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Inversion and computational 
maturation of drug response 
using human stem cell 
derived cardiomyocytes in 
microphysiological systems
Aslak Tveito1, Karoline Horgmo Jæger1, Nathaniel Huebsch2, Bérénice Charrez2, 

Andrew G. Edwards1,3, Samuel Wall1 & Kevin E. Healy2

While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great 
promise for drug screening, the electrophysiological properties of these cells can be variable and 

immature, producing results that are significantly different from their human adult counterparts. Here, 
we describe a computational framework to address this limitation, and show how in silico methods, 

applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to 

predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained 
waveforms of voltage and calcium from microphysiological systems can be inverted into information 

on drug ion channel blockage, and then, through assuming functional invariance of proteins during 

maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, 

this pipeline of measurements and computational analysis could significantly improve the ability of 
hiPSC derived cardiomycocytes to predict dangerous drug side effects.

The discovery of human induced pluripotent stem cells (hiPSCs) has started a new era in biological science and 
medicine. These reprogrammed somatic cells can be differentiated into a wide variety of cell lineages, and allow 
in vitro examination of cellular properties at the level of the human individual. In particular, this technology has 
large implications in drug development, moving us away from well studied but often unrepresentative animal 
models towards direct testing of compounds in specific human phenotypes and genotypes. This new access offers 
the potential for creating more cost effective, better, safer drug treatments; both from the ability to target preci-
sion, patient specific approaches, and to reveal possible side effects of drugs in the broader human population. 
However, despite its promise, the technology needed to fully utilize hiPSCs for drug testing is still under develop-
ment and currently faces many difficulties limiting practical applicability.

In particular, the problem of maturation is a major challenge to the successful use of hiPSCs in drug discovery 
and development. Although hiPSCs can be used to create specialized human cells and tissues, these rapidly grown 
cells and tissues may have significant proteomic and structural differences to, and are often more fetal-like than, 
their adult in vivo counterparts. This is especially true in hiPSC derived cardiomyocytes (hiPSC-CMs), where 
the adult cells they are intended to represent have undergone decades of growth and development under cyclical 
physiological loading and stimulation. However, despite this limitation, hiPSC-CMs have already been success-
fully used to assess unwanted side effects of drugs (see e.g.1,2), and new technologies such as microphysiological 
systems (MPS)3, are emerging to improve maturation and better capture drug effects. Still, the overall applicability 
of hiPSC-CMs to find unwanted side effects of drugs for adult cardiomyocytes remains limited by the fact that 
only relatively immature cells are available for analysis (see e.g.4–7.). And, as pointed out in numerous papers 
(e.g.8–12.), the electrophysiological characteristics of hiPSC-CMs and adult cardiomyocytes differ significantly 

1Simula Research Laboratory, Oslo, Norway. 2Departments of Bioengineering, Material Science and Engineering, 
University of California, Berkeley, California, USA. 3Department of Biosciences, University of Oslo, Oslo, Norway. 
Correspondence and requests for materials should be addressed to A.T. (email: aslak@simula.no)

Received: 26 July 2018

Accepted: 9 November 2018

Published: xx xx xxxx

OPEN

mailto:aslak@simula.no


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |         (2018) 8:17626  | DOI:10.1038/s41598-018-35858-7

and, for determining potential dangerous drug side-effects, these differences may lead to both false positives and 
false negatives (see e.g.3,13.).

Meanwhile, in silico methods for investigating the properties of the action potential (AP) of excitable cells is 
a well-developed field (see e.g.14–16.) and includes models of human cardiomyocytes (see e.g.17–20.), and models 
where the effect of drugs are taken into account (see e.g.21–23.). Also, mathematical models of the action potential 
of hiPSC-CMs have been developed (see e.g.9,24.) based on measurements reported in8,25–27. This field has pro-
gressed to the point where computational models are now an active part of cardiotoxicity research28, and are being 
integrated into guidelines for comprehensive drug arrhythmia analysis.

In this work, we discuss how computational models of immature (IM) and mature (M) cardiomycytes can 
contribute to the improvement of the applicability of exploiting hiPSCs in the drug development pipeline. Despite 
remarkable progress in handling hiPSC-CMs under lab conditions (see, e.g.29), the ability to create fully mature 
hiPSC-CMs for drug screening is likely to remain a significant challenge. In the present report, we therefore 
address how in silico computational modeling can be used to deduce properties of mature (adult) cardiomyocytes 
based on two real time measurements of their immature counterparts.

A key idea in our approach is that individual proteins are functionally invariant under maturation. Therefore, 
maturation is multiplication in the sense that, for every type of protein, the number of proteins multiply during 
maturation, but the function of every protein remains unaltered. In addition, the surface area of the cell and the 
cell volume also increase significantly during maturation, leading to large changes in current densities between 
the IM and M cells. The invariance of the functional properties of the IM and M versions of every protein suggests 
a proportionality between the associated individual currents of the IM and M cells which may explain the results 
obtained in12. We use the proportionality between the individual currents to define a maturation matrix that maps 
the parameterization of a model of the IM cell to a parameterization of a model of the M cell.

Our approach to estimate effects of drugs on M cells based on measurements of IM cells can be summarized 
as follows and is shown in Fig. 1:

 1. A MPS system is used to collect time averaged voltage and intracellular (cystolic) calcium waveforms, both 
under control conditions and in the presence of drug.

 2. These voltage and calcium traces are inverted in order to define a mathematical model of the membrane 
and calcium dynamics of the tested IM cells. The effect of the drug is reflected in terms of changes in the 
maximum conducances of ion channels in the model.

 3. The IM models are multiplied by a maturation matrix in order to obtain models for the M cells. The effect 
of the drug for adult cells is estimated by comparing the AP models of the M cells.

To demonstrate this process, we start by showing that a cost function, measuring the difference between data 
and model, is sensitive with respect to changes in the maximum conductance of major currents. Next, we show 
that this sensitivity is sufficient to invert simulated data and obtain a mathematical model of a drug effect. This 
model can be mapped from the IM case to the M case simply by multiplying a parameter vector by a diagonal 
maturation matrix. Finally, we apply the method of inversion to obtain an IM model based on experimental data 
obtained using voltage- and calcium sensitive dyes in an MPS. Again, the IM model is mapped to an M model. 
The effects of drugs are identified by inverting MPS data (voltage and cytosolic calcium concentration) and then 
mapping the resulting model from IM to M giving a mathematical model of the mature cardiomyocytes under 
the influence of a drug.

