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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
When only a few observations are available as data for an inverse problem, 
it is proposed that the best way to use them is to obtain bounds on various 
functionals of the structure. To do this, the model is found that has the 
smallest (or largest) value of the functional. In this way, for example, 
equations are derived for finding the model value that is exceeded some- 
where by all structures satisfying the data, and thus this value must be 
exceeded in the Earth itself. The same techniques can be used to derive 
conditions for the existence of a solution, when a certain data set is given; 
this is an important problem in non-linear inverse theory. 

Three examples are given, including the non-linear problem of 
electrical conductivity in the mantle. There, one- and two-data problems 
are solved and, by means of the existence theory, self-consistency criteria 
are defined for amplitude and phase measurements and for amplitude 
measurements at two different frequencies. 

1. Introduction 

In geophysics and planetary physics there is always a tendency to believe our 
knowledge is more precise than it really is. Recently, however, there has been a new 
emphasis on the proper assessment of uncertainties in inverse theory, which is the 
quantitative aspect of geophysical inference, A revolution in our understanding of 
inverse problems has come about, in my view, because of the work of Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Gilbert (1967, 1968, 1970; Backus 1970a, b, c). They have given a complete theory 
for linear inverse problems (where the observations are known to be linear functionals 
of the model) and, on this basis, built up an approximate treatment of non-linear 
problems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn this paper, a special part of inverse theory is examined: how to make 
definite inferences from data that the Backus-Gilbert theory demonstrates to be very 
incomplete. The reader will be expected to be acquainted with the essential concepts 
of Backus and Gilbert in what follows. 

To make our objectives clearer, let us consider a simple example: suppose we wish 
to determine the density structure of the Earth using as data a finite number of 
observations of the Earth’s normal mode frequencies. Even when the measurements 
are exact, there will be more than one model satisfying these data (in fact there are 
infinitely many), because a complete specification of the density requires an infinite 
number of measurements. Therefore we are uncertain of the true density; we merely 
know it is one of a class of models, but we cannot know which one. Backus & Gilbert 
(1968) show that this uncertainty can be expressed by saying that what we determine 
from our data is a smoothed version of the true density: there is a loss of detail 
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124 Robert L. Parker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
analogous to the loss in resolution found with microscopes because of the finite wave- 
length of light. Details smaller than a certain size are invisible to an observer with only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M data; conversely: if some of the observer’s models exhibit such small details, they 
are superfluous. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ resolving length ’ made available by the data can be computed 
with Backus-Gilbert theory and, as one would expect, the smaller M becomes, the 
poorer the resolution. Let us now suppose the number of measurements is so small 
that the resolution length exceeds the radius of the Earth. Is there anything we can 
say in such circumstances? I propose to show that there is. 

We must abandon the goal of obtaining a density structure; instead, the data 
should be used to provide us with inequalities that must be satisfied by all models 
and therefore, presumably, by the Earth as well. The sort of conclusions one might 
reach could be, that the density in the Earth must exceed 10 Mg m-3, or that, if the 
density always increases with depth, the density at the centre of the Earth cannot be 
less than 13 Mg m-3. In other words, inadequate data cannot give us a detailed 
model, but they can be used to rule out certain classes of structures that otherwise 
might appear admissible. 

The approach we adopt to achieve this goal is to choose some property of the 
Earth, and then find the model that makes it smallest: clearly, then, all models exceed 
or equal the value obtained. TO be useful, the property chosen must be interesting 
and the problem that results should be mathematically tractable. In the next section 
we set out the general formulation for several sorts of property (e.g. the mean value 
of the model, the maximum value of the model). At the same time it appears that the 
apparatus developed is capable of answering the question of the self-consistency of 
the measurements, the problem of existence of solutions in the non-linear theory. It 
is remarkable to note that all the theory can be set up without introducing the lineari- 
zation approximation commonly invoked to solve non-linear problems. After this 
we give some applications of the general theory to specific problems. The first two 
examples are really very simple; they are linear inverse problems and can be solved 
with relatively light algebra. The final, more serious example concerns a non-linear 
system in which I have been interested for some years: the inverse problem of electrical 
conductivity in the Earth. This example involves a moderate amount of numerical 
work and illustrates the difficulties of dealing with non-linear equations in a satis- 
factory way. Here we also consider how to include the effects of experimental errors. 

2. Variational calculus on model-spaces 

The preoccupation of this paper will be the various ways in which a variational 
formulation can be used in inverse theory. The principle is simple: a model is con- 
structed that minimizes or maximizes some functional on the model space. One 
difficulty is choosing a suitable functional, one that yields geophysically interesting 
information. In this section, we examine several functionals and set up the conditions 
to be met at the extremal. Most of them will be exploited in the examples given later, 
where the problems of solving the resulting equations will naturally have to be 
considered. In the following development, we usually exemplify our equations with 
a scalar model that is spherically symmetric, i.e. m(r), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is the distance from the 
centre of the Earth; nonetheless, the results can be made valid with more general 
models and more general functions of position: a vector-valued model is considered 
in the &st example. 

