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1 Introduction

Let R be the set of real numbers, Rp×m be the set of p × m real matrices,
R[z1, z2, ..., zn] (resp. R(z1, z2, ..., zn)) denotes the polynomials (resp. rational
expressions) with real coefficients in the n indeterminates z1, z2, ..., zn. The p×m
matrices with elements in R[z1, z2, ..., zn] (resp. R(z1, z2, ..., zn)) are denoted by
R[z1, z2, ..., zn]p×m (resp. R(z1, z2, ..., zn)p×m). By Ip we denote the identity
matrix of order p, and by 0p,m the p × m null matrix. By A (z1, z2, ..., zn)D

(resp. A (z1, z2, ..., zn)+) we denote the Drazin and Moore-Penrose inverse of
A (z1, z2, ..., zn).

The Moore-Penrose inverse has originally been defined by Penrose [16], while
later Decell [3] proposed a Leverrier-Faddeev algorithm for its computation. An
extension of this algorithm to the one and two-variable polynomial matrices has
been proposed by [10], [12], [13], [14]. A Leverrier-Faddeev algorithm has also
been proposed by Grevile [7] for the computation of the Drazin inverse of square
constant matrices with extensions to the one-variable polynomial matrices by
[11], [18].

The Leverrier algorithms have the advantage that are easily implemented in
symbolic programming languages like Mathematica, Maple etc. However, their
main disadvantage, is that are not stable if they are implemented in other high
level programming languages such as C++, Fortran etc. In order to overcome
these difficulties we may use other techniques such as interpolation methods.
Schuster and Hippe [17] for example, use interpolation techniques in order to
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find the inverse of a polynomial matrix. However, if we need to increase the
speed and robustness of our algorithms we may interested in finding algorithms
based on Discrete Fourier Transforms (DFT) or better Fast Fourier Transforms
(FFT). The main advantages of the DFT based algorithms are:

1. There are very efficient algorithms available both in software and hard-
ware.

2. Parallel environment (through symmetric multiprocessing or other tech-
niques) greatly benefits their speed.

Actually during the past two decades there has been extensive use of DFT
- based algorithms, due to their computational speed and accuracy. Some re-
markable examples, but not the only ones of the use of DFT in linear algebra
problems, are the calculation of the determinantal polynomial by [15], the com-
putation of the transfer function of generalized n-dimensional systems by [1]
and the solutions of polynomial matrix Diophantine equations by [9].

The main reason for the interest in these two specific inverses are due to
their applications in inverse systems, solution of AutoRegressive Moving Av-
erage representations [8], solution of Diophantine equations which gives rise to
numerous applications to the field of control system synthesis (see for example
[12] and its references) and in the study of multidimensional filters which find
numerous applications in image processing, electrical networks with variable el-
ements etc. Note that in case of square and nonsingular matrices, both inverses
coincide with the known inverse of the matrix. Therefore the computation of
these special inverses gives rise also to applications where the usual inverse of a
matrix is required such as the computation of the transfer function of a matrix
([2], [1]).

The main purpose of this work is to present a DFT-algorithm for the evalu-
ation of the generalized inverse and the Drazin inverse of a multivariable poly-
nomial matrix. More specifically in section 2 we introduce the n-dimensional
discrete Fourier transform, while later in section 3 and 4 we propose two new
DFT algorithms for the evaluation of the generalized and Drazin inverse re-
spectively of a polynomial matrix in n indeterminates. The whole theory is
illustrated via an illustrative example coming from the field of control system
synthesis.

2 Multidimensional Discrete Fourier Transform

Consider the finite sequence X(k1, . . . , kn) and X̃(r1, . . . , rn), ki, ri = 0, 1, ..., Mi.
In order for the sequence X(k1, . . . , kn) and X̃(r1, . . . , rn) to constitute an DFT
pair the following relations should hold [5] :

X̃(r1, . . . , rn) =
M1∑

k1=0

M2∑

k2=0

. . .

Mn∑

kn=0

X(k1, . . . , kn)W−k1r1
1 · · ·W−knrn

1 (1)

2



X(k1, . . . , kn) =
1
R

M1∑
r1=0

M2∑
r2=0

. . .

