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Abstract

Purkinje neurons play an important role in cerebellar computation since their axons are the

only projection from the cerebellar cortex to deeper cerebellar structures. They have com-

plex internal dynamics, which allow them to fire spontaneously, display bistability, and also

to be involved in network phenomena such as high frequency oscillations and travelling

waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in

their f-I curves. We show that this excitability mechanism allows Purkinje cells to be effi-

ciently inhibited by noise of a particular variance, a phenomenon known as inverse stochas-

tic resonance (ISR). While ISR has been described in theoretical models of single neurons,

here we provide the first experimental evidence for this effect. We find that an adaptive

exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a

modified dynamic IV method displays ISR and bistability between the resting state and a

repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional

regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the

synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch

between these functional regimes. Using mutual information analysis, we demonstrate that

ISR can lead to a locally optimal information transfer between the input and output spike

train of the Purkinje cell. These results provide the first experimental evidence for ISR and

suggest a functional role for ISR in cerebellar information processing.

Author Summary

How neurons generate output spikes in response to various combinations of inputs is a

central issue in contemporary neuroscience. Due to their large dendritic tree and complex

intrinsic properties, cerebellar Purkinje cells are an important model system to study this
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input-output transformation. Here we examine how noise can change the parameters of

this transformation. In experiments we found that spike generation in Purkinje cells can

be efficiently inhibited by noise of a particular amplitude. This effect is called inverse sto-

chastic resonance (ISR) and has previously been described only in theoretical models of

neurons. We explain the mechanism underlying ISR using a simple model matching the

properties of experimentally characterized Purkinje cells. We found that ISR is present in

Purkinje cells when the mean input current is near threshold for spike generation. ISR can

be explained by the co-existence of resting and spiking solutions of the simple model.

Changes of the input noise variance change the lifetime of these resting and spiking states,

suggesting a mechanism for a tunable filter with long time constants implemented by a

Purkinje cell population in the cerebellum. Finally, ISR leads to locally optimal informa-

tion transfer from the input to the output of a Purkinje cell.

Introduction

Understanding the way neurons integrate synaptic inputs and provide appropriate outputs are

crucial steps in the process of understanding neural circuits and relating their function to the

function of specific brain areas. The cerebellar circuit is believed to be involved in ongoing

motor control and motor learning, and an increasing amount of evidence suggests that it is the

primary location of motor memories [1]. Purkinje neurons play a central role in the cerebel-

lum, as they gather thousands of excitatory and inhibitory synaptic inputs from the molecular

layer and provide the sole output of the cerebellar cortex. Describing and modeling the spiking

response of Purkinje cells to synaptic inputs is therefore central to understanding cerebellar

information processing.

Purkinje cells are spontaneously active even in the absence of synaptic input [2, 3]. It has

been proposed that this notable intrinsic property is tightly linked to their type II excitability

[4], [5] which is manifested by the non-zero minimum firing frequency in response to tonic

current injection, and the characteristic discontinuity in the frequency-current relationship.

This property is thought to be due to voltage-gated ion channels, such as resurgent sodium cur-

rents [6] or hyperpolarization-activated currents (Ih) [4], which are active at rest. Such intrinsic

mechanisms also underlie the ability of Purkinje cells to switch between spontaneous firing (up

states) and quiet periods (down states). These have been observed in vitro [4, 7] and in vivo in

anaesthetized [8] and awake animals [9]. The transition between these two states can be con-

trolled by climbing fiber synaptic input [8, 9] or by molecular layer interneuron input [10].

However, the presence of these up and down states in awake animals has been controversial

(see Discussion).

While the existence of up and down states is a consequence of the intrinsic biophysics

underlying the type II excitability of Purkinje cells [5, 8] we can nevertheless expect synaptic

input, specifically random noise-like synaptic inputs, to play an important role in patterning

such firing behavior. An interesting dynamical phenomenon, inverse stochastic resonance

(ISR), has been described recently in persistently periodically firing model neurons: variance-

dependent inhibition of spiking in response to noise stimulation, including purely excitatory

noise [11]. The unique defining characteristic of ISR is that inhibition of spiking shows a

non-linear tuning with respect to input noise statistics, notably the variance. This phenome-

non was first identified in computational models of bistable recurrent neural circuits [12],

where the bistability was between persistent spiking and quiescent states and later shown in

single bistable neuron models [11]. The key to ISR is the bistability between a steady state

ISR of Purkinje Cells
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(“rest”) and a periodic activity state (“spiking”), a characteristic of systems with sub-critical

Andronov-Hopf bifurcations. Interestingly, ISR appears to be robust to changes in noise

color [13] and has also been demonstrated in spatially extended models of action potential

propagation [14]. Further analysis showed that ISR should be a generic phenomenon in

dynamical systems with steady-state/limit cycle multi-stability, yet so far no direct experi-

mental measurement of ISR has been reported (but see [15] for hints of ISR in squid axons).

Here we provide, to the best of our knowledge, the first experimental characterization of ISR

in neuronal responses.

In this study we demonstrate ISR experimentally in Purkinje neurons and study its implica-

tions for cerebellar information processing. We find that Purkinje cells recorded in cerebellar

slices show clear evidence for ISR. Their firing is reduced or can even be stopped in response to

noisy current injection, with a non-linear dependence of the firing rate on noise variance

which is characteristic for ISR. We further demonstrate that an empirically-based adaptive

exponential integrate-and-fire model, quantitatively parameterized to fit Purkinje cell data

using a modified dynamic IV method, reproduces both the bistability and ISR behavior of Pur-

kinje cells. Finally, we show that the optimal noise variance for ISR also yields a local maximum

in mutual information between the input and output spike train. Under these conditions, ISR

leads to optimal inhibition of self-sustained spiking and thus provides the highest information

transmission capacity for transient synaptic stimuli.

Results

Purkinje cells exhibit inverse stochastic resonance (ISR)
To test whether Purkinje cells (PCs) exhibit inverse stochastic resonance, we made patch-

clamp recordings from PCs in rat cerebellar slices. We injected noisy current waveforms and

observed the resulting firing behavior (Fig 1A). The noise protocol consisted of a series of ten 1

s noise periods alternating with 1 s rest periods. The noise waveform was generated by an Orn-

stein-Uhlenbeck process with time constant τ = 2 ms and increasing amplitude σ to represent

the synaptic currents received by the cell (see Materials and Methods). We observed that the

firing frequency of PCs is initially reduced in response to increasing noise amplitude. This

counter-intuitive effect is characteristic of ISR, where the relationship between firing rate and

noise amplitude has a minimum, or “tuning” (here at amplitude σ = 100 pA; Fig 1B). All Pur-

kinje cells tested exhibited ISR, and the optimal noise level for firing rate inhibition for the pop-

ulation was σopt = 152 ± 64 pA (n = 19, Fig 1C). However, ISR is variable across cells, and some

cells can be fully silenced in response to optimal noise amplitude injection (S1C Fig). In that

case, the cell is generally silenced even during periods with no noise injection, if they follow

periods with optimal amplitude noise. This shows that the firing rate in one interval is not only

determined by the noise amplitude and mean (holding current), but also by the cell’s activity in

the previous interval.

ISR appears to mediate transitions between a firing state and a silent state. To account for

the resulting history dependence, we injected a noise waveform with continuously changing

noise amplitude (Materials and Methods, S1E Fig), and generated ISR curves using only inter-

vals in which the cell is initially in the firing state (Fig 1D, S1F Fig). We observed that the opti-

mal noise amplitude σ consistently reduces the firing rate across a range of mean holding

currents. However, the reduction is most pronounced when the cell is hyperpolarized relative

to its resting membrane potential (holding current Iin = −290 pA for traces in Fig 1A and 1B).

When the cell is hyperpolarized sufficiently to prevent firing, the noise injection then acts in

the expected way and the firing rate only increases (Fig 1D, Iin = −400 pA). In this case, the

ISR of Purkinje Cells
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noise amplitude needs to be large enough to bring the cell to threshold. We observe that there

is an optimal holding current for which the cell’s firing rate is reduced the most (Iin = −350 pA,

red), as there is an optimal noise level σopt. This phenomenon is qualitatively similar to the pre-

viously reported ISR in the Hodgkin-Huxley neuron model. As Purkinje cells have type II

excitability, we observe in particular that the optimal holding current corresponds to the region

of the “discontinuity” in the f-I curve (red in Fig 1E). It appears therefore that the ISR phenom-

enon is linked to the bistability of Purkinje cells. Interestingly, Purkinje cells displayed a

bimodal distribution of the membrane potential during transitions between up and down states

induced by noisy current injections (Fig 1F).

