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Inverses of generators of nonanalytic semigroups

by

Ralph deLaubenfels (Columbus, OH)

Abstract. Suppose A is an injective linear operator on a Banach space that gener-
ates a uniformly bounded strongly continuous semigroup {etA}t≥0. It is shown that A−1

generates an O(1 + τ) A(1 − A)−1-regularized semigroup. Several equivalences for A−1

generating a strongly continuous semigroup are given. These are used to generate suffi-
cient conditions on the growth of {etA}t≥0, on subspaces, for A−1 generating a strongly
continuous semigroup, and to show that the inverse of −d/dx on the closure of its image
in L1([0,∞)) does not generate a strongly continuous semigroup. We also show that, for

k a natural number, if {etA}t≥0 is exponentially stable, then ‖eτA
−1
x‖ = O(τ1/4−k/2) for

x ∈ D(Ak).

I. Introduction. Let A be an injective linear operator on a Banach
space. When A has dense image and generates a uniformly bounded strongly
continuous analytic semigroup, it is well known that A−1 also generates such
a semigroup (see [Gor-M] and [d1]). The same equivalence is not true with
“analytic” removed; in [Z1], [Gom-Z-T], and [K] it is shown that there exists
an injective linear operator with dense image on a Banach space that gen-
erates a uniformly bounded strongly continuous semigroup whose inverse
does not generate a strongly continuous semigroup. In [Gom-Z-T] this is
done on `p, p ∈ (1, 2) ∪ (2,∞). The question of A−1 generating a strongly
continuous semigroup when A generates a uniformly bounded strongly con-
tinuous semigroup on a Hilbert space remains open (but see [Gom-Z-T] for
a strong negative step in this direction; see also [Z2]).

These negative results lead naturally to the following questions.

(1) What can be said about inverses of generators of uniformly bounded
semigroups?

(2) What (relatively simple) properties are equivalent to both A and
A−1 generating strongly continuous semigroups?
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(3) What (relatively simple) sufficient conditions for both A and A−1

generating strongly continuous semigroups can be derived?
(4) More generally, what is the relationship between (possibly not

strongly continuous) semigroups generated by A and (possibly not
strongly continuous) semigroups generated by A−1?

When A generates a uniformly bounded strongly continuous semigroup
{etA}t≥0, nothing could be more natural than to take the following Laplace
transform (see [Z1, (10)] and [D]):

(1.1)
∞�

0

e−stτG(tτ) dt = 1− e−τ/s (τ ≥ 0),

where G(t) ≡ (1/
√
t)J1(2

√
t), J1 the Bessel function of the first kind of the

first order, and replace the nonnegative real number s with the operator −A,
to get, at least formally, a construction of a semigroup {eτA−1}τ≥0 generated
by A−1:

(1.2) eτA
−1
x = x−

∞�

0

(etAx)τG(tτ) dt (x ∈ X, τ ≥ 0).

This fails to define a strongly continuous semigroup, in general, precisely
because G is not in L1([0,∞)). See [Z1, Lemma 3.2] for the validity of (1.2)
when {etA}t≥0 is exponentially stable.

However, G becomes an L1 function after convolution with e−t − δ0(t),
whose Laplace transform is (1 + s)−1 − 1 = −s(1 + s)−1. Thus it is natu-
ral to regularize eτA

−1
with A(1 − A)−1; we show (Theorem 3.3) that A−1

generates an O(1+τ) A(1−A)−1-regularized semigroup (see Definition 2.2)
{eτA−1

A(1 − A)−1}τ≥0 whenever A is injective and generates a uniformly
bounded strongly continuous semigroup. We also recover the intuitive func-
tional calculus representation (1.2), for x ∈ Im(A), the image of A; this
will be fundamental to Section IV. See [P-Z, Theorem 3.3] for a different
construction of a once-integrated semigroup (see Definition 2.1) generated
by A−1.

Section III also shows that, when {etA}t≥0 is exponentially stable, then
‖eτA−1

x‖ = O(τ1/4−k/2) for x ∈ D(Ak), k ∈ N (Theorem 3.9). For k = 1, this
has been shown in [Z1, Theorem 3.3]. Propositions 3.10 and 3.11 give similar
results under the weaker hypothesis that the resolvent of A be bounded in
a right half-plane containing the imaginary axis.

In Section IV, when A is an injective generator of a uniformly bounded
strongly continuous semigroup on a Banach space X, we use Theorem 3.3 to
construct many conditions equivalent to A−1 generating a strongly continu-
ous semigroup (Theorem 4.3). Most of these characterizations are in terms
of (1.2) above; for example, A−1 generates a strongly continuous semigroup
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if and only if Im(A) is dense and

S(τ)y ≡
∞�

0

(etAy)τG(tτ) dt (y ∈ Im(A), τ ≥ 0)

(convergence of the integral guaranteed by Theorem 3.3) is a family of
bounded operators from Im(A) to X locally bounded in τ if and only if S(τ)
leaves Im(A) invariant, with (1−A−1)S(τ)A(1−A)−1 defining a family of
bounded operators on X locally bounded in τ. The semigroup generated by
A−1 then has the form

eτA
−1
x = x+ (1−A−1)S(τ)A(1−A)−1x

for x ∈ X and τ ≥ 0. Another equivalence of Theorem 4.3 is the following
curiosity: A−1 generating a (1−A)−2-regularized semigroup is equivalent to
A−1 generating a strongly continuous semigroup.

Theorem 4.3 is applied to the prototype of uniformly bounded strongly
continuous semigroup generators, the operator A ≡ −d/dx on L1([0,∞)).
By restricting A to the closure of its image, we have an injective operator
with dense image that generates a uniformly bounded strongly continuous
semigroup. We use Theorem 4.3 to show that the inverse of this restriction
does not generate a strongly continuous semigroup (Example 4.4).

Section IV then uses the equivalences in Theorem 4.3 to generate suffi-
cient conditions for A−1 generating a strongly continuous semigroup. These
begin with, again, the representation (1.2): it is sufficient that the integral in
(1.2) converge, after being regularized by (1−A)−2, for all τ ≥ 0, and define
a strongly continuous family of bounded operators (Corollary 4.5). Other
sufficient conditions, involving the rate of growth of ‖etA‖ or ‖

	t
0 e

sA ds‖,
on subspaces, appear in Theorems 4.7 and 4.13 and Proposition 4.11, some-
times giving other integral representations besides (1.2) for eτA

−1
. Propo-

sition 4.10 gives similar sufficient conditions for ‖eτA−1
x‖ to be O(τ−1/4),

generalizing [Z1, Theorem 3.3]. Theorem 4.13 actually does not require that
A generate a strongly continuous semigroup; it is sufficient that A generate
a once-integrated semigroup (see Definition 2.1) that is O(tr), as t goes to
infinity, for some r < 1/4, in order that A−1 generate a strongly continuous
semigroup. See [Gom2] for sufficient conditions on the resolvent of A, in or-
der that A−1 generate a uniformly bounded strongly continuous semigroup.

Theorems 3.9 and 4.13 hint at a possible general duality between A
and A−1. Loosely speaking, regularity of etA seems to be equivalent to decay
of eτA

−1
(hence the converse).

There is also an interesting relationship between both A and A−1 gen-
erating uniformly bounded strongly continuous semigroups, and the Cayley
transform of A; see [Gom1] and [Gom-Z].
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This paper uses unbounded extensions of both the Hille–Phillips func-
tional calculus (see (2.4)), as in (1.2), and the Riesz–Dunford holomorphic
functional calculus. These are described in Section II, after the definitions
of integrated and regularized semigroups.

