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INVERSE SPECTRAL ANALYSIS WITH PARTIAL
INFORMATION ON THE POTENTIAL, II.

THE CASE OF DISCRETE SPECTRUM

FRITZ GESZTESY AND BARRY SIMON

Abstract. We discuss results where the discrete spectrum (or partial infor-
mation on the discrete spectrum) and partial information on the potential q of

a one-dimensional Schrödinger operator H = − d2

dx2 +q determine the potential
completely. Included are theorems for finite intervals and for the whole line. In
particular, we pose and solve a new type of inverse spectral problem involving
fractions of the eigenvalues of H on a finite interval and knowledge of q over
a corresponding fraction of the interval. The methods employed rest on Weyl
m-function techniques and densities of zeros of a class of entire functions.

1. Introduction

In 1978, Hochstadt and Lieberman [16] proved the following remarkable theorem:

Theorem 1.1. Let h0 ∈ R, h1 ∈ R ∪ {∞}, and assume q1, q2 ∈ L1((0, 1)) to be
real-valued. Consider the Schrödinger operators H1, H2 in L2((0, 1)) given by

Hj = − d2

dx2
+ qj , j = 1, 2,

with the boundary conditions

u′(0) + h0u(0) = 0,(1.1a)

u′(1) + h1u(1) = 0.(1.1b)

Let σ(Hj) = {λj,n} be the (necessarily simple) spectra of Hj , j = 1, 2. Suppose that
q1 = q2 (a.e.) on [0, 1

2 ] and that λ1,n = λ2,n for all n. Then q1 = q2 (a.e.) on [0, 1].

Here, in obvious notation, h1 = ∞ in (1.1b) singles out the Dirichlet boundary
condition u(1) = 0.

For each ε > 0, there are simple examples where q1 = q2 on [0, 1
2 − ε] and σ(H1)

= σ(H2) but q1 6= q2. (Choose h0 = −h1, q1(x) = 0 for x ∈ (0, 1
2 − ε] ∪ [1

2 , 1] and
nonzero on (1

2 − ε,
1
2 ), and q2(x) = q1(1− x). See also Theorem I′ in the appendix

of [37].)
Later refinements of Theorem 1.1 in [13] and [37] (see also the summary in [35])

showed that the boundary condition for H1 and H2 at x = 1 need not be assumed a
priori to be the same, and that if q is continuous, then one only needs λ1,n = λ2,m(n)
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2766 FRITZ GESZTESY AND BARRY SIMON

for all values of n but one. ([37] claims the result does not require continuity of
q, but we will see in Section 3 that this assertion is false.) The same boundary
condition for H1 and H2 at x = 0, however, is crucial for Theorem 1.1 to hold (see
[13], [33]).

Moreover, analogs of Theorem 1.1 for certain Schrödinger operators are consid-
ered in [19], and the interval [0, 1

2 ] replaced by different subsets of [0, 1] was studied
in [18] (see also [31], Ch. 4). Reconstruction techniques for q(x) in this context are
discussed in [34].

Our purpose in this paper is to provide a new approach to Theorem 1.1 that we
feel is more transparent and, moreover, capable of vast generalizations. To state our
generalizations, we will introduce a shorthand notation to paraphrase Theorem 1.1
by saying “q on [0, 1

2 ] and the eigenvalues of H uniquely determine q.” This is just
a shorthand notation for saying q1 = q2 if the obvious conditions hold.

Unless explicitly stated otherwise, all potentials q, q1, and q2 will be real-valued
and in L1((0, 1)) for the remainder of this paper. Moreover, to avoid too many case
distinctions in the proofs below, we shall assume h0, h1 ∈ R in (1.1) throughout the
main body of this paper. In particular, for h0, h1 ∈ R we index the corresponding
eigenvalues λn of H by n ∈ N0 = N∪{0}. The case of Dirichlet boundary conditions,
where h0 =∞ and/or h1 =∞, will be dealt with in Appendix A.

Here are some of the generalizations we will prove for Schrödinger operators on
[0, 1]:

Theorem 1.2. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (1.1) and
h0, h1 ∈ R. Suppose q is C2k((1

2 − ε,
1
2 + ε)) for some k = 0, 1, . . . and for some

ε > 0. Then q on [0, 1
2 ], h0, and all the eigenvalues of H except for (k+1) uniquely

determine h1 and q on all of [0, 1].

Remarks. 1. The case k = 0 in Theorem 1.2 is due to Hald [13].
2. In the non-shorthand form of this theorem, we mean that both q1 and q2 are

C2k near x = 1
2 .

3. One need not know which eigenvalues are missing. Since the eigenvalues
asymptotically satisfy

λn = (πn)2 + 2(h1 − h0) +
∫ 1

0

dx q(x) + o(1) as n→∞,(1.2)

given a set of candidates for the spectrum, one can tell how many are missing.
4. For the sake of completeness we mention the precise definition of H in

L2((0, 1)) for real-valued q ∈ L1((0, 1)) and boundary condition parameters h0, h1 ∈
R ∪ {∞} in (1.1):

H =− d2

dx2
+ q,

D(H) ={g ∈ L2((0, 1)) | g, g′ ∈ AC([0, 1]); (−g′′ + qg) ∈ L2((0, 1));(1.3)

g′(0) + h0g(0) = 0, g′(1) + h1g(1) = 0},

where AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1] and
hx0 = ∞ represents the Dirichlet boundary condition g(x0) = 0 for x0 ∈ {0, 1} in
(1.3).
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In Section 3, we discuss examples which show that Theorem 1.2 is optimal in
the sense that if q is only assumed to be C2k−1 near x = 1

2 for some k ≥ 1, then it
is not uniquely determined by q � [0, 1

2 ] and all the eigenvalues but (k + 1).
Theorem 1.2 works because the condition that q is C2k near x = 1

2 gives us partial
information about q on [ 1

2 , 1]; namely, we know q(1
2 ), q′(1

2 ), . . . , q(2k)(1
2 ) computed

on [ 1
2 , 1] since we can compute them on [0, 1

2 ]. This suggests that knowing q on
more than [0, 1

2 ] should let one dispense with a finite density of eigenvalues. That
this is indeed the case is the content of the following theorem:

Theorem 1.3. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (1.1) and
h0, h1 ∈ R. Then q on [0, 1

2 + α
2 ] for some α ∈ (0, 1), h0, and a subset S ⊆ σ(H) of

all the eigenvalues σ(H) of H satisfying

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2(1.4)

for all sufficiently large λ0 ∈ R, uniquely determine h1 and q on all of [0, 1].

Remarks. 1. As a typical example, knowing slightly more than half the eigenvalues
and knowing q on [0, 3

4 ] determines q uniquely on all of [0, 1]. To the best of
our knowledge, Theorem 1.3 solves a new type of inverse spectral problem. In
particular, we are not aware of any inverse spectral result involving fractions of the
set of eigenvalues as in (1.4).

2. As in the case α = 0, we have an extension of the same type as Theorem 1.2.
Explicitly, if q is assumed to be C2k near x = 1

2 + α
2 , we only need

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2 − (k + 1)(1.5)

instead of (1.4).

We can also derive results about problems on all of R. In Section 5, we will prove

Theorem 1.4. Suppose that q ∈ L1
loc(R) obeys

(i) q(x) ≥ C|x|2+ε −D for some C, ε,D > 0, and
(ii) q(−x) ≥ q(x) x ≥ 0.

