Inversion and jump formulae for variation
diminishing transforms.

Z. Dirziax and A. Jaxmmovskr (Hdmonton and Tel Aviv) (*)

Summary. - This is o study of the values of the determining function ® as well as its deri-
vatives and gaps in terms of the generating funclion f and ils derivatives where [ is
the convolution transform of ® with variation diminishing kernel.

1. - Introduction.

In this paper we shall be interested in variation diminishing convolution
transforms

(1.1) flw) = f Gl — tyolt)dt

that is G{f) is such that f(x) never has more changes of sign than ¢(fj whe-
never ¢(f) is bounded and continuous in (— oo, o). It was shown by ScHGN-
BERG [9] that for G\¢) € L, G(!) is variation diminishing if and only if

0o
(1.2 at)=-— [ Eisi-ends,
2ni
~Zioo
(1.3) E(s) = e~ il (1 — f—) el
e [423

oo
where ¢ =0, b and a; for k=1 are real % a;? <oco.
k==l

We shall be interested also in the related convolution STIELTIES transform

(1.4) flx) = f Gl — lerdafl)

-0
where r is a real number. In this paper we shall restrict ourselves fo the
case ¢ = 0 in (1.3); this class contains as special cases the LAPLACE, STIEL-

TJES, MEIJER and many other transforms (see [7; pp. 65-79]).
I. I. HirscaMAN and D. V. WIDDER in their book « The Convolution Tran-

(*) Entrata in Bedazione il 26 aprile 1968.
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sform » [7 Ch. VI] and many papers (see [4], [B] [6] for instance) found an inver-
sion theory for (1.1) and (1.4) based on the sequence {a:} and P,(D) defined by

(1.5) P.(D) = o' ﬁ (1 __,1_)} elifa )0

k=1 a;

a
where D = T’ e*f(x) = flx -+ k) and b, = o(l) (m — oo}
We shall find here a formula that gives ¢()(f) in terms of f(x) whenever
@) satisfies a mild condition in a neighborhood of to (the conditions vary
for different classes of {a.} and [b,}). The inversion problem is solved also

when ¢{f) does not exist, but lim ot == k) = ¢l =) or ¢l =0) exist
[

where g(f, &= 0} are the numbers satisfying

13

(L6) [ot=9) — gl = 0y = ot h—0+

0

when such numbers exist. In this case we shall prove

(1.7 ag®ifo + 0) + (1 — a)pt(tc — 0) = lim D"P,, (D)f(e)

m—>30
where {m,} is a subsequence of m and O<=<<a=<"1, « depends on {b.}], {ax)
and {m,}.

The above mentioned formula generalizes the HIRSCHMAN~WIDDER inver-
sion formulae also in case n =0.

Jump formulae which give )¢ +)— ¢™(f —) or «(f4)— a(f—) (and more
general «left> and «right> values of ¢®)f}} in terms of flx) are also found.
Jump formulae are known in three special cases of convolution transforms,
the LAPLAcE transform [10, p. 298] and [2], the STiRLTIES transform (10, p. 351]
and the second iterate of STIELTIES transform [1]. Our jump formulae will
include these formmnlae (and give a somewhat better result even for these
three transforms) and yield jump formulae for many known transforms (like
MEER, Theta and iterates of LAPLACE transform).

We shall find that in applying the inversion operator D*P,(D) on f(x) the
limit may vary for ditferent orders of {a:} although these changes have no
influence on G(}).

Sometimes various subsequences of D"P,(D)f(x) will tend to different
limits and therefore we shall state and prove our theorems with conditions
on {a:} and subsequences of if.

The paper is divided into two parts:

Part A: On properties of {a;] and as.

Part B: Inversion and jump formulae,
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Part A contains many estimations of Go).
(1.8) GOt = D"P.D)Gt)

in sections 3 and 4 which shall be used further on for inversion and jump
theorems but are interesting for themselves. In section 2 we introduce many
conditions on sequences {a:] and subsequences and find some relations bet-
ween them. The conditions mentioned above will be used in stating the theo-
rems on inversion and jump formulae as well as the properties of G({).

Part B containg inversion and jump theorems as well as some theorems
on GUt) for special classes of {a).

We shall generally follow the notation used by I. I. HirscEMAN and
D. V. WipDER in their book «The Convolution Transform». However, we
shall introduce the definitions not mentioned in the introduction in the first
time they are needed, even if they can be found in [7].

PART A

On properties of | a:} and GY).

2. - Conditions on {a.] and a new classification of G{f).

In this section we shall be concerned with conditions on sequences rela-
ted to G(f), namely real sequences {ax} for which Za;? converge (to a certain
G|f) correspond a sequence {a;} and all its rearrangements). In fact the exi-
stence of various types of variation diminishing convolution transforms for
which we shall later find inversion and jump formulae is shown in some of
the examples of this section.

In [7; p. 140] the condition O, = o0(S;’) (m ~ oo) where

(.1) Co= 3 |a~ and Sp= 3 |asl

k=m-1 k==m--1

was found useful for the inversion formula. The following lemma will esta-
blish equivalent conditions to C, = o(S3’) (m — o).

LeMma 2.1. - The assumptions

(2.2) 5 ||~ = O(S,l,f“;') (m —oo) for some fixed «>0
Je==m -1
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and
(2.3) lim (max ;7381 =0
meyCO k>0

are equivaient.
CoroLLARY 2.1, - Assumption (2.3) implies (2.2) for any o > 0.

Proor. - Let us assume (2.2) for some o > 0. 1f (2.3) is not valid then

a subsequence {m,| of {m| exists such that (maxa;/?8'=8>0 for all
kzm, 1 r
7 = 1. Therefore

o] o o %
I @] = (max a7y e = ety
ks, -1 Ezm 41 !

which contradicts (2.2).
Assuming (2.3} then

o8] @0
Lot = I o7 o < (max (4, 78, =
k=m~-1 k=m-}-1 kzm—41
* o
= ((max a; 2872852 = o(Sn'2) (m — oo).
Eml

REMARK. - Assumption (2.3) is easier to verify (2.2), but assumption (2.2)
with & = 1, namely O, = o(8?*?) (m — oc} is more convenient for proving some
properties.

It is obvious that

(2.4) 0 < lim inf (max 0;2)S < lim sup (max o728 < 1
M OO kE>m [ ¥s's) k>m

and therefore it is quite natural to consider the following assumption on {a,)

(2.5 lim sup (max ;%87 < 1
me>C0 EZem

and

(2.6} lim sup (max a; )8! = 1.
m->C0 E>m

One can easily see that (2.5) includes (2.8), but if we state instaed of {2.5)

{2.7) 0 < lim sup (max ;381 < 1

[Ny E>m
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we obtain by (2.4) that (2.3), (2.6) and (2.7)- form a foll classification of the
sequences {a,}. However, since in all the above mentioned assumptions the
order of the sequence {a.} is important, this is not a classification of G(¢).

Of all sequences {a;] that are related to G(f) we can choose those which
satisfy |aipa| =]ax] and call them absolutely monotonic ordered. Since assum-
ptions (2.3), (2.6) and (2.7) depend only on absolute value of the {a.}, we can
classify G(f) as follows: G(f) satisfies (2.3), (2.6) or (2.7) if an absolutely mono-
tonic ordered sequence {a;} related to G(f) satisfies (2.3}, (2.6} or {2.7) respecti-
vely. Obviously every G(f) satisfies one and only one of the preceding as-
sumptions.

In [7; p. 120] 1. I. HirscHMAN and D. V. WiDDER formed the following
well known classification of G(¥):

G(t) € class I if there are both positive and negative ay,
G(f) €class II if @, > 0 and Zg; ! = oo,
and G(¢) = class I1I if a; > 0 and Za;? < co.

LeMma 2.2. - The intersection of any of the classes I, IT or IIl with
any of the classes: G(t) satisfies (2.3), (2.7) or (2.6); is non-empty.

Proor. - It is easy to verify that there are kernels G() of classes I, II
and IIT that satisfy (2.3) since all the examples given in [7; pp. 65-79] satisfy (2.3).

The following three examples are of kernels that belong to classes I, II
and III respectively and satisfy (2.7) (The G({) are defined by {a:} and b, as
in (1.2) and (1.3)).