We conclude with some open questions.
See [Z1, Introduction] for an interesting description of many applications

of A−1 being a generator to control theory and numerical analysis.
Throughout this paper, all operators are linear, on a Banach space, X,

and A is an injective operator from a subspace of X, D(A), into X. Also
denote by %(G) the resolvent set of the operator G, by Im(G) its image,
and by B(X) the space of all bounded operators from X into itself. When
an operator G generates a strongly continuous semigroup, it will be de-
noted {etG}t≥0. More generally, if G generates a C-regularized semigroup
{W (t)}t≥0 (see Definition 2.2), then etG ≡ C−1W (t), for t ≥ 0, defines a
semigroup of possibly unbounded operators. For a possibly vector-valued
function H, “

	∞
0 H(t) dt” will be shorthand for “limN→∞

	N
0 H(t) dt exists

and equals
	∞
0 H(t) dt.”

II. Preliminaries. Basic material on strongly continuous semigroups
may be found in [Gol], [H-P], [N], [E-N], [Pa], and [vC]. A semigroup {etA}t≥0

is exponentially stable if its norm is bounded above by Me−εt for some M ,
ε > 0.

First we need to describe two generalizations of strongly continuous semi-
groups, and their relationship to the abstract Cauchy problem

(ACP)
d

dt
u(t, x) = A(u(t, x)) (t ≥ 0), u(0, x) = x ∈ X.

Definition 2.1. For n a nonnegative integer, a strongly continuous fam-
ily {S(t)}t≥0 of operators is an exponentially bounded n-times integrated
semigroup generated by A if, for some real ω, (ω,∞) ⊆ %(A) and

(λ−A)−1x = λn
∞�

0

e−λtS(t)x dt

for all λ > ω and x ∈ X. Generation of an n-times integrated semigroup
corresponds to (ACP) having a unique mild solution u(t, x) = (d/dt)nS(t)x
for all x ∈ D(An). A 0-times integrated semigroup is a strongly continuous
semigroup. See [A] for basic information on integrated semigroups.

Definition 2.2. For C a bounded, injective operator, a C-regularized
semigroup is a strongly continuous family {W (t)}t≥0 of operators such that
W (0) = C and, for s, t ≥ 0,

W (t)W (s) = CW (t+ s).
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The generator of {W (t)}t≥0 is an operator A such that

Ax = C−1

(
d

dt
W (t)x

∣∣∣∣
t=0

)
,

with maximal domain. Generation of a C-regularized semigroup corresponds
to (ACP) having a unique mild solution u(t, x) = C−1W (t)x for x ∈ Im(C),
and the existence of a space continuously embedded between [Im(C)] and
X on which the restriction of A generates a strongly continuous semigroup.
Generation of an n-times integrated semigroup corresponds to generation of
a (λ−A)−n-regularized semigroup. An I-regularized semigroup is a strongly
continuous semigroup. See [d3] for basic information on regularized semi-
groups.

Definition 2.3. Suppose −A generates a uniformly bounded strongly
continuous semigroup {e−tA}t≥0. Let F be the Banach algebra of functions
f for which there exists a complex-valued measure µ of bounded variation
on [0,∞) such that

f(s) =
∞�

0

e−st dµ(t) (s ≥ 0),

with norm
‖f‖F ≡

∞�

0

d|µ|(t),

the total variation of µ.
Then the bounded operator f(A) (see [H-P, Chapter XV]) is defined

by

(2.4) f(A)x ≡
∞�

0

(e−tAx) dµ(t) (x ∈ X).

The fact that f 7→ f(A) is an algebra homomorphism is equivalent to the
following, from [H-P, Theorem 15.2.1]:

(2.5)
∞�

0

(etAx) d(µ1 ∗ µ2)(t) =
∞�

0

erA
(∞�

0

etAx dµ1(t)
)
dµ2(r),

for µ1, µ2 complex-valued measures of bounded variation on [0,∞) and
x ∈ X.

Denote by δ0 the Dirac delta function, the measure such that
∞�

0

e−st dδ0(t) = 1 (s ≥ 0).

Definition 2.6 ([d4, Definition 2.4]). Let EXT(F) (for “extension of F”)
be the set of all complex-valued functions g on [0,∞) for which there ex-
ists h ∈ F such that h(A) is injective whenever −A generates a uniformly
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bounded strongly continuous semigroup and

τ 7→ hτ ≡ eτgh
is a continuous map from [0,∞) into F .

Lemma 2.7 ([d4, Lemma 2.6]). Suppose −A generates a uniformly
bounded , strongly continuous semigroup. Then {hτ (A)}τ≥0, from Defini-
tion 2.6, is an h(A)-regularized semigroup that is continuous in the operator
norm.

Definition 2.8 ([d4, Definition 2.7]). For g, h, hτ as in Definition 2.6,
denote by g(A) the generator of {hτ (A)}τ≥0.

In the following, for λ complex, let gλ(s) ≡ (λ−s)−1, f0(s) ≡ 1, f1(s) ≡ s.
Lemma 2.9 ([d4, Theorems 2.8 and 3.7 and Proposition 3.6]). If −A gen-

erates a uniformly bounded , strongly continuous semigroup, then g 7→ g(A),
defined by Definition 2.8, is an extension of the functional calculus (2.4)
such that

(a) f0(A) = I;
(b) f1(A) = A;
(c) gλ(A) = (λ−A)−1 whenever Re(λ) < 0;
(d) if f and g are in EXT(F), then fg ∈ EXT(F), with

f(A)g(A) ⊆ (fg)(A), D(f(A)g(A)) = D(fg)(A) ∩ Dg(A).

Definition 2.10. Next we describe a special case of an extension of a
holomorphic Riesz–Dunford sort of functional calculus (see [d2]).

Fix ω > 0, and assume that the right half-plane −ω + RHP ≡ {z ∈ C |
Re(z) > −ω} ⊆ %(A), with ‖(λ − A)−1‖ bounded on −ε + RHP for any
ε < ω.

For ε > 0, denote by−ε+LHP the set of complex z such that Re(z) < −ε,
and by HL(−ε + LHP) the set of complex-valued holomorphic functions f
on −ε+ LHP such that {Re(f(z)) | Re(z) < −ε} is bounded above.

Lemma 2.11 ([d2, Theorem 3.5]). Suppose A, ω, and ε are as in Defini-
tion 2.10, f ∈ HL(−ε+ LHP), and ε < δ < ω. Then

Wf (τ) ≡
�

−δ+iR
eτf(w)(w −A)−1 dw

2πiw2
(τ ≥ 0)

defines an A−2-regularized semigroup that is continuous in the operator
norm.

Definition 2.12. For A as in Definition 2.10, f(A) is defined to be the
generator of {Wf (τ)}τ≥0 from Lemma 2.11.

In the following, f0, f1, and gλ are as in Lemma 2.9.
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Lemma 2.13 ([d2, Theorem 3.10]). If A is as in Definition 2.10, then
f 7→ f(A), from Definition 2.12, has the following properties:

(a) f0(A) = I;
(b) f1(A) = A;
(c) gλ(A) = (λ−A)−1 whenever Re(λ) > −ε.

III. Behavior of the semigroup generated by A−1 on subspaces.
Throughout this section, A is an injective operator. It is known ([Z1], [Gom-
Z-T], and [K]) that, even when the image of A is dense and A generates a
uniformly bounded, strongly continuous semigroup, A−1 might not gener-
ate a strongly continuous semigroup. In this section we show that, when A
generates a uniformly bounded, strongly continuous semigroup, then A−1

generates an O(1 + τ) A(1−A)−1-regularized semigroup {W (τ)}τ≥0 (The-
orem 3.3), so that

eτA
−1 ≡ (1−A)A−1W (τ)

is defined as a possibly unbounded closed operator for τ ≥ 0; we will hence-
forth denote W (τ) by

eτA
−1
A(1−A)−1.