Then q on [0,∞) and the spectrum of H = − d2

dx2 + q in L2(R) uniquely determine
q on all of R.

In Section 5, we will also present further conjectures and explain how condition
(i) is related to the class of entire functions of order less than one.

All these results are related to two other papers we have written. In [12], we
consider, among other topics, analogs of Theorems 1.1 and 1.3 for finite tridiagonal
(Jacobi) matrices extending a result in [15]. The approach there is very similar
to the current one, except that the somewhat subtle theorems on zeros of entire
functions in this paper are replaced by the elementary fact that a polynomial of
degree at most N with N + 1 zeros must be identically zero. In [11], we consider
results related to Theorem 1.4 in that, for Schrödinger operators on (−∞,∞),
“spectral” information plus the potential on one of the half-lines determine the
potential on all of (−∞,∞). In that paper, we consider situations where there are
scattering states for some set of energies and the “spectral” data are given by a
reflection coefficient on a set of positive Lebesgue measure in the a.c. spectrum of
H . The approach is not as close to this paper as is [12], but m-function techniques
(see also [10]) are critical in all three papers.
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Hochstadt and Lieberman [16] use the details of inverse spectral theory in their
proof. In a sense, we only use the main uniqueness theorem of that theory due to
Marchenko [28], which we now describe. For q ∈ L1((a, b)) real-valued, −∞ < a <
b <∞, consider

−u′′ + qu = zu(1.6)

with the boundary condition

u′(b) + hbu(b) = 0(1.7)

at x = b. Let u+(z, x) denote the solution of this equation, normalized, say, by
u+(z, b) = 1. The m+-function is then defined by

m+(z, a) =
u′+(z, a)
u+(z, a)

.(1.8)

Similarly, given a boundary condition at x = a,

u′(a) + hau(a) = 0,(1.9)

we define the solution u−(z, x) of (1.6) normalized by u−(z, a) = 1 and then define

m−(z, b) = −
u′−(z, b)
u−(z, b)

.(1.10)

The differing signs in (1.8) and (1.10) are picked so that both m+ and m− are
Herglotz functions, that is, m± : C+ → C+ are analytic (in our present context
where −∞ < a < b < ∞, m± are even meromorphic on C), C+ being the open
complex upper half-plane. In particular,

Im (z) > 0 =⇒ Im (m−(z, b)) > 0, Im (m+(z, a)) > 0.(1.11)

Marchenko’s [28] fundamental uniqueness theorem of inverse spectral theory then
reads as follows:

Theorem 1.5. m+(z, a) uniquely determines hb as well as q (a.e.) on [a, b].

If q ∈ L1
loc([a,∞)) is real-valued (with |a| < ∞) and − d2

dx2 + q is in the limit
point case at infinity, one can still define a unique m+(z, a) function, but now
for Im (z) 6= 0 rather than all z ∈ C. For such z, there is a unique function
u+(z, · ) which is L2 at infinity (unique up to an overall scale factor which drops
out of m+(z, a) defined by (1.8)). Again, one has the following uniqueness result,
independently proved by Borg [3] and Marchenko [28]

Theorem 1.6. m+(z, a) uniquely determines q (a.e.) on [a,∞).

It is useful to have m−(z, b) because of the following basic fact:

Theorem 1.7. Let H = − d2

dx2 + q be a Schrödinger operator in L2((a, b)) with
boundary conditions (1.7), (1.9), and let G(z, x, y) be the integral kernel of
(H − z)−1. Suppose c ∈ (a, b), and let m+(z, c) be the corresponding m+-function
for [c, b] and m−(z, c) the m−-function for [a, c]. Then

G(z, c, c) = − 1
m+(z, c) +m−(z, c)

.(1.12)
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Theorems 1.5 and 1.6 are deep facts; Theorem 1.7 is an elementary calculation
from the explicit formula for the integral kernel of (H − z)−1,

G(z, x, y) =
u−(z,min(x, y))u+(z,max(x, y))

W (u−(z), u+(z))(x)
,

where W ( · , · ) is the Wronskian defined by

W (f, g)(x) = f ′(x)g(x) − f(x)g′(x).

An analog of Theorem 1.7 holds in case [a, b] is replaced by (−∞,∞).
We can now describe the strategy of our proofs of Theorems 1.1–1.4. G(z, c, c)

has poles at the eigenvalues of H (this is not quite true; see below), so by (1.12),
at eigenvalues λn of H :

m+(λn, c) = −m−(λn, c).(1.13)

If we know q on a left partial interval [a, c] and we know some eigenvalue λn, then
we know m−(z, c) exactly; so by (1.13), we know the value of m+(λn, c) at the point
λn. In Appendix B we discuss when knowing the values of f(λn) of an analytic
function of the type of the m-functions uniquely determines f(z). If m+(z, c) is
determined, then by Theorem 1.5, q is determined on [a, b], and so is hb.

So the logic of the argument for a theorem like Theorem 1.1 is the following:
(i) q on [0, 1

2 ] and h0 determine m−(z, 1
2 ) by direct spectral theory.

(ii) The λn and (1.13) determine m+(λn, 1
2 ), and then, by suitable theorems

in complex analysis, m+(z, 1
2 ) is uniquely determined for all z.

(iii) m+(z, 1
2 ) uniquely determines q (a.e.) on [ 1

2 , 1] and h1 by inverse spectral
theory.

It is clear from this approach why h0 is required and h1 is free in the context
of Theorem 1.1 (see [33] for examples where h1 and q � [0, 1

2 ] do not determine q);
without h0 we cannot compute m−(z, 1

2 ) and so start the process.
As indicated before (1.13), G(z, c, c) may not have a pole at an eigenvalue λn

of H . It will if un(c) 6= 0, but if un(c) = 0, then G(z, c, c) = 0 rather than ∞.
Here un denotes the eigenfunction of H associated with the (necessarily simple)
eigenvalue λn. Nevertheless, (1.13) holds at points where un(c) = 0, since then
u−(c) = u+(c) = 0, and so both sides of (1.13) are infinite. (In spite of (1.13),
m+ + m− is also infinite at z = λn and so G(λn, c, c) = 0.) We summarize this
discussion in the following:

Theorem 1.8. For any c ∈ (a, b), (1.13) holds at any eigenvalue λn of H[a,b] (with
the possibility of both sides of (1.13) being infinite).

An alternative way of proving (1.13) is that λn is an eigenvalue if and only if the
Wronskian of u+ and u− is zero, which is precisely (1.13).

Here is a sketch of the contents of this paper. In Section 2 we present our
proofs of Theorems 1.1 and 1.2. In Section 3 we discuss an example that delimits
Theorem 1.2 and shows that Theorem 1.2 is optimal with respect to smoothness
conditions on q. In Section 4 we prove Theorem 1.3, and in Section 5 we prove
Theorem 1.4. Appendix A is devoted to the case of Dirichlet boundary conditions,
and Appendix B presents some facts on entire functions that are necessary to prove
our principal results.

Refinements of the results of this paper can be found in [6], [7].
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2. Theorems for a Half Interval

In this section, we will prove the original Hochstadt-Lieberman theorem (Theo-
rem 1.1) and our extension of it (Theorem 1.2) for h0, h1 ∈ R. Consider a problem
on [0, 1] with boundary condition (1.1b) at x = 1. Let u+(z, x) be defined by
−u′′+ + qu+ = zu+ and

u′+(z, 1) = −h1, u+(z, 1) = 1.(2.1)

Then u+ is known to have the following properties:
(1) For each x ∈ [0, 1], u+(z, x), u′+(z, x) are entire functions of z. (This fol-

lows from the fact that u+(z, 1) = 1 and u′+(z, 1) = −h1 are independent
of z; see, e.g., [4], Theorem I.8.4, Problem I.7, and p. 226.)