Mn∑
rn=0

X̃(r1, . . . , rn)W k1r1
1 · · ·W knrn

1 (2)

where

Wi = e
2πj

Mi+1 ∀i = 1, 2, 3, ..., n (3)

R =
n∏

i=1

(Mi + 1) (4)

and X, X̃ are discrete argument matrix-valued functions, with dimensions p×m.
The computation of the multidimensional DFT and its inverse can be also ac-
complished using fast Fourier transform techniques. A very fast free implemen-
tation of FFT can be found in [6].

3 Generalized Inverse of a Multivariable Poly-
nomial Matrix

The generalized inverse of a constant matrix was defined by Penrose in [16].

Definition 1 [16] For every matrix A ∈ Rp×m, a unique matrix A+ ∈ Rm×p,
which is called generalized inverse, exists satisfying

(i) AA+A = A
(ii) A+AA+ = A+

(iii) (AA+)T = AA+

(iv) (A+A)T = A+A
where AT denotes the transpose of A. In the special case that the matrix A

is square nonsingular matrix, the generalized inverse of A is simply its inverse
i.e. A+ = A−1.

Consider the polynomial matrix with real coefficients in the n indeterminates
z1, z2, ..., zn (called nD polynomial matrix)

A(z1, . . . , zn) =
M1∑

k1=0

M2∑

k2=0

. . .

Mn∑

kn=0

(Ak1...kn)×
(
zk1
1 . . . zkn

n

)
∈ R [z1, . . . , zn]p×m

(5)
with Ak1...kn ∈ Rp×m, and p not necessarily equal to m. In an analogous
way we define the generalized inverse A(z1, . . . , zn)+ ∈ R (z1, . . . , zn)m×p of the
polynomial matrix A(z1, . . . , zn) ∈ R [z1, . . . , zn]p×m defined in (5) as the matrix
which satisfies the properties (i)-(iv) of Definition (1). We will denote

z̄ = (z1, . . . , zn) ∈ Rn

and with a slight abuse of notation

a(z̄) ≡ a(z1, . . . , zn) ∈ R[z1, . . . , zn]

will denote a nD polynomial. Following the steps of [13] we have
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Theorem 2 Let A(z̄) = A(z1, . . . , zn) ∈ R [z1, . . . , zn]p×m as in (5) and

a(s, z1, . . . , zn) = det
[
sIp −A(z̄)A(z̄)T

]
= (a0(z̄)sp + · · ·+ ap−1(z̄)s + ap(z̄)) (6)

a0(z̄) = 1, be the characteristic polynomial of A(z̄) × A(z̄)T . Let k such that
ap(z̄) ≡ 0, ..., ak+1(z̄) ≡ 0 while ak(z̄) 6= 0, and define Λ := {(z̄) ∈ Cn : ak(z̄) =
0}. Then the generalized inverse A(z̄)+ of A(z̄) for z̄ ∈ Cn − Λ is given by

A(z̄)+ = − 1
ak(z̄)

A(z̄)T Bk−1(z̄) (7)

Bk−1(z̄) = a0(z̄)
[
A(z̄)A(z̄)T

]k−1
+ · · ·+ ak−1(z̄)Ip (8)

If k = 0 is the largest integer such that ak(z̄) 6= 0, then A(z̄)+ = 0. For those
z̄ ∈ Λ we can use the same algorithm again.

Proof. The theorem is easily proved using the logic in the proof of the corre-
sponding theorem about constant matrices in [3].

Remark 3 The algorithm described in (2) is efficient using symbolic program-
ming languages. Its main advantages are
1) It consists of simple recursions.
2) No matrix inversion is required.
3)In the case that p > m we can compute the transpose A(z̄)T and compute
A(z̄)+ = [A(z̄)+]T . The algorithm will be completed faster since it will need m
rather than p steps.

In the following we will propose a new algorithm for the calculation of the
generalized inverse which combines the above advantages with numerical stabil-
ity and robustness by using interpolation and discrete Fourier transforms.