Figure 1. Depiction of in silico modeling and analysis of an MPS system. Optical measurements of calcium and 
voltage are taken at baseline and in the presence of drug. These waveforms are inverted using a mathematical 
model of cell dynamics, into a set of parameters that define key ion channel conductances. Changes in this 
parameter set give information about specific changes in conductances under drug, and this parameter set can 
then be mapped to a model of mature cell behavior using the assumption of functional invariance of individual 
channels.
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Results
Model inversion is sensitive to perturbations in major ion channel currents. The inversion of 
data through the minimization of a cost function requires that this cost function is sensitive to changes in model 
parameters. In Fig. 2, we illustrate the sensitivity of three cost functions utilizing voltage, calcium, or both, to per-
turbations in the conductances of major cellular currents or fluxes. Here the base model (see Methods) is defined 
by a modified version of the Paci et al. model9 (the details of the modification are given in the supplementary 
information).

The results indicate that the cost function using voltage alone, HV, is sensitive to only some of the currents and 
fluxes, and in particular, it is largely insensitive to changes in Ito and IKs. Similar trends are seen in the calcium 
mismatch, HCa, and this cost function is, in general, less sensitive than the HV version. Finally, we consider the 
cost function combining both the voltage and calcium data, HV + Ca, and observe that it is more sensitive to pertur-
bations than both HV and HCa alone, although some currents are still largely invisible.

Of note the maximum upstroke velocity of the action potential is not added as a part of the HV cost function. 
Adding this component would likely improve sensitivity, especially for the sodium current, but our measurements 
(see Methods) do not at present provide sufficient accuracy of the upstroke velocity. However, the upstroke veloc-
ity of the calcium transient can be accurately estimated from the MPS measurements and is therefore a part of the 
cost function describing the calcium mismatch.

Simulated channel block identification. Although Fig. 2 shows the sensitivity of the computed cost 
functions with respect to individual currents, we need to establish that the cost functions are adequately sensitive 
when multiple currents are allowed to vary. In Fig. 3, we show the values of HV + Ca as a function of pairwise per-
turbations in the maximum conductances of four major channels. The traces are theoretically computed using 
known effects of two chosen drugs; Verapamil which blocks ICaL and IKr, and Cisapride which blocks IKr, see28.

Our results indicate that the cost functional using both voltage and calcium can theoretically identify the 
simulated channel block of the chosen drugs. The left panels show the value of HV + Ca as a function of the per-
turbation of the maximum conductances when the drug data are computed using the specified blocking due to 
the application of Verapamil. Six different configurations of pairwise blocking perturbations were tested and a 
minimum is clearly obtained close to the correct blocking of ICaL and IKr. Meanwhile, in the right panel, we show 
the values of HV + Ca when IKr is blocked by 50%, simulating the effect of Cisapride. The pairwise perturbations 
clearly identify that IKr is blocked by around 50%. These results indicate that an optimization algorithm of the cost 
function could find unique minima corresponding to specific channel blocks.

Simulated drug effect identification using the inversion procedure. Our methodology for inver-
sion and mapping from the IM to the M state is first illustrated in Fig. 4 using simulated data. This process is used 
to identify the theoretical effect of the two drugs of Verapamil and Cisapride on mature cells from waveforms that 
would be obtained from known channel blocking. From the left panel, we observe that the inversion algorithm is 
able to identify the specified effect of both Verapamil and Cisapride very accurately, reproducing chosen blocks 
nearly exactly. This is consistent with the results of Fig. 3. The figure also shows the IM (middle panel) and M 
(right panel) action potentials and calcium transients. The M models are computed using the maturation map 
introduced in the Methods section showing how these detected blocks would appear in mature cells.

Identification of simulated channel block of major and minor currents. Figure 3 demonstrates using 
simulated data that the cost function HV + Ca is able to theoretically identify induced changes to the IKr and ICaL 
currents. In Fig. 5, we extend this analysis to consider 50% single channel block of each of the major currents INa, 
ICaL, IKr and IK1. Again, we show the values of HV + Ca for pairwise perturbations of the maximum conductance of 
these four currents. In the supplementary information, similar plots are given for the cost functions HV and HCa.

Figure 5 indicates that the cost function HV + Ca is theoretically able to identify each of the simulated single 
channel blocks. On the other hand, we expect that the cost function might fail to identify channel block of some 
of the minor, less sensitive membrane currents, for example Ito and IKs, which both have low sensitivity values in 
Fig. 2. In Table 1, we rank the currents by their total inward and outward contributions to the action potential, 
and report how well the inversion algorithm is able to identify simulated 10%, 30%, 50%, and 70% single-channel 
block of these currents. We observe that the inversion algorithm is not able to correctly identify the block of the 
smaller contributing currents Ito and IKs, but identifies the block of IK1, ICaL, IKr, and INa quite accurately for the 
investigated channel blockings.

Figure 2. Sensitivity of maximum conductances of the immature base model assessed by the three cost 
functions defined in (3)–(4) with ε = 0.2. The color intensities correspond to the sum of the cost function upon 
perturbing the maximum conductance of the given current (or flux) by ±10%.
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Channel block identification using a combined in vitro/in silico system. After demonstrating the 
theoretical sensitivity of inversion and drug effect prediction, we turn to the application of inverting actual car-
diac MPS data. Average voltage and calcium traces (υ, Ca) = (υ(t), Ca(t)) from an MPS3 were inverted to yield 
parameterized mathematical models of the IM cells. This was done first for control data, denoted by (υC, CaC) 
to yield a control model. We then show the sensitivity of the cost function HV + Ca comparing this model with 
obtained voltage and calcium waveforms under the effect of actual doses of Verapamil and Cisparide, (υD, CaD). 
In Fig. 6, we present pairwise perturbations of maximum conductances and we observe again that the cost func-
tion HV + Ca is sensitive to these perturbations. For Verapamil, we see that the cost function clearly indicates that 
ICaL is blocked by around 50%. Furthermore, IKr seems to be blocked significantly, but it is not clear from the 
figure the extent of the block. In the right panel, we also consider the effect of Cisapride. Here, the cost function 
indicates that IKr is blocked to a large extent.

The full inversion procedure (see the Methods section) is then applied, and it finds that ICaL is blocked by 71% 
and IKr is blocked by 19% (see Fig. 7) for Verpamil, in rough agreement with known properties of Verapamil at 
this dose. For Cisapride, the inversion predicts that IKr is blocked by 52%, and it predicts that the other currents 
are nearly unaffected by the drug.