ExaMprLE 1: Choose =0 and a, = (- 2} k> 1.

EXAMPLE 2. - Choose =0, a,=1 and a,=2%" for k satisfying 5 927!
n-f-1
<k<X2 7 for n>1.

r=1

ram=i n
It is easy to verify that £a;2<oo, £ a-!=oo and for m= X 277 —2,
r=1
—2 —2 n—1 n n—1,-—2 R o Logh—2
n>1 we have max a; = 0n41=(2"" ) 2=(2¥)~! and §,=(2¥"7)" 4+ X 292)" =
kE>m l=n

= 2. (21 4+ I (2%)~, therefore 2 - (2~ < 8, < 4- (27~ and G(f) satisties (2.7).
i=nf1

ExampPLE 3. -~ Choose b =0 and a;, = 2* (k= 1).

The following three examples are of kernels that belong to classes I, II
and III respectively and satisfy (2.6).

ExaMpLE 4. - Chose b = 0 and o, = (— 1}*k! for k= 1.

ExamvprLe 5. -~ Choose b =0, 44 =0, t,=2i, 1 +n—1 and let a,= 2 for
n—1 n

2% <k <Z2.

r=1 r=1

Annali di Matematica 34
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o0 o
One can verify Za;!=co and I a;? < co.
k== =33

For m = S 9 — 1 we have 8, = 2"%(l -4 0(1)) n—oc and maxa;?=
k=1 E>m
@i, = 2% therefore G{f) satisfies (2.6).
ExampLE 6. ~ Choose b =0 and a, =k! for k> 1. Q.E.D.

Since the inversion and jump formulae depend on what assumption the
sequence {a,} saftisfies and not only on G(f), we shall state our theorems
with conditions on {a;} remembering that if G{f) satisfies a certain assumption,
an absolutely monotonic ordered related sequence satisfies the same assumption.

We shall find it useful to assume (2.5) instead of (2.7). In the following
lemma we shall find an equivalent coudition to (2.b) which is more conve-
nient in applications.

Lemma 2.3. - Assumption (2.5) which is lim sup (max a; %87 <1 and

m—>00 k>m

(2.8 8, — maxa;? =>al, for O<a « fixed for all m
k>m

are equivalent.

E>m
<1 — a which implies (2.5). To see that (2.5) implies (2.8) we should remember
that for each finite m, we can find some « = a(mo), 0 <« <1 such that §,—
— max ;% = a{mo)8, for all m << mo; the rest is similar to the proof in the
k>>m
other direction. Q.E.D.
Instead of 8, — max a_? we can have natural and (as we see in Chapter
E>m
3) useful generalization

Proor. - Formula (2.8) implies 1—(max a; 287 =0>0, that is (max ;)8 1<
k>m

(2.9) 80 =8, — max 3 a?.

melky L Lk, p==1 P
We can write (2.8) in the form §4)=aS, for a > 0.

LemMA 24. - It 88" >«S, for « > 0 « fixed for all m, then
(2.10) S > w8,.

Proor. - We shall prove our lemma for any fixed m and r. If o} =
=maxa;? for i =1, 2,..., » the proof of (2.10) would have been trivial.
Ezmbi
For some fixed ko a4 > @4t we can form the sequence {af} where aif=



Z. D1tz1AN - A. JaxiMmovski: Inversion and jump formulae, etc. 267

= Opt1, Pieyr = i, and for k3=ko, ko 4+ 1 af = a.. The sequence {af} with
oo
Sy defined by Sy = I (af)? satisfies Sf)=aS* since for m >k and

k==m-}-1
m <k S»=2385 and S = 5" and for m = k, we have

Sk — 1;1;11 (@) = S, + (0}, — a;?) — m;x a7 > oSy, + alayt, — apt) = oSy,
0 0

With a finite number of changes of the above mentioned kind for k>m
we get a sequence {af*)] which satisfies S}*=S8,, Sy*0 = SY and SF*M >
=a&H* for all I>m and (g~ = max (a# *)~2 for z_..l 2,..r and therefore
the proof is completed. S Q.E.D.

It is interesting to comsider similar relations for subsequence of §,. For
instance, take a subsequence {m;] of the integers, the condition S,,(,?zocSml a>0
o fixed for all 1. Of conrse, S,f,?zocSml for a fixed « >0 implies for p<r
S > a8, .

Here S,(,,? = a8, o> 0 for all I does not imply S,f,?zoclSm, for a;>0. This
can be seen using Example b from the proof of Lemma 2.2 and using m, =
=5 % —2 (where 4, is defined there) we get

rz=l

1
S =o(Sk)) = 0(Ss) (1—o0) and 8§ =38,

However, the following lemma gives some information on S,(,fé) in a spe-
cial case,

LeMMA 2.5. - If lim (max 0;?)S;," = O then for » =1, 2... there exists an
0 kE>my

o, o >0 snch that S,E,’)> Sy, for all 1.

PRrOOF. - lim (max a;3)S;, = 0 implies for I > l(n) S,E,?z(l ——;1?’ ) Sy, this

o0 E>my
clearly yields 8,2)2(1——::@) Sn,. Combining the above resunlt with the fact

that for each I/, there exists a f(l) = § Bl > 0,80 that for I=1 (’)2[38,,,1,
we complete the proof of this lemma. Q.E.D

In Lemma 2.2 we showed that even for G{) €Il and |aipi|=|as]|
lim sup a2 ,S»" need not be zero. The following lemma will solve the problem

T 00

of lim inf a"z S in this case and some similar cases,
m-—> Q0
Leuma 2.6. - Suppose 5 |ax|=# = oo for some 0 <8 <2 and || <<| it ]

then lim mfa’j’_lS" =0 =
>0
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PROOF. - Assume lim infa,1:S;” = « > 0 which implies for m > mo

Mmis OO

—_— — &% o o o
am—ilsm ! > é or Sm = Omdl = amil > é Sm ‘Sym (1 - Q) > K m—+1 5

jesd feod
therefore X S,;; converges for each I > 0. Since ant1 < Sn |y —2 conver-
0

=

=0

ges for each I> 0, setting 20 = § we get a contradiction. Q.E.D.

One can prove the following analogue to Lemma 2.1 for conditions on
subsequences.

Lemma 2.7. - Let {m,} be a subsequence of {m} then the assumptions

(2.1 s Jo =% = Q(S,l,:‘;} {r—oo) for some oa>0
[ ot

and

(2.12) lim (max a;)S, " =0

7—C0 k>mr
are equivalent.

Proor. - The proof is similar to that of Lemma 2.1. Q.E.D.

CorROLLARY 2.7a. — The statements

& [se]
lim inf (max ;)8 =0 and Jim int 8775 5 1a,,y—z—a)=0
X E>m m—>00 k=mm—4-1

are equivalent.
However, Zja:|—P=occ for some § (0<f<Cec) does not imply lim inf (max az?)S;'=
m—>00 E>m
=0 when we do not assume |a,1|==|ax| as the following example will show.
We shall take {a:} = {k} (with y = b this is related to the LAPLACE tran-

sform [7; p. 66]) and rearrange it in the following ways:

ExamprLEe 7. - Inserting 2* after 5 by the following method: 1, 3, 5, 2,
6, 7, 9, 10...2), 4, 26,... we get after some calculations lim (max a;’)S, = %
mS>00  k>m

Examprr 8. - Similarly if we put k! after (3k)! 4+ 1 as in the following:

3,4,7, 1, 8, ... we get lim (max a; )8 = 1.
medo0  K>m

The above examples indicate a general method of «spoiling> sequences,
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There is another series of conditions that are useful for inversion and
jomp formulae.

DEFINITION. - A sequence {a;} will be said to satisfy assumption B(n,
(), 1) it

(218)  min(max{jay|[l Sisn  k<h<.<R)SETY <K
kg >m,

where K is independent of r.

REMARK. - It is easy to see that if [a,] satisfies B{n, {m,], [) it satisfies
also B(p, {m.}, I} with p <mn.

DEFINITION. - A sequence {a;} is said to satisfy B(n, {m,}) if it satisfies
assumption B(n, {m,}, I} for some I.

DEFINITION. - A sequence {a:} is said to satisfy B(n) if it satisfies
Bn, {m]).