Evaluation of the generalized inverse of A(z1, . . . , zn)
Step 1.
It is easily seen from (6), that the greatest powers of the (n + 1) variables in
a(s, z1, . . . , zn) are

degs (a(s, z1, . . . , zn)) = p := b0

degz1
(a(s, z1, . . . , zn)) ≤ 2pM1 := b1

...
degzn

(a(s, z1, . . . , zn)) ≤ 2pMn := bn

Thus, the polynomial a(s, z1, . . . , zn) can be written as

a(s, z1, . . . , zn) =
b0∑

k0=0

b1∑

k1=0

. . .

bn∑

kn=0

(ak0k1...kn)
(
sk0zk1

1 . . . zkn
n

)
(9)

and can be numerically computed via interpolation using the following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n and rj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(10)
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where

R =
n∏

i=0

(bi + 1)

In order, to evaluate the coefficients ak0k1...kn define

ãr0r1...rn
= det

[
u0(r0)Ip −A(u1(r1), . . . , un(rn)) [A(u1(r1), . . . , un(rn))]T

]

(11)
From (9), (10), (11) we get

ãr0r1...rn
=

b0∑

l0=0

b1∑

l1=0

. . .

bn∑

ln=0

(al0l1...ln)
(
W−r0l0

0 . . . W−rnln
n

)
(12)

Notice that [al0l1...ln ] and [ãr0r1...rn ] form a DFT pair and thus using (2) we
have

al0l1...ln =
1
R

b0∑
r0=0

b1∑
r1=0

. . .

bn∑
rn=0

ãr0r1...rnW r0l0
0 . . . W rnln

n

where li = 0, . . . , bi.
Step 2. (Evaluate ak(z̄))
Find k : ak+1(z̄) = ak+2(z̄) = · · · = ap(z̄) = 0 and ak(z̄) 6= 0
Step 3. (Evaluate C(z̄) = A(z̄)T Bk−1(z̄))
The greatest powers of zi in

C(z̄) = A(z̄)T Bk−1(z̄) = a0(z̄)
[
A(z̄)A(z̄)T

]k−1
+ · · ·+ ak−1(z̄)Ip (13)

is
ni = max {2(k − 1)Mi + Mi, k = 1, . . . , p} = (2p− 1)Mi

Using the previous observation C(z̄) can be written as

C(z̄) =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···ln
(
zl1
1 · · · zln

n

)
(14)

We compute C(z̄) via interpolation using the following R points

ui(rj) = W
−rj

i ; i = 1, . . . , n and rj = 0, 1, ..., ni

Wi = e
2πj

ni+1
(15)

where

R =
n∏

i=1

{(2p− 1)Mi + 1} (16)

To evaluate the coefficients Cl0···ln define

C̃r1···rn = C(u1(r1), . . . un(rn)) (17)
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Using (15), (16), (17) becomes

C̃r1···rn =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···lnW−r1l1
1 · · ·W−rnln

n

which through (2)

Cl0···ln =
1
R

n1∑

l1=0

. . .

nn∑

ln=0

C̃r1···rn
W r1l1

1 · · ·W rnln
n

where li = 0, . . . , ni.
Step 4. (Evaluation of the generalized inverse)

A(z̄)+ = − 1
ak(z̄)

C(z̄)

4 Drazin Inverse of a Multivariable Polynomial
Matrix

The Drazin inverse of a constant matrix was defined by Drazin in [4].

Definition 4 For every matrix A ∈ Rm×m, there exists a unique matrix AD ∈
Rm×m, which is called Drazin inverse, satisfying

(i) ADAk+1 = Ak for k = ind(A) = min(k ∈ N : rank
(
Ak

)
= rank

(
Ak+1

)
)

(ii) ADAAD = AD

(iii) AAD = ADA
In the special case that the matrix A is square and nonsingular matrix, the

Drazin inverse of A is simply its inverse i.e. AD = A−1.

In an analogous way we define the Drazin inverse of polynomial matrix
A(z1, . . . , zn) ∈ R [z1, . . . , zn]m×m defined in (5) as the matrix which satisfies the
properties of Definition (4). The following theorem proposes a new algorithm
for the computation of the Drazin inverse of a nD polynomial matrix, which
generalizes the results in [18].