This means, in particular, that ‖eτA−1
x‖ = O(1 + τ) for all x ∈ Im(A),

and if 0 ∈ %(A), then ‖eτA−1‖ = O(τ) as τ goes to infinity (Corollary 3.7).
We also show in this section that, if A generates an exponentially stable
strongly continuous semigroup, then for k ∈ N and x ∈ D(Ak), ‖eτA−1

x‖ =
O(τ1/4−k/2) as τ → ∞ (Theorem 3.9). Under the weaker hypothesis of the
resolvents of A being bounded in a half-plane Re(z) > −c for some c > 0,
for k ∈ N, ‖eτA−1

x‖ = O(τ−r) for r < 1
2(k−1) (Propositions 3.10 and 3.11).

Here is a summary of material about Bessel functions needed (see [W]).
For n a nonnegative integer, denote by Jn the Bessel function of the first
kind of the nth order. We will denote by G (called hac in [Z1]) the function
whose Laplace transform is 1− e−1/s:

(3.1) G(t) ≡ 1√
t
J1(2
√
t).

Then

(1) Jn(r) = O(r−1/2) as r →∞ for all nonnegative integers n;
(2) G is continuous on (0,∞) and limt→0+ G(t) = 1;
(3)

	∞
0 |G

′(t)| dt <∞;
(4) |G′(t)| = O(t−5/4) as t→∞;
(5) (−d/dt)nJ0(2

√
t) = (1/

√
t)nJn(2

√
t) for all nonnegative integers n;

(6) J0(0) = 1;
(7) J0(2

√
tτ) = (d/dτ)(τG(tτ)).
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We begin, as in [Z1, (10)], with the Laplace transform (1.1). Unfortu-
nately G is not in the Banach algebra F of Definition 2.3. Thus we need the
extended functional calculus described in Definition 2.8, applied to −A.

First a technical lemma, where we use the informal notation h(x) for a
function h of x.

Lemma 3.2. For any h(x) ∈ L1([0,∞)), the map t 7→ t2h(tx) is contin-
uous from [0,∞) into L1([0,∞)).

Proof. For any t ≥ 0, define T (t) : L1([0,∞))→ L1([0,∞)) by

(T (t)h)(x) ≡ t2h(tx) (h ∈ L1([0,∞)), x ≥ 0).

For h ∈ L1([0,∞)) and t ≥ 0,

‖T (t)h‖1 =
∞�

0

t2|h(tx)| dx =
∞�

0

t|h(r)| dr = t‖h‖1,

thus ‖T (t)‖ is locally bounded in t. This implies that it is sufficient to
prove the lemma for h in a dense subspace of L1([0,∞)). Our choice of
dense subspace will be C1

c ([0,∞)), the continuously differentiable functions
of compact support: for h ∈ C1

c ([0,∞)),

lim
s→t
‖s2h(sx)− t2h(tx)‖1 = 0

by dominated convergence, since h is bounded and of compact support,
concluding the proof.

In the following, Im(A) might not be dense.

Theorem 3.3. Suppose A generates a uniformly bounded , strongly con-
tinuous semigroup {etA}t≥0. Then A−1 generates an operator-norm contin-
uous O(1 + τ) A(1−A)−1-regularized semigroup, given by

(eτA
−1−I)A(1−A)−1x =

∞�

0

(etAx)τ(G(tτ)−G(tτ)∗e−t) dt (τ > 0, x ∈ X).

For y ∈ Im(A),

(eτA
−1 − I)y = −

∞�

0

(etAy)τG(tτ) dt.

Proof. Let h(s) ≡ −s(1 + s)−1, g(s) ≡ −1/s, and hτ ≡ eτgh for τ ≥ 0.
To invoke Lemma 2.7, we need to show that τ 7→ hτ is a continuous map
from [0,∞) into F from Definition 2.3. Equivalently, since

hτ (s) = ((1 + s)−1−1)e−τ/s = ((1 + s)−1−1) + (1−e−τ/s)(1− (1 + s)−1)

=
∞�

0

e−stHτ (t) dt (s > 0),
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where

Hτ (t) ≡ (e−t − δ0(t)) + τG(tτ) ∗ (δ0(t)− e−t) (t, τ ≥ 0),

we need to show that τ 7→Hτ is a continuous map from [0,∞) into L1([0,∞)).
First, for τ > 0, rewrite

1
τ

((δ0(t)− e−t) +Hτ (t)) = G(tτ)−
t�

0

e−(t−s)G(sτ) ds

= G(tτ)−
[
e−(t−s)G(sτ)

∣∣t
0
−

t�

0

e−(t−s)τG′(sτ) ds
]

= e−t +
t�

0

e−(t−s)τG′(sτ) ds.

Thus, for any τ1, τ2 ≥ 0,

Hτ1(t)−Hτ2(t) = (τ1 − τ2)e−t +
t�

0

e−(t−s)(τ2
1G
′(sτ1)− τ2

2G
′(sτ2)) ds,

so that

‖Hτ1(t)−Hτ2(t)‖1 =
∞�

0

∣∣∣(τ1−τ2)e−t+
t�

0

e−(t−s)(τ2
1G
′(sτ1)−τ2

2G
′(sτ2)) ds

∣∣∣ dt
≤ |τ1 − τ2|+

∞�

0

t�

0

e−(t−s)|τ2
1G
′(sτ1)− τ2

2G
′(sτ2)| ds dt

= |τ1 − τ2|+
∞�

0

(∞�
s

e−(t−s) dt
)
|τ2

1G
′(sτ1)− τ2

2G
′(sτ2)| ds

= |τ1 − τ2|+
∞�

0

|τ2
1G
′(sτ1)− τ2

2G
′(sτ2)| ds.

By Lemma 3.2, since G′ ∈ L1([0,∞)), limτ1→τ2 ‖Hτ1−Hτ2‖1 = 0 for any
τ2 ≥ 0. Thus τ 7→ hτ is a continuous map from [0,∞) into F . This means
(Lemma 2.7 and Definition 2.8) that g(−A) is defined as the generator of
the operator-norm continuous h(−A)-regularized semigroup

hτ (−A)x =
∞�

0

(etAx)Hτ (t) dt

= (1−A)−1x− x+
∞�

0

(etAx)τ(G(tτ)−G(tτ) ∗ e−t) dt

= A(1−A)−1x+
∞�

0

(etAx)τ(G(tτ)−G(tτ) ∗ e−t) dt (τ≥0, x∈X).
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By Lemma 2.9(c), since h(s) = (1+s)−1−1, we have h(−A) = (1−A)−1−1 =
A(1−A)−1. By Lemma 2.9(a), (b), and (d), Ag(−A) ⊆ I and g(−A)A ⊆ I,
which implies that g(−A) = A−1.

In summary, we have shown that A−1 generates an operator-norm contin-
uous A(1−A)−1-regularized semigroup, given by the first integral expression
of the statement of Theorem 3.3.