Fig 1. Cerebellar Purkinje cells show inverse stochastic resonance (ISR). A. Whole-cell patch-clamp recording from a Purkinje cell in
a cerebellar slice, showing current injection of 1 s noise waveform periods with increasing amplitude, and recorded membrane potential
Vm. Holding current is I = −290 pA. The firing rate of the Purkinje cell (PC) is reduced for intermediary noise amplitude. B. Firing frequency
during 1 s noise injection vs. noise amplitude σ corresponding to the trace in A. Error bars indicate standard deviation. The firing rate is
minimal for σ = 100 pA. C. ISR is observed in all Purkinje cells tested. Summary of optimal noise amplitude σ = 152.60 ± 64.42 pA (n = 19).
D. ISR curve of a different PC, generated with a current injection protocol of continuously changing noise amplitude and for a series of
holding currents, exploring the full range of the f-I curve (E). The firing rate is most reduced when the cell is hyperpolarized to the edge of
the f-I curve step. The optimal noise amplitude for inhibition of firing is σ = 200 pA. E. Frequency vs. current generated with 1 s step current
injections. The color code corresponds to the region explored for the ISR curve in D. F. Membrane potential distributions computed from a
somatic whole-cell patch-clamp recording from a Purkinje cell during injection of a stimulus current evoking transitions between spiking and
silent states (A).

doi:10.1371/journal.pcbi.1005000.g001
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ISR parameters are related to Purkinje cell bistability
We examined the link between the Purkinje cell intrinsic property of bistability and the modu-

lation of firing by noise. Type II excitability is traditionally characterized by a step or disconti-

nuity in the f-I curve (Fig 1E), as opposed to the continuous f-I curve of type I excitability [16,

17]. However, we observed that different Purkinje cells can show a wide range of type II behav-

ior. The firing rate hysteresis in response to slow ramps of current allows a more precise char-

acterization of this property than f-I curves [4]. Cells were held at −65 mV to prevent

spontaneous firing and an ascending and descending (0.9 nA/s) ramp of current was injected

(Fig 2A). The first spike occurs at a different instantaneous frequency and current than the last

spike (Fig 2B). This hysteresis illustrates that the cell is in a different condition during the

ascending and descending phases of the ramp.

We quantified the difference between the instantaneous frequency of the first spike (ascend-

ing) and the last spike (descending) (Δf) and the difference of injected current for first and last

spike (ΔI; Fig 2C). Across a population of Purkinje cells, we observed a wide range of hysteresis

parameters Δf = 38.17 ± 19.12 Hz, ΔI = 110.28 ± 84.57 pA (mean ± S.D., n = 34). Hysteresis as

characterized by these parameters offers a quantification of the degree of bistability of individ-

ual Purkinje cells. Using the same color code for the hysteresis plot (Fig 2C) and the ISR curve

(Fig 1D), we highlight the suspected link between the two phenomena. The inhibition of firing

in response to noisy input is indeed more pronounced when the cell is hyperpolarized to the

hysteresis region where both spiking and rest states can exist. To illustrate this relationship

empirically, we compared the hysteresis parameters with the parameters of ISR. We found

a correlation between the width of the hysteresis range ΔI; and the optimal noise amplitude

(R2 = 0.79; n = 19 cells) (Fig 2E). This suggests that the noise amplitude required for ISR is on

the order of the difference in the holding currents at which the cell makes transitions from the

firing to the silent state and vice versa.

An adaptive exponential integrate-and-fire (aEIF) model describes
Purkinje cell firing
We employed a reduced model approach to understand the relationship between the intrinsic

property of bistability and ISR. Our choice of a minimal spiking neuron model, which can

describe the bistability of simple spike output of Purkinje cells, was motivated by several

requirements. The model should have sufficiently rich dynamics to account for the bimodal

behavior of Purkinje neurons, and be of sufficiently low dimensionality to allow analytical

insights. The adaptive exponential integrate-and-fire model (aEIF) was chosen since it can

reproduce a range of different firing regimes including type II excitability [16] and we can

quantitatively fit the parameters of the model to electrophysiological data from individual PCs.

The aEIF also allows a detailed examination of the links between hysteresis, bistability and ISR.

To quantitatively fit the model to the experimental data, we used the dynamic IV method [18]

for the parameters of the basic aEIF model together with a modified version of this method for

the adaptation parameters (see Materials and Methods for details). Briefly, the dynamic IV

method relies on accessing passive and active membrane mechanisms during physiological

spike generation. It provides a simple representation of the ionic transmembrane current Im as

a function of the injected current Iin and membrane potential V by subtracting the capacitive

current from Iin.

ImðV ; tÞ ¼ IinðtÞ � C
dV

dt
þ Inoise ð1Þ

In order to mimic excitatory and inhibitory synaptic currents, the injected current was a

ISR of Purkinje Cells
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sum of two Ornstein-Uhlenbeck processes with time constants τfast = 3ms, τslow = 10 ms [18].

Measuring the membrane potential using an electrode while simultaneously injecting current

can be inaccurate because of the voltage drop across the electrode. Therefore, to measure the

true membrane potential V, we performed double somatic patch-clamp recordings from PCs

in slices (Fig 3A). The ionic current through the membrane Im was calculated using Eq (5) and

plotted against the voltage (Fig 3B and 3C). The distribution of the Im data points is Gaussian

for a given voltage (Fig 3C, inset), the dynamic IV curve is therefore defined as the average of

Im versus V (Fig 3D). The capacitance can be estimated by minimizing the variance of Im within

individual voltage bins (Fig 3D, inset) (see Materials and Methods). The dynamic IV curve can

be readily transformed into an integrate-and-fire (IF) type neuronal model, where F(V) is a

Fig 2. Experimental characterization of Purkinje cell bistability. A. Whole-cell patch-clamp recording from a Purkinje cell, showing a
representative hysteresis measurement with slow current ramp injection (0.9 nA/s) ascending (red) and descending (blue), and the
resulting PCmembrane potential response. B. Instantaneous firing frequency and current for each spike. Linear fits of the ascending ramp
(red) and the descending ramp (blue) are averages of 10 trials. C. Characterization of the hysteresis using the difference in frequency
between first and last spike Δf and difference in current ΔI. The color code illustrates the region explored for the ISR curve. Red
corresponds to both the hysteresis and the optimal ISR region (Fig 1D and 1E). D. Distribution of hysteresis parameters across the
population of recorded Purkinje cells. E. Correlation between the width of the hysteresis range ΔI and the optimal noise level for ISR σopt.
Error bars indicate standard deviation, R2 = 0.79 (n = 19).

doi:10.1371/journal.pcbi.1005000.g002
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Fig 3. aEIF model fitting procedure to Purkinje cell experimental data. A. Double somatic whole-cell patch-clamp
recording from a representative Purkinje cell: one electrode for current injection and one for voltage recording (scale
bar, 100 μm). B. Traces of injected noise current Iin(t), recorded membrane potential Vm(t), in a spontaneously active
PC, calculated membrane current Im(t), and calculated spike-dependent adaptation currentwsp(t). C. Im vs. Vm and

ISR of Purkinje Cells
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non-linear function of voltage.

FðVÞ ¼ 1

tm
ðEL � V þ DTexp

V � VT

DT

� �

ð2Þ

The experimentally derived F(V) = −Idyn(V)/C curve can therefore be fitted with a function

F(V) describing an exponential integrate-and-fire (EIF) model [19], with parameters mem-

brane time constant τm, resting potential EL, threshold potential V
T, and spike slope factor ΔT.

Average values for our PCs were: C = 195.4 ± 53.3 pF, EL = −51.9 ± 1.9 mV, VT = −54.1 ± 2.3

mV, ΔT = 1.0 ± 0.2 mV, τm = 4.4 ± 1.2 ms (n = 7 cells).

It is interesting to note the difference between the dynamic IV of PCs and those previously

reported for pyramidal cells [18]. The spontaneous, self-sustained, activity of PCs means that

the IV dynamic curve sits above zero, and Vm never effectively reaches the resting potential EL.

The aEIF model with these parameters is spontaneously active but it is not able to show type II

excitability. To account for this essential property, we chose to extend the model with voltage-

dependent adaptation. The method we used to fit the adaptation is inspired by the procedure

used for fitting an aEIF model to synthetic data as described in [20]. Since the PC is spontane-

ously active, the classical dynamic IV method yielded a good approximation of the capacitance

and reversal potential EL (for more details see Supplementary information). However, the time

constant determined by the dynamic IV method in Purkinje cells reflects the only fast time

constant of a soma while the total membrane time constant, needed for the aEIF, depends on

the large proximal dendrite as well. To compensate for this issue we estimate the full membrane

time constant τm of Purkinje cell by fitting the voltage response to a short current pulse (0.5

ms, 1 nA), S2A Fig [21], see S1 Text. From this, we can estimate the value for the leak conduc-

tance gL at the soma and proximal dendrite, using the membrane time constant and the capaci-

tance gL = C/τm. We determine the subthreshold adaptation parameter a using the same

approximation as in [20] (see Materials and Methods for more details), by subtracting the leak

conductance gL from the slope fitted on the linear part of the dynamic IV curve.

The voltage-dependent adaptation strength is the key parameter for type II excitability. To

define it, we followed a method similar to the dynamic IV. To access the contribution of spike-

triggered adaptation, we rearranged Eq (16) using the approximation (see Materials and Meth-

ods):

wspike ¼ �Iin � C
dV

dt
� ðgL þ aÞðV � ELÞ ð3Þ

As wspike is triggered at each spike, we plotted the estimated wspike against the time since the

last action potential (Fig 3E). The distribution of the data points is Gaussian for a given time

(Fig 3E, inset). Therefore we defined the time course of the spike-triggered adaptation after a

spike as the average of wspike versus time. The curve can be fitted by a single exponential that

yields an estimate of the time constant τw. The adaptation parameters fitted to data from

PCs were a = 36.1 ± 6.3 nS, b = 408.0 ± 128.0 pA, τw = 14.8 ± 6.3 ms (n = 7). The threshold

dynamic IV curve as the average over Vm. Error bars indicate SEM. Inset, the distribution of data points at Vm = -52 mV
is Gaussian. D. Fitting the dynamic IV curve F(V) = −Idyn/C with the EIF model function. Parameters are: resting
potential Em, membrane time constant τm, threshold potential VT, and spike slope factor ΔT. Error bars indicate SD.
Inset, capacitance determination by minimizing the variance of Im. E. Spike triggered adaptationwsp(t) plotted versus
time after the last spike. Error bars indicate SEM. Inset, the distribution of data points at t = 12 ms is Gaussian. F. The
spike-triggered adaptation is fitted to a single exponential, with time constant τw andwsp (t = 0) = b. Error bars indicate
SD.

doi:10.1371/journal.pcbi.1005000.g003
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parameters ΔT and V
T are not influenced by adaptation, and were therefore used as fitted with

the dynamic IV method.