Theorem 5 Consider a nonregular nD polynomial matrix A(z̄). Assume that

a(s, z1, . . . , zn) = det [sIm −A(z̄)]
= (a0(z̄)sm + · · ·+ am−1(z̄)s + am(z̄)) (18)

where
a0(z̄) ≡ 1, z ∈ C

is the characteristic polynomial of A(z̄). Also, consider the following sequence
of m×m polynomial matrices

Bj(z̄) = a0(z̄)A(z̄)j + · · · aj−1(z̄)A(z̄) + aj(z̄)Im,
a0(z̄) = 1, j = 0, . . . ,m

(19)
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Let
am(z̄) ≡ 0, . . . , at+1(z̄) ≡ 0, at(z̄) 6= 0. (20)

Define the following set:

Λ = {z̄i ∈ Cn : at(z̄i) = 0}
Also, assume that

Bm(z̄),...,Br(z̄) = 0, Br−1(z̄) 6= 0

and k = r− t. In the case z̄ ∈ Cn −Λ and k > 0, the Drazin inverse of A(z̄) is
given by

A(z̄)D =
A(z̄)kBt−1(z̄)k+1

at(z̄)k+1
(21)

Bt−1(z̄) = a0(z̄)A(z̄)t−1 +· · ·+ at−2(z̄)A(s) + at−1(z̄)Im

In the case z̄ ∈ Cn − Λ and k = 0, we get A(z̄)D = O.
For z̄i ∈ Λ we can use the same algorithm again.

Proof. The proof uses the same logic as the one in [18]. For the sake of brevity
the interested reader is advised to read [18].

In order to show that a multivariable polynomial matrix is zero we need the
following lemma.

Lemma 6 A polynomial matrix B(z1, . . . , zn) ∈ R[z1, . . . , zn]m×m of degree qi

in respect with variables zi is the zero polynomial matrix iff its value at R distinct
points is the zero matrix where

R =
n∏

i=0

(qi + 1)

In the following we suggest a computationally attractive algorithm for the
calculation of Drazin inverses based on interpolation techniques and DFT.

(Evaluation of the Drazin inverse of a nD polynomial matrix)
Step 1
It is easily seen from (18), that the greatest powers of the (n + 1) variables in
a(s, z1, . . . , zn) are

degs (a(s, z1, . . . , zn)) = m := b0

degz1
(a(s, z1, . . . , zn)) ≤ mM1 := b1

...
degzn

(a(s, z1, . . . , zn)) ≤ mMn := bn

So the polynomial a(s, z1, . . . , zn) can be written as

a(s, z1, . . . , zn) =
b0∑

k0=0

b1∑

k1=0

. . .

bn∑

kn=0

(ak0k1...kn)
(
sk0zk1

1 . . . zkn
n

)
(22)
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and can be numerically computed via interpolation using the following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n and rj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(23)

where

R =
n∏

i=0

(bi + 1)

To evaluate the coefficients ak0k1...kn define

ãr0r1...rn = det [u0(r0)Ip −A(u1(r1), . . . , un(rn))] (24)

From (22), (23), (24) we get

ãr0r1...rn =
b0∑

l0=0

b1∑

l1=0

. . .

bn∑

ln=0

(al0l1...ln)
(
W−r0l0

0 . . . W−rnln
n

)
(25)

Notice that [al0l1...ln ] and [ãr0r1...rn ] form a DFT pair and thus using the above
equation and (2) we have

al0l1...ln =
1
R

b0∑
r0=0

b1∑
r1=0

. . .

bn∑
rn=0

ãr0r1...rnW r0l0
0 . . . W rnln

n

where li = 0, . . . , bi.
Step 2. (Evaluate at(z̄) as in (20))
Find k : at+1(z̄) = at+2(z̄) = · · · = am(z̄) = 0 and at(z̄) 6= 0
Step 3.(Evaluate r ≥ t : Bm(z̄) ≡ 0,...,Br(z̄) ≡ 0, Br−1(z̄) 6= 0)
Consider the polynomial matrix Bi(z̄). To check whether Bi(z̄) is the zero
matrix using lemma (6),

Ri =
n∏

i=0

(iMi + 1)

interpolation points are needed. In order now to determine the value of r ≥ t
which satisfy the property : Bm(z̄) ≡ 0,...,Br(z̄) ≡ 0, Br−1(z̄) 6= 0, Ri we use
the following short algorithm
Do WHILE (Bi(z̄) = 0 ∀u(r))
i=i-1
Check through lemma (6) whether Bi(z̄) = 0
END DO
r = i
Step 4. (Evaluation of C(z̄) = A(z̄)kBt−1(z̄)k+1)
The greatest powers of zi in

C(z̄) = A(z̄)kBt−1(z̄)k+1

where
Bt−1(z̄) = a0(z̄)A(z̄)t−1 + · · ·+ at−2(z̄)A(s) + at−1(z̄)Im
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is
ni = (t− 1)(k + 1)Mi (26)