(2)

u+(z, x) = cos
(√
z (1− x)

)
+O

(
eIm (

√
z) (1−x)

√
z

)
,(2.2)

u′+(z, x) =
√
z sin

(√
z (1− x)

)
+O

(
eIm (

√
z) (1−x)

)
(2.3)

as |z| → ∞ for all x ∈ [0, 1], where
√
z is the square root branch with

Im(
√
z) ≥ 0 (see, e.g., [29], Sect. 1.4).

(3) The zeros of u+( · , x) and u′+( · , x) are all real for any x ∈ [0, 1] and they
all lie in some λ-interval [c,∞) (this is because these zeros are eigenval-
ues of self-adjoint boundary value problems for Schrödinger operators in
L2((0, 1)) bounded from below).

The final pair of preliminary results we need concerns the high-energy asymp-
totics of the m+-function,

m+(z, x) =
u′+(z, x)
u+(z, x)

.

(4) It is known [1], [8] that under the general hypothesis q ∈ L1((0, 1)),

m+(z, x)−1 = −i(
√
z )−1(1 + o(z−1/2))(2.4)

uniformly in x ∈ [0, 1 − δ], δ > 0 as |z| → ∞ in any sector ε < Arg(z) <
π − ε, ε > 0.

(5) If q is C2k near x0 ∈ (0, 1), k = 0, 1, 2, . . . , thenm+(z, x0) andm+(z, x0)−1

are known to have asymptotic expansions of the form (see [5])

m+(z, x0) = i(
√
z )
( 2k+2∑

`=0

C`(x0)z−`/2 + o(z−k−1)
)
, C0(x0) = 1,(2.5)

m+(z, x0)−1 = −i(
√
z )−1

( 2k+2∑
`=0

D`(x0)z−`/2 + o(z−k−1)
)
, D0(x0) = 1,(2.6)

as |z| → ∞ in any sector ε < Arg(z) < π − ε, ε > 0, where C`(x0)
and D`(x0) are universal functions of q(x0), . . . , q(`−2)(x0). In fact, C`(x)
and D`(x0) have a well-known connection to the conserved densities of
the KdV hierarchy [9] and they can be computed recursively as follows.
Consider the Riccati-type equations for m+(z, x) and m+(z, x)−1,

m′+(z, x) +m+(z, x)2 = q(x)− z,(2.7)

[m+(z, x)−1]′ +m+(z, x)−2[q(x) − z] = 1.(2.8)
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Inserting the asymptotic expansions (2.5) and (2.6) into (2.7) and (2.8)
then yields the recursion relations

C0(x) = 1, C1(x) = 0, C2(x) = − 1
2 q(x),

Cj(x) = i
2 C
′
j−1(x)− 1

2

j−1∑
`=1

C`(x)Cj−`(x), j ≥ 3,(2.9)

D0(x) = 1, D1(x) = 0, D2(x) = 1
2 q(x),

Dj(x) = i
2 D
′
j−1(x) + 1

2 q(x)
j−2∑
`=0

D`(x)Dj−`−2(x)(2.10)

− 1
2

j−1∑
`=1

D`(x)Dj−`(x), j ≥ 3.

With these preliminaries out of the way, let q be given (a.e.) on [0, 1
2 ] and let

q1, q2 be two candidates for q extended to all of [0, 1]. Let σ(H1) = {λ1,n}∞n=0 be
the set of all the eigenvalues of H1 = − d2

dx2 + q1. Define, for j = 1, 2,

Pj(z) = uj,+(z, 1
2 ),(2.11)

Qj(z) = u′j,+(z, 1
2 ),(2.12)

fj(z) =
Pj(z)
Qj(z)

= mj,+(z, 1
2 )−1,(2.13)

g(z) = u′1,+(z, 0) + h0u1,+(z, 0),(2.14)

so that {λ1,n}∞n=0 are precisely the zeros of g(z). (Note in this context that
u1,+(z, x) satisfies (1.1b) at x = 1 for all z ∈ C. Thus, if and only if g(λ̂) = 0, is
it true that u1,+(λ̂, x) also satisfies (1.1a) at x = 0 and hence λ̂ ∈ σ(H1).) Here
uj,± are the corresponding solutions of −u′′ + qju = zu used in (1.8) and (1.10).
By adding a sufficiently large constant to q1 and q2, we can suppose all the zeros
of Pj , Qj , and g are in [1,∞).

By (1)–(5) above, we infer:
(a) Pj , Qj , and g are all of the form (see, e.g., [21], Ch. I; [30], Sect. II.48)

c
∞∏
n=0

(
1− z

xn

)
(2.15)

for suitable {xn}∞n=0 ⊆ [1,∞) (which a priori could differ for the five
functions).

(b) Pj , Qj , and g are all bounded by C1 exp(C2|z|1/2) for some C1, C2 > 0.
(c) |f1(iy)− f2(iy)| = o(|y|−1) as y (real)→ ±∞.
(d) If qj ∈ C2k near x = 1

2 , then, as y (real)→ ±∞,

|f1(iy)− f2(iy)| = o(|y|−(2k+3)/2).

(e) |Qj(iy)| = 1
2 |y|1/2 | exp(1

2 Im (
√
i) |y|1/2)|(1 + o(1)) as y (real)→∞.

(f) |g(iy)| = 1
2 |y|1/2 | exp(Im (

√
i) |y|1/2)| (1 + o(1)) as y (real)→∞.

(g) For n sufficiently large, infθ∈[0,2π] |g((π(n+ 1
2 ))2eiθ)| ≥ πn+O(1).

Part (d) holds by (2.6) and (2.10), because q(`)
1 (1

2 ) = q
(`)
2 (1

2 ) for all 0 ≤ ` ≤ 2k by
the regularity of q near x = 1

2 , and hence the terms D0(x0), . . . , D2k+2(x0) in (2.6)
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in connection with q1 and q2 will cancel when inserted into [f1(iy) − f2(iy)]. (g)
follows from (2.3) since, by (2.15), the infimum is taken at θ = 0.

Proof of Theorem 1.1 (for h0, h1 ∈ R). Define

F (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)
.(2.16)

By Theorem 1.8, (1.13) holds at the points λ1,n. Hence Q1(z)
P1(z) = Q2(z)

P2(z) at z = λ1,n.
Moreover, at points where both sides are infinite, one infers P1 = P2 = 0. Thus,
the cross ratio P1Q2 − P2Q1 vanishes at each point where g vanishes, and since g
necessarily has simple zeros (H1 has simple spectrum), F is an entire function.

In addition, by (b) and (g), F (z) satisfies

|F (z)| ≤ C1 exp(C2|z|1/2),(2.17)

since (2.17) first holds when |z| = (π(n + 1
2 ))2 for n sufficiently large (by (f)) and

then by the maximum modulus principle for all z. By Proposition B.6 (a Phragmén-
Lindelöf argument) and (2.17), if we show that |F (iy)| → 0 as y → ∞ (y real),
then F ≡ 0.