Mature AP change prediction using MPS data. In Panel 1 (leftmost) of Fig. 7, we show the numeric 
results of inversion using measured data. The next three panels show action potentials and calcium transients for 
measured data (Panel 2), simulation of IM cells (Panel 3) and simulation of M cells (Panel 4). The simulations 
presented in Panel 3 are based on inversion of the MPS data giving the block values shown in Panel 1. The param-
eter vector (see the Methods section) representing the IM cells is multiplied by the maturation matrix in order to 
define the parameter vector representing the M cells. The figure illustrates how MPS measurements of IM cells 
can be used to estimate the effect of an unknown compound for M cells.

Discussion
In this paper, we present a mathematical analysis framework to define the electrophysiologic mechanisms of 
drug action in mature human cardiomyocytes using only optical recordings of membrane potential and cal-
cium in hiPSC-CMs. This procedure overcomes a number of major existing challenges in hiPSC-CM-based 
screening: (1) data inversion of measured drug effects can be successfully applied to all-optical experimental 
data, thus allowing detailed pharmacologic characterization without the need for intracellular electrodes, (2) the 
mathematical approach to mapping between hiPSC-CM and adult myocyte electrophysiology is straightforward 

Figure 3. The cost function (4) with ε = 0.2 for simulated drug data, evaluated with pairwise perturbations of 
maximum conductances to examine if a unique minimum can be found corresponding to chosen drug effects. 
Left panels: The effect of Verapamil is simulated by blocking the ICaL and IKr by 50% and 25%, respectively. Right 
panels: The effect of Cisapride is simulated by blocking the IKr by 50%. For both drugs, clear minimums are 
observed at the specified channel blockages.



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |         (2018) 8:17626  | DOI:10.1038/s41598-018-35858-7

and generalizable, and (3) the MPS-based optical recordings are averaged over relatively large populations of 
hiPSC-CMs, thus reducing errors associated with the well-known phenotypic heterogeneity of hiPSC-CM 
preparations.

Inversion of voltage and calcium traces into action potential models. Modern cardiac AP models 
have been developed more or less continually since the celebrated sinoatrial node model of Noble30. As a result, 
a range of cardiac cellular models have evolved to represent the accumulated knowledge of nearly six decades of 
multidisciplinary research, and the models are detailed and complex. Conventional approaches to developing 
these models have relied heavily upon voltage-clamp microelectrode data. These techniques provide exquisite res-
olution of single-channel31–34, through to whole-cell currents35–37, and has thereby allowed the models to provide 
remarkably accurate reconstructions of cardiac cellular APs and calcium dynamics. However, while generalized 

Figure 4. Identification of drug effects on M cells based on simulated data of IM cells. Left panel: Results of 
inversion by minimizing the cost function (4) with ε = 0.2. Middle panel: Action potential (blue) and calcium 
transient (red) before and after (dotted) the drug is applied. Right panel: Model results after application of the 
maturation matrix.

Figure 5. The cost function (4) with ε = 0.2 evaluated for pairwise perturbations of the maximum 
conductances of four major currents for simulated single-channel block of each of the currents. In the upper 
panel, INa is blocked by 50%, and in the next panels, ICaL, IKr and IK1 are similarly blocked by 50%. Like in Fig. 3, 
clear minimums are observed at the correct blockages in all four cases.
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cell models built using such data are widely used, especially to mechanistically understand how drug compounds 
alter electrophysiology, the experimental methods used to build them are technically challenging, have intrinsi-
cally low-throughput and cannot be used on tissue models like MPS.

In the present paper, we have developed an alternative approach that attempts to exploit the decades of infor-
mation stored in modern cardiac AP models to rapidly parameterize base models for hiPSC-CMs. Rather than the 
data traditionally used to develop AP models, we used metrics that can readily be measured in a MPS, namely the 
optically assessed transmembrane potential and cytosolic calcium concentration. However, these data are funda-
mentally different from the detailed measurements of single currents traditionally used to invert measurements 
into biophysical models, and new methodology is needed. The approach taken in this report is based on minimi-
zation of a cost function comparing the predicted and measured waveforms, which seems to provide reasonable 
accuracy in analysis, but it is clear that some currents are still largely invisible even theoretically, and alternative 
approaches may lead to broader or more focused results.

For example, it was observed in Fig. 2 that the cost function HV + Ca is more sensitive than both HV and HCa (see 
(3)–(4)). This indicates that both voltage and calcium traces must be measured in order to get optimal inversion 
of the measurements. However, this depends on the application. For instance, if the main purpose is to study side 
effects on the IKr current, it may be sufficient to only consider voltage traces. In addition, cost functions which 
take into account measured extracellular potential or contractile force generated by the IM cells may also be used 
to better invert specific drug induced changes.

∫ | |I dt  
(nC/µF) λ = −0.1 λ = −0.3 λ = −0.5 λ = −0.7

IK1 388.3 −0.08 −0.30 −0.47 −0.69

ICaL 225.1 −0.13 −0.32 −0.58 −0.71

IKr 187.0 −0.11 −0.28 −0.50 −0.70

INa 119.4 −0.11 −0.32 −0.47 −0.68

Ito 12.6 0.00 0.00 −0.15 −0.27

IKs 3.6 0.00 0.00 −0.05 −0.10

Table 1. Identification of simulated single-channel block of six currents and four levels of block. We used 
the cost function HV + Ca defined in (4) with ε = 0.2. The second column of the table reports the integral of the 
absolute value of each of the currents in the unperturbed case, and the last four columns report the estimated 
channel blocks returned by the inversion algorithm for each single-channel block. In all cases, the conductance 
of all six currents was allowed to vary in the inversion procedure.

Figure 6. The cost function (4) with ε = 0.2 evaluated for pairwise perturbations of maximum conductances 
using measured data from the MPS. Left panels: The effect of a dose of 100 nM of Verapamil is shown; it clearly 
blocks ICaL and it also blocks IKr. Right panels: The effect of a dose of 10 nM of Cisapride is shown; it clearly 
blocks IKr. The results of the inversion is given in Fig. 7.
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Uniqueness of conductance defined action potential models. One significant question is the 
uniqueness of the parameters obtained in inversion of the optical waveforms, as mathematical models of excit-
able tissue often exhibit non unique behavior. For example, in models of neurons it is well known that different 
cell models can provide similar neuronal activity, see e.g.38–40. Similar observations have been made for a variety 
of models of cardiac cells, in41 using the ten Tusscher et al. model19, and in42 using the O’Hara et al. model17. 
The implication of these observations is that it is generally very challenging to uniquely determine conduct-
ances from AP observations, and indeed, it has been clearly demonstrated that single action potential waveforms 
can have multiple conductance parameterizations that give low fit error when many parameters are allowed to 
vary37. Several methods have been tried to solve this problem; see e.g.43,44, and promising approaches have been 
suggested by a number of groups. For example, in41 it was shown that using several physical properties of the 
dynamics improve the invertibility of the conductances. More recently, optmized voltage-clamping protocols37 
have been introduced to give better resolution of smaller currents and more uniquely determine conductances. 
We see in our results the same lack of uniqueness, especially when we try to invert smaller currents such Ito and 
IKs. However, we are able to observe that four major currents appear largely visible and invertible with a combined 
measure of voltage and calcium from a single paced waveform and a CPU-intensive method that avoids the dif-
ferentiation of a rough cost-function.