The quantity that always comes to mind first in minimization studies is the squared 
value integral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R 

I z  := J m2(r)dr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the radius of the Earth. Following Backus & Gilbert (1967), we consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m(r) to be an element, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmy in a Hilbert space of models, so that (2.1) can be written 

12 = llm1I2 = (m, 4, 

where llmll is the norm of the model (which must be finite for m to be in the space) 
and (u, v) is an inner product on the space defined here by 

(u, v) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf u(r) u(r) dr. 

The measurements are taken to be the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM real numbers E l ,  E,, E,, ... E M ;  they are 
related to the model m via the equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Ei = Fi[m], i = 1,2, ... M. (2.2) 

Each F i  is a scalar-valued functional on the Hilbert space; it is the rule which allows 
us to predict the results of an experimental measurement if we actually know the 
structure. The simplest example of a functional is the linear" one 

a 

F[m] = (my G) = m(r) G(r)dr,  
0 

where G(r) is a function independent of m (G is often called a Green's function for 
the problem). 

In order to minimize llm112, we must assume that every Ei is FrCchet differentiable: 
this means that any small perturbation 6m to the model m affects the functional Fi 
thus 

Fi[m+6m] = Fi[m]+(6m, Di)+0116m112, (2.3) 

where Di is an element of the space and is called the FrCchet derivative of Ei  with 
respect to m. It is evident that a linear functional like (m, G) has a FrCchet derivative 
of G, but in non-linear problems it is not always obvious what Di is, or even if it 
exists (see Backus & Gilbert 1967, and Parker 1970 for some derivations in a 
geophysical context). 

We are now ready to minimize llm112. The condition must be included that the 
model fits the data; to do this, Lagrange multipliers, A1, A,, . . . AM, must be introduced 
and an unrestrained functional, U ,  constructed: 

M 

i = l  
U = llm112- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC A,(Fi[m]-Ei). 

When a model mo is found that causes U to be minimum, a small perturbation 6m in 
m produces no change in U to first order. Using this condition and (2.3) we can 
easily obtain 

M 

i = l  
2(6m, mo)- C Li(6m, Di) = 0 

* A linear functional obeys 

f lau f j3vl = crF[u] + j3F[v] 

for all u and v in the Hilbert space, where a and j3 are any real numbers. 
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126 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARobert L. Parker 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M 

i = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6m,2m0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC LiDi 

for any small 6m. It follows from the completeness of the Hilbert space that 

If the functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF i  are all linear and linearly independent, (2.4) and (2.2) can be 
used together to obtain a unique model m, that minimizes llmll’ (see Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert 
1967). In non-linear problems, however, the Frkchet derivatives, D ,  depend them- 
selves on m (usually non-linearly) making (2.4) a much more difficult equation to 
solve. Indeed, solutions may not exist at all, because we do not know in a non-linear 
problem whether any model can give rise to the data El, E,, _.. E M .  We shall return 
to this problem in a moment. 

Another quantity for which we may be able to find a stationary model is the 
integral of the model, given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 

I ,  = 1 m(r)dr. 

Using the same procedure of Lagrange multipliers as before, we obtain the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

M 

i = l  
C p i  Di(r) = 1 for almost all r in (0, a). (2.5) 

The model m, does not appear explicitly in (2.5) and when the data functionals 
Fi are linear (making every Di independent of m) this condition appears to say 
nothing about m at all. In fact, Backus (1970a) shows that there is no upper or lower 
bound on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , ,  or any other linear functional of the model, when the data functionals 
are themselves linear; the only exception occurs if the required functional can be 
constructed from linear combination of the data functionals. Non-linear functionals, 
Fi, may make (2.5) a useful condition in determining a model, but this question 
cannot be settled in general: every non-linear problem will be a special case. 

Perhaps a more interesting functional on which to place a lower bound is the 
maximum value of the model itself. We need to find the model with the smallest 
maximum value, which also fits the data. To do this it is necessary to assume that m 
is an element of another space of functions, Lp (Riez & Nagy 1965). Here the norm 
is defined by 

l /P 

Ilmllp = ( / , m ( r ) l ~ d r , a )  3 

which must be finite for valid members of Lp. The reason for introducing this space 
is the intriguing property of the norm that, as p tends to infinity, llmllp becomes the 
greatest maximum of Im(r)l, neglecting, of course, values of m defined on sets of zero 
measure (Hardy, Littlewood & P6lya 1959, p. 143). Fr6chet differentiation can be 
extended to normed spaces without inner products (called Banach spaces), provided 
the inner product in (2.3) is replaced by a linear functional ofdm. Linear functionals 
in Lp can be written as integrals (Riez & Nagy 1965, p. 74) just as in Hilbert space, but 
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the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADi must belong to the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, where q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p / ( p -  1). Formally, nothing 
has changed when we employ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL?, except for the different restrictions on the model 
and its Frdchet derivatives. 