For the growth of ‖eτA−1
A(1−A)−1‖, recall that

‖eτA−1
A(1−A)−1‖
= ‖hτ‖F = ‖Hτ‖1 = ‖t 7→ (e−t − δ0(t)) + τG(tτ) ∗ (δ0(t)− e−t)‖1

≤ 2 + τ‖t 7→ G(tτ) ∗ (δ0(t)− e−t)‖1

= 2 + τ
∥∥∥t 7→ e−t +

t�

0

e−(t−s)τG′(sτ) ds
∥∥∥

1

≤ 2 + τ + τ

∞�

0

t�

0

|e−(t−s)τG′(sτ)| ds dt

= 2 + τ + τ

∞�

0

(∞�
s

e−(t−s) dt
)
|τG′(sτ)| ds = 2 + τ + τ

∞�

0

|τG′(sτ)| ds

= 2 + τ + τ

∞�

0

|G′(r)| dr = O(1 + τ),

as desired, since
	∞
0 |G

′(r)| dr <∞.
Finally, suppose y ∈ Im(A). Then there exists x ∈ X such that y =

A(1 − A)−1x. Since convergence is not at first glance guaranteed by any
means, let us write, for N > 0,
N�

0

(etAy)G(tτ) dt

=
[( t�

0

esAA(1−A)−1x ds
)
G(tτ)

]∣∣∣N
t=0
−
N�

0

( t�
0

esAA(1−A)−1x ds
)
τG′(tτ) dt

=
[(t�

0

d

ds
esA(1−A)−1x ds

)
G(tτ)

]∣∣∣∣N
t=0

−
N�

0

(t�
0

d

ds
esA(1−A)−1x ds

)
τG′(tτ) dt

= [((etA − I)(1−A)−1x)G(tτ)]
∣∣N
t=0
−
N�

0

((etA − I)(1−A)−1x)τG′(tτ) dt.

Since {etA}t≥0 is bounded and G(t) = O(t−3/4) and G′(t) = O(t−5/4) for t
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large, we may let N →∞ to get
∞�

0

(etAy)G(tτ) dt =
∞�

0

((I − etA)(1−A)−1x)τG′(tτ) dt(3.4)

= −(1−A)−1x−
∞�

0

(etA(1−A)−1x)τG′(tτ) dt.

On the other hand, by (2.5), and our proof so far,

(3.5)
1
τ

(eτA
−1 − I)y

=
∞�

0

(etAx)
1
τ

(Hτ (t) + (δ0(t)− e−t)) dt

=
∞�

0

(etAx)(e−t + τG′(tτ) ∗ e−t) dt

=
(∞�

0

(etAx)e−t dt
)

+
(∞�

0

etA
(∞�

0

(etAx)e−t dt
)
τG′(tτ) dt

)
= (1−A)−1x+

(∞�
0

(etA(1−A)−1x)τG′(tτ) dt
)
.

Comparing (3.4) and (3.5) gives the desired representation.

Remark 3.6. In [P-Z, Theorem 3.3] it is shown that A−1 generates a
once-integrated semigroup when A is injective and generates a uniformly
bounded strongly continuous semigroup. This implies ([d3, Theorem 18.3])
that A−1 generates a (1 − A−1)−1 = A(A − 1)−1-regularized semigroup.
We wished to present our direct proof of this result, both to get growth
conditions on the solutions of the abstract Cauchy problem (see beginning
of Section II) u(t, x) = etA

−1
x, x ∈ Im(A), and to get the intuitively natural

functional calculus representation of eτA
−1
y, y ∈ Im(A),

(eτA
−1 − I)y = −

∞�

0

(etAy)τG(tτ) dt,

which will be central to the results in Section IV. The operator-norm conti-
nuity is also of interest.

Corollary 3.7. If A generates a uniformly bounded , strongly contin-
uous semigroup {etA}t≥0 and 0 ∈ %(A), then ‖eτA−1‖ = O(τ) as τ → ∞,
and is given by

(eτA
−1 − I)x = −

∞�

0

(etAx)τG(tτ) dt (x ∈ X, τ ≥ 0).
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Remark 3.8. The representation of eτA
−1

in Corollary 3.7 appears in
[Z1, Lemma 3.2], when {etA}t≥0 is exponentially stable. In [Z1, Theorem 3.4]
it is shown that if {etA}t≥0 is exponentially stable, then ‖eτA−1‖ = O(τ1/4)
as τ → ∞. [Z1, Theorem 3.3] also shows, under the same hypothesis, that
‖eτA−1

x‖ = O(τ−1/4) for x ∈ D(A). The following theorem shows that,
for x ∈ D(Ak) and k > 1, we may improve the decay estimate. We are
indebted to the referee for the proof, and the improved decay rate over
Proposition 3.11.

Theorem 3.9. If A generates an exponentially stable strongly contin-
uous semigroup {etA}t≥0 and k ∈ N, then ‖eτA−1

x‖ = O(τ1/4−k/2) for all
x ∈ D(Ak).

Proof. By (1.2) (see Theorem 3.3), and Bessel function facts (7), (5),
and (1), appearing after (3.1) near the beginning of this section, in that
order,

eτA
−1
A−k =

(
d

dτ

)k
(eτA

−1
) =

(
d

dτ

)k∞�
0

etAτG(tτ) dt

=
(
d

dτ

)k−1∞�

0

etAJ0(2
√
tτ) dt

=
∞�

0

etAtk−1

(
−1√
tτ

)k−1

Jk−1(2
√
tτ) dt

= O

((
1√
τ

)k−1

(
√
τ)−1/2

)
= O(τ1/4−k/2),

as desired.

In the remainder of this section, denote by RHP the right half-plane
{z ∈ C | Re(z) > 0}.

By the Hille–Yosida theorem, when A generates an exponentially stable
strongly continuous semigroup, as in Theorem 3.9, there exists c > 0 such
that all powers (λ − A)−n of the resolvent of A are uniformly bounded on
the right half-plane −c+RHP. In the following two propositions, we weaken
this hypothesis to only require that the resolvent (λ−A)−1 be bounded; we
also do not require that D(A) be dense, as is the case when A generates a
strongly continuous semigroup. This results in a weaker growth condition
on ‖eτA−1‖.

Proposition 3.10. Suppose there exists c > 0 such that −c + RHP
⊆ %(A), with ‖(λ−A)−1‖ bounded on −c+ RHP. Then, for all x ∈ D(A2),
‖eτA−1

x‖ = O(
√

(ln τ)/τ) = O(τ−r) for r < 1/2 as τ →∞.
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Proof. A is as in Definition 2.10. By Lemmas 2.11 and 2.13(c), there
exists δ > 0 such that

eτA
−1
A−2 =

�

−δ+iR
eτ/w(w −A)−1 dw

2πiw2
(τ ≥ 0),

with ‖(w − A)−1‖ bounded on −δ + iR, so that there exists a constant M
such that, for τ ≥ 0,

‖eτA−1
A−2‖ ≤M

�

R
|e

τ
−δ+iy | dy

|−δ + iy|2

= M
�

R
e
−τδ
δ2+y2

dy

δ2 + y2
=
M

δ

�

R
e
−τ/δ
1+x2

dx

1 + x2
,

where the last equality follows from the substitution x = y/δ. Thus it is
sufficient to show that

∞�

0

e
−τ

1+y2
dy

1 + y2
=

1
2

�

R
e
−τ

1+y2
dy

1 + y2
= O

(√
ln τ
τ

)
as τ →∞.

Let N = N(τ) ≡
√
τ/ln τ for τ > 0, and write

∞�

0

e
−τ

1+y2
dy

1+y2
=
N�

0

e
−τ

1+y2
dy

1+y2
+
∞�

N

e
−τ

1+y2
dy

1+y2
≤

N�

0

e
−τ

1+N2 dy +
∞�

N

dy

1+y2

= Ne
−τ

1+N2 +arctan
(

1
N

)
=
√

τ

ln τ
e−

τ ln τ
τ+ln τ +arctan

(√
ln τ
τ

)
=

1√
ln τ

τ
1
2
− τ
τ+ln τ + arctan

(√
ln τ
τ

)
=

1√
ln τ

τ
1
2
− τ+ln τ−ln τ

τ+ln τ + arctan
(√

ln τ
τ

)
=

1√
τ ln τ

τ
ln τ
τ+ln τ + arctan

(√
ln τ
τ

)
;

since arctan s = O(s) as s→ 0, and a L’Hospital’s rule argument shows that
τ (ln τ)/(τ+ln τ) converges to 1 as τ →∞, this concludes the proof.