The aEIF model reproduces Purkinje cell bistability and ISR
We used the empirically fitted adaptive exponential integrate-and-fire model (aEIF) to describe

simple spike firing of a Purkinje cell in response to noise steps of increasing amplitude (see Fig

4A). The parameters of the model are quantitatively fitted for each cell using the modified

dynamic I-V method as described above. All simulations were done for a parameter set repre-

senting a typical Purkinje cell.

The response of the model to current ramps showed clear hysteresis of the firing rate as a

function of the current (Fig 4C). The mechanism for this hysteresis is fairly straightforward:

the threshold for spike generation in the aEIF (and by extension in the PC) depends on the

adaptation variable [18]. When the mean of the input current is set in the hysteresis region, the

state of the cell becomes important for crossing the threshold. When the cell is in the spiking

state, the intersection with the threshold takes place for more negative input due to the asym-

metric shape of the attraction basin of the rest state (Fig 5A). This leads to longer interspike

intervals when the system moves from spiking to rest during the downstroke of the ramp com-

pared to the transition from rest to spiking during the upstroke.

Next we examined the firing rate responses of the model to current noise generated as in the

experiment (Fig 4B). The mean of the input was chosen to be within the hysteresis range to

reproduce the experimental conditions. When the mean input current was close to −150 pA

the model demonstrated strong inhibition of firing by the injected noise. While extremely weak

noise did not have much effect on spiking, noise with an optimal variance around 30 pA (that

is still relatively small) efficiently switched the system from spiking to the rest state. Once an

up-to-down transition occurred, the amount of current needed to elicit new spikes increased.

This was due to the asymmetrical shape of the basin of attraction for the stable fixed point (see

Section 5 below). Therefore, at the optimal noise variance the model preferentially remained in

the resting state for an extended period of time. Interestingly, the variance of the noise optimal

for spike-inhibition was unable to switch the model back from the rest state to the spiking

state, hence we observe virtually no spontaneous down-to-up transitions. Noise with a suffi-

ciently large variance was able to switch the system between spiking and rest. This variance-

dependent inhibition by noise current led to dependence between the mean firing rate and

noise variance that had a clear minimum (Fig 4B).

When the mean input current was outside the hysteresis region, this effect markedly

decreased, or no ISR was observed. In the range above the hysteresis region (input current

mean approx. −100 pA), this happened because the model was monostable, continuously spik-

ing and the input noise resulted in a weak modulation of the firing pattern. When the input

was below the hysteresis range, near −200 pA, the aEIF model preferentially stayed in the rest

state at low noise values and spiked only if the input noise had a large enough variance (i.e. the

spikes were directly evoked by the noise excursions above spike threshold).

To estimate the strength of ISR as a function of the model parameters and clarify the most

important parameter combinations we rescaled the model (see Materials and Methods). This

allowed us to significantly reduce the number of parameters. We estimated the bistability

region of the rescaled aEIF model in terms of the hysteresis range ΔI = Iup + Idown, i.e. the differ-

ence between threshold currents in the up-and-down ramp. The larger this difference, the

stronger was the bistability and the more ISR would be present (meaning that the minimum of

the firing rate vs. noise amplitude curve was deeper). According to our analysis the key parame-

ters of the model are the voltage-dependent adaptation and the adaptation time constant. We

ISR of Purkinje Cells
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Fig 4. Hysteresis and ISR of the aEIF model. A Voltage response of the aEIF model to Ornstein-Uhlenbeck current noise injection with
increasing amplitude. B. Mean firing rate of the aEIF model in response to current noise stimulation with amplitude σ and mean I (color
code). C. Hysteresis of the aEIF model. Top, voltage response to ascending (red) and descending (blue) ramp of current. Bottom,
instantaneous firing rate vs. instantaneous injected current. Color code is the same as in B. D. Parameter space of the rescaled aEIF
model, white region: type I excitability, gray region: type II excitability. The 7 fitted cells are in the type II region. E, F. Dependence of the

ISR of Purkinje Cells
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found a sublinear dependence of the range of bistability on the adaptation time constant T (Fig

4E) and an approximately linear dependence on the adaptation parameter A (Fig 4F). This

implied that the larger and the slower the adaptation, is the more prominent the difference

between Iup and Idown, and accordingly the larger the ISR range and the stronger the bistability.

In conclusion, ISR is present for a wide parameter range as long as the model exhibits type II

behavior.

Although the aEIF model can exhibit either type I or type II excitability depending on the

parameter values (A and T) [16], our experimental results from 7 Purkinje cells showed that all

measured neurons possess type II excitability in the model parameter space (Fig 4D). However,

the size of the hysteresis region and the amplitude of the minimal firing frequency varied from

cell to cell.

Note that while the aEIF model represents the bistability of simple spike output in Purkinje

cells, it is a simplified model which does not capture bistability of the membrane potential [8]

(Fig 4G), unlike a detailed biophysical model [22] (S5 Fig).

Bifurcation analysis of the aEIF model
To understand the behavior of the model related to ISR, we examined the phase space of the

model. The phase space of the model when the input mean is in the hysteresis (equivalently:

bistability) regime consists of two areas: the basin of attraction of a stable fixed point and the

spike generation area (Fig 5A). The drop-like set marked by the solid black line corresponds to

the basin of attraction of a stable fixed point, the rest state. When a trajectory initiates in this

region the system moves to the stable fixed point, e.g. the blue trajectory. Outside of this region

all trajectories are spiking, for example the red trajectory. After each spike the system is imme-

diately reset to Vreset, so that the attraction basin is not crossed (dashed line). This implies that

when the voltage of the model is transiently perturbed outside the droplet region, the model

will continue spiking. This kind of behavior constitutes the bistability in the model, i.e. the

coexistence of a spiking (limit-cycle) and a resting-state attractor for the same parameter set.

It is important to mention that the present model possesses discrete dynamics because volt-

age and adaptation variables are being artificially reset after each spike. In continuous models

displaying ISR, such as the Hodgkin-Huxley model [23], the basin of attraction of the stable

fixed point is also not crossed since after every spike the trajectory quickly moves to a close

neighborhood of the resting state due to activation of the potassium current (delayed rectifier).

To obtain a more general picture of the mechanism underlying bistability we performed a

bifurcation analysis of the model. Fig 5B shows the bifurcation diagram of the aEIF model (in

the V-I plane) in the subthreshold regime (i.e. the bifurcation of the steady states). There are

two fixed points corresponding to stable and unstable equilibria or fixed points in Fig 5B.

When the input current I gradually increases, the rest fixed point loses stability via an Andro-

nov-Hopf bifurcation (HB), which accounts for type II excitability. Due to the intersection of

the nullclines there are two unstable equilibria after the HB point which merge and disappear

at higher values of input current I (see insets). At higher input currents, there are no fixed

points and there is only a spiking regime in the model. We can see that in the input ranges

where ISR is present, the model has a stable equilibrium (a focus) and an unstable fixed point:

this is a clear signature of the bistability as the upper unstable point corresponds to the voltage

hysteresis size ΔI on the parameters T τw/τm (E) and A = a/gL (F). G. Membrane potential distribution in the aEIF model during spiking and
silent states.

doi:10.1371/journal.pcbi.1005000.g004

ISR of Purkinje Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005000 August 19, 2016 11 / 31



Fig 5. Bifurcation diagram and phase plane of the aEIF model. A. Phase-plane of the model. Gray lines are the null-clines of the model.
Drop-like set (black) corresponds to the basin of attraction of a stable fixed point. Red and blue trajectories correspond to rest and spiking
respectively (inset). B. Bifurcation diagram of the aEIF model. Solid and thin lines represent stable and unstable fixed points for different
values of I. Inset shows the intersection of the null-clines before and after the Andronov-Hopf bifurcation (HB) point. Point corresponds to
HB. C. Probability of spiking during the stimulation by noise with various means (compare Fig 4B). D, E, F. Phase plane of the model with
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projection of the separatrix (see above) between the rest and the periodic processions toward

the spiking threshold and the voltage reset.

To study the probability of transition to spiking we performed multiple numerical simula-

tions when the model was stimulated by current noise with various means and amplitudes

(variances). The resulting probability is shown in Fig 5C. The comparison of this spiking prob-

ability and the mean firing rate (Fig 4B) shows that these dependences have essentially the

same shape. The similarity indicates that the mean firing rate represents the balance of the

probabilities of down-to-up and up-to-down state transitions. When the mean current is

within the bistability range, there is strong inhibition of spiking near 30 pA noise variance (red

dot). For noise near 10 pA variance (green dot) the model preferentially stays in the spiking

basin of attraction. However, when the noise amplitude becomes large (60 pA; blue dot) we

observe random noise-driven crossings of the separatrix and transitions between spiking and

rest. For still larger values of noise variance there is an increase in spiking probability, as it

would be expected from a noise-driven threshold system. When the mean input current is

beyond or below the bistability region I = [−100 pA, −200 pA], there is no significant inhibition

of spiking (and so no ISR; Fig 5C, dashed and dotted lines). Fig 5D–5F show the trajectories in

phase space for mean current within the bistability range and three different values of noise

variance. In all cases initial conditions were initialized in the spiking region and then the model

was stimulated with noise input with various amplitudes. This illustrates directly the phenome-

non of ISR tuning as summarized in Fig 5C.