Before proceeding to the limit of very large p ,  we carry out a minimization with 
Lagrange multipliers in the usual way: form the unrestricted functional U, with the 
Lagrange multipliers vi to account for the conditions in (2.2): 

it is convenient to work with the p-th power of the norm. Consider a small pertur- 
bation in U at its stationary value, due to the perturbation 6m in m: there must be no 
change in U to first order in 6m,  so that to this order 

1 M 

i = l  
0 = J" plm(r)lp/m(r>- C vi Di(r)  dmdr, 

0 

where we have introduced the Fr6chet derivatives Di,  which are assumed to belong 
to E. The first term under the integral belongs to U also and, since this space is 
complete, we have 

which must hold for almost all r in (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). The consequences of this relationship as 
p becomes very large are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c, when Cv; Di(r) > 0 

-c ,  when Cvi' Di(r) < 0, 
nz(r) = 

where c is a constant and is the bound we are seeking. The value of c and the 
coefficients, vi', are chosen to make m(r) satisfy the data, (2.2), as well as the 
condition (2.6). 

It is evident from (2.6) that models with negative values will sometimes occur as 
solutions to variational problems, not only when the smallest maximum is sought, 
but also in other cases as well. Often, the physical property represented by the model 
cannot assume a negative value (e.g. density or seismic velocity). Under these circum- 
stances, any extremal solution with negative values is unrealistic and we can assume 
that the bound obtained on the required functional is too generous: it can be improved 
by restricting our attention to models that are everywhere positive (or at least non- 
negative). The device that allows us to include this restriction is quite simple: instead 
of minimizing the specified functional of m, minimize the functional of f (m) ,  where 

m, i f m a 0  

[ Ism], if m < 0, 
f (4 = 

and then let S tend to infinity. This has the effect of discriminating against negative 
values of m, because f(m) then becomes very large. When f ( m )  is used in the cal- 
culations concerning llm112 and Ilmlim, we can easily obtain the following modifications 
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128 Robert L. Parker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the equations. In place of (2.4) we have 

0, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ILi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADi(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0, 

for the non-negative model with smallest Ilrnll. Equation (2.6) for the model with 
the smallest maximum value now becomes 

c, where 2 vi' D,(r) > 0 

[ 0, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC vi' Di(r) < 0, 
(2.7) m(r) = 

and c is, of course, positive. 
The last type of functional to be considered is rather different: I wish to return 

now to the problem of the self-consistency of a set of data, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi, when the associated 
functions are non-linear. The location of the boundary between admissible and in- 
consistent data in the Euclidian M-space of the data, E ,  ,E, ... EM, can be made into 
a variational problem and examined with the calculus we have already developed. 
Suppose M- 1 data are known to be self-consistent, i.e. there is at least one model, 
m, satisfying (2.2); what is the largest (or smallest) value of E M  consistent with them? 
We set up the Lagrange multipliers xi and obtain the unrestrained functional U :  

M- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Performing the small perturbation in m and claiming that U is stationary, we obtain 

M- 1 

i = l  
D, = C ziDi. 

This is simply a statement that, on the boundary of the zone of permissible models, 
the Frdchet derivatives are hearly dependent. As with the other essentially non-linear 
equations we have obtained, there is no general algorithm for finding an m to satisfy 
(2.8). We can, however, give a solution in the case of the electrical conductivity 
problem. 

It should be emphasized that the foregoing analysis is of a formal nature only, and 
that it is extremely difficult to give the conditions under which our results are valid. 
We have discussed a case in which no solution existed to the equations because there 
was no bound on the functional in question. Another difficulty is the possibility that 
the smallest value of the functional may be attained at a point in model space where 
the Frdchet differential does not exist; our results would not find this solution. Even 
when a solution has been found that is stationary, it must be determined whether it 
is a maximum or minimum: this can be done by examining the first neglected term in 
('2.3), which is normally a quadratic form. Obtaining this term is a very tedious 
operation algebraically, and most geophysicists will be content with a numerical 
verification (by small perturbations to the stationary sohtion) or a physical argument, 
which can often be found. There still remains the question of whether a particular 
minimum is the smallest value or not. This amounts to being able to prove, either 
that no other minima exist, or that the others are all ' worse '. Such a task may be 
very difficult to achieve with full rigour (we do not achieve it in our non-linear example). 
It is sometimes possible to give a necessary condition for the validity of our equations 
by inspecting the various assumptions needed to arrive at the results. For example, 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
9
/2