But

F (z) =
Q1(z)Q2(z)

g(z)
[f1(z)− f2(z)],(2.18)

so, by (c), (e), and (f), the quantity

|F (iy)| = 1
2 |y|

1/2 [o(|y|−1)](1 + o(1)) = o(|y|−1/2) as y (real)→∞,(2.19)

goes to zero as required.
Once F ≡ 0, we can multiply by g(z)

Q1(z)Q2(z) (which has isolated zeros and poles)
to conclude that f1 = f2, and so, by Theorem 1.5, q1 = q2 (a.e.).

Remark. There is a (patchable) gap in the paper of Hochstadt and Lieberman [16].
They consider an entire function ψ(z) = H(z)/ω(z) where they show |H(z)| ≤
M exp(Im (

√
|z|) ) and ω(z) = C

√
z sin(

√
z )+O(eIm (

√
z)) and then claim |ψ(z)| =

O
(
1/
√
|z|
)

without comment. Because of the zeros of sin( · ) this is not evident,
and one needs a Phragmén-Lindelöf-type argument to complete their proof.

Proof of Theorem 1.2. Let {λ`}k+1
`=1 be the k+1 eigenvalues of − d2

dx2 +q1 in L2((0, 1))
which a priori are not assumed to be the same for the two potentials. Now define
F̃ (z) by

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k+1∏
`=1

(z − λ`)(2.20)

instead of (2.16).
(2.17) still holds, and as in (2.18) and (2.19), one now infers from (d), (e), and

(f) that

|F̃ (iy)| = O(|y|k+1)|y|1/2 [o(|y|−(2k+3)/2)](1 + o(1)) = o(1) as y (real)→∞.

Thus m+(z, 1
2 ) determines h1 (cf. Theorem 1.5), and q1 = q2 (a.e.) follows as in

the previous proof.
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3. An Example

Our goal in this section is to construct, for each k, a function q on [0, 1] with the
following properties:

(1) q is C∞ on [0, 1
2 ] and [1

2 , 1]; q is C2k−1 on [0, 1].
(2) d2kq/dx2k is discontinuous at x = 1

2 .
(3) q = 0 on [0, 1

2 ].
(4) For a suitable boundary condition parameter h1 ∈ R, the eigenvalues

of − d2

dx2 + q in L2((0, 1)) with u′(0) = 0, u′(1) + h1u(1) = 0 boundary
conditions agree with those for − d2

dx2 in L2((0, 1)) with u′(0) = u′(1) = 0
boundary conditions with precisely (k + 1) exceptions.

For k = 0, (2) means that q is discontinuous at x = 1
2 .

This example shows that in Theorem 1.2, one cannot weaken the continuity
requirement on q. In particular, it provides a counterexample to the claim in Suzuki
[37] that Theorem I in his Appendix only requires q ∈ L1((0, 1)). Continuity of q
at x = 1

2 is critical for his result to hold.
Our results depend on the following well-known fact:

Proposition 3.1. Suppose that x0 < y0 < x1 < y1 < · · · are given so that for n
sufficiently large,

xn = [(2n)π]2, yn = [(2n+ 1)π]2.(3.1)

Then, there exist (a unique) h1 and a C∞ function q on [1
2 , 1] so that

− d2

dx2
+ q in L2((1

2 , 1)); u′(1
2 ) = 0, u′(1) + h1u(1) = 0(3.2)

has eigenvalues {xn}∞n=0 and

− d2

dx2
+ q in L2((1

2 , 1)); u(1
2 ) = 0, u′(1) + h1u(1) = 0(3.3)

has eigenvalues {yn}∞n=0. (By (1.2) and (A.5c), h1 = − 1
2

∫ 1

1/2
dx q(x).)

This is just a special case of the construction of Levitan and Gasymov [25]
Historically, this classical two-spectra inverse problem goes back to Borg’s seminal
paper [2]. Subsequently, Levinson [22] found considerable simplifications of Borg’s
uniqueness arguments, and Krein [20] developed his own solution of these inverse
spectral problems. This circle of ideas was further developed in [14], [23], [24],
Ch. 3, [25], [26], Sect. 6.11, and continues to generate interest (see, e.g., [17], [27],
[36]).

We also need the elementary

Lemma 3.2. Suppose that h0, h1, and q are given, and for some λ̂, there exists
an h1/2 (with the Dirichlet boundary condition h1/2 =∞ at x = 1

2 allowed; u′(1
2 ) +

h1/2u(1
2 ) = 0 is then interpreted as u(1

2 ) = 0) so that λ̂ is an eigenvalue of both

− d2

dx2
+ q in L2((0, 1

2 )); u′(0) + h0u(0) = 0, u′(1
2 ) + h1/2u(1

2 ) = 0

and

− d2

dx2
+ q in L2((1

2 , 1)); u′(1
2 ) + h1/2u(1

2 ) = 0, u′(1) + h1u(1) = 0.
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Then λ̂ is also an eigenvalue of

− d2

dx2
+ q in L2((0, 1)); u′(0) + h0u(0) = 0, u′(1) + h1u(1) = 0.

Proof. One can match the solutions in the two halves so that they and their first
derivatives become absolutely continuous near x = 1

2 .

Let x(0)
n = [(2n)π]2 and y(0)

n = [(2n+ 1)π]2, n = 0, 1, . . . , be the eigenvalues that
lead to q = 0 on [1

2 , 1] (and h(0)
1 = 0) in Proposition 3.1. To construct our example,

we will take xn = x
(0)
n for all n = 0, 1, . . . and yn = y

(0)
n for n = 0, 1 . . . with k + 1

exceptions, say, yn0 6= y
(0)
n0 , yn1 6= y

(0)
n1 , . . . , ynk 6= y

(0)
nk . Make the choice so that for

` = 1, 2, . . . , k,
k∑
j=0

y`nj =
k∑
j=0

[y(0)
nj ]`.(3.4)

Choices satisfying (3.4) can certainly be made. For example, we can take yn0 =
y

(0)
n0 + ε with ε small, and solve the k equations (3.4) for yn1 , . . . , ynk using the

fact that the Jacobian determinant that needs to be non-zero to apply the inverse
function theorem is essentially just a k×k Vandermonde determinant, det(a), with
aj` = `(y(0)

nj )`−1.
Let m(0)

N,+(z, 1
2 ) = − 1√

z
cot( 1

2

√
z), the Neumann m+-function on [1

2 , 1] for q = 0

(and h(0)
1 = 0). Let mN,+(z) be the corresponding Neumann m+-function on [1

2 , 1]
for the q constructed in Proposition 3.1 (whose poles and zeros are given by the
eigenvalues xn and yn, n = 0, 1 . . . , of (3.2) and (3.3)). We claim that

mN,+(z, 1
2 ) =

k∏
j=0

(
z − ynj
z − y(0)

nj

)
m

(0)
N,+(z, 1

2 ).(3.5)

Indeed, the two sides have the same zeros and poles, and both are ratios of functions
of order 1

2 ; thus they are constant multiples of each other. Since both sides behave
asymptotically like ∼ −|z|−1/2 as z → −∞, the constant multiple must be 1.

Because of (3.4),

ln
( k∏
j=0

(
z − ynj
z − y(0)

nj

))
=

k∑
j=1

[
ln
(

1−
ynj
z

)
− ln

(
1− y

(0)
nj

z

)]
= O(z−k−1).(3.6)

Since m(0)
N,+(z, 1

2 ) = − i√
z
(1 + o(z−K)) for all K consistent with q = 0 in (2.10),

(3.5) and (3.6) imply that

mN,+(z, 1
2 ) = − i√

z
(1 +O(z−k−1)).