Using correlations for parametrization and mapping. Others have also approached the question 
of how to map changes in cardiac dynamics between populations using model results. In a series of papers 
(see12,41,45–47) by Sobie and co-authors, a comprehensive theory has been developed for using correlations between 
simulation results to parameterize models and for mapping between species, and between immature and mature 
cells. Starting in45, it is observed that input parameters such as maximum conductances of ion currents are cor-
related with output parameters such as the APD and the net amplitude of the calcium transient. Such correla-
tions are useful because they can be used to understand how natural variability of input parameters affect output 
characteristics in populations of cell models. The correlations can also, in principle, be used for parameterization 
by measuring output characteristics and using the inverse correlation matrix to parameterize input parameters.

In12, the correlation is taken one step further by observing that output parameters from simulations of one 
species are correlated to the output parameters of simulations based on a model of another species. Similarly, 
the authors observe that simulation outputs from a model of immature cells are correlated with output results of 
simulations based on a model of mature cells. Therefore, it is, in principle, possible to perform measurements of 
immature data and map the results to the mature case.

The correlation approach to mapping between species and between immature and mature cells is highly prom-
ising. However, the theory is based on observed correlations between simulated data and provide no mechanistic 
insight into the relations. In our approach, it follows directly from the assumptions that the proteins are the same 
for immature and mature cells, that there must be a mapping between models of immature and mature cells.

The maturation map. While the inversion of data from hiPSC-derived cells will be essential for under-
standing the electrophysiology of immature cells, understanding how such electrophysiolgical changes translate 
into mature cells could provide powerful means to screen drugs for side effects. We introduce the idea of a matu-
ration map, which assumes that the essential difference between an immature (IM) cell and a mature (M) cell can 
be described by the number of proteins, the membrane area and volume of the cell, and the intracellular storage 
structures. Based on these assumptions, we have argued that we can map any IM parameter vector, pIM, to an 
associated M parameter vector, pM, simply by multiplying by a diagonal matrix Q: pM = QpIM. We have illustrated 
this mapping and noted that reasonable models of an IM AP are mapped over to a reasonable M AP. In addition, 

Figure 7. Results obtained by applying the inversion procedure to measured MPS data. First column: Results of 
inversion by minimizing the cost function (4) with ε = 0.2. Second column: Average voltage and calcium traces 
from MPS measurements. Third column: The AP model of the IM cells. Fourth column: The AP model of the M 
cells.
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we have seen that measured IM data can be inverted to yield pIM, and then the maturation mapping gives the adult 
AP parameterized by pM = QpIM.

In the present report, we have simply addressed the mapping directly from an IM state to the M cells. However, 
maturation is clearly a dynamic process with rapid changes, and it may therefore be of interest to use this mapping 
to investigate the time dependent behaviour of the cells. Measurements of several time instances of IM cells may 
give insight into the developmental trajectories of hiPSC-CMs and how different maturation protocols alter the 
electrophysiological properties of generated test cells. Such studies may be useful for both choosing maturation 
protocols to optimize data inversion sensitivity, and for quality control measures of batch to batch cells.

In addition, taking into account more aspects of cellular electrophysiology could refine our approach. For 
example, one could take into account that proteins exist in various forms; for instance, the sodium channel has 
nine different forms with different associated possible channelopathies. These variants may proliferate at different 
rates and thus potentially lead to significant changes in the properties of the M cells.

hiPSC data sources. While our results show the promise of this methodology, considerable current limita-
tions exist that need to be addressed. First, variability in hiPSC-CMs remains a challenge48,49. In the preparation 
of the data, we have dealt with variability by discarding individual voltage and calcium traces that are significantly 
different from the average behaviour of the cells. This seems to give sufficient accuracy for inversion, and the 
effects of the drugs we have considered have shown significant cellular changes. However, even if the average 
results clearly respond to the doses of the drugs applied in this study, work on reducing the variability of generated 
hiPSC-CMs in MPSs is clearly needed for batch to batch consistency.

In addition, improvements in data acquisition from the cell systems may also improve the methodology, in 
particular it may increase the sensitivity of cost functions to currents that are presently less visible. For instance, 
the voltage waveform can not currently be imaged at the time resolution needed to obtain accurate measurements 
of the upstroke, due to a combination of hardware and optical light collection limitations. In the same manner, 
the signal to noise ratio in this waveform, due to background dye absorption, prevents adequate resolution of 
the plateau phase and in particular of the notch in the action potential, preventing inversion of the Ito current. 
Improvements in the methodology for collection of high resolution optical voltage data will therefore lead to 
substantial improvements in mapping resolution.

It should also be noted that it is possible to measure the extracellular field potential in the microphysiological 
systems using a multi-electrode array (MEA) system, see e.g.1,50. Such data can be incorporated in our method 
by using the EMI model (see e.g.51.) instead of the common AP models. In this case, the function H given by (4) 
would have to be extended to include the EFPs. This would be considerably more computationally demanding 
than the present method, but it may also increase the accuracy of the inversion.

Extension to species - species mapping. The basic idea underpinning the maturation mapping is that 
the proteins populating the cell membrane are the same for the IM cells and the M cells; the reason for the signif-
icant difference in AP between these cell types is the difference in densities of membrane proteins. Similarly, the 
proteins of the cell membranes are also quite similar from one specie to another, but again the densities of these 
proteins vary considerably. Therefore, the procedure for detecting side effects of drugs developed in this report 
may be generalized to be used between species. More specifically; it may be possible to measure the effect of drugs 
for mouse cells and deduce the effect for human cells following the steps detailed in the Method section below. 
This may be of significance because of the abundance of mouse data.