/1
2
3
/5

6
9
9
7
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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we find that to bound the maximum value of the model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm must be in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL" (a rather 
obvious statement, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL" is the space of bounded functions!) and every Di must 
be in J!.'. If the FrCchet derivatives do not meet this condition, then (2.6), although 
it may appear to make sense, may not be applicable; it is obviously wise to ensure the 
necessary conditions are met before using the equations (this is easy to do in the third 
example). We have not been rigorous in our definition of all the relevant spaces: 
there is a very difficult question regarding (2.8). The space of admissible models 
here may be very wide-in the third example we need a model that is a &function to 
satisfy (2.8). The subsequent results all seem very reasonable, so that in this case, at 
least, it appears the model space includes the space of distributions. Once more, we 
are faced with a problem in non-linear analysis to which no general solution has 
been found: these mathematical questions, however, will not interest many geo- 
physicists. We proceed to the examples. 

3. Currents in the core 

The first and simplest application of the results in Section 2 is to the inverse problem 
of finding the current density distribution in the core from observations of the 
magnetic field. We take as our starting point a mechanism of the sort proposed by 
Bullard & Gellman (1954), but we are indifferent to the velocity field and the driving 
mechanism. The existence of toroidal magnetic fields denies us the possibility of ever 
finding the actual current distribution from magnetic observations at the surface. We 
seek the current distribution with the smallest r.m.s. value; the reason for this choice 
will be made clear in a moment. To simplify the problem even further, we assume 
only a knowledge of the dipole components of the field. Then the functional relating 
the currents to the dipole vector is (Panofsky & Phillips 1962, p. 130) 

p = -$rxJ(r)dV, 
V s 

where p is the magnetic moment of a current distribution J within the volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, 
which for our purposes is a sphere, while r is the co-ordinate vector from the centre. 
To see more clearly that this is a linear functional, and to avoid confusion about 
bold-faced quantities, rewrite (3.1) in components with the Einstein summation 
convention 

where &iJ:k is the alternating tensor. The generality of the abstract Hilbert space 
formulation allows us to deal with a vector-valued model J i  simply by redefining the 
inner product between two elements u and v to be 

(u,v) = s ujvjdV, 

V 

and carrying on as before. The FrCchet derivatives, because of linearity, are the 
kernels in (3.2) and are the vectors +&ijkrj with i = 1,2,3, one vector for each p i .  
Applying (2.4) we obtain 

or 
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At this stage we should verify two essential properties of J: first V* J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, which must 
hold if the currents vary slowly in time; second, 5.3 vanishes at the surface of the 
sphere, which implies no current flows in or out of the core. These properties confirm 
that J is a realistic model for this problem and that we need not apply additional 
constraints to improve our bound. 

When (3.3) is substituted into (3. l), we find after some integrations that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = 15p/nb5 

where b is the radius of the core. It is then easy to deduce that 

J J-JdV = 15p2/2nb5. (3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V 

In itself, the smallest value of f J*JdV is not very significant but, with it, we may 
place a lower bound on the electrical conductivity of the core. 

The rate of heat generation, due to ohmic heating is given by 

1 
Q = - J*JdK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CT 
V 

(3.5) 

An upper bound on Q must be the total heat emerging from the Earth's interior 
(assuming steady-state conditions), but this is a crude over-estimate, because we 
know that much of this energy is generated in the crust by radioactivity. A more 
refined value for the heat escaping from great depths is calculated by Sclater & 
Franchetau (1970): they find 4 x cal cm-2 s-l (in SI units 17 mW m-2), 
although part of this heat flow must be due to mantle sources. If we integrate 
Sclater & Franchetau's figure over the Earth's surface and call it an upper bound on 
Q in the core, we can use (3.5) and (3.4) to set limits on (r. Taking p = 8 x A m2 
and b = 3.5 x lo6 my we conclude that CT > 3.3Qt-' m-'. Current estimates put the 
conductivity three orders of magnitude higher, but they depend on assumptions about 
the chemical composition. Nonetheless, this rather low figure deters us from con- 
sidering the effect of non-dipole fields and the problems of the steady-state assumption. 
In this case the data are so inadequate that they only put a very slight constraint on 
the class of acceptable models. 

4. The densities of the planets 

The following example was inspired by a lecture given by Cook (1971). He des- 
cribes how astronomical techniques can be used to deduce the moment of inertia of 
some of the planets, and goes on to describe models of the planetary interiors based 
on this datum and various other assumptions. The question that Cook's talk suggested 
is what can be deduced from the mass and moment of inertia about the density of a 
planet? Equivalently, we are given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  the mean density and C/Ma2, where C is the 
moment of inertia, M is mass and a the radius of the planet. 