Thus in (2.6), D`(1
2 ) = 0 for ` = 1, 2, . . . , 2k+ 1. But by (2.10) and induction, this

implies that

q(m)(1
2 ) = 0 for m = 0, 1, 2, . . . , 2k − 1.(3.7)

Next, let q(x) be defined a.e. on [0, 1] by

q(x) = 0, 0 ≤ x < 1
2 ,

= constructed q � (1
2 , 1), 1

2 < x ≤ 1.
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By (3.7), q is C2k−1 at x = 1
2 . By Lemma 3.2, − d2

dx2 +q in L2((0, 1)), with u′(0) = 0,
u′(1) + h1u(1) = 0 boundary conditions, has {x(0)

n }∞n=0 ∪ {y
(0)
n }∞n=0,n6=n0,n1,...,nk

as
eigenvalues, so at most (k + 1) eigenvalues differ from the free Neumann case (i.e.,
q = 0 on [0, 1], h0 = h1 = 0). If fewer than k + 1 eigenvalues differed, then by
Theorem 1.2, q ≡ 0 and h1 = 0. Since the yni are not y(0)

ni , this cannot be true.
Thus, exactly k + 1 eigenvalues differ. If q(2k)(1

2 ) were zero, then by Theorem 1.2,
again q ≡ 0 and h1 = 0, so q is not C2k.

There remains an interesting open question: Can one replace information on the
missing eigenvalue by knowledge of the boundary condition h1?

4. The Case of Partially Known Spectra

Our goal in this section is to prove Theorem 1.3. Define

gS(z) =
∏
λn∈S

(
1− z

λn

)
, gσ(H)(z) =

∞∏
n=0

(
1− z

λn

)
, S ⊆ σ(H) = {λn}∞n=0.

By the hypothesis (1.4) on S and σ(H) in Theorem 1.3 and the method of proof of
Theorem B.4 (see the critical equality (B.16)), we infer

ln(|gS(iy)|) ≥ (1− α) ln(|gσ(H)(iy)|) + α
4 ln(1 + y2) + C0.(4.1)

Since σ(H) is a complete set of eigenvalues for a self-adjoint problem on [0, 1], we
know that asymptotically

|gσ(H)(iy)| ∼ 1
2 |y|

1/2
∣∣eIm(

√
i) |y|1/2

∣∣ as y (real)→∞.
Thus by (4.1), there exists a constant C > 0 such that

|gS(iy)| ≥ C|y|1/2
∣∣eIm(

√
i)(1−α)|y|1/2∣∣(4.2)

for |y| sufficiently large.
Let Pj(z) = uj,+(z, 1

2 + α
2 ), Qj(z) = u′j,+(z, 1

2 + α
2 ), j = 1, 2, for the two candidate

potentials. Then, since 1− (1
2 + α

2 ) = 1
2 (1−α), we use (2.3) to infer asymptotically

|Qj(iy)| ∼ 1
2 |y|

1/2
∣∣eIm(

√
i) (1/2)(1−α)|y|1/2∣∣ as y (real)→∞.(4.3)

With (4.2) and (4.3), the arguments in Section 2 extend to prove Theorem 1.3.

5. Theorems for the Whole Real Line

Our main goal in this section is to prove Theorem 1.4. So we suppose that
q1(x), q2(x) are two potentials on R satisfying

qj(x) ≥ C|x|2+ε + 1, j = 1, 2,(5.1)

for some C, ε > 0. (The condition in Theorem 1.4 has −D in place of 1. Just add
D+1 to initial qj ’s to get (5.1) if need be.) Thus for any z ∈ C, there exist solutions
uj,±(x, z) of −u′′(x) + qj(x)u(x) = zu(x) which are L2 near ±∞, and

mj,±(z) := ±
u′j,±(0, z)
uj,±(0, z)

, j = 1, 2,

are meromorphic functions of z. Let {λm}∞m=1 be the eigenvalues of − d2

dx2 + q1(x)
on (−∞,∞) and denote by {µj,m}∞m=1 the eigenvalues of − d2

dx2 + qj(x) on (−∞, 0]
with Dirichlet (i.e., u(0) = 0) boundary conditions at x = 0. We claim:
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Proposition 5.1. (i) Let ρ0 = 1− ε
(4+2ε) . Then for all ρ > ρ0, j = 1, 2,

∞∑
m=1

λ−ρm <∞,(5.2)

∞∑
m=1

(µj,m)−ρ <∞.(5.3)

(ii) Moreover,

µj,m ≥ λ2m, m ∈ N.(5.4)

Proof. Let αm be the mth eigenvalue of − d2

dx2 + Cx2+ε on (−∞,∞). The large
m asymptotics of αm is given by a classical phase space argument (see, e.g.,
Theorem XIII.81 in [32], or Section 7.1 in [38]); that is, for an explicit constant
K ∈ (0,∞), limm→∞ αm/m

1/ρ0 = K. Thus,
∑
m∈N α

−ρ
m < ∞ if ρ > ρ0, and so

(5.2) holds since λm ≥ αm. Let βj,m be the mth eigenvalue of − d2

dx2 + qj(−|x|) on
(−∞,∞). By the hypothesis qj(−|x|) ≥ qj(x), we infer that βj,m ≥ λm. But by
Dirichlet-Neumann alternation, µj,m = βj,2m for m = 1, 2, . . . , proving (5.4). (5.3)
then follows from (5.4).

Define

Qj(z) =
∞∏
m=1

(
1− z

µj,m

)
,

g(z) =
∞∏
m=1

(
1− z

λm

)
.

Proposition 5.2. For all y ∈ R,

|Q1(iy)Q2(iy)|
|g(iy)| ≤ 1.(5.5)

Proof. |1− iy
w | = (1+ y2

w2 )1/2, for y, w real, is monotone decreasing in w, so by (5.4),∣∣∣∣1− iy

µj,m

∣∣∣∣ ≤ ∣∣∣∣1− iy

λ2m

∣∣∣∣ ≤ ∣∣∣∣1− iy

λ2m−1

∣∣∣∣.
It follows that

|Qj(iy)| ≤
∞∏
m=1

∣∣∣∣1− iy

λ2m

∣∣∣∣ ≤ ∞∏
m=1

∣∣∣∣1− iy

λ2m−1

∣∣∣∣ ,
so (5.5) holds.

Now let

Pj(z) = mj,−(z)Qj(z), j = 1, 2,

which are entire functions, and

fj(z) = mj,−(z), j = 1, 2.

Define

F (z) =
P1(z)Q2(z)−Q1(z)P1(z)

g(z)
=
Q1(z)Q2(z)

g(z)
(f1(z)− f2(z)).(5.6)
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Proof of Theorem 1.4. At z = λk, the eigenfunctions on the left half-line for both q1
and q2 must match to the common eigenfunctions on the right, so P1(λk)Q2(λk)−
P2(λk)Q1(λk) = 0; that is, F (z) is an entire function.

By (5.2), g(z) is a function of m-type as defined in Appendix B. Thus by Propo-
sition B.5, there exists a sequence Rk → ∞ so that sup{ 1

|g(z)| | |z| = Rk} ≤
C1 exp(+C2R

ρ
k) for some ρ < 1. By (5.3) and a similar estimate for the Dirichlet

eigenvalues, Pj , Qj are functions of m-type. It follows by Proposition B.6 that if

lim
|y|→∞

|F (iy)| = 0,(5.7)

then F ≡ 0. If we prove that, then m1,−(z) = m2,−(z), and thus q1 = q2 a.e. on
(−∞, 0] and hence on R. Thus, we need only prove (5.7).