LeMMA 2.8, - If {a:} satisfies |a:|=<<|owy:| and B(1) then {a.] [satisfies
B(n) for all «n.

PROOF. -~ Applying |a:/<<|ast1]| we can write instead of (2.13) |@nial(Snya—)' <K
and this is satisfied in case {a;] satisfies B(1). Q.E.D.

LemMma 2.9. - The inequality lim inf (max ak_z)S;Zl>O implies that {a;)}
satisfies B(1, {m,}). rs0  K>m,

PRroOF. - The inequality lim inf (max ai}S;," =« > 0 implies
T3 OO E>m,

lim sup (min |ax | PSn, < !
>0 E>m, &%
which yields our result immediately. Q.E.D.

However, it would be incorrect to assume that our assumption implies

lim inf (max a; )8, > 0. All examples given in [7; pp. 65-79] satisfy both
r—500
ECLM_HI S., < K for some ! and lim a,1.8, = 0. In fact, in all the examples
My

we brought {a:) satisfies B(n) for all n.

The following example will show that even an absolutely monotonic or-
dered sequence {[a;} does not always satisfy B(n, {m}).

BxaMPLE 9. - b=0, o = Vklogk, Zai  <oo but | Vm + 1logm + 1
g g

b I\, ]
(k::_;_l Pmo—gﬁkf)% is not bounded by K for any I,
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[0}
Lemma 2.10. - If Z|au|# < oo for some § <2 then {ai] satisfies B(n)
for every n. =t

Proor. - It is easy to see

o
Se= 3 |a]f a7 < (min || S [a|E.
kemmed-1 E>m k==m+-1

Define

e o] ”
S%= % ja?— max (Z }a%;—s)

k=mme4-1 k<l <k, V=1

SEY < min (max {|a | |1 <4 <n kb < ... <k} P2830.
k>m

oo s e
T jax[® and S{pare bounded by T |a,—F which is independent of m.
k=1

k=m-+1
We can find 7 so that /(8 — 2) < — 1 and therefore using (2.13) we complete
the proof. Q.E.D.

3. - Some properties of G(¢).

In this section some properties of a9t), where
(n) — ot D T D 1/ay)D
(3.1) @G (1) = D"P.(D)G(t) = D e*=? 11 {1 — o el Gt),
k=1 k

will be found; these properties shall depend on the sequences {b,] and {ax}.
TaeoreM 3.1, - For n, m =0, 1, 2,... we have for —co <{ < oo

13.2) @9 < A

1

L)

r=0
where 4, depends on n only, S =8, and S is defined by (2.9).

Proor. - The proof is by induction on n. For n =0 our theorem is
Lemma 7.1 of [7; p. 138]. Suppose that our theorem is valid for n =0, 1,
vy L — 1.

For a fixed m, m =0 we have eifher

(A) S, = (2l + 2) max a;”

Ezm--1
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or

(B) Sp < (20 4 2j max a;i”.

kzem4-1

In case (A) we have

2] 2 © 2P oo
n <1+~—2)=1+128m+ 2 z {ak,..a,k )—29

kemm1 @, 2 P L ?

=k, (g77)
5 )2 5 ( S T
Ay, oo @ i ' — ar jlag ... a ~2
kyy s k2H_22m+1 ( k k2[+2 PR /t21+1;>_m+1 o=l k] >( ky k2l+1)
kg (g5} kgekky (g7}
(by assumption (A))

S, 1! : S 2L + 2)!

> . p (@ oo Qigyy )2 2__‘_.(__'_;_2)._ .
2n + 2 Fys s kgppizmetl + (-)‘Z + 2} +

gy (g0)

By the same method

S 21 4+ 1)1
= (akl .a;%+1)"2> ( + )

L v A (23 - 2}5‘*‘1
by, (g-0)

e} 2
Now since all the coefficients of v in II (1 + %) are positive, we have

k=zm+-1 [ 73
* 2 2042
R e e I e rx B ety
"=m+1< ' ai)z + U o SR DA Mt (Gt wee By
k?:Q:k?(q:Q:r)
o
T4l+4 Z (ak v b ‘)-—2 2% 1 + Wé .
+ s er ke gl 2042 21 + 2y
RE L
Now
1 >* |t)fdr { © (x|t de
l 0 = o« 2\ 12 il ‘—"‘—lv(‘mz—z
iGm(tHSQW f z n (1_‘_12)} Szn f 1+;S’Lj
—C0 k=m-1 a — (2l +‘-"*‘2y+1
T a 5 11
20420 de (2 9)? s s
B =8 f1+m2“ m=E+2" TEOSm) :

(t+1S,2 -2n 0 S ?
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Case (B). By supposition (B) there is a k.=m 41 such that |a, |<

0o

21 4 2y ! T
<P Wwe define glaw,, u) by gla,, u) = 5— f i 5 €"ds.  Define

Sa” i
. i 1 .
Gx(ty by O,
Gx(t) = = (Ex(s))~letds
" 2mi "
. s\ Ly
where E(s) = E.(s) (1 — »-—) e %
akm
® g d!
| G'(8) | =[ Jg[akm, u) a7 Gt — wdu | <<
—00
co dl
< (sup lgles,, )] [ |25 6200 ao
u 1o

1 i
since do_l& G (v) has at most ! changes of sign (see [7; p. 92]) and as % G (v) =

= o(1) {v— ==oc) (see [7; pp. 108-110]} we have by induction

dl—-l
) . *
Gn(t) < |ax, Zl_glgiw% = G )
_RLg2pr, A (20 4 2012204,
Si =1 R 1 REE
w ( o s;fo)) ( o s,;;m)
i=0 i=0

where S¥J) are the Sg(f) of the sequence {af |:af = ar k <ln, af =11 k=K.
Choose for completing the proof

(1
4, =max{(2n 4 2) 2 , 2n+ 2)'7.2n. 4,1). Q.E.D.

The following lemma will establish the behavior of the zeros of G)i).
We shall need the lemma in the remaining theorems of this chapter.

Leuma 3.2. - There are exactly n points where changes of sign of G()({)
occur. At these points GUt9(f)==0. Any other point at which G™(n}=0 im-
plies either G(f) =0 for  <{<oc or G(f) =0 for —co<i<.

Proor. - That G){f) has exactly » changes of sign was proved in Theorem
10 of [5; p. 1564]. The rest follows by the same arguments used in [7; p. 94].
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We shall denote by {, .; the n 4 | distinct zeros of GUtY(f) at which
Gf,f'*'”{t} changes sign, where Cu . < Gu nigi-

TaEOREM 3.3. ~ For m, n =0, 1, 2,... and B > 0 we have

(a) G Cnmi — BSP < —é:l—llz
B (T s?)
im0
4.
(b) | GolCo s + B8 | = — 5
B ( s0)
i=0
where A. is independent of m.

Proor. - G,(,f](t) is monotonioc increasing in the interval ({,, .1 — BS,I,L/Z, Gy 1)

and GY7Y(#) is monotonic increasing in (— oo, L a1 by the definitions of
G and G .11 respectively. Hence we have

Cm, X
BSMG,  — B < f GO\t <

g —Bs?
1

m

n, 1

if =0
o Ggl—l)“‘;m, n, 1) - Gr(:-—I)(Cm, n, 1 = BSIIIL/Z) S Ggl_l)(gm, n, 1) if h 2 1'

Using Theorem 3.1 the pruof of case (a) follows. The proof of case (b)
is similar.

Q.E.D.
REMARK. - We can choose B of Theorem 3.3 to be a funection of m as
long as it is positive.

TarOREM 34. - For m, n=0, 1, 2... we have

n—2 \1f2
G G n 1) = B,,s;n( I Sg))
§=0

n—2 \1]2

=2
-1
where II =
(]

omlL

=1.