With the results of Section 2, we can place a bound upon the greatest density. 
We need two assumptions: (a) the density, p, is always positive, and (b) p is a function 
of r alone, where r is the distance from the centre of mass. The functionals relating 
the data to the model are easily shown to be 

a 

p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (3r2/a3) p(r)  dr 

C/Ma2 = f (2r4/pa5) p(r)  dr. 

0 

a 

0 

(4.1) 
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The FrCchet derivatives clearly are 3ra/a3 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2r4/pa5 for CM/a2, because they 
are linear functionals. Equation (2 .7)  is the pertinent result from Section 2;  it 
becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

po, when ar2 + br" > 0 

0, when cir2 i- fir" < 0, 
P ( P )  = 

where po is the required lower bound on the maximum density. The discriminant 
function has only one root for r > 0 so that we must seek models of p that have a 
single discontinuity in p at rl and satisfy (4.1) and (4.2). Two types of models can 
occur: zero density inside or outside the critical radius. A little algebra will show 
for the iirst case that 

and 

when CIMa2 < 215 and the zero density lies outside r l .  If 215 < C/Ma2 < 213, we 
find r l /a  is the root that lies in (0,l) of the following equation: 

and 

with the zero density lying inside r l .  The former, simpler solution is the one of 
interest in astrophysics, because matter is usually more condensed towards the 
centre of a planet. When C[Mu2 > 213 negative densities are required to fit the data. 

We now apply these results to Jupiter: Cook deduces from the value of J 2  (the 
coefficient for the I = 2, m = 0 sperical harmonic in the gravitational potential) that 
CIMa2 = 0.25, with the assumption of a hydrostatic model. The mean density of 
Jupiter, p,  is 1.33 Mgm-3 (Allen 1964); we conclude the density inside Jupiter must 
exceed 2.74 Mg m-3, a surprisingly high value. Similarly, inside Saturn the density 
must exceed 1.69Mgm-3. These results could be improved upon: the value of 
C/Ma2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  based on a hydrostatic model, with which the spherical symmetry of p is 
inconsistent. It is probable that a consistent treatment would yield even higher values 
for p o .  

5. Electrical conductivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the mantle 

5 . 1  Introduction 

Measurements of geomagnetic fluctuations have long been used to infer the 
electrical conductivity deep within the Earth (Lahiri & Price 1939). The method relies 
upon the fact that a knowledge of the magnetic field components over the entire 
surface of the Earth can be used to separate the fields into two parts, one caused by 
sources outside the Earth, the other produced inside by eddy currents that flow in 
response to the external variations. The ratio of the internal to external fields is a 
response measure that depends on the conductivity structure and, provided the 
measure is known at all frequencies, it contains enough information to find the con- 
ductivity uniquely at all depths (Bailey 1970). All practical studies to date have 
employed data associated with frequencies of one cycle per year or higher, but there 
is some evidence (Chapman & Bartels 1962, p. 133) that there may be useful inform- 
ation at a period of 11.2 yr, the period of solar activity. If a response measurement can 
be made at this frequency, what can it tell us about the conductivity? The methods 
of this paper would seem the most appropriate with which to answer the question, 
because the other data are at frequencies so much higher than the ll-yearly line that 
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it can be considered isolated from the rest. These remarks serve as a motivation for 
this investigation, but the problem is an excellent vehicle to illustrate the solution of a 
non-linear extremal problem. Furthermore, we shall derive new theorems about data 
compatibility that will be useful at any frequency and for any number of measurements. 

5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA one-datum problem 

First of all we shall define the problem more precisely. The data are considered 
to be functions of frequency, derived from their time-domain counterparts by Fourier 
transformation; they are therefore complex quantities, carrying amplitude and phase 
information. The response measure we use is the complex number E ,  given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,+iE, = -In Wfn, 

where Wfn is the ratio of the vertical to horizontal magnetic field components 
(normalized by a geographic factor) at a single frequency and a particular spherical 
harmonic, degree 1 and order m. The complex quantity WP can be estimated directly 
from the field records (Banks 1969); its amplitude is associated with El (since 
E l  = -In 1W;ll) while its phase corresponds to E,  (since E ,  = -arg Wfn). In  
nature, the low frequency disturbances are coafked almost entirely to the I = 1, 
m = 0 harmonic, so that our numerical calculations will concentrate on this case. 
The simplest problem to consider is this: given a single observation of E, determine 
the model with the least maximum conductivity compatible with the measurement. 
The datum E is complex, but in Banks' work it was found that the amplitude of W;" 
could be estimated more precisely than its phase: therefore, a reasonable one-datum 
problem is to consider amplitude alone, or equivalently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl, the real part of E .  To set 
up the conditions that deiine the extremal solution, we shall need the Fr6chet derivative 
of E with respect to cr, the conductivity. For this result and other derivations below 
we refer the reader to a previous paper of the author's (Parker 1970), in which the 
Backus-Gilbert technique was applied to the many-data inversion problem. The same 
notation will be used, with one exception: here FrCchet derivatives are denoted by D. 