By (2.4), which holds for half-line m-functions [1], [8], |f1(iy) − f2(iy)| = o(1).
Thus, Proposition 5.2 and (5.6) show that (5.7) holds.

Several questions remain open. We do not believe that hypothesis (i) is needed
in Theorem 1.4:

Conjecture 5.3. Theorem 1.4 remains true if (i) is replaced by lim|x|→∞ q(x) =
∞.

This will require dealing with entire functions of order larger than 1.
We also believe:

Conjecture 5.4. Suppose

lim
x→∞

q(−x)
q(x)

=∞ and lim
|x|→∞

q(x) =∞.

Then q near +∞ and a finite density subset of eigenvalues for − d2

dx2 +q(x) uniquely
determine q on R.
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Appendix A: Dirichlet Boundary Conditions

In this appendix we provide some details in the remaining cases, which involve
Dirichlet boundary conditions at x = 0 and/or x = 1. We need to distinguish three
cases (cf. (1.1)):

(I) H has a Dirichlet boundary condition at x = 0 and x = 1, that is,

u(0) = 0,(A.1a)

u(1) = 0.(A.1b)
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(II) H has a non-Dirichlet boundary condition at x = 0 and a Dirichlet bound-
ary condition at x = 1, that is,

u′(0) + h0u(0) = 0, h0 ∈ R,(A.2a)

u(1) = 0.(A.2b)

(III) H has a Dirichlet boundary condition at x = 0 and a non-Dirichlet bound-
ary condition at x = 1, that is,

u(0) = 0,(A.3a)

u′(1) + h1u(1) = 0, h1 ∈ R.(A.3b)

Since, later on, q is supposed to be known on [0, 1
2 + ε] for some 0 ≤ ε < 1

2 , cases
II and III represent inequivalent situations and need to be treated separately in
connection with Theorems A.1–A.3. Depending on the case at hand, we index the
corresponding eigenvalues λn of H by

{λn}∞n=1 in case I and {λn}∞n=0 in cases II and III.(A.4)

The asymptotic expansion (1.2) then becomes, as n→∞,

λn = (πn)2 +
∫ 1

0

dx q(x) + o(1) in case I,(A.5a)

λn = (π(n+ 1
2 ))2 − 2h0 +

∫ 1

0

dx q(x) + o(1) in case II,(A.5b)

λn = (π(n+ 1
2 ))2 + 2h1 +

∫ 1

0

dx q(x) + o(1) in case III.(A.5c)

Let u+(z, x) be defined by −u′′+ + qu+ = zu+ subject to the boundary conditions
and normalizations

u′+(z, 1) = 1, u+(z, 1) = 0 in cases I and II,(A.6a)

u′+(z, 1) = −h1, u+(z, 1) = 1 in case III.(A.6b)

Next we note that items (1) and (3)–(5) of Section 2 remain valid in the present
cases I–III, whereas item (2) becomes

u+(z, x) = −
sin
(√
z (1 − x)

)
√
z

+O

(
eIm(
√
z) (1−x)

z

)
,(A.7)

u′+(z, x) = cos
(√
z (1− x)

)
+ O

(
eIm(
√
z) (1−x)

√
z

)
(A.8)

in cases I and II, and

u+(z, x) = cos
(√
z (1− x)

)
+O

(
eIm(
√
z) (1−x)

√
z

)
,(A.9)

u′+(z, x) =
√
z sin

(√
z (1− x)

)
+O

(
eIm(
√
z) (1−x)

)
(A.10)

in case III, as |z| → ∞ for all x ∈ [0, 1].
Introducing Pj , Qj , fj, j = 1, 2, as in (2.11)–(2.13), and g by

g(z) = u1,+(z, 0) in cases I and III,(A.11a)

g(z) = u′1,+(z, 0) + h0u1,+(z, 0) in case II,(A.11b)
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one infers again that {λ1,n}∞n=1 in case I and {λ1,n}∞n=0 in cases II and III are
precisely the zeros of g(z). The corresponding properties (a)–(g) listed in Section 2,
suitably adapted to the present cases I–III, then read as follows:

(a′) Item (a) remains valid except that n in (2.15) runs through N in case I
and through N0 in cases II and III.

(b′–d′) Items (b), (c), and (d) remain valid.
(e′) As y (real)→∞,

|Qj(iy)| = 1
2 | exp(1

2 Im(
√
i) |y|1/2)|(1 + o(1)) in cases I and II,

|Qj(iy)| = 1
2 |y|

1/2 | exp(1
2 Im(

√
i) |y|1/2)|(1 + o(1)) in case III.

(f′) As y (real)→∞,

|g(iy)| = 1
2 |y|

−1/2 | exp(Im(
√
i) |y|1/2)| (1 + o(1)) in case I,

|g(iy)| = 1
2 | exp(Im(

√
i) |y|1/2)| (1 + o(1)) in cases II and III.

(g′) For n sufficiently large, one obtains,

inf
θ∈[0,2π]

|g((π(n+ 1
2 ))2eiθ)| ≥ 1

πn +O( 1
n2 ) in case I,

inf
θ∈[0,2π]

|g((π(n+ 1))2eiθ)| ≥ 1 +O( 1
n ) in cases II and III.

Introducing F (z) as in (2.16) and (2.18), one verifies, using (b′) and (g′), that
(2.17) remains valid. Items (c′), (e′), and (f ′), however, yield the following modifi-
cation of (2.19) as y (real)→∞,

|F (iy)| = 1
2 |y|

1/2 [o(|y|−1)](1 + o(1)) = o(|y|−1/2) in case I,(A.12a)

|F (iy)| = 1
2 [o(|y|−1)](1 + o(1)) = o(|y|−1) in case II,(A.12b)

|F (iy)| = 1
2 |y|[o(|y|

−1)](1 + o(1)) = o(1) in case III.(A.12c)

Following the arguments in (2.16)–(2.19) step-by-step and taking into account the
eigenvalue asymptotics in (A.5), the remaining Dirichlet cases in Theorem 1.1 then
read as follows.

Theorem A.1. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (A.1),
(A.2), or (A.3) for cases I, II, or III. Then q on [0, 1

2 ], together with the knowledge
of h0 = ∞ or h0 ∈ R, and all the eigenvalues of H, uniquely determine h1 (i.e.,
h1 =∞ in cases I and II and h1 ∈ R in case III) and q (a.e.) on all of [0, 1].

Remark. Case I for q ∈ L2((0, 1)) appears to be due to Pöschel and Trubowitz [31],
Ch. 4. Much to our surprise, the extension of case I to q ∈ L1((0, 1)) in Theorem A.1
seems to be new. Case II is originally due to Hochstadt and Lieberman [16] as
recorded in Theorem 1.1. To the best of our knowledge, case III is a new result.

The analog of Theorem 1.2 is now obtained as follows. Replace the definition of
F̃ in (2.20) by

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k+1∏
`=1

(z − λ`) in cases I and II,(A.13a)

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k∏
`=1

(z − λ`) in case III.(A.13b)
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Here {λ`}k+1
`=1 in cases I and II, and {λ`}k`=1 in case III, represent eigenvalues of H1

and H2 which are not a priori assumed to be equal.
The asymptotic behavior of |F̃ (iy)| as y (real) →∞,

|F̃ (iy)| = o(1) in case I,(A.14a)

|F̃ (iy)| = o(|y|−1/2) in cases II and III,(A.14b)

then yields the following new result.