Functional role of ISR
Bistability can significantly influence the output spike pattern and the response of a PC to

external input. As discussed in the previous section, bistability and ISR can be explained using

an aEIF model, implying that only the spike generating mechanism and a slow voltage-depen-

dent adaptation are necessary for the phenomenon. In this section we investigate the role of

bistability for processing of a transient external input when different levels of synaptic noise

are present. Our goal is to examine if there is a link between ISR and the ability of the PC to

respond to aspects of the incoming transient input (i.e. the signal).

To highlight the role of ISR for the input-output relationship of PCs, the model was held in

the bistability range by setting the mean input current to –150 pA, and it received two addi-

tional inputs: ongoing synaptic current noise and a brief excitatory current pulse (the signal) at

a pre-set time (see Materials and Methods). To examine the input-output function of the

model, we computed peristimulus time histograms (PSTHs, Fig 6). Since we were interested in

understanding the role played by the ISR in the stimulus-induced transitions from the quies-

cent to the spiking state, initially the model was set in the rest state in all simulations.

In the case of low noise amplitude (Fig 6A), the model remained in the rest state before the

arrival of the excitatory signal input, and hence the spiking probability was zero before the sig-

nal input; the basin of attraction of the rest fixed point is larger than the fluctuations induced

by the noise. In this case the short synaptic excitatory input led to a clear sharp transition to

the spiking state (Fig 6A). Once initiated, this spiking was not effectively inhibited by low-

amplitude synaptic noise. Therefore the model remained tonically spiking after the application

the corresponding trajectories and voltage traces (inset) when stimulated by Ornstein-Uhlenbeck noise for 1000 ms with mean I = −150 pA
and noise amplitudes σ = 10 pA, 30 pA and 60 pA.

doi:10.1371/journal.pcbi.1005000.g005
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of the excitatory stimulus. In this situation the model acted as a latch, where the persistent spik-

ing indicated that a stimulus has occurred at some point in the past. Had the model started in

the spiking regime, the transient excitatory stimulus could switch it from spiking to rest (simu-

lations not shown).

Fig 6. ISR transforms brief inputs into long-term firing states depending on background noise. A, B, C. Characteristic voltage traces of the aEIF
model in response to a single synaptic excitatory input in the presence of different levels of background noise with amplitude σ = 10 pA, 30 pA and 60 pA.
Bottom, corresponding probability of spiking for a range of input amplitudes (color code). D. Maximal probability of state transition vs. synaptic input
amplitude for 3 background noise amplitudes, E. Decay time constant for the duration of the spiking state induced by a synaptic input of 100 pA. Remark:
two data points corresponding to σ = 0 pA, 100 pA are not shown because for σ = 0 pA the duration of stimulus-induced spiking state is infinite, while for
σ = 100 pA the duration of this state could not be distinguished from the firing baseline.

doi:10.1371/journal.pcbi.1005000.g006
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When the noise amplitude was optimal for inhibition (Fig 6B), the model remained mostly

in the rest state before application of the excitatory stimulus due to the ISR. Therefore the prob-

ability of spiking before the arrival of the signal input was small. When the transient stimulus

was applied it led to an increase of spiking probability and a finite number of periodic spikes

were triggered. After the end of the transient stimulus, the spiking probability gradually

decreased to zero due to noise-induced inhibition indicative of ISR. Hence at optimal ISR noise

amplitude, the model produced a transient spiking response to the transient stimulus, yet with

a duration of the response that was significantly longer than the stimulus itself. Moreover, the

probability of the response was related to the stimulus amplitude. Hence, the timing of the

input and its amplitude could be decoded from the PC spiking activity.

In the case of high noise amplitude the model randomly switched between spiking and rest

(Fig 6C). This led to constant baseline probability of ~0.5 for spiking even in the absence of the

stimulus. Once a stimulus was applied, it increased the probability of spiking compared to the

baseline. The spiking probability decayed back to the baseline more rapidly than in the case of

optimal noise amplitude for inhibition. Note that while there were spikes that were directly

triggered by the transient stimulus, these spikes are hardly distinguishable from random spik-

ing caused by the large amplitude noise. In this case the model acted neither as a latch nor is it

able to signal the transient stimulus amplitude with any fidelity.

We summarize the noise-dependent effect on the response to the transient signal by plotting

the peak probability of spiking as a function of the signal input amplitude, a signature of the

input-output relation of the model (Fig 6D). At low noise amplitude the input-output relation

is close to all-or-none, but with noise amplitude in the optimal ISR range, the response

becomes more proportional to the input amplitude (a flatter sigmoid). Above the ISR range,

the input-output relation is almost flat (little information in the output about the input). For

the optimal noise amplitude (red curve Fig 6D) we see a sigmoid response behavior depending

on the input amplitude. Below ~50 pA the model does not respond to the excitatory input by

spiking because the input is not strong enough to bring the model out of the rest state. The

peak probability saturates after ~125 pA amplitude. This means that beyond this value the

model becomes insensitive to the amplitude of the input and will respond with the same

amount of spiking even for larger amplitudes of the excitatory input.

Next we study the duration of a spiking state caused by signal input stimuli. Fig 6E shows

the decay time constant of the spiking probability triggered by the transient input signal (Fig

6A–6C). For low values of synaptic noise, σ = 10 pA the model spikes for long periods of up to

>1000 seconds. As noise amplitude increases, it significantly shortens the duration of the spik-

ing induced by the stimulus. The reason for this effect is the following. As the noise variance

approaches the ISR region (30 pA variance; green asterisk Fig 6E), the lifetime of the spiking

state decreases, because the noise turns off the stimulus-evoked persistent firing after which the

model stays quiet. When noise increases beyond ISR-optimal variance, the model starts gener-

ating spikes that are not evoked by the stimulus (Fig 6E, blue asterisk). This leads to lower val-

ues of the decay time constant as the model is switched ever more quickly between spiking and

silent states by the noise.

We suggest that this may be a viable mechanism by which synaptic noise may control the

duration of spiking responses induced by the external stimulus. In the low noise regime, spik-

ing induced by the external stimulus would lead to long-lived spiking states, while in the pres-

ence of progressively stronger synaptic noise, the duration of the spiking state would become

progressively shorter. In general, the probability of spiking in a PC population receiving the

same single stimulus decays exponentially, but with different time constants set by the noise

amplitude. Thus, in the optimal ISR noise regime the cell acts as a quasi-linear filter of the

input, while in the low noise regime it acts as a memory device. Changing noise variance
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rapidly switches the cell from one mode to the other. Thus, the amplitude of the synaptic noise

provided by ongoing parallel fiber input could provide a rapid mechanism to set the duration

of a spiking state caused by external signal stimuli, such as a synchronous volley of parallel

fiber input.

ISR optimizes information transfer
We showed in the previous sections that ISR significantly modulates the persistent and stimu-

lus-evoked firing in the experiment and the quantitative model of a PC. Here we examine how

ISR affects the transfer of information across a PC for a series of input signals similar to those

shown in Fig 6. To do so we take advantage of our quantitatively based aEIF model. The input

for these numerical experiments consisted of synaptic noise with a parametrically adjusted

amplitude and a Poisson signal spike train of 1 Hz mean rate. The noise input could represent

spontaneous activity in the parallel fiber population, filtered by the dendritic tree of the Pur-

kinje cell, while the signal input could represent sensory-driven clusters of synchronously

active parallel fibers [24]. Depending on the synaptic noise amplitude, the state of the PC

model can switch between periodic spiking (up state) and rest (down state) in response to the

incoming inputs (Fig 7A–7C).

In the case of low variance noise, with the cell starting in the down state, the synchronous

synaptic input can trigger an up state, which persists until the next one (Fig 7A). Given that the

cell is in the up state, this next input then provokes the transition to the down state. This up-

down transition will depend on the proper timing (or the relative phase of the spiking trajec-

tory of the model) of an input: most efficient were inputs that were timed at a phase when the

trajectory is close to the basin of attraction of a stable fixed point (Fig 5A). The down-up transi-

tions did not depend on the specific timing of the input because the trajectory stayed in the

resting state basin of attraction and did not have any definable phase in its noise driven fluctua-

tions. Thus, a series of signal inputs caused continuous switching of the system back and forth

between up and down states (Fig 7A).

When the noise variance was optimal for ISR (Fig 7B), the cell demonstrated a characteristic

type of behavior. Due to the noise-induced inhibition of sustained firing, the model was in the

resting state most of the time. Even when the initial conditions were chosen in the up state, the

model quickly switched to the down state (Fig 6B). Once the external input was present, it

brought the cell to spiking and the model stayed in the up state for ~1 sec (decay time constant,

Fig 6E) followed by a transition to the down state because of the ISR effect. Thus, ISR ensured a

resting baseline with minimal spurious spiking before the subsequent external inputs, making

the firing output sparse and causing the onset of spiking to be related to the onset of the signal

stimuli.