Almost exactly the same argument generalizes this result to D(Ak),
k ≥ 2, in the following way.

Proposition 3.11. If A is as in Proposition 3.10 and k ≥ 2, then, for
all x ∈ D(Ak), ‖eτA−1

x‖ = O(τ−r) for r < 1
2(k − 1) as τ →∞.
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Proof. Without loss of generality, assume r > 0. This is the same as the
proof of Proposition 3.10, except that we write

eτA
−1
A−k =

�

−δ+iR
eτ/w(w −A)−1 dw

2πiwk
,

and estimate
	∞
0 e−τ/(1+y2) dy

(1+y2)k/2
by breaking the integral into

	N
0 +

	∞
N ,

with N = N(τ) ≡ τ s, s ≡ r/(k − 1) :
∞�

0

e
−τ

1+y2
dy

(1 + y2)k/2
≤

N�

0

e
−τ

1+N2 dy +
∞�

N

dy

yk
= Ne

− τ
1+N2 +

1
k − 1

N1−k

= τ se
− τ

1+τ2s +
1

k − 1
τ s(1−k) = τ se

− τ
1+τ2s +

1
k − 1

τ−r;

we conclude by noting that, letting m ≡ sk/(1− 2s), since 1 − 2s > 0, we
have

τ se
− τ

1+τ2s = O

(
τ s
(

τ

1 + τ2s

)−m)
= O(τ s(τ1−2s)−m)

= O(τ s(1−k)) = O(τ−r).

Set C∞(A) ≡
⋂∞
k=0D(Ak).

Corollary 3.12. If A is as in Proposition 3.10 and x ∈ C∞(A), then
τn‖eτA−1

x‖ → 0 as τ →∞, for any n ∈ N.

IV. A characterization, and some sufficient conditions, for A−1

generating a strongly continuous semigroup. Conditions equivalent
to A−1 generating a strongly continuous semigroup are in Theorem 4.3. Suf-
ficient conditions are given in Corollary 4.5, Theorems 4.7 and 4.13, and
Proposition 4.11. Proposition 4.10 gives, for an integer k, a sufficient con-
dition for ‖eτA−1

x‖ to be O(τ−1/4) as τ → ∞ for x ∈ D(Ak+1). Different
integral representations of {eτA−1}τ≥0 appear in Theorems 4.3, 4.7, and 4.13,
Corollary 4.5, and Proposition 4.11.

Lemma 4.1. Suppose C1 and C2 are bounded , injective operators, and
A generates a C1-regularized semigroup {W (t)}t≥0 that commutes with C2.
Then

(a) {C2W (t)}t≥0 is a C1C2-regularized semigroup generated by A;
(b) if t 7→ T (t) ≡ C−1

2 W (t) defines a strongly continuous family of
operators in B(X), then {T (t)}t≥0 is a C−1

2 C1-regularized semigroup
generated by A.

Proof. (a) is [d3, Proposition 3.10]. For (b), let C ≡ C−1
2 C1. By hypoth-

esis, C ∈ B(X), and the injectivity of C1 implies that C is injective. For



Inverses of generators of nonanalytic semigroups 25

all s, t ≥ 0,

C2
2T (t)T (s) = C2W (t)T (s) = W (t)C2T (s) = W (t)W (s) = C1W (t+ s)

= C1C2T (t+ s) = C2C1T (t+ s);

since C2 is injective,

C2T (t)T (s) = C1T (t+ s), so that T (t)T (s) = CT (t+ s);

that is, {T (t)}t≥0 is a C-regularized semigroup. Part (a) now implies that
the generator of {T (t)}t≥0 is A.

Lemma 4.2 ([d5, Lemma 3]). If %(A) is nonempty and A generates a
Cj-regularized semigroup, for j = 1, 2, and C ≡ C1 + C2 is injective, then
A generates a C-regularized semigroup.

Recall the function G, defined by (3.1).

Theorem 4.3. Suppose A generates a uniformly bounded strongly con-
tinuous semigroup {etA}t≥0. Then the following are equivalent.

(a) A−1 generates a strongly continuous semigroup.
(b) A−1 generates a (1−A)−2-regularized semigroup.
(c) Im(A) is dense and there exists k ∈ N such that , for all x ∈ X,

∞�

0

(etAA(1−A)−kx)τG(tτ) dt ∈ D((1−A)k−2A−1),

with

Wk(τ)x≡(1−A)k−2A−1
∞�

0

(etAA(1−A)−kx)τG(tτ) dt (τ≥0, x∈X)

defining a strongly continuous family in B(X).
(d) There exists k ∈ N such that , for all x ∈ X,

∞�

0

(etAA(1−A)−kx)τG(tτ) dt ∈ D((1−A)k−2A−1),

with Wk(τ) from (c) defining a family in B(X) locally bounded in τ.
(e) Im(A) is dense and

S(τ)y ≡
∞�

0

(etAy)τG(tτ) dt (y ∈ Im(A), τ ≥ 0)

defines a family of bounded operators from Im(A) to X, locally bound-
ed in τ.

(f) Im(A) is dense and S(τ), from (e), leaves Im(A) invariant , with

x 7→ (1−A−1)S(τ)A(1−A)−1x (τ ≥ 0, x ∈ X)

defining a family in B(X) locally bounded in τ.
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Then, for τ ≥ 0 and x ∈ X,

eτA
−1
x = x+ (1−A−1)

∞�

0

(etAA(1−A)−1)x)τG(tτ) dt.

Proof. (b)⇒(a). By hypothesis and Theorem 3.3, A generates both a
(1−A)−2-regularized semigroup and an A(1−A)−1-regularized semigroup.
Note that

A(1−A)−1 − (1−A)−2 = [A(1−A)− 1](1−A)−2,

which is in B(X), with inverse

−(1−A)2(λ1 −A)−1(λ2 −A)−1, λ1 = 1
2(1 +

√
3i), λ2 = 1

2(1−
√

3i),

in B(X). Let C1 ≡ [A(1−A)− 1](1−A)−2 and C2 ≡ C−1
1 . By Lemma 4.2,

A−1 generates a C1-regularized semigroup; then, by Lemma 4.1(a), A−1 gen-
erates an I-regularized semigroup, which is precisely a strongly continuous
semigroup.

(d)⇒(b). By Theorem 3.3 and Lemma 4.1(a),

[A(1−A)−3 −A(1−A)−1Wk(τ)]x

= (1−A)−2
[
A(1−A)−1x− (1−A)k−1

∞�

0

(etAA(1−A)−kx)τG(tτ) dt
]

= (1−A)−2
[
A(1−A)−1x−

∞�

0

(etAA(1−A)−1x)τG(tτ) dt
]

(x ∈ X)

defines an A(1 − A)−3-regularized semigroup generated by A−1. By Lem-
ma 4.1(b) with C1 ≡ A(1−A)−3 and C2 ≡ A(1−A)−1, {(1−A)−2−Wk(τ)}τ≥0

is a (1−A)−2-regularized semigroup generated by A.
(c)⇒(d). By Theorem 3.3, for any x ∈ X,
Wk(τ)A(1−A)−1x

≡ (1−A)k−2A−1
∞�

0

(etAA(1−A)−k(A(1−A)−1x))τG(tτ) dt

= (1−A)−2
∞�

0

(etAA(1−A)−1x)τG(tτ) dt

is a continuous function of τ ; that is, τ 7→ Wk(τ)y is continuous for all
y ∈ Im(A). Since Im(A) is dense, and ‖Wk(τ)‖ is locally bounded in τ, the
same is true for all x ∈ X.