Theorem A.2. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (A.1),
(A.2), or (A.3) for cases I, II, or III. Suppose q is C2k((1

2 − ε,
1
2 + ε)), k = 0, 1, . . . ,

for some ε > 0. Then q on [0, 1
2 ], together with the knowledge of h0 =∞ or h0 ∈ R,

and all the eigenvalues of H except for (k + 1) in cases I and II and k in case III,
uniquely determine h1 (i.e., h1 =∞ in cases I and II and h1 ∈ R in case III) and
q on all of [0, 1].

Finally, we consider the analog of Theorem 1.3 in the Dirichlet context.

Theorem A.3. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (A.1),
(A.2), or (A.3). Then q on [0, 1

2 + α
2 ] for some α ∈ (0, 1), h0 =∞ or h0 ∈ R, and

a subset S ⊆ σ(H) of all the eigenvalues σ(H) of H satisfying

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2(A.15)

for all sufficiently large λ0 ∈ R, uniquely determine h1 (i.e., h1 =∞ in cases I and
II and h1 ∈ R in case III) and q on all of [0, 1].

Proof. Following the arguments employed in Section 4, we again introduce

gS(z) =
∏
λn∈S

(
1− z

λn

)
, S ⊆ σ(H),

gσ(H)(z) =
∞∏
n=1

(
1− z

λn

)
in case I,

gσ(H)(z) =
∞∏
n=0

(
1− z

λn

)
in cases II and III,

where

σ(H) = {λn}∞n=1 in case I and σ(H) = {λn}∞n=0 in cases II and III.

Then (A.15) and the method of proof of Theorem B.4 yield

ln(|gS(iy)|) ≥ (1− α) ln(|gσ(H)(iy)|) + α
4 ln(1 + y2) + C0.(A.16)

Since asymptotically (cf. (f ′)) for |y| large enough,

|gσ(H)(iy)| ∼ 1
2 |y|

−1/2
∣∣eIm(

√
i) |y|1/2∣∣ in case I,

|gσ(H)(iy)| ∼ 1
2

∣∣eIm(
√
i) |y|1/2∣∣ in cases II and III,

one infers from (A.16) that for some C > 0

|gS(iy)| ≥ C|y|−1/2
∣∣eIm(

√
i)(1−α)|y|1/2∣∣ in case I,(A.17a)

|gS(iy)| ≥ C
∣∣eIm(

√
i)(1−α)|y|1/2∣∣ in cases II and III(A.17b)

for |y| sufficiently large.
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Introducing again Pj(z) = uj,+(z, 1
2 + α

2 ), Qj(z) = u′j,+(z, 1
2 + α

2 ), j = 1, 2,
for the two candidate potentials, noticing that 1 − (1

2 + α
2 ) = 1

2 (1 − α), we infer
asymptotically that as y (real) →∞,

|Qj(iy)| ∼ 1
2

∣∣eIm(
√
i) (1/2)(1−α)|y|1/2∣∣ in cases I and II,(A.18a)

|Qj(iy)| ∼ 1
2 |y|

1/2
∣∣eIm(

√
i) (1/2)(1−α)|y|1/2∣∣ in case III.(A.18b)

Given (A.17) and (A.18), one can now finish the proof of Theorem A.3 in the same
way as that of Theorem 1.3 in Section 4.

Remark. As in the case α = 0, we have an extension of the same type as Theo-
rem A.2. Explicitly, if q is assumed to be C2k near x = 1

2 + α
2 , we only need

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2 −N(k)(A.19)

instead of (A.15), where N(k) = k + 1 in cases I and II and N(k) = k in case III.

Appendix B: Zeros of Entire Functions

In discussing extensions of Hochstadt’s discrete (finite matrix) version [15] of the
Hochstadt-Lieberman theorem in [12], we made use of the following simple lemma,
which is an elementary consequence of the fact that any polynomial of degree d
with d+ 1 zeros must be the zero polynomial:

Lemma B.1. Suppose f1 = P1
Q1

and f2 = P2
Q2

are two rational fractions where the
polynomials satisfy deg(P1) = deg(P2) and deg(Q1) = deg(Q2). Suppose that d =
deg(P1) + deg(Q1) and that f1(zn) = f2(zn) for d+ 1 distinct points {zn}d+1

n=1 ∈ C.
Then f1 = f2.

Our main goal in this appendix is to prove an analogous theorem for a class of
entire functions.. The theorem is sharp in the sense that it includes Lemma B.1 (at
least the case of Lemma B.1 where the zeros of the entire functions involved and
the zn are all positive).

We will be interested here in entire functions of the form

f(z) = C
∞∏
n=0

(
1− z

xn

)
,(B.1)

where 0 < x0 < x1 < · · · is a suitable sequence of positive numbers which are the
zeros of f , and C is some complex constant.

Given a sequence {xn}∞n=0 of positive reals, define

N(t) = #{n ∈ N ∪ {0} | xn < t}.(B.2)

Recall the following basic theorem (see, e.g., [21], Ch. I; [30], Sects. II.48 and II.49):

Theorem B.2. Fix 0 < ρ0 < 1. Then:
(i) If {xn}∞n=0 is a sequence of positive reals with

∞∑
n=0

x−ρn <∞ for all ρ > ρ0(B.3)

then the product in (B.1) defines an entire function f with

|f(z)| ≤ C1 exp(C2|z|ρ) for all ρ > ρ0.(B.4)
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(ii) Conversely, if f is an entire function satisfying (B.4) with all its (com-
plex) zeros on (0,∞), then its zeros {xn}∞n=0 satisfy (B.3), and f has the
canonical product expansion (B.1).

Moreover, (B.3) holds if and only if

N(t) ≤ C|t|ρ for all ρ > ρ0.(B.5)

Given this theorem, we single out:

Definition B.3. A function f is said to be of m-type if and only if f is an entire
function satisfying (B.4) (of order 0 < ρ < 1 in the usual definition) with all the
zeros of f on (0,∞).

Our choice of “m-type” in Definition B.3 comes from the fact that in many
cases we discuss in this paper, the m-function is a ratio of functions of m-type.
By Theorem B.2, f in Definition B.3 has the form (B.1) and N(t), which we will
denote as Nf (t), satisfies (B.5). We are heading toward a proof of

Theorem B.4. Let f1, f2, g be three functions of m-type so that
(i) f1(z) = f2(z) at any point z with g(z) = 0, and
(ii) for all sufficiently large t,

max(Nf1(t), Nf2(t)) ≤ Ng(t)− 1.

Then f1 = f2.

Proposition B.5. Let f be a function of m-type. Then there exists a 0 < ρ < 1
and a sequence {Rk}∞k=1, Rk →∞ as k →∞, so that

inf{|f(z)| | |z| = Rk} ≥ C1 exp(−C2R
ρ
k).