Using (26), C(z̄) can be written as

C(z̄) =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···ln
(
zl1
1 · · · zln

n

)

We compute C(z̄) via interpolation using the following R points

ui(rj) = W
−rj

i ; i = 1, . . . , n and rj = 0, 1, ..., ni

Wi = e
2πj

ni+1
(27)

where

R =
n∏

i=1

{(ni + 1} (28)

To evaluate the coefficients Cl0···ln define

C̃r1···rn = C(u1(r1), . . . un(rn)) (29)

Using (26), (27), (29) becomes

C̃r1···rn =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···lnW−r1l1
1 · · ·W−rnln

n

which through (2)

Cl0···ln =
1
R

n1∑

l1=0

. . .

nn∑

ln=0

C̃r1···rnW r1l1
1 · · ·W rnln

n

where li = 0, . . . , ni.
Step 5.(Evaluation of c(z̄) = at(z̄)k+1)
The greatest power of zi appearing in at(z̄)k+1 are

bi = tMi(k + 1)

so c(z̄) can be written as

c(z̄) =
b1∑

k1=0

. . .

bn∑

kn=0

(ck1...kn)
(
zk1
1 . . . zkn

n

)

and can be numerically computed via interpolation using the following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n and rj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(30)
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where

R =
n∏

i=0

(bi + 1)

Define

c̃r1...rn
=

b1∑

l1=0

. . .

bn∑

ln=0

(ck1...kn
)
(
W−r1l1

1 . . . W−rnln
n

)
(31)

Using the above equation and (2) we have

cl1...ln =
1
R

b1∑
r1=0

. . .

bn∑
rn=0

c̃r1...rn
W r1l1

1 . . .W rnln
n

where li = 0, . . . , bi.
Step 6. (Evaluation of the Drazin inverse)

A(z̄)D =
A(z̄)kBt−1(z̄)k+1

at(z̄)k+1
=

C(z̄)
c(z̄)

5 Implementation

In the following we present a solution to the model matching problem of multi-
dimensional systems. Consider an open loop 2D system with transfer function

G(z̄) ∈ R(z1, z2)p×m

We want to solve the model matching problem, i.e. check whether there is an
output feedback of the form

u(z̄) = −F (z̄)y(z̄) + v(z̄), F (z̄) ∈ R(z̄)p×m

such that the closed loop system has transfer function

H(z̄) ∈ R(z̄)p×m

and find the solution F (z̄) ∈ R(z̄)p×m (see Figure 1).

( )G z

( )F z

 u  v 

 - 

 + 

 y 

Figure 1. The model matching problem.
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Let

G(z̄) =
G̃(z̄)
g(z̄)

, G̃(z̄) ∈ R[z̄]p×m

H(z̄) =
H̃(z̄)
h(z̄)

, H̃(z̄) ∈ R[z̄]p×m

where z̄ = (z1, z2) and g(z̄), h(z̄) are polynomials in z̄. Then from [13], a neces-
sary and sufficient condition for the existence of a solution is

G̃(z̄)G̃(z̄)+
[
G̃(z̄)h(z̄)− H̃(z̄)g(z̄)

]
H̃(z̄)+H̃(z̄)

= G̃(z̄)h(z̄)− H̃(z̄)g(z̄)
(32)

In case where the solution exists, it is given by

F (z̄) = G̃(z̄)+
[
G̃(z̄)h(z̄)− H̃(z̄)g(z̄)

]
H̃(z̄)++

+Y (z̄)− G̃(z̄)+G̃(z̄)Y (z̄)H̃(z̄)H̃(z̄)+
(33)

where Y (z̄) is arbitrary to within having the dimensions of F (z̄).