In case of strong synaptic noise, the cell is switching between up and down states even in the

absence of external stimuli (Fig 7C). In this case an external stimulus leads to an increased

probability of spiking compared to the baseline (Fig 6C). However, these additional spikes are

rare compared to random firing caused by noise (Fig 7C). To study the efficiency of informa-

tion transfer of the PC model we measured the mutual information rate (MI) between the

input and output spike train for different levels of synaptic noise variance and input ampli-

tudes. Fig 7D shows MI for different input amplitudes ranging from subthreshold (0–90 pA) to

suprathreshold (100–150 pA) as a function of noise amplitude. A peak in MI appears around

σ = 30 pA for a range of input amplitudes. This corresponds to the ISR noise variance optimal

for inhibition. For the subthreshold input amplitudes this peak is global, while for the supra-

threshold amplitudes it becomes local. It is interesting to note that MI has a local peak at ISR

also for higher signal input rates (5 Hz; S4 Fig).
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The presence of the MI peak for subthreshold input is the consequence of the classical sto-

chastic resonance (SR) effect that has been extensively studied [25]. The contribution of ISR to

this effect is the following. When the noise amplitude is optimal for inhibition, it provides a sta-

ble down state for a cell in the absence of an input. In this case the incoming input is amplified

by noise due to the SR effect and will trigger spiking, i.e. produce an up state. Then due to the

influence of ISR this stimulus-induced spiking will terminate before the next input. This leads

to a strong temporal association between the input and output spike trains. Each input spike

will correspond to a ~1 second (decay time constant, Fig 6E) spike train in the output with a

high probability. After each input spike the cell will return to the down state due to ISR. This

leads to the MI peak near the noise amplitude optimal for the ISR.

In the case of suprathreshold input, the MI was maximal for zero noise variance because a

strong input could reliably trigger up and down transitions. In this case the noise plays mostly

Fig 7. ISR leads to local optimum of mutual information between the input and output spike train. A, B, C. Voltage traces (top) of the aEIF model in
response to series of excitatory synaptic inputs (middle, amplitude Am = 100 pA), in addition to background stimulation by noise with amplitude σ = 10
pA, 30 pA and 60 pA (bottom). D. Mutual Information (MI) of the input and output spike train of the aEIF model. E. MI as a function of the decay time
constant (duration of a spiking state). Remark: two data points corresponding to σ = 0 pA, 100 pA are not shown (as in Fig 6E). For σ = 0 pA the duration
of the stimulus-induced spiking state is infinite, while for σ = 100 pA the duration of this state could not be distinguished from the firing baseline.

doi:10.1371/journal.pcbi.1005000.g007
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a disruptive role because it adds additional spurious output spikes unassociated with the input

stimuli. However, in the presence of ISR the number of these spikes is smaller since synaptic

noise prepares the baseline, setting the spontaneous spiking activity close to zero, thereby mak-

ing the input and output spike train temporally associated. Therefore we observe a local peak

of MI associated with ISR even for the suprathreshold input amplitudes.

To study the relationship between the duration of a spiking state and MI we combine the

time constant estimation (Fig 6E) with our MI measure (Fig 7D). As shown in Fig 7E, a peak

near 1 second spiking duration is present for all input amplitudes, which is the consequence of

ISR. Similar to Fig 7D, this MI peak is global for the subthreshold input and becomes local for

suprathreshold input. For subthreshold input, this means that the synaptic noise amplitude

optimal for ISR corresponds to the optimal duration of the spiking state for information trans-

fer measured by the output spikes, and for both types of input, long durations of the spiking

state can coexist with high rates of information transfer.

Discussion

We have characterized the effects of noise on the dynamical response regimes of cerebellar Pur-

kinje neurons. We showed experimentally that simple spike firing in Purkinje cells can be effi-

ciently inhibited by noisy input current if its variance is within a specific range, a phenomenon

called inverse stochastic resonance (ISR). We then used an adaptive exponential integrate-and-

fire (aEIF) model to quantitatively fit experimental data on subthreshold and spiking behavior

of individual Purkinje cells using a modified dynamic IV method. For each cell, the resulting

aEIF models exhibited parameter combinations generating bistable behavior. We found a good

qualitative match between ISR measured experimentally in our Purkinje cells and in the aEIF

model in terms of the hysteresis of the relation between firing rate and current, and the shape

of the ISR curve. Analysis of the model revealed that ISR can be explained by the coexistence of

a spiking and a resting state attractor. Using numerical simulations we showed that synaptic

noise allows the Purkinje cell to switch between spiking up and silent down states, with their

durations determined by the variance of the synaptic noise input. Our simulations further

showed that ISR allows the PC to respond to transient inputs like a tunable filter, whose time

constant can be set by the noise variance in a wide range, from a memory-toggle mode to a

rapid filter mode. Finally, we show that a noise variance that is optimal for ISR leads to a local

maximum of mutual information rate between the input and output spike train. These findings

show that ISR is present in Purkinje cells and suggest possible roles for ISR in information pro-

cessing in the cerebellar cortex.

Purkinje cells display ISR
Traditionally, noise has been seen as enhancing neural responses by increasing the probability

of crossing the spiking threshold, and increasing the reliability of the spike train [26]. Further-

more, a non-linear relationship was found between various measures of signal transmission

(usually for a subthreshold stimulus) and the noise amplitude, a phenomenon known as sto-

chastic resonance (SR). Much work on SR has identified the various stimulus and neuronal

conditions for its existence, and potential functional roles (for a review see [25]).

A related, yet distinct phenomenon, where noise selectively decreases the probability of

spiking, or converts persistent spiking activity into a short-lived transient followed by long-

term quiescence has only recently been identified. This effect has become known as inverse sto-

chastic resonance [27]. Initially described in bistable networks of spiking neurons [12], this

phenomenon has subsequently been observed and analyzed in single neuron models, including

in spatially extended ones [14]. At optimal noise amplitude, the duration of the transient
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intrinsic activity is minimized as the noise effectively quenches the neuronal response. Model-

ing work suggested that bistability is a necessary condition, while simulations of compartmen-

tal models proposed that ISR results from noise injection at the site of spike generation.

Further work showed that colored noise is more efficient at producing ISR when compared to

white noise [13], thereby hinting that synaptic noise may be particularly efficient at producing

ISR in bistable neuronal systems. To our knowledge, the functional significance of ISR has not

yet been analyzed, with the exception of [28] where ISR was suggested to play a role in limiting

the duration of pathological working memories. Experimentally, signatures of noise-induced

quenching of periodic activity were observed in the classical squid axon preparation [15],

where noise injection effectively stopped repetitive spiking, yet no tuning properties of the

noise amplitude were noted.

In this work, to our knowledge, we observed for the first time an experimental example of

ISR in a neuronal preparation. One might ask the question of how widely are we expected to

see this phenomenon? As we alluded above, the dynamical requirement for ISR, aside for vary-

ing noise levels, is the co-existence of a stable quiescent state and a repetitive firing limit cycle.

One prominent dynamical path to such bistability is the subcritical Hopf bifurcation. This

bifurcation is the basis for the so-called type II excitability, with the Hodgkin-Huxley model of

the squid giant axon being a classical example. Hence, we might claim that any neuron that

shows type II excitability should potentially exhibit ISR. In fact, Paydarfar et al. [15] recorded

responses of a squid giant axon to noise injections and found that additive noise could quench

repetitive firing. This is precisely a central signature of ISR. However, they did not look for

noise to firing tuning and hence did not show ISR explicitly. What are the other examples of

neurons that are likely to show ISR? Two cell types come to mind: the fast spiking interneurons

and the cochlear hair cells. In an in vitro study of cortical fast spiking neurons, Robinson and

colleagues [29] found clear signatures of type II behavior: a discontinuity in the f-I curve, a

periodic voltage wobble around the resting potential (indicative of a stable focus) and an inter-

mittent firing of periodic spikes (interleaved with periodic voltage oscillations) at somewhat

depolarized potentials. All of these suggest a subcritical Hopf-driven excitability and hence we

are likely to observe ISR in these cells. Cochlear hair cells have been argued to be a clear exam-

ple of a cell that is governed by a Hopf bifurcation [30, 31]. While some of these cells appear to

show signatures of a supercritical Hopf, a significant proportion of them have behavior com-

patible with the subcritical Hopf (hence should show hysteresis and bistability) [30, 32, 33].

We would thus venture to speculate that a subpopulation of cochlear hair cells should show

ISR, and perhaps that a properly tuned noise maybe be potentially remedial for auto-emitted

inner ear noise. Furthermore, Stiefel et al. [34] showed that with a sufficient level of the slow

voltage dependent muscarine-sensitive potassiumM-current, cortical pyramids show type II

behavior and that the neuromodulator acetylcholine may toggle these cells from type II to type

I. Hence it would be intriguing to test the subset of cortical pyramids with strong M-current for

ISR. In summary, ISR should be observable in any cell type that shows bistable resonator

behavior and should not be observed in cells that act as integrators (where we might expect

standard SR).

In this study we present several lines of experimental evidence for ISR in cerebellar Purkinje

cells. We found that simple spike firing in these neurons can be efficiently inhibited by current

noise injections to the soma when the mean of the input current is in the subthreshold range

(Fig 1D and 1E). To quantify this effect we measured the average firing frequency as a function

of the input noise variance. We found the characteristic minima of the firing rate for particular

noise amplitudes, which are optimal for ISR in different neurons (Fig 1B and 1C). Notably we

observed that all Purkinje cells we studied displayed ISR (Fig 1C).
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To identify the range of the mean input current for which ISR can be observed, we applied a

symmetric current ramp protocol (Fig 2A and 2B). We found that the area of hysteresis

between the ascending and descending instantaneous f-I curves indicates the range of mean

currents at which ISR is present (Fig 1D). This hysteresis, which can be defined as the differ-

ence in currents (ΔI) between the first and last spike in response to the symmetric ramp, mea-

sures the degree of bistability of a particular cell. We found a strongly positive correlation

between the degree of bistability of an individual Purkinje cell and the noise amplitude that is

optimal for ISR in this cell. This argues for a strong link between ISR and the bistable behavior

of Purkinje cells.

This hysteresis is also the reason why the occupancy of up and down states during noisy

current injection is history-dependent (Fig 1A). Thus, simple noise injection protocols such as

the one in Fig 1A cannot cleanly separate the steady-state ISR effect and the memory effect. We

therefore switched to a noise injection protocol in which noise variance continuously changes

(S1E Fig). The results obtained by brief constant-variance noise injections (Fig 1A) and the

continuous noise protocol show a similar dependence of ISR on noise variance (S1B, S1D and

S1F Fig).