The Frdchet derivative of E with respect to conductivity at a radius, r, and radian 
frequency, o, is given by 

D(E; r, o) = D, +iD, = - (5.1) 

where D1 and D, are the derivatives for E ,  and E,;  R;" is any non-singular solution 
of the ordinary differential equation 

d d  
- r2 - R;"+ [impc, crr2 -Z@+ l)] Rfn = 0. 
dr dr 

It has been assumed that cr is a function only of r, the distance from the centre of the 
Earth. In terms of RP, the datum E can be expressed thus 

(5.3) 

where R;l and its derivative are evaluated at the surface, r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 
It was shown in Section 2 that models suitable as stationary solutions were made 

up of shells of constant, positive conductivity, go, separated by regions of zero con- 
ductivity (we can obviously reject negative 0). For this type of behaviour in rr, (5.2) 
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assumes a very simple solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr'+a2r- ' - ' ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 j,(kr)+ P2 y,(kr), where c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= go, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p o  cooo)* exp (in/4), 

and the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  and y ,  are spherical Bessel functions (see Abramowitz & Stegun 
1965). Because of the continuity of the electric and magnetic fields, RP and dR;"ldr 
are everywhere continuous, and therefore the constants a,, u2, PI, p2 are adjusted to 
arrange this condition at every interface; u2 or p2 must, of course, vanish for the 
interval that includes r = 0. The condition required for an extremal solution is that 
a linear combination of the FrCchet derivatives must vanish at the radii, r , ,  r2 ,  . . . r,, 
where the junips in c occur. In the one-datum case this merely implies that the 
FrCchet derivative itself should vanish there. To illustrate the practical procedure for 
finding solutions we discuss the one-discontinuity system with G = o0 when r =- r l  
and G = 0 when I' < I',. The explicit dependence of the problem on co is eliminated 
by introducing a dimensionless conductivity 8, defined by po weo a2. A value of d is 
chosen and models with rl  in the range* [0, a) are investigated; in particular Dl(rl) 
is evaluated. If this quantity vanishes, then the model is a possible candidate as a 
stationary solution, because the FrCchet derivative does indeed vanish at the jump in 
G, in accordance with (2.7). When such a zero in D l ( r l )  is located, the function 
must be evaluated for other values of r to ensure that the zero-crossing at rl is the 
only one. For every value of d above 13.070 there is a single value of rl satisfying all 
the conditions. When 5 is less than this, D, has no zeros at all in the range [0, a), 
no matter what rl  is chosen to be; this implies that a uniform conductivity from 
centre to surface is the appropriate model in this range of conductivities. 

The root search described above is easily programmed for a computer; the value 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is varied and when a root, r l ,  has been found we then calculate El from (5.3). 
In this way we find a class of extremal solutions, but we do not yet know if these are 
the best mini-max models: for example, are there any solutions with ci = go in 
(0, r l )  and G = 0 in (r l ,  a)? There are, but they produce larger values of 15 for a given 
E l .  Presumably, these belong to a saddle-point set. On physical grounds, we can 
support our conviction that the first class of solutions is the one with minimum c0 
by noting that the conducting material is near the surface, where it can have the 
matest ' effect '. More complicated models (with several zero-conductivity shells) 
could not be found, although the author was unable to prove that such solutions do 
not exist. A fairly extensive search failed to find any for two-discontinuity systems and, 
in view of that fact that more and more conditions must be satisfied as the number of 
shells increases, it is plausible to assume that the one-discontinuity system is the 
only type that yields solutions in the one-datum problem. 

Figs 1 and 2 show the results of the calculations with I = 1. The dimensionless 
conductivity, 5, simplifies the display; the datum E l  is already dimensionless. As 
might be expected, 5 increases with increasing E l .  When E l  is below 0.56149, the 
minimum model is the one that is constant throughout the whole sphere, and then 
the radius of the discontinuity is shown as zero in Fig. 2. Larger values of El give a 
shell of decreasing thickness and increasing conductivity right at the surface. In fact, 
as E l  becomes very large, 

where G = 0 
(5.4) Rf"(r) = 

where the complex wave number k is defined by 

l - r 1 / u  3 c/8++0(3-'), 

El -+ 3 In (8/4) + 0(8-*), 

*The value r = 0 is excluded, because the Frtchet derivative always vanishes there and 
discontinuity in u at this point is immaterial. 
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100 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I 
0 05 1 1 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. I .  The lower bound on the dimensionless maximum conductivity, 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAupLo 2, consistent with an observed value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl = -In 1 Wl"i. The curve 

has been computed for I = 1 in a spherically symmetric conductor. 

