensity λ by using the above numerical results where figures 5
and 6, respectively figures 7 and 8, compare the exact solution λ with that obtained by solving
the system (3.5), by using the least-squares method with SVD regularization, with respect to
the introduction of Gaussian noise on the data.

5. Conclusion

The localization for a point source (location and intensity) for an advection–dispersion–
reaction system has been studied by two pointwise measurements situated one upstream and
the other downstream with respect to the source. Assuming that the source became inactive
after some time T ∗, that corresponds, for example, to an accidental pollution stopped at time
T ∗, an identifiability result is established, then an identification method of the location is
proposed. Finally, the intensity has been determined numerically by a deconvolution method.

Some numerical results are presented. The comparison of these results with those obtained
in our previous paper [3] proves that we lose a little precision on the computed localization
and the identified intensity function is more sensitive with respect to the introduction of noise
on the data, which was foreseeable.
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