Methods
Our aim is to enable automatic characterization of side-effects of drugs for mature cardiomyocytes based on 
measurements of voltage and calcium traces of immature cells in an MPS. Here, we describe the methods applied 
above; we briefly explain how appropriate optical measurements of voltage and calcium are obtained, how a model 
of the AP of a mature cardiomyocyte can be obtained from a model of an immature cardiomyocyte, and how data 
is inverted to define a mathematical model of the AP of immature cells. Furthermore, we describe how the effects 
of drugs on M cardiomyocytes can be estimated using measurements of the effect on IM cardiomyocytes.

Measuring voltage and calcium traces using an MPS. Using previously developed techniques3, cardiac 
MPS systems were loaded and matured prior to drug exposure. On the day upon which studies were performed, 
freshly measured drug was dissolved into DMSO (Cisapride) or media (Verapamil) and serially diluted. Each 
concentration of the drug to be tested was preheated for 15–20 min in a water bath at 37 °C and subsequently 
sequentially injected in the device. At each dose, after 5 min of exposure, the drug’s response on the microtis-
sue was recorded using a Nikon Eclipse TE300 microscope fitted with a QImaging camera. Fluorescent images 
were acquired at 100 frames per second using filters to capture GCaMP and BeRST-1 fluorescence as previously 
described. Images were obtained across the entire chip for 6–8 seconds, with cell excitation paced at 1 Hz, to cap-
ture multiple beats for processing.

Fluorescence videos were analyzed using custom Python software utilizing the open source Bio-Formats tool 
to produce characteristic voltage and calcium waveforms for each chip and tested drug dose. Briefly, for each 
analysis, the fluorescent signal for the entire visual field was averaged, excluding pixels which did not change 
significantly in intensity over the acquisition. The signal was then smoothed using a 3 point median filter, and 5–7 
individual action potentials or calcium transients overlayed by aligning the maximum dF/dt and then averaged 
into a single transient.
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Inversion of voltage and cytosolic calcium traces. In order to complete the description of the steps 
presented in Table 2 (below), we need to explain how the inversion used in steps 4 and 5 is performed, and the key 
question is how to do the inversion. To this end, we assume that we have a base model of the form

∑υ υ= − q I s( , ),
(1)

t
i

i i

where Ii represents the dynamics of the individual membrane proteins and qi represents the maximum conduct-
ance of the ion channels (or the maximum rate of an exchanger or a pump). Furthermore, υ is the transmembrane 
potential and s represents the remaining state variables of the model. In order to adjust this model to a set of 
measured data given by (υ*, c*), we seek parameters λi such the solution of

∑υ λ υ= − + q I s(1 ) ( , ) (2)t i i i

is as close as possible to the measured data, (υ*, c*). The distance from the computed solution (υ, c) = (υ(λ), c(λ)) 
to the measured data (υ*, c*) is given by a cost function H = H(λ).

We consider the following cost functions
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here, the star * is used to denote observed data, either generated by simulations or gathered from the MPS. Also, 

( )dc

dt
max

 is the maximal upstroke velocity of the calcium concentration. Furthermore, APDV,30 is defined as the 

length (in ms) of the time from the value of the transmembrane potential, in the upstroke, is 30% below its max-
imum value (t0) until it again is repolarized to 30% of its maximum value (t1). The values APDV,50 and APDV,80 are 
defined similarly. Likewise, the terms APD Ca,30, APD Ca,50 and APD Ca,80 represent the corresponding transient 
durations for the calcium concentration. In H1, we compute the integral of the transmembrane potential from 
t = t0 to t = t1. Note that HV only depends on characteristics of the voltage trace, whereas HCa only depends on 

1 Base model pM,B = QBpIM,B

2 Measure control (C) data, no drug (υC, cC)

3 Measure data with drug (D) applied (υD, cD)

4 Invert C-data υ  →c p( , )C C pIM B
IM Cinversion( , ) ,

5 Invert D-data υ  →c p( , )D D pIM C
IM Dinversion( , ) ,

6 Update maturation map QpIM,C = pM

7 Parameterize M version of D cells pM,D = QpIM,D

8 Compare M version of C and D cells Simulate M cells with pM,D and pM

Table 2. The table shows a summary of the method for computing possible side effects of drugs for mature cells 
based on measurements conducted on immature hiPSC-derived cells.
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characteristics of the calcium trace; finally, HV + Ca includes the terms of both the two former cost functions and 
therefore depends on the characteristics of both the voltage trace and the calcium trace.

The minimization procedure. The inversion procedure aims to minimize the cost function measuring the differ-
ence between the target and model voltage and calcium waveforms. In every minimization, we have an existing 
parameter vector p , and we seek an optimal perturbation of this vector where each component is given by 
(1 + λi)p

i
. Here, i runs over the components of the parameter vector and λi denotes the perturbation.

The cost function introduced above is irregular and hard to minimize. Therefore, we introduce a brute force 
search algorithm that avoids any attempt to take the gradient into account. To start searching for suitable values 
of λ = {λi}, we first set up a bounding box of allowed values of λ. This is initially set up so that each λi is in some 
interval, for instance [−0.5, 0.5]. Next, we draw N choices of λ randomly from the bounding box and compute 
H(λ) for each of these N choices. We then pick out the five choices of λ that give the smallest values of H(λ) and 
set up a new bounding box of reduced size around each of these five choices of λ. More specifically, these bound-
ing boxes are set up by centering the boxes around the chosen λ and letting the length of the interval for each λi 
be reduced to 90% of the length of the previous intervals. Note that this means that the new bounding boxes are 
not necessarily contained in the initial bounding box, but may extend beyond the initial intervals. We do, how-
ever, set up a restriction so that no bounding box is allowed to contain values of λ smaller than or equal to −1. In 
addition, when searching for the effect of drugs, we assume that the drug is a channel blocker and therefore only 
consider λ ∈ (−1,0].

After setting up the five new bounding boxes, we draw N/5 choices of λ randomly from each box and compute 
H(λ) for each of these N choices of λ. We then select the five choices of λ that give the smallest values of H(λ) and 
repeat the steps above for a given number of iterations. For the applications of the minimization method reported 
in the Results section, we generally use 10 iterations and N = 5000.

Maturation through multiplication. Our model of the maturation process rely on the assumption that 
the individual membrane proteins are functionally invariant under maturation, whereas the number of proteins, 
the membrane area and the cell volume change significantly (see e.g.11,52–54). Also, different membrane proteins 
proliferate at different rates leading to large differences in the expression levels between IM and M cells. This, in 
turn, leads to characteristic differences between the IM and M voltage and calcium traces. The maturation process 
is illustrated in Fig. 8.