0 0.5 1 1.5 2 
€ 1  

FIG. 2. The models that attain the lower bounds shown in Fig. 1 consist of a 
constant conductivity shell enclosing a zero-conductivity ccre. The radius of the 
non-conducting core is r l ,  which is shown as a function of El. When El < 0.561 49, 
the appropriate model is conducting throughout and then r l  is shown to be zero. 
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Inverse theory with grossly inadequate data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC - 1.74588 and is the smallest root of the equation 

Im cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x  exp in/4) = -3n/8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA135 

These results are derived from asymptotic expansions of the spherical Bessel functions. 
This completes the discussion of the one-datum case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATwo-data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproblems 

Logically, the next subject to be investigated is the behaviour of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo when a 
knowledge of the phase datum, E,,  is included. Now the function that must vanish 
at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo discontinuities is some linear combination of D ,  and D,. The search pro- 
cedure employed here is very similar to that of the one-datum case: we fix o and try 
to find rl  and r, ,  computing El and E ,  when a successful model has been found. To 
simplify the search, the linear combination 

U r )  = D,(r )  D z ( r J - D , ( r )  D , ( d  

is formed, since it always vanishes at r = r , :  we need now only find the zeros of 
L(r,) .  In fact, the search procedure has not always required, because models could 
be found in which L(r) had only the one zero at r = r l ,  and thus these models satisfy 
(2.7) already. W-e distinguish three types of model: type I in which o > 0 with 
r > r l ,  type I1 where CJ > 0 with r < r ,  and type III where o > 0 with 
0 < r l  < r < r ,  < a. For a given value of d all three types might be required, but a 
continuous curve in the El - E ,  plane could always be constructed. It will be important 
later to recall that type I models always exhibit the largest magnitudes of E l .  Again, 
models with more than two discontinuities could not be -found to satisfy the con- 
ditions, and it will be assumed that they do not exist. 

The results for I = 1 are illustrated in Fig. 3. It will be apparent that there is a 
zone in which no solutions fall; this could be attributed to an inadequate search 
procedure, but it was felt more likely that we were mapping the true zone of existence 
of solutions in the E l  - E ,  plane. The precise location of the boundary clearly calls 
for the use of equation (2. S), which in our case becomes 

D , ( r )  = xD,(r) for almost all r in (0, a). (5.5) 

At first sight ( 5 . 5 )  is not particularly attractive equation to solve for 6. Fortunately, 
however, we can guess a solution by looking at Fig. 3 and the attendant calculations: 
models with the largest phases are always type I with very great conductivity. This 
suggests that we may find a solution to (5.5) with an infinitesimally thin conducting 
sbeU at the surface, enclosing a non-conductor. Equations (5.1) and (5.4) show that, 
in rhe interior, D, and D, both behave like rZzfZ as functions of r ,  and thus (5.5) is 
satislied. We need only note that D ,  and D ,  remain continuous in the limit of large 
G to be assured that (5.5) is obeyed in the shell also; a more detailed behaviour of 
R,' is required to calculate El and E,. The response of a thin shell may be deduced 
from our equations (5.3) and (5.4) or, more immediately, from the work of Price 
(1S49) who studied such shells as models of the ocean. For the complex response E ,  
we obtain 

E = In [(Z+l-iy)/(Z+l)Z], 

where 7 is a dimensionless variable given by y = r5(1 -rl/a), and while r ,  -+ a in such 
a viay as to keep y finite. Separating E into real and imaginary parts gives the equation 
for the boundary in the El-& plane between allowed and forbidden data pairs. 
Thm we arrive at the inequality 

exp (- El) < 1 cos E,,  (5.6) 
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EOUNDARYCURVE 

FORBIDDEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZONE 

0.8 

I I I I I I I I I 

1.4 1.6 1.8 2.0 0 .0.2 0.4 0.6 0 8  1.0 1.2 

E l  
FIG. 3. Contours of the smallest maximum conductivity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, against zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE l ,  the 
amplitude datum, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE2 the phase datum, when I = 1. Note the region where 

there is no solution compatible with a given data pair. 

for any two permissible data El and E,. The boundary when 1 = 1 is shown in 
Fig. 3. It is important to observe that another solution to (5.5) can be obtained by 
choosing a model with infinite conductivity in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, rl) and zero conductivity in (rl, a). 
In this case we find the lower boundary in Fig. 3, which is, of course, the El axis, 
E ,  = 0. 