Proor. - In case n =0 our theorem was proved by L. I. HIRSCHMAN

and D. V. WIDDER (see Lemma 4.1 [7; pp. 126-127}). We shall prove by in-
duction case (a). Case (b) follows similarly. Assume (a) for k=#xn — 1. Since
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Cron1 is the only maximum of Gf,’f'){é} in (— o0, G .1, and Ggf’)(t) is positive
there, we have for B(m) > 0 (see Remark after Theorem 3.3)

4

"m, n—1, 1
Bim) S GG, 1) = GOt =
ém, n—1, l—B(m)S’}l/z

= GC N pr 1) — GS NG nmrs — Bim) Sy =

=0

n—2 . \1/2]=1
= BoaSi ™ — Au_s {B{m)* 3,32( i s,;*) } >0

® : o1 _ Y N N ==
G (Crn, w1 = B(M) B, , An—zB(m) 1I ‘Sm/‘sm S.

i=0

Ty 2, . \1/2
We choose now B{m) = B( I (S,,,/S,ﬁ”)) where B is so large that B, —
— A,y B1>0. Hi=t

For B, we shall have now

B, = B-YBuy — 4,18~ > 0

[ ~\1/2
and therefore GGy, 1)219%18,:"(;(1 s,&:)) . QED.

i=0
For convenience we shall define SO for negative 4.
DEFINITION. ~ SP =8, for n =0, —1, — 2, —3, ...

COROLLARY 3.4. - Suppose for some # and {m,] SO”=aS_, «>0, inde-
pendent of #, then

241
(@) Gf:r)(cmr, n 1) = Bu(@)S, 2
ﬁ
(b) ' Gg:f)(z;m,, n, n+1) l = Bn(OC)S,;; 2,

where B, are independent of » and depend on o« for n=>3.

PRrOOF. - Since ST ¥ =aS, implies S =aS, for i=<n—2, we have
by Theorem 3.4 a
a+1
S B8, = for n >2
G ) = ?

_ntl
BuSn, 2

Similarly we show (b). Q.E.D.

for n < 2.
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REMARK. - Assuming S,ﬁ':_Z] = a8, we make no assumption for n =0, 1,
or 2.

TrrorEM 3.5. - Suppose for some #=0 SI™” =S, with «>0 fixed
for all r, then for 1<<i<n 41

‘ Cm,. n, 1 T bmr ) =< Mnsgrt[rz,
where M, are independent of » but for » =3 depend on .

Proor. (A modification by I. I. HIrscEMAN of the original proof). - It
is enough to prove that both

(a) |Gy, nt = b, | << M,Sil*
and
(b) 1 Cm,, n, a1l T bm,l g MnSr}lZ

are satisfied. We shall prove (a) by induection on m. It is well known (see
[5] and [7]) that (a) is valid for » = 0, 1. Assume (a) is valid for n — 1. The
definition and simple properties of §, . imply

| e
'2' GS:, n(Cmr, k—1, 1)[Cm,, k—1.1 t;m,, k. 1] ..'g; ng 2)‘Cmr, kE—1, 1)‘

Hence by Theorems 3.1 and 3.4 and using S,Sr) = a8, for i<<n—2, we
obtain
—nj2 2 et
Bn—lsmr [Cmr, n—l,1 T Cmr, n, l] g 14n—--20c Sm.r 2

or Cmr,,,_l,l—cm,.n,lgCnS,i/f. The induction hypothesis completes the proof
of (a). The proof of (b} is similar. Q.ED.

THEOREM 3.6. - Suppose for some =0 S;’i“z);zocSmr with « > 0 fixed
for all », then
nt1
2

; GE;?(Cmr, 7, i} ? > Gnsmr

where C, are independent of » but for n =3 depend on a.

PRrRoOF. - For i =0 and ¢ — » - 1 our theorem is reduced to Theorem
3.4, therefore it is proved in case » = 0, 1. The proof follows by induection.

Suppose our theorem is valid for /<<w»n — 1. The function Gg,,"r)(t) has no
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change of sign in ((. . nw1,i21, Gn, n—1,:). Hence

20 S < | G Gy i) — G Gy, i) | =
m y Bemly d
— f Gf:](w)l dw g (Cmr, n—1, i ™ Cm,., n—1, i-—l) l G%)(Cmr, 7, LH .
m y n—1, il
Using Theorem 3.5 we get Lm, n—1,i— Gn,ne1, i1 << 2M,, S,,l,iz. Therefore
a1
| GG, )| = Cod M2 Q.E.D.
REMARK. - In Theorems 3.5 and 3.6 and Corollary 3.4 we do not require
anything in case » =0, 1, 2.
As was shown in Lemma 2.4 the assumption S’ =S, « >0 fixed for

all m implies the assumptions of these theorems.

THEOREM 3.7. - Suppose for some # S >aS, «>0 fixed for all r
and b, = 0{S) (r— oo} then

SaP? f | G5 ()| dt << M(n, a)

where M(n, «) is independent of r.

PROOF. - Lot {&n nim 1<<i=n+44}={(, il <i<n+4+1}U {0, —o0,o0]
where Eu s <<&n, .41 (the equality sign may occur only once if 0=E, ., for
some ¢). In each interval {§n. ., Em.n»i41) (possibly a peint) GEHI{H){" has no
changes of sign.

(¢ 0] + Emr, n, i4-1
n-3
L, =S8" f |G| dt = S, % ‘ f G"E"Jr”mzndtj.
w0 = Emp,n, i
Since &, n1 = —oc and &, . .ts = co, integrating by parts we obfain

n43 i
L,<280% z  (Enn | O ) -

Since (&n.n:i 2<<i<n<<+3}={Cln.n: 1<<éi<<n+1}U {0} we can com-
plete the proof of this lemma using Theorem 3.1 and 3.5. Q.E.D,
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TurorEM 3.8. - Suppose for some 1 S& ™ =aS, «>0 fixed for all r
and b, = 0(Sx’) (s — oo), then

o0

f |60y | b < Man, %)

—00

where M(n, «) is independent of r.

Proor. ~ Similar to that of Theorem 3.7. Q.E.D.

4. - Properties of GY(f) (continued).
The moments of G.(f) are pi(m) =1, [7; pp. 55-66] and p.(m) are defined by

4.1) (i) = f(t — by @a{t)dt.

—00

TaroREM 4.1. - For §>0 and m =1, 2,... we have

I
1
(a) fG,,,(t)dt = Pza(t0) ;
a 1
{b) f Git)dt < 5o Han().

b8

Proor. - To prove (a) we write

5,—8 - [ee]
f Gat)dt = f Gult + ba)dt << f Gull - brjdt << 5%[ 12 Gaft + b.)dl = % fan{1m).
—C0 —00 MZS —00
The proof of (b) is similar. Q.E.D.

CoroLLARY 4.1. ~ For each 3> 0 we have

4 -
® G- )= gpabn), ) Gulb 25 = o )
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Recall that E,fs) [7; p. 125] is

@&.2) &M:%Sﬁ@~£FW

km=m—-1

where b, = o(1} (m —~ o0).
TaroREM 4.2, - Lot F,(s) = H.(s)"" - ¢*=° then
(4.3) palm) = (— 11 F.7 (0).
Proor. - The proof follows immediately from

@D

(4.4) .nmzéwsfrwm+mw.

-0

THEoREM 4.3. - For =2 and m =1, 2, ... there exists a constant K{n)
such that

(4.5) ) << K(n) S,
Proor. - By differentiation (F.(s)/Fn(s)) = — T (-— L _._,1_>, therefore
b=m1 '8 — O (72

for » > 1 we obtain

Fosh\e—ny !1 ® -
{4.6) KF,,,{S))s:g !_. {n— 1).$k=§+1 a7 | < {nw— 1)1 8§
We shall prove by induction that
4.7) HEw(8) oo | << Kall)Sor”

For I =0 and I =1 (47) is trivial. Assume (4.7) is valid for ! <<k then
by Lmisnirz formula

1 Fus\E  E k[ 1 A\ Fs) =D
e = (e ) = 2 lew) ()

Using (4.6}, F.(0) =0 and the induction hypothesis, (4.7) is proved.
Now we prove (4.5) by induction. For n = 2 it is valid since pa(m) = S,.
Assume (4.5) for all » < k. By LriBNITZ formula

Fiis)\t—0 k=l — 1\ o 1y
}"k(/‘n) = (-— HkF’E‘kJ(O} == I)k%<Fm{3>S=O o r§l< ¥ )FF& )(0)< )ﬁ:() 2 .
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Taking absolute values and using (4.7) and the induction hypothesis we
obtain (4.5) for n =&. Q.E.D.

TrEOREM 4.4. - For {0 and for any &k
(4.8) Gnlf) = 0(Sn)  (m —> o).