A drug effects a single protein in the same manner for IM and M cells. Since we assume that exactly 
the same proteins are present in the IM and M cells, it follows that the effect of a given drug on a protein in the IM 
case is identical to the effect on the same protein type in a M cell. This observation is essential in order to under-
stand side effects on M cells based on measurements of the IM cells.

The membrane potential for IM and M cells in the presence of a single current. In order to illus-
trate the modeling process going from IM to M, we consider the following simplest possible case where the trans-
membrane potential υ (in mV) is governed by a single current

υ′ = −C t I( ) , (5)

with I = go(υ − υ0). Here, C is the membrane capacitance (in µF/cm2), g is the maximum conductance of the 
channels (in mS/cm2), o is the open probability of the channels (unitless), and υ0 is the resting potential of the 
channels (in mV). In this formulation, the current I is given in units of µA/cm2. The maximum conductance can 
be written on the form

=g
Ng

A
,

(6)
0

where g0 is the conductance (in mS) of a single channel, N is the number of channels and A is the membrane area 
of the cell (in cm2).

Let NIM and AIM denote the number of ion channels and the surface area of the IM cell, respectively. Then there 
are constants qN and qA such that the number of channels in the M cell is given by NM = qNNIM, and the membrane 
area of the M cell is given by AM = qAAIM. Therefore, the maximum conductance of the M cell can be expressed in 
terms of the maximum conductance of the IM cell as follows,

= = = =g
N g

A

q N g

q A

q

q
g qg ,

(7)
M

M

M

N IM

A IM

N

A
IM IM

0 0

with =q
q

q

N

A

.

Here, we have explained that the representation of a single current can be mapped from IM to M simply by 
multiplying the maximum conductance by a factor. This derivation relies heavily on the assumption that the 
dynamics of the single channel, represented by the open probability o in (6), remains the same during matura-
tion (see Fig. 8). As a consequence, the Markov model (see e.g.23) representing the open probability of the single 
channel should be the same for the IM and the M version of the channel protein. Similar arguments can be 
presented for other membrane proteins such as exchangers and pumps. Furthermore, the intracellular Calcium 
machinery can be treated in exactly the same manner, leaving the IM and M models of a single protein to be 
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distinguished only by a factor. Details of the mapping of calcium concentration fluxes are provided in the supple-
mentary information.

The factors for the individual components of an AP model can be gathered in a parameter vector p, and a 
diagonal matrix Q can be used to store the maturation mapping from the IM parameter vector to the M parameter 
vector such that pM = QpIM.

In Fig. 9, we illustrate the use of the maturation mapping for well established AP models of hiPSC-CMs using 
the Paci et al. model9, and of the adult human cardiomyocyte using the ten Tusscher et al. model19. For the Paci et 
al. model, we define the maturation map =Q diag( ,P

q

q

A

V

 qNa, qCaL, qto, qKs, qKr, qK1, qNaCa, qNaK, qpCa, qf, qbNa, qbCa, 

qleak, qup, qrel) = (1.7, 0.4, 3, 5, 20, 0.7, 1.3, 0.05, 0.3, 0.6, 0.1, 0.5, 0.4, 200, 1, 36). Since pIM is given by the paper9, we 
can compute pM = QPpIM. Similarly, for the ten Tusscher et al. model we use =Q diag( ,T

q

q

A

V

 qNa, qCaL, qto, qKs, qKr, 

qK1, qNaCa, qNaK, qpCa, qf, qpK, qbNa, qbCa, qleak, qup, qrel) = (1.7, 4, 4.2, 17, 40, 1, 2.2, 0.4, 0.7, 1.7, 0.05, 19, 0.1, 0.6, 500, 
1.3, 34), and since pM is given by the paper19, we can compute the IM version by = −p Q p

IM T M
1 . The maturation 

maps are set up using an extended version of the standard inversion procedure described in Section 4.2 with 
characteristics of the currents INa, ICaL, IKr, and IK1 included in the cost function (see the supplementary informa-
tion for details).

We observe that these AP models display characteristic differences between IM and M cells; the upstroke of 
calcium transient of the IM cells is considerably slower than for the M cells, and the action potential duration is 
longer for the IM cells than for the M cells.

Estimating side-effects drugs. The method for identifying side effects of drugs is summarized in Table 2. 
The method involves eight steps:

Step 1: Base model Assume that there exists an AP base model, characterized by a parameter vector pIM,B, 
representing a prototypical IM cell, and an associated base maturation map QB. The associated M cells are charac-
terized by pM = QBpIM,B. The M model, parameterized by pM, provides a normal mature AP. No drug is involved in 
parameterizing the base model. Note also that the base model is used for numerous (independent) measurements. 

Figure 8. Illustration of the assumptions underlying our model of maturation. (A) The immature cell with 
two types of membrane proteins, with a cytosolic space containing the sarcoplasmic reticulum with associated 
release and uptake proteins. (B) Maturation is multiplication in the sense that the number of proteins increases 
at a protein specific rate. (C) A specific protein in the IM cell is the same as in the M cell. (D) A drug affects 
every single protein in the IM cell in exactly the same manner as for the M cell. (E) Model of the transmembrane 
potential for IM and M cells, and the relation between these models; and how these models are affected when a 
drug is applied.
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The base model in our computations is a modified version of the model of hiPSC-CMs suggested by Paci et al.9; 
see the supplementary information for details concerning the base model.

Step 2 and 3: MPS-measurements For the IM cells, we measure the transmembrane potential and the cyto-
solic calcium concentration, stored as (υC, cC), and make similar measurements for the case when a drug has been 
applied, stored as (υD, cD). Here C is for control (no drug) and D is for drug.

Step 4 and 5: Inversion Generally, the notation

υ  →c p( , ) (8)
qinversion( )

means that the data (υ, c) are inverted to yield a model parameterized by the vector p, using the model parameter-
ized by the vector q as a starting point for the inversion. The control data (no drug) given by (υC, cC) are inverted 
to yield the model parameterized by pIM,C, using the parameter vector pB as a starting point for the inversion. 
Likewise, the D-data are inverted to give the model pIM,D, where the parameter vector pIM,C is used as starting 
point.

Step 6: Update maturation map The maturation map can now be updated to secure that if Q is applied to the 
IM parameter vector, pIM,C, the resulting parameter vector is the base model of the M cell parameterized by the 
vector pM.

Step 7: Map from IM to M The updated maturation map Q is used to compute the parameterization of the M 
version of the drugged cells.