The visibility of bistability in firing patterns of Purkinje cells recorded in vivo varies depend-

ing on experimental conditions, animal species and different regions of the cerebellum [35, 36].

There is evidence for up and down states in ketamine-anesthetized rats [37] and in awake

behaving cats [9]. The presence of patterns and pauses in Purkinje cell simple spike activity in

vivo could be interpreted to result in part from their bistable behavior [38]. On the other hand,

recordings from Purkinje cells in the lateral and intermediate regions of the cerebellum con-

cerned with arm movements do not show obvious up and down states [39, 40].

One possible solution of this controversy is that different degrees of visibility of Purkinje

cell bistability can be explained by different neuromodulatory states in the cerebellum [37]. For

example, serotonin can transform a tonically spiking Purkinje cell into one that displays bist-

ability [4] whereas corticotropin-releasing factor can trigger down-to-up state transitions [41].

There is evidence that other biophysical mechanisms could regulate Purkinje cell bistability:

for example, Bergmann glia could change the extracellular K+ concentration by Ca2+-depen-

dent K+ uptake [42], thus modulating Purkinje cell excitability. Another possible explanation

is that the properties of Purkinje cells could be different in various cerebellar zones [36, 43].

Also, our data demonstrates that Purkinje cells can exhibit various amounts of bistability

(Figs 2C and 4D), which may represent diversity both within and across different zones of the

cerebellum.

As we show in this study, changing the mean and the standard deviation of the synaptic

input current is a very fast way to move Purkinje cells in and out of the range of bistability (Fig

1D). Thus, even if bistability is not always engaged and overtly visible in vivo [35], it is never-

theless likely that the underlying mechanisms are continuously present, and can influence Pur-

kinje cell firing and network function in the cerebellum ([35], reply).

ISR in the Purkinje cell model
Several detailed Purkinje cell models capturing the membrane properties as well as the anatom-

ical structure of these neurons have been published, e.g. [21, 22]. Detailed models can exhibit a

high degree of realism: for example, the model of De Schutter and Bower [22] correctly predicts

ISR in Purkinje cells (S3 Fig), including the membrane potential distributions in the spiking

and silent states (S5 Fig), while simple models could not capture this property (Fig 4G). Usually

detailed models have numerous state variables describing the membrane potential and voltage-

gated conductances in multiple compartments. The advantage of their biological realism is
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balanced by the large number of variables and parameters they contain. This high dimensional-

ity does not allow a straightforward application of dynamical system theory to gain insight into

the mechanisms of excitability, which makes the analysis of these models at times difficult.

In this research we therefore chose a reduced minimal model, the adaptive integrate and fire

(aEIF) model, to study ISR and bistability. The advantage of this model is that it is well studied

in terms of dynamical system analysis [16] and further relates to the normal form reductions of

higher-dimensional models (including those with multiple compartments), making it in a

sense a canonical model of spike generation. This allows us to use the dynamical system

approach to analyze the model behavior. Despite the relative simplicity of the aEIF model, the

estimation of the model parameters from experimental data is still a challenging task. Recently,

the dynamic IV method [18] has been described to identify the parameters of aEIF models

from intracellular recordings. Although it has not been used for spontaneously firing neurons,

such as Purkinje cells, we show that it can be successfully applied to these neurons after neces-

sary modifications of the dynamic IV method (see Materials and Methods).

We found that an aEIF model with the parameters provided by a modified dynamic IV

method allows us to qualitatively reproduce ISR and the hysteresis of the firing rate (but not

the bistability of the membrane potential [8]; S5 Fig) of the Purkinje cell. Remaining quantita-

tive differences are likely to be due to the dynamic IV procedure, which does not allow us to

estimate parameters related to the dendrite. This might be negligible for neurons with a rela-

tively small dendritic tree [18], but the large dendritic tree of Purkinje cells strongly influences

their responses even to somatic inputs [21, 44]. To compensate for this issue we have included

a passive dendrite in the aEIF model and estimated the dendrite parameters (S2 Fig ISR and

dendrite filtering, see S1 Text). We have found that the ISR effect is still present in the model

with a passive dendrite, but the shape of the ISR curve becomes wider, which makes the model

more consistent with the experimental data. We argue that using a two-compartment aEIF

model would allow a quantitative match of the experimental ISR curve, but in a two-compart-

ment aEIF model it is more difficult to precisely estimate the necessary parameters from

somatic intracellular recordings.

The aEIF model has a very rich repertoire of dynamical states and can be tuned to reproduce

the spiking behavior of many different neurons [18]. The relevant property for bistability and

ISR is type II excitability, due to the presence of an Andronov-Hopf bifurcation. This bifurca-

tion is responsible for the transition from the rest state to the spiking state and backwards. Cru-

cially, it allows the model to have a spiking and a resting state attractor for the same parameter

set. We show that the bimodal behavior of Purkinje cells as well as ISR can be explained by this

bistability of the aEIF model solutions. When the initial conditions are set inside the rest state

attractor, the model will come to the resting state, while in all other cases the model will contin-

uously generate spikes (Fig 5A). The key parameter for bistability in the model is the mean of

the input current. If it is in the bistable region of the f-I curve, then the model displays bistabil-

ity most clearly in the presence of noise (Fig 4C).

When the model is in this regime, synaptic noise of particular amplitude is able to move the

system preferentially to the basin of attraction of the rest state. This happens because the shape

of the basin of attraction provides non-symmetric probabilities for up-to-down and down-to-

up transitions. In the case of ISR, the probability of down-to-up transitions becomes very low,

reducing the occupancy of the spiking state. This leads to a “latch” effect—once the system

moves to the basin of attraction of the rest state, it cannot go back because the noise amplitude

is not strong enough. Essentially this mechanism constitutes the main explanation for the ISR

effect. Thus, ISR is possible only if the model is bistable. Rescaling of the model revealed the

key parameter combinations responsible for bistability and ISR, such as adaptation and its

timescale (Fig 4D, 4E and 4F).
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Functional consequences of ISR
The function of cerebellar Purkinje cells is often considered in the context of adaptive filter

models of the cerebellum [45, 46]. A key property in this framework is the linearity of the

input-output relation of Purkinje cells. Our data shows that above the minimum firing fre-

quency, the relationship between the input current and the output firing rate is highly linear

(Fig 2B). This is in line with previous findings [47], as well as with the linear phase response

curve behavior of Purkinje cells [48, 49]. On the other hand, the step-linear shape of the f-I

curve, which is a hallmark of the type II excitability of Purkinje cells, and the binary nature of

the bistable behavior underlying ISR appear to contradict the idea that Purkinje cells perform

linear transformations of their inputs. Since we show that Purkinje cells can operate in both

regimes depending on the input current (Fig 2B), and the bistable behavior is stochastic, we

suggest that this apparent contradiction can be resolved at the level of populations of Purkinje

cells. We show that the size of the region of bistability varies in different Purkinje cells, as does

the absolute position of the steps in the f-I curve. At the same time, the functional conse-

quences of ISR on spike output will be felt over a wide range of values of the mean and variance

of the input current in a given Purkinje cell (Fig 1D). It is also likely that different Purkinje cells

in a population receive background synaptic input with different mean and variance, for exam-

ple due to variability in the local structure of the feedforward inhibition circuit represented by

molecular layer interneurons. This diversity in the intrinsic properties and the synaptic input

in a population of Purkinje cells could result in an approximately linear input-output relation

at the population level.

In addition to this approximate linearity, behaviorally relevant adaptive filters need to

implement time constants that are much longer than the typical membrane time constants of

Purkinje cells or other cerebellar neurons. The up and down states with their potentially long

lifetimes could provide the necessary mechanism for filters with long time constants. Further-

more, our model suggests that the lifetime (in a single Purkinje cell) or the filter time constant

(in a population of Purkinje cells) can be regulated by changing the variance of the input noise

(Fig 6E). An alternative interpretation of the potentially long lifetimes of up and down states is

that they could implement a form of short-term memory. This is in line with a recent study

[50] which showed that bistability of Purkinje cells can increase their pattern storage capacity.

Tunable Purkinje cell bistability could also be involved in generating the conditioned responses

observed in [51].

We propose the following mechanism of up and down state transitions in ISR. When synap-

tic noise is optimal for inhibition (Fig 6B), the Purkinje cell preferentially stays in the resting

state in the absence of specific signal stimuli. Once the neuron receives a strong external signal

input, it brings the cell to the spiking state. The duration of this induced spiking can last up to

several seconds, which is much longer than the membrane time constant of the Purkinje cell

(Fig 6B). Eventually, the cell stops firing due to ISR and thus prepares for the next signal input.

Thereby, when the noise variance is optimal for ISR, the Purkinje cell acts as a filter with a long

time constant because a brief external input can trigger a long-lasting up state. In this case,

input noise optimal for ISR plays two roles. First, it prepares the baseline for the next input due

to the inhibition of spiking. Second, it sets the mean lifetime of the up state, and therefore the

time constant of the filter.

For noise amplitudes below the ISR peak, the lifetimes of the up and down states increase

further, leading to a different mode of operation of the Purkinje cell. In this mode, most transi-

tions from up to down and from down to up are triggered by external signal inputs (Fig 6A). In

this regime, the Purkinje cell acts like a toggle switch [8]. Thus, the amount of synaptic noise

provided by parallel fiber input can tune Purkinje cell responses in a wide range between a
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toggle and a linear filter mode. This mode switch could occur at a very fast time scale, since the

noise level in the parallel fiber population can change quickly. However, once the synaptic

noise variance becomes too large (Figs 6C and 7C), most transitions between spiking and rest

are triggered by the noise, and the Purkinje cell cannot reliably perform either of the two

modes of operation.