ProoF. - Suppose £> 0, then since {,=o0(l) m—co for m >me /2> L.
Due to the monotonic character of Gt} for ¢>(,, Theorem 4.3 and Corollary
4.1, we complete the proof. The case ¢ > 0 is similar. Q.ED.

TasoreEM 4.5. - If for some #n S,ﬁ':_z)zocSmr >0 « fixed for all #, then
for t3=0 and any %

(4.9) Gl = o(Sn) oo,

Proor. - The proof follows by induction. For n =0 it is Theorem 4.4.
Let us assume (4.9) is valid for 1 =0, 1,..., » — L. It is known by theo-

rem 3.5 that |G, . i— b, | < M,SY and since b, = 0(l) r—oco and S, =
VP . I .

=o(l) r— o0 anr){t) is increasing or decreasing in (-23, oo> when #n is odd or

even respectively and is increasing in (— oo, — t/2) for any positive /.

Therefore for ¥ > ro we have

) —tof2 —if2
G0 )< | aPwmdt < | 6P At = GLT(— t/2)
2 r T ) T r

and hence
e b
a— zo}g@ 50) GE = b0/2) = o(Sk)  r—oco.
The case £ > 0 is similar. QED.
REMARK. - One can easily see that in case w =0, 1 or 2 we do not

make any assumption on the special subsequence or on the order of the a:s.

TuroreM 4.6. - Suppose for some n {a:} satisfies Bn — 2, {m.]) as
defined in section 2. Then for {40 and 0 <<p=_» and for any ¢ >0

(4.10) APty = o(SL)  r—oo.

Proor. - Using the inequality (2.13) and a remark after it we see that
whenever {a;} satisfies B(n — 2, {m,]) there exist 1> 0 and K >0 such that
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for 0<p < m— 2 (no conclusion in case n =0, 1, 2),

(4.11) {min (max |a, ||l <i<p b <k < ... <kp)}« (S} < K.

E>m,
Let us define now m.4,,, tntr, € (@ jmts,
(4.12) |@nprt = (minfaz|| kB> m k= m +r 0<i<j]

and if there are some #; with the above properties, we take the smallest one.
Let us also define G,,/({) by

(4.13) fi(1— D )Gm,u)s Gl Gull) = G olt).
fo=( amr~}~ri

Gn,j(f) are subsequence of G.(f) with some rearrangement of the sequence
{ai}. S is the second moment of @, j#. By Theorem 45 for n=0, 1, 2
we have Giij’,,-(t) = 0{8’,5;?}'g r—co for all >0 {0 (see Remark after Theo-

rem 4.D).
We shall prove our theorem by induction beginning with » = 2. For

n=2 G2 (t) = o(SY)7 r — oo, for all ¢ >0 and ¢ 0.
Assume for some integer s O <s<n

(4.14) 69 () =o(SP)y r—oo for all ¢>0, t=+0 and O<<j<<m—s— 1.
. q J

My J
By definition we have for > 0

G, 1) = (U= (@ 4) D) G ()

and therefore

(4.15) GEEL(Y) = g { G2 alt) — 650, 4(8))-
Since S < SY™ and since (4.10) implies ]amr_;_,’,}(S,f;i"”}‘ <k we obtain
G = oSy r—oco for all >0, 40 and O<j<n —s—1

which concludes our proof. Q.E.D.

REMARK. - Assumption (2.13) and its consequence (4.11} are quite com-
plicated, but when |a;|<<|asv:| for all k, it is enough to assume (min|ax| )(S.)f<K
k>m

for all m which is a simpler but stronger assumption (see Lemma 2.8). Siill
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another assumption which implies (2.13) for all » even without ordering is
Z{oi|® < oo for some B <2 (see Lemma 2.10).

ReMARk. - There is some overlapping between the Theorems 4.5 and 4.6.
THEOREM 4.7. - Suppose G{f} to be derined by (1.2) and E(s) = E\(s) - Ea(s})
where E(s), Ei(s) and Ey(s) satisfy (1.3). Les Hi{t) be related to Eis) by

1 [
=5 (Ei(s))evds i=1, 2

—ino

Hit)

Assume Hi(f) € C"(— oo, oc) and Ha(t) € C(— oo, oo). Then for each real a
the function G(f) — aH{"({) has at most 211—@;2&-2-} changes of sign.

Proor. - Define W,(y) by W.ly) = (1 — 92" for [y| <1 and W,(y)=0 for
ly|=1. For n <m Wy is continuous and has exactly % changes of sign.
For all g(f) € C*{— oo, oo} n < m we have '

i

1 g ¢
3 i — e — o — = g
(4.16) hl_l)(t)l_:-_ gle — 1) G, ar (‘Ifm (h)) dt = g"M(w)

—30

1
where @, = [ (1l — ’)"dy. By (4.16) we have
w1

aity — a B (f) = hli(;?}r fﬂl(t—— u)%Hz(u) -—% %lwm(%)udu

—_00

Since Hi(t) is variation diminishing, it is enough to show that Hy(u)—
a ad u n 4 2
—-h—Qma—t—nwm(%) has at most 2[___
This follows from the continuity and boundedness of the derivative of
Hs(f) except for a possible discontinuity of Hj(f) at one point (but there the

changes of sign for 0 < & < he(a).

left and right derivatives are bounded; and simple properties of ﬁ g{; v, (%)

QE.D.
5. - On the convergence of | GU(u — tjeda().

In this section we shall bring some theorems on convergence of [ GOu —

—20

— tjetda(l) related to same theorems for n = 0. In fact, one can use a direct
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method involving the asymptotic expansion of GPt) but we shall prove them
using the theorems for » = 0 proved in [7; pp. 127-137]

LevmA bB.1. - If
(1) G{t)€class I, G(}) is non-finite,
{2) «(t) € B.V.(a, b) in any finite interval [a, b],
3) flx) = /wG(w — tec'dayl) converges,

then

DP,(D)f for) = f GO — t)edalt),

the integral converging uniformly for a in any finite interval.

ProoF. - The case ¢=#n=0 is Theorem 5.1.a [7; p. 127]. The case n =0
¢ == 0 is not different and we shall refer to it as proved in the above men-

tioned theorem. There are constants ag,.., «f such that
id ny
{8.1) DrPo(D) = Z af Py D) exp ((bm+j —bn— Z a; )D) .
j=0 r=m-1

Since our lemma is valid for # = 0 for all m we obtain

n n—{-‘
DPADIf(@) = 5 a* Py D) exp ((b,,,ﬂ b ¥ afl> D> f) =
=0 r==m--1

n a nd-f
= % OC]-* f Gm-}-j (fl) — i+ bm+j — Oy — E] ar—l) Q“dd(-‘f).
j=0 ra=m—4-1

By Theorem 5.1.a of [7; p. 127] these infegrals are uniformly convergent

in any finite interval and the sum is equal to | U — fjevda(t).  Q.E.D.

Lemma 5.2. - If
(1) G(¢) €class II,
(2) a(f) €B.V.a, b)) —oc<a <b < oo,

8) flxy = fmG(ac — fjec*dafl) converges for x> y., then

DPD)f (x) = f 6D — terdalt),

—_—0
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the integral converges uniformly in any finite interval

Yo —b+b,— Z ak_1<wl:.<;wgw2<00-

j=1

Proor. - Similar to the proof of Lemma 5.1, but using Theorem b5.2.a
[7; p. 129] instead of Theorem b5.1.a of [7; p. 127], we get Lemma 5.2. Q.E.D.
Lemma 53. - If
(1) Git)€class III and G(f) is non-finite,
2) af)€B.Va, b) T<a<b <oo,

o

3) flax) = f G(x — t)e*du(t) converges for x> T 4+ b + ) a”', then
rom=]

_—00

D'PD)f @) = f 69 — tjerda(t)

and the integral converges uniformly for @ €[w:, ;) T+ b+ Z 07 <a1 <<
remmed-1
=Zx << X < oo,

Proor. - Similar to the proof of Lemma 5.1, but using Theorem 5.3.a
of [7; p. 132] instead of Theorem 5.1.a of [7; p. 127], we complete the proof
of Lemma b5.3. Q.E.D.