Step 8: Drug affected M cell The effect of the drug on the M cells is analyzed by comparing the vectors pM 
and pM,D. The components of pM,D that are significantly different from its pM counterpart, has been significantly 
affected by the drug. The effect of the drug on the mature AP is estimated by comparing the result of simulations 
of the models characterized by pM and pM,D.

References
 1. Hiroyuki, A. et al. A new paradigm for drug-induced torsadogenic risk assessment using human ips cell-derived cardiomyocytes. 

Journal of Pharmacological and Toxicological Methods, 84(Supplement C), 111–127 (2017).
 2. Sala, L., Bellin, M. & Mummery, C. L. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has 

the time come? British journal of pharmacology (2016).
 3. Mathur, A. et al. Human ipsc-based cardiac microphysiological system for drug screening applications. Scientific reports 5, 8883 

(2015).
 4. Wikswo, J. P. The relevance and potential roles of microphysiological systems in biology and medicine. Experimental biology and 

medicine 239(9), 1061–1072 (2014).
 5. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nature reviews. Drug discovery 14(4), 248 

(2015).
 6. Kurokawa, Y. K. & George, S. C. Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for 

drug screening. Advanced drug delivery reviews 96, 225–233 (2016).
 7. Zhu, R. et al. Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell 

Research & Therapy 5(5), 117 (2014).
 8. Junyi, M. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action 

potentials and ionic currents. American Journal of Physiology-Heart and Circulatory Physiology 301(5), H2006–H2017 (2011).
 9. Paci, M., Hyttinen, J., Aalto-Setälä, K. & Sever, S. Computational models of ventricular-and atrial-like human induced pluripotent 

stem cell derived cardiomyocytes. Annals of biomedical engineering 41(11), 2334–2348 (2013).
 10. Liu, J., Laksman, Z. & Backx, P. H. The electrophysiological development of cardiomyocytes. Advanced drug delivery reviews 96, 

253–273 (2016).
 11. Bedada, F. B., Wheelwright, M. & Metzger, J. M. Maturation status of sarcomere structure and function in human ipsc-derived 

cardiac myocytes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1863(7), 1829–1838 (2016).
 12. Gong, J. Q. X. & Sobie, E. A. Population-based mechanistic modeling allows for quantitative predictions of drug responses across 

cell types. NPJ systems biology and applications 4(1), 11 (2018).
 13. Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease 

specific patterns of cardiotoxicity. Circulation, pages CIRCULATIONAHA – 113 (2013).

Figure 9. Immature and mature versions of the Paci et al. model9 and the ten Tusscher et al. (tT) model19. The 
APs of the M cells are shorter and the upstroke velocity of the calcium transient is faster than for the IM case; 
compare left and right panels.



www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |         (2018) 8:17626  | DOI:10.1038/s41598-018-35858-7

 14. Rudy, Y. & Silva, J. R. Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of 
Biophysics 39(01), 57–116 (2006).

 15. Yoram, R. From genes and molecules to organs and organisms: Heart. Comprehensive Biophysics, pages 268–327 (2012).
 16. Qu, Z., Hu, G., Garfinkel, A. & Weiss, J. N. Nonlinear and stochastic dynamics in the heart. Physics Reports 543(2) (2014).
 17. O’Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: Model 

formulation and experimental validation. PLoS Computational Biology 7(5), e1002061 (2011).
 18. Grandi, E., Pasqualini, F. S. & Bers, D. M. A novel computational model of the human ventricular action potential and Ca transient. 

Journal of Molecular and Cellular Cardiology 48(1), 112–121 (2010).
 19. Tusscher, K. H. W. Jten, Noble, D., Noble, P. J. & Panfilov, A. V. A model for human ventricular tissue. American Journal of Physiology-

Heart and Circulatory Physiology 286(4), H1573–H1589 (2004).
 20. Tusscher, K. H. W. J. T. & Panfilov, A. V. Cell model for efficient simulation of wave propagation in human ventricular tissue under 

normal and pathological conditions. Physics in medicine and biology 51(23), 6141 (2006).
 21. Clancy, C. E., Zhu, Z. I. & Rudy, Y. Pharmacogenetics and anti-arrhythmic drug therapy: A theoretical investigation. AJP: Heart and 

Circulatory Physiology 292(1), H66–H75 (2007).
 22. Moreno, J. D. & Clancy, C. E. Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy. Drug 

Discovery Today: Disease Models 6(3), 71–84 (2009).
 23. Tveito, A. & Lines, G. T. Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models. Springer-

Verlag, Lecture Notes 111, 279 (2016).
 24. Paci, M., Passini, E., Severi, S., Hyttinen, J. & Rodriguez, B. Phenotypic variability in lqt3 human induced pluripotent stem cell-

derived cardiomyocytes and their response to anti-arrhythmic pharmacological therapy: an in silico approach. Heart Rhythm 
(2017).

 25. Ma, D. et al. Modeling type 3 long qt syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. 
International journal of cardiology 168(6), 5277–5286 (2013).

 26. Fatima, A. et al. The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long qt 
syndrome type 3 patients. PloS one 8(12), e83005 (2013).

 27. Kujala, K. et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. 
PloS one 7(9), e44660 (2012).

 28. Crumb, W. J., Vicente, J., Johannesen, L. & Strauss, D. G. An evaluation of 30 clinical drugs against the comprehensive in vitro 
proarrhythmia assay (cipa) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods 81(Supplement C), 
Focused Issue on Safety Pharmacology 251–262 (2016).

 29. Mathur, A., Ma, Z., Loskill, P., Jeeawoody, S. & Kevin E Healy. In vitro cardiac tissue models: Current status and future prospects. 
Advanced drug delivery reviews 96, 203–213 (2016).

 30. Denis, N. A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials. The 
Journal of Physiology 160(2), 317–352 (1962).

 31. Sakmann, B. & Neher, E. editors. Single-Channel Recording. Springer, 2nd edition (1995).
 32. Colquhoun, D. & Hawkes, A. G. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. 

Philosophical Transactions of the Royal Society London B 300, 1–59 (1982).
 33. Siekmann, I., Sneyd, J. & Crampin, E. J. MCMC Can Detect Nonidentifiable Models. Biophysical Journal 103(11), 2275–2286 (2012). 

December.
 34. Tveito, A., Lines, G., Edwards, A. G. & McCulloch, A. D. Computing rates of markov models of voltage-gated ion channels by 

inverting partial differential equations governing the probability density functions of the conducting and non-conducting states. 
Mathematical Biosciences, https://doi.org/10.1016/j.mbs.2016.04.011 (2016).

 35. Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of loligo. The Journal of physiology 
116(4), 473–496 (1952).