(a)⇒(e). As A−1 generates a strongly continuous semigroup {eτA−1}τ≥0,
Im(A) = D(A−1) is dense. By Theorem 3.3,

S(τ)y = y − eτA−1
y (y ∈ Im(A), τ ≥ 0).
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The local boundedness of this family of operators follows from {eτA−1}τ≥0

being a strongly continuous semigroup.
(e)⇒(c). Since Im(A) is dense, {S(τ)}τ≥0 extends uniquely to a family

of bounded operators on X locally bounded in τ. Strong continuity on X
follows from the local boundedness and the strong continuity on the dense set
Im(A), the latter guaranteed by Theorem 3.3. It is clear from the definition
of S(τ) that it commutes with A(1 − A)−1 on Im(A); denseness of Im(A)
implies the same commuting on X. Thus, for any x ∈ X and τ ≥ 0,
∞�

0

(etAA(1−A)−3x)τG(tτ) dt= S(τ)A(1−A)−3x

=A(1−A)−1(S(τ)(1−A)−2x) ∈ D((1−A)A−1),

with

(1−A)A−1
∞�

0

(etAA(1−A)−3x)τG(tτ) dt = S(τ)(1−A)−2x,

a family in B(X) that is locally bounded in τ, giving (c), with k = 3.
(a)⇒(f). Since A−1 generates a strongly continuous semigroup, Im(A) =

D(A−1) is dense. By Theorem 3.3, for x ∈ X and τ ≥ 0,

(1−A−1)−1(eτA
−1
x− x) = −A(1−A)−1(eτA

−1
x− x)

= −(eτA
−1 − I)A(1−A)−1x

=
∞�

0

(etAA(1−A)−1x)τG(tτ) dt,

thus
	∞
0 (etAA(1−A)−1x)τG(tτ) dt ∈ D(A−1) = Im(A), with

(1−A−1)
∞�

0

(etAA(1−A)−1x)τG(tτ) dt = eτA
−1
x− x,

a family in B(X) locally bounded in τ.

(f)⇒(e). If y ∈ Im(A), then, for τ ≥ 0, since etA(1 − A−1)y =
(1−A−1)etAy for all t ≥ 0,

S(τ)y = S(τ)(1−A−1)−1(1−A−1)y = −S(τ)(1−A−1)A(1−A)−1y

= −(1−A−1)S(τ)A(1−A)−1y,

so that (e) clearly follows from (f).
The integral representation of eτA

−1
follows from the proof of (a)⇒(f).

Example 4.4. We will use Theorem 4.3 to show that a restriction of
−d/dx on L1([0,∞)) is an injective generator, with dense image, of a uni-
formly bounded strongly continuous semigroup whose inverse does not gen-
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erate a strongly continuous semigroup. See [Z1, Example 3.7] and [Gom-Z-T]
for different examples.

Our choice of example is motivated by the fact that differentiation on
L1([0,∞)) is a touchstone for generators of uniformly bounded, strongly
continuous semigroups, in the sense that many properties will hold for all
generators of uniformly bounded, strongly continuous semigroups if and
only if they hold for this differentiation operator; see [B-K-M] for a for-
mal treatment of this idea in the multiparameter case and [B-K] for the
one-dimensional case.

Let B be the generator of right translation, the uniformly bounded
strongly continuous semigroup on L1([0,∞))

(etBg)(x) ≡ g(x− t) (x, t ≥ 0, g ∈ L1([0,∞))),

where g(r) ≡ 0 when r < 0. Let A be the restriction of B to X ≡ Im(B);
that is,

D(A) ≡ {g ∈ X ∩ D(B) | Bg ∈ X} = Im(B) ∩ D(B),
Ag ≡ Bg for g ∈ D(A).

It is probably well known that A has dense image (even though B does not),
but for completeness we give the brief argument as follows. If h ∈ Im(B),
then there exists g ∈ D(B) such that h = Bg. For λ > 0, let

gλ ≡ (B − λ)−1Bg = B(B − λ)−1g ∈ D(B) ∩ Im(B) ⊆ D(A).

Then, for λ > 0,

h−Agλ = Bg − (B − λ+ λ)(B − λ)−1Bg = −λ(B − λ)−1Bg

= λ(λ−B)−1(B − λ+ λ)g = λ(λ(λ−B)−1g − g),

thus limλ→0+(h−Agλ) = 0, since ‖λ(λ−B)−1‖ is bounded for λ > 0; that
is, Im(B), hence X ≡ Im(B), is in the closure of Im(A).

For f as in Definition 2.3, restricted, for convenience, to absolutely con-
tinuous signed measures dµ = F dt with F ∈ L1([0,∞)),

f(s) =
∞�

0

e−stF (t) dt,

recall f(−A) defined by (2.4):

(f(−A)g)(x) ≡
∞�

0

[(etAg)(x)]F (t) dt =
∞�

0

g(x− t)F (t) dt

=
x�

0

g(x− t)F (t) dt ≡ (g ∗ F )(x) (g ∈ X, x ≥ 0),
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the convolution of g with F. Choosing a sequence of approximate identities

{hn}∞n=1, hn(x) ≡ nh(nx),
∞�

0

h(x) dx = 1, h nonnegative ,

it is not hard to see that

‖f(−A)‖ = ‖F‖1.
The same calculation shows that, for g ∈ Im(A) and G as in (3.1) and
Theorem 4.3,

∞�

0

(etAg)G(t) dt = g ∗G.

To invoke (e) of Theorem 4.3, choose the approximate identity {hn}∞n=1 as
above with h ∈ Im(A) (e.g., h(x) ≡ e−x); then by Fatou’s lemma,

lim
n→∞

∥∥∥∞�
0

[(etAhn)(x)]G(t) dt
∥∥∥ = lim

n→∞
‖(hn ∗G)(x)‖

= lim
n→∞

∞�

0

∣∣∣ x�
0

G(x− y)hn(y) dy
∣∣∣ dx

= lim
n→∞

∞�

0

∣∣∣ nx�
0

G(x− r/n)h(r) dr
∣∣∣ dx

≥
∞�

0

lim
n→∞

∣∣∣ nx�
0

G(x− r/n)h(r) dr
∣∣∣ dx

=
∞�

0

∣∣∣∞�
0

G(x)h(r) dr
∣∣∣ dx =

∞�

0

|G(x)| dx,

since G is continuous and h ∈ L1([0,∞)). Since G is not in L1([0,∞)), and
‖hn‖1 = 1 for all n, the map

g 7→
∞�

0

(etAg)G(t) dt (g ∈ Im(A))

is an unbounded operator from Im(A) to X. By Theorem 4.3(e)⇔(a), A−1

does not generate a strongly continuous semigroup.

Corollary 4.5. Suppose A generates a uniformly bounded strongly con-
tinuous semigroup {etA}t≥0 and

T (τ)x ≡
∞�

0

(etA(1−A)−2x)τG(tτ) dt (τ ≥ 0, x ∈ X)

defines a family of operators in B(X) such that either
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(a) {T (τ)}τ≥0 is strongly continuous; or
(b) Im(A) is dense and {T (τ)}τ≥0 is locally bounded in τ.

Then A−1 generates a strongly continuous semigroup given by

(4.6) eτA
−1
x = x−

∞�

0

(etAx)τG(tτ) dt (τ ≥ 0, x ∈ X).

If y ∈ D(A), then

eτA
−1
y = −

∞�

0

(etAAy) J0(2
√
tτ) dt (τ ≥ 0).

Proof. For x ∈ X and τ ≥ 0,
∞�

0

(etAA(1−A)−3x)τG(tτ) dt = A(1−A)−1
∞�

0

(etA(1−A)−2x)τG(tτ) dt

= A(1−A)−1T (τ)x ∈ D((1−A)A−1),

thus, by Theorem 4.3 ((d)⇔(a) or (c)⇔(a), k = 3), A−1 generates a strongly
continuous semigroup

eτA
−1
x = x+ (1−A−1)

∞�

0

(etAA(1−A)−1x)τG(tτ) dt (x ∈ X, τ ≥ 0).