Example 7 We will solve the model matching problem as described above using
as plant

G(z1, z2) =
[ z1−1

z1+z2+1 0 0
0 z2+1

z1+z2+1 0

]
=

1
z1 + z2 + 1

[
z1 − 1 0 0

0 z2 + 1 0

]

=
1

g(z1, z2)
G̃(z1, z2)

and as the desired transfer function

H(z1, z2) =
[ z1−1

z1−z2−1 0 0
0 1

z1−z2−1 0

]
=

1
z1 − z2 − 1

[
z1 − 1 0 0

0 1 0

]

=
1

h(z1, z2)
H̃(z1, z2)

We need to compute the generalized inverse of G̃(z1, z2), and H̃(z1, z2). We will
try and evaluate step by step H̃(z1, z2)+.
Step 1.

b0 = p = 2
b1 = 2pM1 = 2 · 2 · 1 = 4
b2 = 2pM2 = 2 · 2 · 0 = 0

We need R interpolation points to evaluate a(s, z1, z2) where

R =
2∏

i=0

(bi + 1) = (2 + 1)(4 + 1)(0 + 1) = 15
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Those points (in 3D space) are (u0(r0), u1(r1), u2(r2)) where

ui(rj) = W
−rj

i , i = 0, 1, 2; rj = 0, . . . , bi

Wi = e
2πj

bi+1

and after some calculations

u0(0) = 1, u0(1) = e−
2πj
3 , u0(2) = e−

4πj
3

u1(0) = 1, u1(1) = e−
2πj
5 , u1(2) = e−

4πj
5 , u1(3) = e−

6πj
5 , u1(4) = e−

8πj
5

u2(0) = 1

Now evaluating (11) at the above points, we have

[ãij0] =




0 0 0 0 0
1.73j −1.77 + 3.33j 2.54 + 7.45j 6.23 + 1.07j 0.49− 0.60j
−1.73j 0.49 + 0.609j 6.23− 1.07j 2.54− 7.45j −1.77− 3.33j




where in order to save space we wrote ãij0 in a table form. Now using the
inverse Fourier transform we finally get after elimination of the entries smaller
than 10−10 that

[aij0] =




1 −2 1 0 0
−2 2 −1 0 0
1 0 0 0 0




i.e.
a(s, z1, z2) = s2 − z2

1s + 2z1s− 2s + z2
1 + 1

Step 2.

a(s, z1, z2) = s2 + (−z2
1 + 2z1 − 2)s + (z2

1 − 2z1 + 1)

so
k = 2

and
a2(z1, z2) = z2

1 − 2z1 + 1

Step 3.

n1 = 3
n2 = 0

and the 2D interpolation points needed are R = 4

u1(0) = 1; u1(1) = e−
πj
2 ; u1(2) = e−πj ; u1(3) = e−

3πj
2

u2(0) = 1
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We then evaluate the matrix (14) at the above points resulting in the next se-
quence of 4 matrices




0 0
0 0
0 0




︸ ︷︷ ︸
C̃00

,




1 + j 0
0 −2j
0 0




︸ ︷︷ ︸
C̃01

,




2 0
0 −4
0 0




︸ ︷︷ ︸
C̃02

,




1− j 0
0 2j
0 0




︸ ︷︷ ︸
C̃03

which by inverse Fourier transform returns the coefficients of C(z̄) as in (13)

C(z1, z2) =




1− z1 0
0 1
0 0




Step 4.
The generalized inverse is

H(z1, z2)+ = − 1
ak(z1, z2)

C(z1, z2) =



− 1

z2
1−2z1−1

0
0 1
0 0




Using the same algorithm we can evaluate G(z1, z2)+

G(z1, z2)+ =




z1+z2+1
z1−1 0
0 z1+z2+1

z2+1

0 0




and afterwords check whether (32) holds, which is indeed true. So the general
solution to the model matching problem is the result of (33)

F (z1, z2) =




2(z2+1)
z1−1 0

0 −z2
2+z1z2−3z2−2

z2+1

y31(z1, z2) y32(z1, z2)




where y31(z1, z2) and y32(z1, z2) are arbitrary real rational functions.

6 Conclusions

In this paper two algorithms have been presented for determining the generalized
and Drazin inverse of nD polynomial matrices. The algorithms are based on
the discrete Fourier transform and therefore have the main advantages of speed
and robustness in contrast to other known algorithms. The theoretical work
is accompanied by an example that tackles the problem of model matching.
Other applications of the theory introduced, include the solution of multivariable
Diophantine equations and its application to control system synthesis problems,
the computation of the transfer function matrix of multidimensional systems,
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the solution of multidimensional AutoRegressive representations etc. The above
mentioned algorithms may be easily extended in order to determine other kind
of inverses such as {2}, {1,2}, {1,2,3} and {1,2,4} inverses of multivariable
polynomial matrices by using the Leverrier-Faddeev algorithms presented in
[19].
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