Lemma 5.4. - Suppose
(1) G(f)€classI and G({) is non-finite,
(2) a(f)¢ B.V.(a, b)) —cc<a<b < oo,

(3) f(x) = /wG(ac — t)e*da(t) converges,

then for m sufficiently large:

A) oy <e <o (@ = max[— oo, 4] @ = min [oc, a;]) implies that
a0 a0

X3

f e D" P, Df (x)doe = f G, — tye—Cs—a(t)dt — f GO, —- tje——a(t)di;

£ —0 —o0

B) ¢ = a. implies that a{4 oo} exists and that

[S.+3

f e— D" P,(D)f (a)dac = f Gy — te—=9af+4 oo) — a(t)ldl;

]
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0) ¢ <<« implies that a(— oo} exists and that

2y G

f e=<= D" P,,(D)f (x)da = f Dy — t)e— o) — a(— oo)di;

00 —0

D. we have for —co < ¢ < o0

e—= P, (Dif (x) = f [GEP — t) — eGP — §)) e C—Ia(l)dL.

—

Proor. - Using equation (5.1} for D"P,(D) and the «; defined there

n m-+-
Z X Guyy (m — & bngy — b — s o 1) e—t—at)
j=0

3

(5.2) e== D" P.(Djf (a) =

re=m—-1 e 31
2 003 o
_Sar (2 Gm+;(w by =l — Y @ >e‘”("—‘3 alt)dt =
J==0 C‘t r=m-{-1

o e o]
= f G e — te—t—1u(t)dt — ¢ f G — tje—t—a(t)dt,

— 0

the integrals converging uniformly in any finite interval. This concludes the
proof of D.
By (5.2) we have

(5-3) e==DP,(Djf (x) = —

L °°a i
— o f 373 Gt (w — bt bnyy —bn— ¥ a; )E“C(”“) a(t)dt.
-—00

J==0 re=m~p-1

Treating each integral in the sum on the right hand by the method of
Theorem 6.1.a [7; pp. pp. 132-134] and applying (5.1) again to G(f) we obtain,
since an integral and finife sum are interchangeable, results A, B and C of
this lemma., QE.D.

Lemma 5.5. - Suppose
(1) G € elass 11,
(2) a(f) € B.V{a, D) —co<a <b < o0,
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3} flx) = [OOG{x — tjectda{t) converges for x> v.,

then conclusions A, B and D of Lemma 5.4 are valid for m sufficiently
large.

Proor. - Similar to that of Lemma 5.4 but using Lemma 5.2 and Theo-
rem 6.2.a of [7; p. 136] instead of Lemma 5.1 and Theorem 6.1.a of [7; p. 132].

Lemma 5.6. - Suppose
(1} G{f) € class I1I, G{) is non-finite,
(2) a)€B.V.(a, ) T<a <b <oe,
3) flx) = [OOG(m — t)eda(t) converges for & > T 4 b +4 5 ar.
—Q0 k=1

Then for =, «; and x, > T and m sufficiently large conclusion A, B and
D of Lemma 5.4 are valid.

Proor. - Similar to that of Lemma 5.4 but using Theorem 6.3.a of [7;
p. 137] instead of Theorem 6.1.a of [7; p. 132] Q.E.D.

PART B

Inversion and jump formulae

6. - General inversion formulae.

In this section we shall obtain inversion formulae for the cases where
{ax] satisfies either B(n —2, (m,}) or S =«8, «>0 independent of #;
both are satisfied by any subsequence m, automatically for n =0, 1 and 2.

los)

Whenever X |a;|® < oo for some B 0 <8 <2 {a:} satisties Bin) (that is

k=1
Bn, {m,}) for every {m.]) for all # by Lemma 2.10.
[}
In case T |a;|~F = co for some B, 0 < B <2 and || < |, by Lemmas
k=1
2.5 and 2.6, there exists a subsequence {m,} of (m} such that S{’=a,S, for
all n. Therefore the above mentioned conditions do not restrict the kernels.

We shall bring the inversion theorems for (1.1) for three classes I, II, IIT

and prove them together,
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THEOREM 6.1. - Suppose
(1) G(t) € classT and G{f) is non-finite,
(2) #() € Lnfa, ) —oo<a <b< oo,

(3) fle) = [OOG(:I: — f)p(f)dt converges,

{4) for some real x and some % =0 there exists a >0 such that
¢®)(f) exist a.e. in (x — 8, x -+ 8 and for n>0 we assame that ¢C)({) is
absolutely continuous;

(5) either {a} satisfy B(n—2, {m,}} or S =48, 2>0 for n men-
tioned in (4) (no assumption in case n =0, 1 or 2).

Then

(a) it ¢™(¢) is continuous at { = a, then

lim D" P, (D)f(a) = ¢")();

700

(b) if both ™2 =0} exist (defined by (1.6)) ¢™fw 4- 0) = ¢*)x — 0) and
b, = 0(S,?), then

lim D'P,,(D)f(®) = ¢z 4+ 0) (= oz — 0));

r-»00

(¢) it SoF = ofbn) (r—00) bn, >0 for r=r ¢™(x —) exists and one of
the following two assumptions is satisfied:

(D) ¢™)() is bounded in (x, © + &) for some &, 0 <& <3,
1
T

(IT} Sn, = o0{bn) (r —oo) for some v, 0 <y <1

2?
then
lim D"P,, (Djf(@) = o™ —});
(a) if S,f,‘f:: o{|bn |} (r—o0) by <0 for r =17, (2 4} exists and one
of the following two assumptions is satisfied:
(I) o()(t) is bounded in (@ — 3, «) for some &, 0 <& <3,
1

7Y

(1) Sn, = 0(bs) (r— o) for some y, 0 <y <-1

2 1
then

tim DP, (D)f (@) = oM +).

Ty OO0
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REMARK. - Conclusions {a} and {b) for » = 0 are the well known results
of I. I. HirsoEMAN and D. V. WIDDER (see Theorem 5.1.b [7; p. 128] and
Theorem 7.1.a [7; p. 139]).

THEOREM 6.2 - Suppose

(1) G{t) € class 11,
(2) assumptions (2), (4), and (b) of Theorem 6.1 are satisfied,

3) flo) = [wG(w — f)p(#)di converges for x > vy..
Then conclusions (a), (b}, (¢) and (d) of Theorem 2.1 are valid.

TureoreM 6.3. - Suppose
{1} Git} € class 111 and G(f) is non-finite,
(2} off) € Laja, b) T<a <b <o,

{3) fl) = 7 Glx — t)p(l)dt converges for x> T -+ b+ ) ai’,
—o0 fed

(4) assumption {4} of Theorem 6.1 is satisfied for some real = > T.

Then conclusions (a), (b), (¢) and (d) of Theorem 6.1 are valid (for
satisfying (4)).

ReMark. - Conclusions {a) of Theorems 6.2 and 6.3 for the case =20
are Theorem 5.2.b [7; p. 131] and Theorem 53.b |[7; p. 132] Conclusions (b)
of Theorems 6.2 and 6.3 for the case » = O are in Theorem 7.1.a [7; p. 139].

We shall obfain now some lemmas that will be used in the proof of
Theorems 6.1, 6.2 and 6.3 as well as in the theorems of the following sections.

LeMMa 6.4 - Suppose {a;) satisfies Si =S, «>0 independent of r
and G(f) belongs either to class I and is non-finite or to class II, then fo
every real #, and each 8 > O corresponds a r, 7o = 10(3, fg) > 0 such that for
each r>ry G+ f) — aGf;?(t) bhas at most one change of sign in (— oo, — )
and at most one change of sign in (3, o).

Proor. - Let 8 > 0 be given; by Theorem 3.5 there exists a r, such that
(6'1) Cm,,n,l = — ) fOI‘ T 2‘7’0.