By hypothesis,

eτA
−1

(1−A)−2y

= (1−A)−2y + (1−A−1)
∞�

0

(etAA(1−A)−1(1−A)−2y)τG(tτ) dt

= (1−A)−2y + (1−A−1)A(1−A)−1
∞�

0

(etA(1−A)−2y)τG(tτ) dt

= (1−A)−2y −
∞�

0

(etA(1−A)−2y)τG(tτ) dt (y ∈ X, τ ≥ 0);

that is, (4.6) holds for x ∈ Im((1 − A)−2). Theorem 3.3 implies the same
assertion for x ∈ Im(A(1−A)−1). By the calculation beginning the proof of
Theorem 4.3(b)⇒(a), this implies that eτA

−1
has the desired representation

for x ∈ Im(C), C ≡ [A(1−A)−1](1−A)−2; that is, for all x ∈ X and τ ≥ 0,

eτA
−1
Cx = Cx−

∞�

0

(etACx)τG(tτ) dt.

Since C−1 is bounded and commutes with eτA
−1
, we may apply it to both
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sides, including bringing it inside the integral, to obtain the desired repre-
sentation for all x ∈ X.

Finally, suppose y ∈ D(A) and τ ≥ 0. Then (see Bessel function facts
after (3.1))

eτA
−1
y = y − lim

N→∞

N�

0

(etAy)τG(tτ) dt

= y + lim
N→∞

N�

0

(etAy)
d

dt
(J0(2

√
tτ)) dt

= y + lim
N→∞

(
[(etAy)J0(2

√
tτ)]|Nt=0 −

N�

0

(etAAy) J0(2
√
tτ) dt

)
.

Since {etA}t≥0 is bounded and J0(r) = O(r−1/2) as r → ∞, it follows that
limN→∞[etAyJ0(2

√
tτ)]|Nt=0] = −y. Thus

−
∞�

0

(etAAy)J0(2
√
tτ) dt

exists, and equals eτA
−1
y.

Theorem 4.7. Suppose Im(A) is dense and A generates a uniformly
bounded strongly continuous semigroup {etA}t≥0 such that

∞�

0

‖etA(1−A)−2‖t−3/4 dt <∞.

Then A−1 generates a strongly continuous semigroup given by

eτA
−1
x = x−

∞�

0

(etAx)τG(tτ) dt (x ∈ X, τ > 0),

satisfying ‖(eτA−1 − I)(1−A)−2‖ = O(τ1/4) for τ ≥ 0.

Proof. Since ‖G(s)‖ = O(s−3/4) as s → ∞ and G is continuous on
[0,∞), there exists a constant M so that

‖G(s)‖ ≤Ms−3/4 for all s ≥ 0,

thus t 7→ etA(1−A)−2τG(tτ) is absolutely integrable on [0,∞), hence inte-
grable; that is,

∞�

0

(etA(1−A)−2x)τG(tτ) dt
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exists for all x ∈ X, with∥∥∥∞�
0

(etA(1−A)−2x)τG(tτ) dt
∥∥∥

≤
∞�

0

‖(etA(1−A)−2x)τG(tτ)‖ dt

≤
∞�

0

‖etA(1−A)−2‖ ‖x‖ (M(t/τ)−3/4)τ dt

= M‖x‖τ1/4
∞�

0

‖etA(1−A)−2‖t−3/4 dt = O(τ1/4).

This simultaneously allows us to apply Corollary 4.5 and to conclude the
growth condition.

Remarks 4.8. Both the hypotheses and the conclusions of Theorem 4.7
would be much more prohibitive without the regularization by (1−A)−2.

First, the unregularized conclusion ‖eτA−1 − I‖ = O(τ1/4) would imply
that τ 7→ eτA

−1
is continuous in the operator norm, which would imply that

A−1 is bounded ([Pa, Theorem 1.1.2]). However, a quick mean-value theorem
argument shows that if {T (t)}t≥0 is a strongly continuous semigroup, then
t 7→ T (t)(1 − A)−1 is Lipschitz continuous in the operator norm; in fact,
‖(T (t)− I)(1−A)−1‖ = O(t).

Second, the unregularized hypothesis, even with x thrown in for con-
tinuity,

	∞
0 ‖e

tAx‖ t−3/4 dt finite for all x ∈ X, would probably imply that
{etA}t≥0 is exponentially stable. This would follow from the existence of t0
such that ‖et0A‖ < 1 ([N, Chap. A-IV, Proposition 1.10]), or p ≥ 1 such
that

	∞
0 ‖e

tAx‖p dt is finite for all x ∈ X ([Pa, Theorem 4.4.1]).
The following example shows that the hypothesis of Theorem 4.7 does

not imply that {etA}t≥0 is exponentially stable. Let

Ω ≡ {z ∈ C | −1 ≤ Re(z) < 0, | Im(z)| > e−1/Re(z)}∪{z ∈ C | Re(z) < −1},
X ≡ {f ∈ H∞(Ω) ∩ C(Ω) | lim

|z|→∞, z∈Ω
f(z) = 0},

(Af)(z) ≡ zf(z), with maximal domain, the generator of (etAf)(z) =
etzf(z) (f ∈ X, z ∈ Ω, t ≥ 0). Then, writing complex z = x + iy, x, y
real, we have

‖etAA−2‖ = sup
z∈Ω
|etzz−2| = sup

−1≤x<0
etx(x2 + (e−1/x)2)−1

≤ sup
−1≤x<0

etx((e−1/x)2)−1 = sup
−1≤x<0

etx+2/x,
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which, for t ≥ 2, equals e−2
√

2t. In fact, it is not hard to see that

lim
t→∞

e2
√

2t‖etA‖ = 1.

Thus ‖etAA−2‖, hence ‖etA(1−A)−2‖ = ‖etAA−2(A2(1−A)−2)‖, converges
to zero as t→∞, and is in L1([0,∞)), but is not exponentially stable, hence
{etA}t≥0 is not exponentially stable.

Remark 4.9. Theorem 4.7 should be compared to [Z1, Theorem 3.4],
where it is shown that ‖eτA−1‖ = O(τ1/4) as τ → ∞ when {etA}t≥0 is ex-
ponentially stable; that is, ‖etA‖ = O(e−εt) for some ε > 0, which would
clearly satisfy the hypothesis of Theorem 4.7. Similarly, the next result gen-
eralizes [Z1, Theorem 3.3], where it is shown that ‖eτA−1

x‖ = O(τ−1/4) when
x ∈ D(A) and {etA}t≥0 is exponentially stable, so that we could choose k = 0
in the following.

Proposition 4.10. Suppose Im(A) is dense, k is a nonnegative inte-
ger , and A generates a uniformly bounded strongly continuous semigroup
{etA}t≥0 such that
∞�

0

‖etA(1−A)−k‖t−1/4 dt <∞ and
∞�

0

‖etA(1−A)−2‖t−3/4 dt <∞.

Then ‖eτA−1
y‖ = O(τ−1/4) for y ∈ D(Ak+1).

Proof. There exists a constant M so that

‖J0(s)‖ ≤Ms−1/2 for all s ≥ 0,

thus by Corollary 4.5 and Theorem 4.7,

‖eτA−1
(1−A)−(k+1)‖

=
∥∥∥∞�

0

(etAA(1−A)−(k+1))J0(2
√
tτ) dt

∥∥∥
≤ ‖A(1−A)−1‖

∞�

0

‖etA(1−A)−k‖M(2
√
tτ)−1/2 dt

=
(
‖A(1−A)−1‖ M√

2

)
τ−1/4

∞�

0

‖etA(1−A)−k‖t−1/4 dt = O(τ−1/4)

for τ large.