To quantify how different input noise levels affect the information transmission capacity of

the Purkinje cell, and to examine the potential role of ISR in information processing in the cer-

ebellum, we estimated the mutual information between a signal input spike train and the out-

put spike train of the Purkinje cell model at different levels of noise variance. We found that for

the noise amplitude optimal for ISR, the mutual information rate has a local optimum, indicat-

ing that synaptic noise of particular amplitude can significantly enhance the transmission of

information across the Purkinje cell to downstream neurons. In summary, ISR could provide a

mechanism for setting both the time constants of temporal filters implemented by the firing of

a Purkinje cell population, and the maximum rate of information that Purkinje cells can pass

on to downstream targets.

Materials and Methods

Ethics statement
This study was performed in strict accordance with UK Home Office regulations. Experiments

were carried out under Project License 70/7833 issued by the Home Office, which was issued

following local ethical review (UCL AWERB), and under the relevant Personal Licenses issued

by the Home Office.

Slice preparation and patch-clamp recording
250–300 μm thick parasagittal slices of cerebellar cortex were made from 18–24 day old Spra-

gue Dawley rats by standard techniques [52]. Briefly, rats were anaesthetized with isoflurane

for several minutes and decapitated in accordance with Home Office regulations. Slices were

cut using a vibrating slicer (Leica VT1200S), after z-axis vibration was minimized to< 0.1 μm.

The slices were incubated in carbogen-saturated ACSF at 34°C for 30 min and then at room

temperature for at least 30 min before use within four hours. Standard ACSF contained (in

mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 NAHCO3, 1.25 NaH2PO4 and 25 D-glucose

(final osmolarity 310 mmol/kg) and bubbled with carbogen (95% oxygen, 5% carbon dioxide),

giving a pH of 7.4. Slices were placed in a standard ACSF-perfused bath at 32–34°C and visual-

ized with an upright microscope (Zeiss Axioskop) using infrared-differential interference con-

trast optics, optimized as described previously [52]. Whole-cell current-clamp recording were

made from the soma using Axoclamp 2A, 2B or Multiclamp 700B amplifiers. Glass pipettes

(4–7 MO) were filled with intracellular solution containing (in mM): 130 K-methanesulfate, 10

HEPES, 7 KCl, 0.05 EGTA, 2 Na2ATP, 2 MgATP and 0.5 Na2GTP, titrated with KOH to pH

7.2. Compensation for the access resistance of the pipette and for the capacitance of the pipette

were performed and monitored throughout the recording. Recordings were abandoned when

the resistance exceeded 40 MO. The recorded potential and current were filtered at 3 or 10 kHz

and digitized at 50 kHz. Single patch-clamp recordings were performed using the electrode for

both injection of current and recording of the voltage, for the ISR and hysteresis experiments.

For the dynamic IV method and fitting parameters to the model, simultaneous double patch-

clamp recordings were made at the soma, using one electrode to inject the current and one to

record the voltage. The current and voltage were recorded by the amplifier and acquired by

using Axograph (www.axograph.com/). The traces were then imported into Igor Pro for

analysis.
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Bistability and ISR analysis
To test for inverse stochastic resonance (ISR), current injection protocols were composed of

series of 0.5 − 1 s periods of noise followed by 0.5 − 1 s period without noise. The injected noise

waveforms were generated by an Ornstein-Uhlenbeck process:

t
dx

dt
¼ m� x þ

ffiffiffiffiffiffiffiffiffi

2s2t
p

Nð0; 1Þ ð4Þ

where μ is the mean, σ the variance, and N(0,1) a Gaussian white noise process with zero mean

and variance equal to 1. For these protocols, the time constant was τ = 2 ms, the noise ampli-

tude σ varied in the range of 0 − 500 pA, with a step size of Δσ = 20, 50 or 100 pA. The mean

changed with the holding current Iin = −500 − 0 pA, and was adapted for each cell to explore

particularly the region of bistability. The resulting firing frequency f during the noise injection

period and the mean noise amplitude σ were used to generate the ISR curve. All the curves

measured with a holding current in the bistability range or higher (with non-zero firing rate at

zero noise amplitude f(σ = 0) 6¼ 0) were averaged and smoothed with a Gaussian filter with a

width similar to the step size in noise amplitude (10 or 20 pA). The optimal noise amplitude

for reduction in firing σopt was obtained for each cell as the minimum of the ISR curve, and the

step noise amplitude of the stimulation provided the measurement error.

As the bistability of Purkinje cells is history dependent, it was necessary to measure the ISR

curves in comparable conditions (silent or firing). We injected a noise waveform with linearly

increasing and decreasing amplitudes (0.5 nA/s, S1E Fig). We analyzed the firing frequency in

intervals of 200 ms, and separated intervals where the cell was firing in the previous intervals,

and intervals where the cell was previously silent. For each category, we obtained the ISR curves

by performing a running average (bin size = 20 pA, S1F Fig).

To measure the f-I curve, cells were hyperpolarized to -65 mV, a series of 30 step currents

were injected (1 s, 50 pA increment), and firing frequency was calculated over the 1 s periods.

To characterize the bistability of Purkinje cells, slow ramps of current were injected (0.9 nA/s),

ascending for 1 s and descending for 1 s, and repeated 10 times. The cell was first hyperpolar-

ized to -65 mV to stop firing. For each spike, the instantaneous frequency and the instanta-

neous injected current was calculated. The range of bistability was quantified as the difference

between the frequency of the first spike (during the ascending ramp of current, fup,) and the

last spike (during the descending ramp fdown) Δf = fup − fdown, and as the difference of injected

current for the first and last spike ΔI = Iup − Idown.

The dynamic IV method
The dynamic IV method developed by [18] is based on a simple representation of neuronal

biophysics, where subthreshold injected current (Iin) is split into ionic transmembrane current

(Im) and capacitive current (IC). In addition, the neuron receives noisy current input (Inoise)

from background synaptic activity and other sources of high frequency noise. This can be rear-

ranged to find the ionic current flowing through the neuronal membrane. Thus, by injecting a

rapidly fluctuating current Iin to a neuron, the relationship between ionic current and voltage,

during physiological spike generation, can be found.

ImðV ; tÞ ¼ IinðtÞ � C
dV

dt
þ Inoise ð5Þ

The injected noise current was the sum of two waveforms generated by Ornstein-Uhlenbeck

processes (Eq 4), with time constants τfast = 3 ms, τslow = 10 ms (mimicking excitatory and

inhibitory synaptic currents [18]). Two different amplitudes of noise were used, σ = 153 pA or
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σ = 235 pA, and the mean was adapted according to the injected holding current. Individual

protocols were composed of 500 ms without noise followed by 20 s of the noise waveform. The

membrane potential V was recorded in response to the noisy current injection, and the ionic

transmembrane current Im was calculated by subtracting the capacitive current IC from the

injected current Iin (Eq 5). The after-hyperpolarization and the initial repolarization phase of

each action potential (10ms after the peak) were excluded from the analysis. As the distribu-

tion of the data points is approximately Gaussian for a given voltage, the dynamic IV curve can

be defined as the average of Im versus V (Fig 3C):

IdynðVÞ ¼ mean½ImðV ; tÞ� ð6Þ

The capacitance (used to evaluate the capacitive current) was estimated by minimizing the

variance of Im within individual voltage bins. Eq (5) can be transformed by inserting the esti-

mated capacitance Ce:

Iin
Ce

� dV

dt
¼ Im

C
þ 1

Ce

� 1

C

� �

Iin �
Inoise
C

ð7Þ

The variance of this function is:

var
Iin
Ce

� dV

dt

� �

V

¼ var
Im
C

� �

V

þ 1

Ce

� 1

C

� �2

var½Iin�V þ var
Inoise
C

� �

V

ð8Þ

When 1

Ce
� 1

C

� �

becomes zero, i.e. the estimated capacitance is correct, this variance is

minimized.

The dynamic IV curve can be transformed into an integrate-and-fire (IF) type neuronal

model, with voltage dynamics of the type shown in Eq (9), where F(V) is a non-linear function

of voltage:

dV

dt
¼ FðVÞ þ IðtÞ

C
ð9Þ

F(V) is related to the dynamic IV curve by Eq (10):

FðVÞ ¼ �
IdynðVÞ

C
ð10Þ

The experimentally derived −Idyn(V)/C curve can be fitted with a function F(V) describing

an exponential integrate-and-fire (EIF) model [19], containing a linear part and an exponential

rise to the action potential (Fig 3D):

FðVÞ ¼ 1

tm
EL � V þ DTexp

V � VT

DT

� �� �

ð11Þ

The parameters are membrane time constant τm, resting potential EL, threshold potential VT,

and spike slope factor ΔT.
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aEIF model
The exponential integrate-and-fire model with adaptation [18] is defined by:

C
dV

dt
¼ �gLðV � ELÞ þ gLDTe

V�VT

DT � wþ IinðtÞ ð12Þ

tw
dw

dt
¼ aðV � ELÞ � w ð13Þ

If V> Vspike then V!Vr and w! w + b

where C is the capacitance, EL is the leak reversal potential, gL is the leak conductance, V
T is

the threshold potential, ΔT is the spike slope factor, Vr is the membrane potential reset after a

spike, w is the adaptation current, a is the level of subthreshold adapation, τw is the adaptation

time constant and b is the adaptation current reset after a spike, Vspike is the conditional thresh-

old for spike generation (Vspike = 0).