Since &, == o(1) m — oo we have for C, of Theorem 3.6

i
(6.2) C.Sn, ! =max |G| for r=r,.

t
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Suppose first that o =1, For all G{f)€class I and m =m, we have (see
[7; pp. 108-110))

AU
bR i
. () k(2 + 2
By Theorem 4.7 the functions G(f - fo)) — a G, {f) have at most 2 5
changes of sign. Theorem 3.6 and inequality (6.2) imply that for r>r; G(t-4f,)—

" 5 2 changes of sign and

— aG,[,i?(t) has at least, and therefore exactly, 21

has only one on the left of {, ... This implies that (in case a>1 and
G(t) € class I) for r =11 Gt + fo) — aGS(f) has at most one change of gign in
(— oo, — 8). If Gft) €class II, then by [7; pp. 108-110] we obtain for m =m,

()
311; —GT(C:—”%Q%—) =0, therefore Gt -+ t) — aGZ(f) has at least 2 ra g— 2
ges of sign for m =m.. By Theorem 4.7 and by the continuity of the fun-
ction Gt + & ) — aG(#) there is for =1, where r=n only one change of
sign to the left of T, ..; that is: there is at most ome change of sign in
(— oo, —8). This proves our Lemma for @ =1 and (—oo, —8&). By Theorems
4.6 and 6.1 Gg?{t) is monotonic in {— oo, -~ &) and there is a constant 7; > 0
such that for r =, G,(,i?(— 8 < Gl— 0+ t). Since G{t -+ o) — Gf,fr){t) has no
changes of sign in (— oo, — 3) for #=r;, Gt 4+ t) —aGP(t) for a<1 will
also have nome. Choosing 7, = max (r;, r;, 7;) completes our proof for (— oo,
— 3}, The case of (3, o} is similar. Q.E.D.

} — 1 chan-

Lemma 6.5. - Suppose G(f)€class I or class IT and {a;} satisfies S,f,’j“z)z
=a8, o> 0, then for each 8 > 0 and every real ¢ corresponds a 1o =1o(3, f)

such that for r =, Ggfr)(t)/G(t - to) is monotonic in (— oo, — &) and in (8, co).
Proor. ~ Suppose k(f) = GS}{t}/G{t -+ #) is not monotonic in (— oo, — &) {for
example). Then there are three points #; <# <f; <—25 such that, h(t), Al <

< hits) (or h{h), h{ls) > h(ts)). Choosing hit), h(l;) < ! < h{t;) we see that G(f - f,) —
-aGE,:‘}(z) has at least two changes of sign. @
This, for » =, contradicts Lemma 6.4.

LeMma 6.6, - Suppose:
(1) G €class I and is non finite or G(f)€ class II.
(2) of) € Lia, b) for co<a < b < oo

(3) flx) = [mG(w- f)o(f)dt converges for some w.

(4) 8¢ = «8, « >0 independent of r.
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Then for all # —co<® < oo, >0 and 1> 0.

00

(6.3) f GDe — holtydt = o(S,)  r—oo
4§
and
x—8
(6.4) J GO — tho(t)dt = o(S,,)  r— oo

—0

Proor. - By Lemma 6.5 and BoNNET'S theorem for integrals

e

fG(n) tho(f)dt G(")( /G(xl——m-l-S)fG%l"*‘t) ()dl

Since for G(f)€class I or IT we have G(f)>0 and taking 2 for which
f G(a’l — #)¢(f)dt converges we obtain by Theorem 4.5 I, = O(S,,,r) for any 1.

The proof of (6.3) is similar. Q.E.D.

LeMmA 6.7. - Let assumptions (1), (2) and (3) of Lemma 6.6 be satisfied
and for some n {a:} satisfy B(n — 2, {a.}) then for this n (6.3) and (6.4) are
valid for all 1> 0, 3> 0 and —co < < 0.

Proor. - By lemma 6.6 our Lemma is valid for =0, 1, 2. We recall
the notation of &, and G, (f) defined in (4.11) and (4.12) in the proof of
Theorem 4.6. Using "Lemma 6.6 and since Gn, (t} are a subsequence of Gulf)
with rearranged {a.} we have for all § >0, l> 0, —occ<e<oo, j=0 and
n=20,1o0r2

G%) jfe — Yo(f)dt = o(SPY  r— o0
-8

Assume for some integer s, O<s<mn, 3>0, I>0, —co<x<oco and
0<j=n—s—1
(6.5) f GY) (@ — te(t)dt = o(ST)  (r— o)

2§
now we use (4.14) G572, = amrJr,j{Gf;f,j-l(} @Y ()] and in a method simi-

lar to that of Theorem 4.6 comp:ete the proof of {%:‘: 3). The proof of (6.4) is
similar. ' Q.ED.

Annali di Matematica 37
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LemMmA 6.8, - Suppose:
(1) G{f) € class III and G(f) is non finite.
(2) ¢(f) € Lier, b) T < a <b <o

(3) flae) = /OOG(m — t)p(t)dt converges for & > T+ b -+ ) ai .
—00 Jezmeel

Then for x> T for all 1> 0

{6.6) Gae — folt)dt =0 for m > mo
and

e
(6.7) f G — Ho()dt = o(Ss)  m— oo

Proor. - Equation (6.6) is obvious since G,(f) =0 for —oo<{<bn+
+ ¥ o' [T p 114 and b4+ 2 ai = o(l) m— oo,
fsmm-1 k=m+1
By Lemma 2.10 our {a:) which satisfy S ai’ < co satisfy B(n) for all n.
The proof of (6.7) follows by induction. The case =0 is for all />0, 3>0
and x> T
Zm

f G, jle — Bo(t)dt = o(SPY W — 00

can be proved by the method of Lemma 6.6, since the monotonic character
of G, j(®—1)/G(z; —t) in (— oo, & — 3) for m > mo is a simple consequence
of Theorem 6.1.b. of [7 p. 95].

Assume for n =n,—1=0

f G(”"_” o)t = o(SYY  m — oo

we complete the proof using equation (4.14) S < SY™ and (2.13). Q.E.D.

ProoF or THEOREMS 6.1, 6.2 AND 6.3. - By Lemmas 5.1, 5.2 and 5.3 we
have for Theorems 6.1, 6.2 and 6.3 respectively

6.8 DP, U f HG("’ loldt =1, + I, ,+ I,

—  a=g aty

{For the proof of Theorem 6.3 {m,} = {m} and x> T).
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We obtain, by Lemmas 6.6 and 6.7 for all >0, —oco < <oco and
1> 0 (in case G{f) belongs to class I or II)

(6.9) Lii=0(Sn) r-+c0 I.3=(Ss) 7-—oco.

s

Using Lemma 6.8 for G(fj€class III (for Theorem 6.3) we obtain for
x>0, 1>0,1>0

(6.10) Ini=0(S,) r—oco I,;=0 for m, >mp.
Integrating by parts, assuming 7 < 3 (3 defined in the Theorems) we have

w4
L,.= j G (e — pMt)dt +

k|

n—1
+ 2 (@ — ) — G = e 4 )}

Using Theorems 4.5 and 4.6 we obtain, since ¢®(x==1) for k <n are
bounded,

s+
L,.= f G (6 — OPDE)dE 4 0(S,) = I+ 0(Ss,) 7 — oo

=M

It is enough now for the calculation of DP,(Djf(x) to evaluate I, in
cases (a}, (b), (¢) and (d). The estimations are the same for classes I, I and III,

CasE (a). - Following the method by HirAcHMAN and WIDDER in proving
Theorem 5.1.b, 5.2.b and 53.b [7; Ch. VI] we obfain

| I, — @M(x)| < e 4 0(1) r—co where e=¢(n)=o0(l) %n-—o0+.

CaSE (b). = By a method similar to that used in the proof of Theorem 7.1.a
of [7; p. 139] we get | I, — 9™(x —o0)| < o(l) 4 eM r~ oo where M is a con-
stant and e = &{v) = o(1) n — 0 .

CASE (¢). - Since for > v b,, > 0 we have for >0 and r>r,

b

0 0 m,
0< f Gn (2)de < f Gn (2)dz = f Ga(t + bn)dl <
— —w b
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< f Gt bo)dt <~ [ 26 (t + byl =

This implies also lim /WG (2)dz = 1. Combining it with Lemmas 6.6, 6.7

Py 00 [1]

and 6.8 with ¢(f) =1 we get for n >0 lim f G (2)dz = 1.
We divide now I, into two parts =~ °

mz—%f f (@ — tp@(tydt = I.(1) + L. (2).