Another two-data problem of some interest is the one where amplitude data are 
known at two frequencies, o1 and 0,. Here we only consider the question of self- 
consistency of data pairs: it is enough to observe that the thin, surface-shell model 
gives rise to Fr6chet derivatives satisfying (2.8) in this case also. Hence, after a little 
algebra, we arrive at the relation 

E2‘-El‘ < .3 In [p2+(1-pZ) exp (-2E1’)/12], (5.7) 

where p = oz/wl > 1 and El‘ = ReE(ol) = El(ol) and E,’ = ReE(02) = E1(o2). 
The perfectly conducting core model is similarly a viable solution to (2.8); it yields 

E2‘-E1’ 2 0 with w2 > ol. (5.8) 

Equations (5.8) and (5.7) can be used to put bounds on dE,/dw by letting o2 approach 
w1: 

These conditions can naturally be used when more than two data are available, 
simply by taking pairs of measurements from the set; then they are only necessary 
conditions for the existence of a solution. 
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5.4 Applications 

The response of the Earth at a period of 11.2 yr has not yet been measured, but 
we shall apply the results of the previous section to the higher frequency data. For 
the numerical values we shall draw upon the analysis of Banks (1969). The lowest 
frequency signal Banks considers is the line at one cycle per year; however, it is found 
to be predominantly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 in spherical harmonic composition, which is unfortunate 
for us, because our analyses have assumed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 1. We pass on to the measurement at 
a period of 100 days: scrutinizing Figs 10 and 11 of Banks, we find 
iWIol = 0-49+0.030 and a phase of 131". Converted to our data conventions, this 
means E l  = 0.722 and* E2 = -0.506 (we ignore the error estimate for the moment). 
A one-datum analysis on E l  alone (interpolating from tables prepared to draw 
Fig. 1) gives d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo W Q ~  u2 = 17.6. The implication, after the insertion of the 
various numerical values, is that (ro = 0.47Q2-1 m-', or that the conductivity in the 
mantle must exceed 0.47 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ-' m-', from this single datum (we exclude the possibility 
that such high frequency variations can tell us anything about the core). The addition 
of the phase information, E2,  raises the value of d to 31.5 (see Fig. 3), and thus we 
conclude that all models fitting these two data exceed 0.84 C2-I m-' somewhere. 
Banks' Fig. 17 shows some models with a conductivity below this value everywhere 
but, for the comparison to be fair, we must include the effect of the experimental 
error. 

It is possible to account for error statistics in our treatment without approximation: 
w-e calculate a probability figure for the bound. This is done simply by integrating 
the joint probability distribution of the data over the region in the data space (e.g. 
the E , - E 2  plane in Fig. 3) implied by the inequality. For example, to find the 
probability that d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 25 in Fig. 3, the probability distribution for the data pair must zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
be integrated over the whole zone outside the d = 25 contour. Unfortunately, Banks 
has made no estimates of the errors involved in the phase determinations. The error 
procedure outlined above can, of course, be used in the one-datum case rather 
simply: assuming a gaussian error law for lWlol with standard deviation 0.030, we 
infer that lWIo1 < 0.524 with a probability of 0.90, or that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl > 0.646 with the same 
probability. This implies that d 2 15.6, so that the conductivity in the mantle exceeds 
0.42 i 2 - I  m-' with 90 per cent confidence, based only on the amplitude of the 0.01 
qdes per day response and its estimated error. 

A different application is the use of the consistency conditions (5.7) and (5.8). 
fig. 2 of the author's paper (Parker 1970), which is based on Banks' work, shows 
dearly that (5.8) is violated by the data values, since E2' < El' when o2 > o1 for 
many pairs of points; equation (5.7) is also disobeyed by a number of the observations. 
Both these remarks must be understood to be made ignoring the estimated uncertain- 
ties. Parker reported that he could not find any conductivity model to fit Banks' data 
d y ,  and conjectured that none exists: the observation that many of the data 
dues are inconsistent proves the conjecture to be true. 

6. Codusions 

We have seen how definite conclusions can be reached from very incomplete data. 
Such data can arise, not only when the number of observations is small, as it was in 
OIIT examples, but also if the inverse problem is intrinsically non-unique: for example, 
w matter how many gravity observations there are outside a body, they can never 
determine uniquely the density inside. Therefore, the extremal method described 
Bae may be more widely applicable than is at first apparent. There is no reason in 
pdnciple why the method should not be used when an adequate data set is available 

* There is a difference of 180" between Banks' phases and ours because of different Fourier 
fZlElsr0rm-m conventions. 
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but, if a detailed model can be constructed, it will be more satisfying to most geo- 
physicists than a mere inequality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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