Parameter fitting for the aEIF model
Fitting electrophysiology data of Purkinje cells to an aEIF model was achieved using a combi-

nation of the dynamic IV method and the procedure used for fitting an aEIF model to synthetic

data described in [20].

Passive parameters. A good estimate of the membrane time constant τm of the Purkinje

cell is obtained by fitting the late phase of the voltage response to a short current pulse (0.5 ms,

1 nA) [21] (S2 Fig, see S1 Text). As the aEIF remains a single compartment model, we use the

approximation of the capacitance obtained using the dynamic IV method (although not opti-

mal, as the somato-dendritic coupling of Purkinje cells is high). The reversal potential EL is

also best estimated using the dynamic IV method, as the cell is spontaneously active. We esti-

mate the value for the leak conductance at the soma and proximal dendrite using the mem-

brane time constant and the capacitance according to gL ¼ C
tm

.

.

Subthreshold adaptation. The subthreshold adaptation parameter a was determined as

follows: when the potential V is fixed, the adaptation current w is close to a(V − EL). Therefore

the linear part of the dynamic IV curve (apart from the exponential term) is:

Idyn ¼ ðgL þ aÞðV � ELÞ ð14Þ

We obtain the parameter a by subtracting the leak conductance gL from the slope fitted to the

linear part of the dynamic IV curve.

Spike-triggered adaptation. To determine the contribution of spike-triggered adaptation,

we use the voltage response to noise injection in a similar way as for constructing the dynamic

IV curve. Far away from threshold, the adaptation current is:

w ¼ �Iin � C
dV

dt
� gLðV � ELÞ ð15Þ

This estimate is composed of the spike-triggered adaptation wspike and the subthreshold adap-

tation a(V − EL). We can express wspike as:

wspike ¼ �Iin � C
dV

dt
� ðgL þ aÞðV � ELÞ ð16Þ

We plotted the estimated wspike against time since the last action potential (Fig 3E). The distri-

bution of the data points is approximately Gaussian for a given time. Therefore we defined the
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time course of the spike-triggered adaptation after a spike as the average of wspike versus time.

The curve can be fitted by a single exponential yielding an estimate of the time constant τw and

the value of the spike-triggered adaptation reset b, with wspike(t = 0) = b (Fig 3F).

Simulations
All simulations were done in Matlab R2014b using the forward Euler method with an integra-

tion step of 0.1 ms. We confirmed that this integration step produces stable numerical results.

The bifurcation and phase-plane analyses were carried out in XPPAUT 7.0. The model code is

available on ModelDB (https://senselab.med.yale.edu/modeldb/).

The parameters of the aEIF model were set to the values determined by fitting data from a

representative Purkinje cell. A variation of the parameters within the range occurring in the

Purkinje cell population was performed to determine their influence on the ISR range. We note

that all occurring parameter combinations were restricted to a
gL
> tm

tw
, corresponding to type II

excitability (Fig 4D). The representative parameters were:

C = 268 pF, EL = −51.31 mV, VT = −53.23 mV, ΔT = 0.85 mV, gL = 8.47 nS, a = 37.79 nS,

b = 441.12 pA, τw = 20.76 ms.

Noise stimulus was modeled as I(t) = Imean + Inoise(t), where Imean is constant and Inoise(t) is

current noise with zero mean generated using an Ornstein-Uhlenbeck process with amplitude

σ and time constant τc = 2 ms.

Noise stimulus with an additional timed excitatory synaptic input was modeled as I(t) =

Imean + Inoise(t) + Isyn(t), where Isyn(t)is the biexponential excitatory synaptic input, described as

the solution of the equation [53]:

t
1
t
2

d2

dt2
Isyn þ ðt

1
þ t

2
Þ d
dt

Isyn þ Isyn ¼ Amð1� IinÞdðt � tstÞ=Kðt1;t2Þ

where tst is the stimulation time, Am is the amplitude of the stimulus, and

Kðt
1;t2Þ ¼

1

t
2
� t

1

t
2

t
1

� �

t1
t1�t2

� t
2

t
1

� �

t2
t1�t2

" #

ð17Þ

with rise time constant τ1 = 1.5 ms and decay time constant τ2 = 10 ms.

ISR range
To estimate the ISR range in the parameter space, we rescaled the aEIF model in the following

way [16]:

dV

dt
¼ �V þ eV � w þ I ð18Þ

T
dw

dt
¼ �AV � w ð19Þ

where T = τw/τm, A = a/gL, I ¼ I
gLDT

þ 1þ a
gL

� �

ðEL�VT Þ
DT

, t ¼ t
tm
, b ¼ b

gLDT
, Vrest ¼ Vreset�VT

DT
,

V ¼ V�VT

DT
, w ¼ wþaðEL�VT Þ

gLDT
.

The bistability range in the model is defined similarly as for the recorded Purkinje cells, by

the following expression: ΔI = Iup − Idown, where Iup corresponds to the minimal current needed

to elicit a spike when the model starts from the rest state and Idown is the maximal current at

which the spiking stops given that the model starts in the periodic spiking state (Fig 4D). The

ISR of Purkinje Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005000 August 19, 2016 27 / 31

https://senselab.med.yale.edu/modeldb/


value of Iup is referred to as the rheobase current, and for the aEIF model possessing type II

excitability it has the following analytical expression [16]:

Iup ¼ ðgL þ aÞ VT � EL � DT þ DT log 1þ tm
tw

� �� �

þ DTgL
a

gL
� tm

tw

� �

ð20Þ

Probability of spiking. The probability of spiking is proportional to the fraction of time

the trajectory spends in the region of V-w phase space leading to a spike. We measured the

amount of time trest the aEIF model has spent in the basin of attraction of a stable fixed point.

Then the probability of being in the rest state is calculated as Pr ¼ trest
t
, where t is the total inte-

gration time. There are only two states in the phase space of aEIF model: spiking and rest.

Therefore the probability of spiking is calculated as Psp = 1 − Pr.

For simulations with Ornstein-Uhlenbeck noise, the probabilities and averaged firing rates

were calculated after 20 repetitions with duration of 30 s each. We tested longer simulations

and found that 30 s ensures an accurate and stable estimate. For simulations with excitatory

biexponential input (Eq 17), the probabilities Psp were calculated in bins of 20 ms in 1000

sweeps with a duration of 6 s each.

Mutual information rate. To calculate the mutual information rate (MI) between the

input and output spike trains we used the context tree weighting algorithm as described in

[54]. We simulated the aEIF model, extracted the input and output spike times, and then used

the algorithm with bin size b = 25 ms and depth parameter D = 40 bins, corresponding to a

time window of 1 s. The total duration of a sweep was 1,000 s. The algorithm was used 10 times

for each data point to provide a reliable estimate of mutual information. We confirmed that

the MI estimates converge by increasing the depth parameter D and the sweep duration.

Supporting Information

S1 Text. The effect of dendrites on ISR in Purkinje cells.

(DOCX)

S1 Fig. History dependence of the ISR curve. A. Current injection of 1 s noise waveform peri-

ods in a Purkinje cell in a cerebellar slice, as in Fig 1A. B. Firing frequency vs. noise amplitude σ

for five different holding currents Iin. C. Current injection of 1 s noise waveform periods in a

different cell with a more pronounced bistability. The firing frequency during each noise period

is influenced by the initial state of the cell (firing or silent). D. Firing frequency vs. noise ampli-

tude σ for three different holding currents Iin. E. Current injection of noise waveform with line-

arly increasing and decreasing amplitude. Periods of 200ms duration were separated according

to the state of the cell (firing or silent) in the previous interval. F. Firing frequency vs. noise

amplitude σ for the two categories. Continuous curves are running averages.

(EPS)

S2 Fig. ISR and dendrite filtering. A. Experimental determination of dendritic filtering prop-

erties. Voltage response of a Purkinje cell (black) to a short current pulse (0.5 ms, 1 nA), fitted

with a biexponential function with time constants τm and τc (red). B. Mean firing rate in the

experiment and the aEIF model in response to current noise stimulation, using the estimated

dendrite filter parameters, gc = 10.2 nS. C. Mean firing rate of the aEIF model with optimized

gc = 7.5 nS to quantitatively match the experimental ISR.

(EPS)

S3 Fig. ISR in a detailed Purkinje cell model. A. Top, somatic voltage recording from a

detailed Purkinje cell model [22] during injection of the noisy current waveform shown at the
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bottom (similar to the stimulus used in Fig 1A, but with a different range of noise amplitudes).

B. Averaged firing frequency (5 simulations) during 1 s noise waveform periods vs noise ampli-

tude σ at zero holding current. The model shows ISR with optimal noise amplitude between

120 and 150 pA.

(EPS)

S4 Fig. Mutual information and spiking response for high intensity signal input. A. Mutual

Information rate of the input and output spike train in the aEIF model when stimulated with 5

Hz signal input. B. Continuous voltage response of the aEIF model when stimulated by 30 pA

noise and a Poisson spike train (input amplitude 100 pA, mean frequency 5 Hz, duration 180

seconds). C. Recording of the membrane potential of a Purkinje cell in the awake cat (duration,

180 seconds; adapted from [9]).

(EPS)

S5 Fig. Membrane potential distribution during spiking and silent states. A. Membrane

potential distributions computed from a somatic whole-cell patch-clamp recording from a Pur-

kinje cell during a stimulus, which evokes transitions between spiking and silent states (Fig

1A). B. Membrane potential distributions in the aEIF model. C. Somatic membrane potential

distributions in the De Schutter and Bower model (see [22]).

(EPS)
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