Proof. By hypothesis, for some 0 < ρ′ < 1,

Nf (t) ≤ Ctρ′ .(B.6)

This implies

xn ≥
(
n

C

)1/ρ′

.(B.7)

If for all n ≥ n0,

|xn − xn−1| ≤ 2,

then

xn ≤ xn0 + 2(n− n0),

which contradicts (B.7). Thus for an infinite sequence {n(k)}∞k=1, n(k) → ∞ as
k →∞, we necessarily must have

xn(k) − xn(k)−1 ≥ 2.(B.8)

We will pick

Rk = 1
2 (xn(k) + xn(k)−1).(B.9)

For any α > 0, |1−αeiθ|2 = 1+α2−2α cos(θ) takes its minimum value at θ = 0,
so

inf{|f(z)| | z = Rk} = |f(Rk)|.(B.10)
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By Theorem B.2, f has the form (B.1). We will write

ln(|f(Rk)|) = A1 +A2,(B.11)

where

A1 =
∑

n|xn≥2xn(k)

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣ ), A2 =
∑

n|xn<2xn(k)

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣ ).
We estimate A1 by writing the sum as a Stieltjes integral, integrating by parts, and
using (B.6):

A1 =
∫ ∞

2xn(k)

ln
(

1− Rk
t

)
dNf (t)

= −
∫ ∞

2xn(k)

(
1

1− Rk
t

)
Rk
t2

[Nf (t)−Nf (2xn(k))] dt(B.12)

≥ −
∫ ∞

2Rk

2Rk
t2

Ctρ
′
dt = −CRρ

′

k ,

where we have used C to represent a positive constant that varies from formula to
formula.

For A2, we write,

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣ ) = ln(|xn −Rk|)− ln(|xn|) ≥ − ln(|xn|)(B.13)

≥ − ln(4Rk),(B.14)

where (B.13) follows from (B.8) and (B.9), and (B.14) follows from

|xn| < 2xn(k) ≤ 2(2Rk).

Thus, by (B.6),

A2 ≥ −Nf(2xn(k)) ln(4Rk) ≥ −CRρ
′

k ln(4Rk) ≥ −CRρ
′′

k(B.15)

for some 1 > ρ′′ > ρ′ and suitable positive constants C. (B.10), (B.11), (B.12), and
(B.15) prove the proposition.

Proposition B.6. Let F be an entire function that satisfies
(i) sup|z|=Rk |F (z)| ≤ C1 exp(C2R

ρ
k) for some 0 ≤ ρ < 1, C1, C2 > 0, and

some sequence Rk →∞ as k →∞.
(ii) lim|x|→∞;x∈R |F (ix)| = 0.

Then F ≡ 0.

Proof. A standard Phragmén-Lindelöf estimate separately applied to Re(z) > 0
and Re(z) < 0 (i.e., to an angle of opening π; see, e.g., [30], Sect. II.34) shows that
F is bounded. Liouville’s theorem implies that F is constant, and then the fact
that |F (ix)| → 0 as x→∞ (x real) shows that F = 0.

Proof of Theorem B.4. By hypothesis (i), f1(z)−f2(z)
g(z) := Q(z) is an entire function.

By (B.4) (applied to f1 and f2) and Proposition B.5 (applied to g), there is a
sequence Rk →∞ as k →∞ so that Q(z) satisfies condition (i) of Proposition B.6.
Thus, it suffices to prove

lim
x→±∞

f1(ix)
g(ix)

= lim
x→±∞

f2(ix)
g(ix)

= 0.
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We will prove the f1 result for definiteness. In fact, our proof will show that

f1(ix)
g(ix)

= O(x−1)

as |x| → ∞. Without loss of generality, we will assume that f1, g satisfy (B.1) with
C = 1, that is, that f1(0) = g(0) = 1. We will also suppose that Nf1(t) = Ng(t) = 0
if t ≤ 1, which can be arranged by appropriate scaling.

Notice first that

ln(|f1(ix)|) =
∞∑
n=0

1
2 ln

(
1 +

x2

x2
n

)
= 1

2

∫ ∞
0

ln
(

1 +
x2

t2

)
dNf1(t)

= 1
2

∫ ∞
0

1
1 + x2

t2

2x2

t3
Nf1(t) dt

=
∫ ∞

0

x2

t3 + tx2
Nf1(t) dt.

(B.16)

The boundary term at t = 0 in the integration by parts step vanishes since Nf1(0) =
0, and the one at t = ∞ vanishes by the estimate (B.5) and the fact that, for x
fixed, ln(1 + x2

t2 ) = O(t−2) as t→∞.
By hypothesis (ii) of the theorem, there are t0 ≥ 1 and C ≥ 0 such that

Nf1(t) ≤ Ng(t)− 1, t ≥ t0,(B.17a)

≤ Ng(t) + C, t ≤ t0.(B.17b)

Hence, by (B.16),

ln
( ∣∣∣∣f1(ix)

g(ix)

∣∣∣∣ ) ≤ (C + 1)
∫ t0

1

x2

t3 + tx2
dt−

∫ ∞
1

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2),

since
x2

t3 + tx2
= − d

dt
[1
2 ln(1 +

x2

t2
)].

Thus, as claimed,

f1(ix)
g(ix)

= O(x−1)

as |x| → ∞.

One can replace (B.17a) by the following pair of conditions for t ≥ t0 ≥ 1, t0
sufficiently large:

Nf1(t) ≤ Ng(t) +D for some D > −1,(B.18)

lim
t→∞

t−(D+1)−1
|{s ∈ [t0, t] | Nf1(s) > Ng(s)− 1}| = 0,(B.19)

where | · | signifies Lebesgue measure. Indeed, denoting by

γ(t) = |{s ∈ [t0, t] | Nf1(s) > Ng(s)− 1}|
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the Lebesgue measure of the set in (B.19), the method of proof in Theorem B.4,
together with (B.18) and (B.19), implies

(B.20)

ln
( ∣∣∣∣f1(ix)

g(ix)

∣∣∣∣ ) =
∫ ∞

0

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

≤ C
∫ t0

1

x2

t3 + tx2
dt+

∫ ∞
t0

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

= C

∫ t0

1

x2

t3 + tx2
dt+

∫
{t∈[t0,∞)|Nf1(t)≤Ng(t)−1}

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

+
∫
{t∈[t0,∞)|Nf1(t)>Ng(t)−1}

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

≤ C
∫ t0

1

x2

t3 + tx2
dt−

∫ ∞
t0

x2

t3 + tx2
dt

+ (D + 1)
∫
{t∈[t0,∞)|Nf1 (t)>Ng(t)−1}

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2)

+ (D + 1)
∫ ∞
x

x2

t3 + tx2
dt+ (D + 1)

∫
{t∈[1,x]|Nf1(t)>Ng(t)−1}

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2) + 1

2 (D + 1) ln(2)

+ (D + 1)
∫ γ(x)+1

1

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2) + 1

2 (D + 1) ln(2) + (D + 1)
∫ γ(x)+1

1

dt

t

≤ − 1
2 ln(1 + x2) + 1

2 (D + 1)[ln(2) + ln((1 + γ(x))2)] + (C + 1) ln(t0).

In particular, (B.19) is precisely the result needed in (B.20) to ensure that the
limit of |f1(ix)/g(ix)| as |x| → ∞ is zero. In (B.20) we used the obvious inequality
x2/[t3 + tx2] < (1

t ) for t > 0 and the fact that∫
Ω

f(t) dt ≤
∫ |Ω|+1

1

f(t) dt

whenever Ω ⊆ [1,∞) has finite Lebesgue measure, |Ω| < ∞, and f is monotone
decreasing on [1,∞).

An interesting case is D = 0 in (B.18)–(B.20).
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