Proposition 4.11. Suppose A generates a strongly continuous semi-
group such that ‖

	t
0 e

sA(1− A)−2 ds‖ = O(tr) as t→∞, for some r < 1/4.
Then A−1 generates a strongly continuous semigroup given by

eτA
−1
x = x−

∞�

0

(etAx)τG(tτ) dt = x+
∞�

0

( t�
0

esA(1−A)−2x ds
)
τ2G′(tτ) dt

for x ∈ X and τ ≥ 0.
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Proof. For N > 0, x ∈ X and τ ≥ 0,
N�

0

(etA(1−A)−2x)G(tτ) dt

=
( t�

0

esA(1−A)−2x ds
)
G(tτ)

∣∣∣N
t=0
−
N�

0

( t�
0

esA(1−A)−2x ds
)
τG′(tτ) dt.

Since G(r) = O(r−3/4) and G′(r) = O(r−5/4) and is integrable on [0,∞),
our growth condition allows us to take the limit as N →∞; we will use the
notation T (τ), from Corollary 4.5:

T (τ)x ≡
∞�

0

(etA(1−A)−2x)τG(tτ) dt(4.12)

= −
∞�

0

( t�
0

esA(1−A)−2x ds
)
τ2G′(tτ) dt.

The continuity of τ 7→ T (τ)x on [0,∞), for x ∈ X, will follow from Lem-
ma 3.2, by rewriting, letting S(t)x ≡

	t
0 e

sA(1−A)−2x ds,

−T (τ)x =
∞�

0

S(t)x
(1 + (tτ)r)

τ2[(1 + (tτ)r)G′(tτ)] dt.

By Lemma 3.2 with h(x) ≡ (1 + xr)G′(x), τ 7→ τ2(1 + (tτ)2)G′(tτ) is a
continuous map from [0,∞) into L1([0,∞)); this, combined with the fact
that supt≥0 ‖S(t)x/(1 + (tτ)r)‖ is locally bounded in τ , implies that τ 7→
T (τ)x is a continuous map from [0,∞) into X, for any x ∈ X.

The result now follows from Corollary 4.5 and (4.12) above.

Inspection of the proof shows that, aside from Corollary 4.5, it is only	t
0 e

sA ds, the (once) integrated semigroup generated by A, that is needed.
In fact, using the candidate for eτA

−1
given in Proposition 4.11, we may

remove the hypothesis that A generate a strongly continuous semigroup.

Theorem 4.13. Suppose that A generates a once-integrated semigroup
{S(t)}t≥0 such that ‖S(t)‖ = O(tr) as t→∞ for some r < 1/4. Then A−1

generates a strongly continuous semigroup given by

eτA
−1
x = x+

∞�

0

(S(t)x)τ2G′(tτ) dt (τ ≥ 0, x ∈ X).

Proof. Let

T (τ)x ≡ x+
∞�

0

(S(t)x)τ2G′(tτ) dt (τ ≥ 0, x ∈ X).

The continuity of τ 7→ T (τ)x on [0,∞) for x ∈ X follows exactly as in the
proof of Proposition 4.11.
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We will use the Laplace transform characterization of integrated semi-
groups (see Definition 2.1) to show that {T (τ)}τ≥0 is a strongly continuous
semigroup generated by A−1. We begin again with our favorite Laplace
transform (1.1), with variables changed,

∞�

0

e−λτG(τ) dτ = 1− e−1/λ,

then differentiate with respect to λ:

(4.14)
∞�

0

τe−λτG(τ) dτ =
1
λ2
e−1/λ,

∞�

0

τ2e−λτG(τ) dτ =
(

2
λ3
− 1
λ4

)
e−1/λ.

For λ > 0 and x ∈ X,
∞�

0

e−λτ (T (τ)x) dτ − 1
λ
x =

∞�

0

e−λτ
[∞�

0

(S(t)x)τ2G′(tτ) dt
]
dτ

=
∞�

0

(S(t)x)
(∞�

0

e−λττ2G′(tτ) dτ
)
dt

=
∞�

0

(S(t)x)
(∞�

0

(λτ2 − 2τ)e−λτG(tτ)
dτ

t

)
dt.

Applying the Laplace transforms in (4.14) to the inner integral gives
∞�

0

(λτ2 − 2τ)e−λτG(tτ)
dτ

t
=
∞�

0

(
λ
τ2

t2
− 2

τ

t

)
e−λτ/tG(τ)

dτ

t2

=
λ

t4

∞�

0

τ2e−λτ/tG(τ) dτ − 2
t3

∞�

0

τe−λτ/tG(τ) dτ

=
λ

t4
e−t/λ

(
2
(
t

λ

)3

−
(
t

λ

)4)
− 2
t3
e−t/λ

(
t

λ

)2

= − 1
λ3
e−t/λ,

so that
∞�

0

e−λτ (T (τ)x) dτ

=
1
λ
x− 1

λ3

∞�

0

e−t/λ (S(t)x) dt =
1
λ
x− 1

λ3

(
λ

(
1
λ
−A

)−1)
x

=
1
λ
x− 1

λ2

(
1
λ
A(A−1 − λ)

)−1

x =
1
λ
x− 1

λ2
λA−1(A−1 − λ)−1x

=
1
λ
x+

1
λ
A−1(λ−A−1)−1x =

1
λ

[1 + (A−1 − λ+ λ)(λ−A−1)−1]x

= (λ−A−1)−1x,

as desired.
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Remark 4.15. If A generates a once-integrated semigroup that is bound-
ed, it can be shown that 0 ∈ %(A). On the other hand, if A generates a
strongly continuous semigroup etA that is bounded, then the once-integrated
semigroup

	t
0 e

sA ds is O(t). The O(tr), r < 1/4, for t large, behavior of
Theorem 4.13 is between these two extremes.

V. Open questions

1. Is the growth rate of ‖eτA−1‖ from Theorem 3.3 optimal? It can be
shown that t 7→ τ−1/4Hτ (t) (Hτ from the proof of Theorem 3.3) is pointwise
bounded as τ goes to infinity; the growth condition ‖eτA−1‖ = O(1 + τ1/4),
which holds when etA is exponentially stable ([Z1, Theorem 3.4]), is equiv-
alent to ‖t 7→ τ−1/4Hτ (t)‖1 being bounded as τ goes to infinity.

2. Does A−1 generate an Ar(1 − A)−r-regularized semigroup, for 0 < r
< 1, when A generates a uniformly bounded strongly continuous semigroup?
This would bring us closer to A−1 generating a strongly continuous semi-
group, producing solutions of the abstract Cauchy problem (ACP), with A
replaced by A−1, for initial data in Im(Ar).

This question could be attacked similarly to the proof of Theorem 3.3,
if one had manageable expressions for the inverse Laplace transforms of
s 7→ sr(1 + s)−r, call them Fr; that is,

sr(1 + s)−r =
∞�

0

e−stFr(t) dt (s ≥ 0).

The goal would then be to show that G ∗ Fr is in L1([0,∞)), with τ 7→
τG(tτ) ∗ Fr(t) a continuous map from [0,∞) into L1([0,∞)).

3. Does the converse of Corollary 4.5 hold?

4. As mentioned in the Introduction, Theorems 3.9 and 4.13 suggest
a possible relationship between (not necessarily strongly continuous) semi-
groups generated by A and A−1, that regularity of etA might be equivalent
to decay of eτA

−1
(hence the converse). Can this be made precise? More

generally, as in (4) of the Introduction, what is the relationship between etA

and eτA
−1

?
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