 36. Gurkiewicz, M. & Korngreen, A. A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings 
and a Genetic Algorithm. PLoS Computational Biology, 3(8), 1633–1647 (August 2007).

 37. Willemijn Groenendaal, F. A. et al. Cell-specific cardiac electrophysiology models. PLoS computational biology 11(4), e1004242 
(2015).

 38. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nature neuroscience 7(12), 1345 
(2004).

 39. Pablo, A. & Schutter, E. D. Complex parameter landscape for a complex neuron model. PLoS computational biology 2(7), e94 (2006).
 40. Marder, E. & Taylor, A. L. Multiple models to capture the variability in biological neurons and networks. Nature neuroscience 14(2), 

133 (2011).
 41. Sarkar, A. X. & Sobie, E. A. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS 

computational biology 6(9), e1000914 (2010).
 42. Mann, S. A. et al. Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate 

clinical long qt phenotypes. Journal of molecular and cellular cardiology 100, 25–34 (2016).
 43. Dokos, S. & Lovell, N. H. Parameter estimation in cardiac ionic models. Progress in biophysics and molecular biology 85(2-3), 

407–431 (2004).
 44. Kaur, J., Nygren, A. & Vigmond, E. J. Fitting membrane resistance along with action potential shape in cardiac myocytes improves 

convergence: application of a multi-objective parallel genetic algorithm. PLoS One 9(9), e107984 (2014).
 45. Sobie, E. A. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophysical journal 96(4), 

1264–1274 (2009).
 46. Sarkar, A. X. & Sobie, E. A. Quantification of repolarization reserve to understand interpatient variability in the response to 

proarrhythmic drugs: a computational analysis. Heart Rhythm 8(11), 1749–1755 (2011).
 47. Sarkar, A. X., Christini, D. J. & Sobie, E. A. Exploiting mathematical models to illuminate electrophysiological variability between 

individuals. The Journal of physiology 590(11), 2555–2567 (2012).
 48. Zhu, R., Millrod, M. A., Zambidis, E. T. & Tung, L. Variability of action potentials within and among cardiac cell clusters derived 

from human embryonic stem cells. Scientific reports 6 (2016).
 49. Ortmann, D. & Vallier, L. Variability of human pluripotent stem cell lines. Current opinion in genetics & development 46, 179–185 

(2017).
 50. Asakura, K. et al. Improvement of acquisition and analysis methods in multi-electrode array experiments with ips cell-derived 

cardiomyocytes. Journal of pharmacological and toxicological methods 75, 17–26 (2015).
 51. Tveito, A., Jæger, K. H., Kuchta, M., Mardal, K.-A. & Rognes, M. E. A cell-based framework for numerical modeling of electrical 

conduction in cardiac tissue. Frontiers in Physics 5, 48 (2017).
 52. Hille, B. Ion channels of excitable membranes, volume 507. Sinauer Sunderland, MA (2001).
 53. Sontheimer, H., Ransom, B. R. & Waxman, S. G. Different na+ currents in p0- and p7-derived hippocampal astrocytes in vitro: 

evidence for a switch in na+ channel expression in vivo. Brain research 597(1), 24–29 (1992).
 54. Moody, W. J. & Bosma, M. M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and 

muscle cells. Physiological reviews 85(3), 883–941 (2005).

http://dx.doi.org/10.1016/j.mbs.2016.04.011


www.nature.com/scientificreports/

1 4SCIENTIFIC REPORTS |         (2018) 8:17626  | DOI:10.1038/s41598-018-35858-7

Acknowledgements
We would like to acknowledge the following funding sources: The Research Council of Norway funded INTPART 
Project 249885, the SUURPh program funded by the Norwegian Ministry of Education and Research, the Peder 
Sather Center for Advanced Study, NIH-NCATS UH3TR000487, NIH-NHLBI HL130417, and in part by 
California Institute for Regenerative Medicine DISC2-10090.

Author Contributions
A.T. and K.H.J. are responsible for the development of the mathematical framework and computer modeling. 
K.E.H., N.H. and B.C. are responsible for generation and analysis of data provided from MPS. S.W. and A.G.E. are 
responsible for data analysis from both MPS and computer modeling. A.T., S.W. and K.H.J. wrote the manuscript 
text and created the figures. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-35858-7.

Competing Interests: Prof Kevin Healy and Dr. Nathaniel Heubsch have financial relationships with Organos 
Inc, and both they and the company may benefit from commercialization of the results of this research. 
Professor Aslak Tveito, Dr. Samuel Wall, and Karoline Jæ ger have applied for a patent application in relation 
to the mathematical and computational framework. Dr. Andy Edwards and Dr. Berenice Charrez declare no 
competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-35858-7
http://creativecommons.org/licenses/by/4.0/

	Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological  ...
	Results
	Model inversion is sensitive to perturbations in major ion channel currents. 
	Simulated channel block identification. 
	Simulated drug effect identification using the inversion procedure. 
	Identification of simulated channel block of major and minor currents. 
	Channel block identification using a combined in vitro/in silico system. 
	Mature AP change prediction using MPS data. 

	Discussion
	Inversion of voltage and calcium traces into action potential models. 
	Uniqueness of conductance defined action potential models. 
	Using correlations for parametrization and mapping. 
	The maturation map. 
	hiPSC data sources. 
	Extension to species - species mapping. 

	Methods
	Measuring voltage and calcium traces using an MPS. 
	Inversion of voltage and cytosolic calcium traces. 
	The minimization procedure. 

	Maturation through multiplication. 
	A drug effects a single protein in the same manner for IM and M cells. 
	The membrane potential for IM and M cells in the presence of a single current. 
	Estimating side-effects drugs. 

	Acknowledgements
	Figure 1 Depiction of in silico modeling and analysis of an MPS system.
	Figure 2 Sensitivity of maximum conductances of the immature base model assessed by the three cost functions defined in (3)–(4) with ε = 0.
	Figure 3 The cost function (4) with ε = 0.
	Figure 4 Identification of drug effects on M cells based on simulated data of IM cells.
	Figure 5 The cost function (4) with ε = 0.
	Figure 6 The cost function (4) with ε = 0.
	Figure 7 Results obtained by applying the inversion procedure to measured MPS data.
	Figure 8 Illustration of the assumptions underlying our model of maturation.
	Figure 9 Immature and mature versions of the Paci et al.
	Table 1 Identification of simulated single-channel block of six currents and four levels of block.
	Table 2 The table shows a summary of the method for computing possible side effects of drugs for mature cells based on measurements conducted on immature hiPSC-derived cells.