=N
In order to caleulate I, (1) we choose v > 0 so that | ¢ —2) — ¢™(x —)| < e
for 0 <2 <% and obtain

[ 1n (1) — ™ —) [—'fG o™ — 2) — ox —)]dez | 4 o) <<

]
gamer(z)dz+ o{l) << e 4 0(1) 7 — 0,

The estimation of 1,(2) will be different for cases (¢, I) and (¢c; II).
In case (¢, I) we have ¢} — 2}| < M where —n <2<<0

L g;lf (")a"-zdz£<0 fG = o{l) 7~ o0,

To estimate I,(2) in case (¢, II) we recall that G, (f) is monotonic increa-
sing in (—oo, §, ) where §, is the only maximum of G.(f).

Since S, = 0(bn) # — o0, b, >0 for r>r, and | G —bn | <88 (Lemma

T 3 2 m,
In order to show that I,(2) =o(l) r—~oc it is enough to show that
lim G, (0) = 0 because

Puip 00

4.1 of [7; p. 126]) G, (f) is monotonic increasing for » > 7; in (—-—oo £b )

0

|12} = i f G ()9 — 2)dz } = 0(1) f Gn(2)de < O(1jn Gy (0).

-1
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1 1
5 Pm —g'm,

2 P
%bermr(O) gf Gult)de < | Gnlz 4 by )de <
0 — 0

2k *
< f Grle — bn)de < %ﬁ 2*Gn (2 + bn)de <<
1

my
—_—

[’\'25‘ bmr
22k 22k
< palm) < Sn.+ K (2K).

Hence for every k=1
Gnf0) < 2T K(2R) - (O )28,

Choosing k large enough we obtain G,(0) = o(l) r—oco. The proof of
case (d) is similar to that of case {c). Q.E.D.

Theorems 6.1, 6.2 and 6.4 are included in analogous inversion formulae for

o0

6.11) fla) = f Gl — t)edadt).

— 0

The proofs of the inversion formulae for (6.11) use the limit

@0

lim f G — typtdt

calculated already while proving Theorems 6.1, 6.2 and 6.3.
THEOREM 6.9. - Suppose
(1} Gt) €class I and is non-finite,
(2) a{) € B.V.(a,.b) for all g, b —co<a <b < oo,
(3) flx) = [ Gl — te“dalt) converges,

(4) al)(f) exists for some —occ < <oo, =0 and &> 0 a.e in {x — &,
-2 and in case #n>1 we add the condition that al*~"{f} is absolutely
continuous there;



294 Z. DitziaN - A. JAKIMOVSKI: Inversion and jump formulae, etc.

(5) for n>2 either SU™” =aS, «> 0 independent of # or {a;] satisfy
Bn —2, {m,});

(6} al*)#) is continuous at { = .
Then
A) oy < ¢ <oy and off) satisfying (4) and (6) for both x and x; imply

x

lim | e==DrP, (D)f(x)dw = 3 ¢ (’:) (=) — alr=2{ay)).

r3y 00 j=0
E2%

B) ¢ = «; implies that a(cc) exists and

o0

lim — | e==D"P, (Dif (t)de = % o (?) a=N{ig) — erafoo).
o> o j=0

C. ¢ << o; implies that a(— oo} exists and

z

lim | e=D"P,(D)f(@)de = = cf(

r—>00 j=0
— OO

"

j) alt—Nx) — cra(— oo).

D. For n =1 we have

al=(x) 4 al(x).

Tt ‘ :" ’ n_(n—~1>
I ¥ vt
ReMARK. - The cases n =0 of A, of B and of C were proved [7, p. 13D].
In case =1 ¢=0 D yields a geperalization of Theorem 5.1.b of [7,
p. 128, D with any »n =1 and ¢=19 is a generalization of Theorem 6.1,
part (a), since here ¢(f) does not necessarily exist in — oo <f <oco but only
in a neighborhood of .

Proor. - Using Lemma 5.4A we obtain

f e=*D*P,, (D)f (x)dx = e f GD(ws — thea(t)dt — e—e f GDhar — tealt)de.

%y

To complete the proof of A we use Theorem 6.1(a) with ¢(f) equal to
ea(t). The assumptions of Theorem 6.1(a) are satisfied since whenever off)
has & derivatives in some interval so has e”a{f} and the same is true about
continnity of the k-th derivative at a point,
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Cases B and C are similar but using B and C of Lemma 5.4 and taking
et{afoc) — aft)) and e(a(f) — a{— o)) for ¢(f) respectively.

Proor oF D. - Using Lemma 5.4D we obtain

oo

e=*D"—'P, (D)f (x) = = f Gf,'fr)(w — tle“aff)dt +

—c0

— ce f GO Vi — t)ea(t)dt.

—00

Theorem 6.1(a) for » and » — 1 with ¢(¢) equal to e*«(f) implies D by
some simple calculations. Q.E.D.

Like Theorem 6.9 one can state and prove eleven more theorems which
are the analogues to Theorems 6.1, 6.2 and 6.3 in each of the four cases (a),
(b), (¢) and (d) (the analogue of 6.1(a) is 6.9). We shall not write these theorems
since both their statements and proofs are easily derived froms Theorems 6.1,
6.2, 6.3, 6.9 and Lemmas 5.4, 5.5 and 5.6. We want to mention that the ana-
logues of (c) and (d) are new also in case w = 0. In this case the assumption
Sa*Y = 0(bn) ¥~ oo for some y 0<y <% is not necessary since a(f) is boun-
ded in every finite interval (see (¢, I) of Theorem 6.1).

The combination of (¢) and (d) for each of Theorems 6.1, 6.2 and 6.3
whenever both ¢®(x =) exist (in this case also 8, "= o(h,) r— oo is un-
necessary) form a jump formula.

By the same method we can obtain a jump formula for the convolution
STieLTIES transform.

7. = The inversion formula in the ease lim inf (max a;?)S;" = 0.
meyco  E>0

The class of convolution transforms whose related sequence {a;} satisfies
for some order the assumption

(7.1) lim inf (max 0;%)S;" =0
M—>c0 k>0

is large, since we know by Lemma 2.5 that whenever X |a;|— = co for some
BO<B<2 and |aup1|<<{ax| (7.1) is satisfied. All the well-known examples
of convolution transforms ({1.1), (1.2) and (1.3) with ¢=0) that where given
by HirscHEMAN and WIDDER in their book «The convolution transform» |7,
pp. 65-69] satisfy (7.1) whenever |@it1| =]l
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We shall need some lemmas on properties of G.(f) when {a,} satisfy
(7.1) that will be used only in this section and in the following one.
Whenever (7.1) is safisfied, there exists a subsequence of integers {m,)

such that lim (max a;”)S, = 0. In the following lemma we shall use the
Famy 05 k>mr
special subsequence {m,}.

LeMMA 7.1. - If for some subsequence of integers {m,} lim (maxa;”)S, =0
r—oo  kl»m,
and for some real X, b, — A8 = o(Sy?) (r — oc), then we have uniformly in

{ (—oo <t < o)
1 a

Gm’( Siiz(,i + smr}) = \7—2_;- ar [@—t—1712)

(7.2) lim 822 &

o0 iy din
where n =0, 1, 2... and &, = 0(1} (¥ — oo} (e, independent of ¥).
Proor. - Using Lemma 2.7 we chtain

o0

(7.3) S |alt =SS oo
k==m,4-1

The proof is now similar to that of Theorem 7.2a [7, p. 140]. We define

F.{#) = exp (bnSn 72) i ( 1— ii’/"i) exp (z,a,S,").

k=mdl\ ;. Sy,

In order to complete the proof we have to note fhat

(a) the assumption b,,,r--lS,,lf = O(S,ifz) 7 —~ oo (which we use now in

stead of b, = 0(S,") m — oo} implies lim F,, (¢} = e """ uniformly in |2|<R

— 22
s

for any R > 0O (instead of lim F.(¢) = e
(b) using the method of proving Theorem 3.1, case (A), and by Lemma
2.5 we have for each I and m > mo(l) |Faliy)| = (1 + K()y*+?)> where K(J)

is independent of m. Q.ED.

LeMMA 7.2. - If lim (max a; ))S;" = 0 and for some real X b, — AS,” =
= 0(S$,"}) r— oo, then "~ *>

oo

(7.4) lim f G (H)dE = N())

reyeo
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and
0
{7.5) lim | G, (f)di =1— N(}),
where
1 A
7.6 N = —— e duy,
(7.6) M= [

——oa

Proor. - We have by Farov’s Lemma and Lemma 7.1 (for n = 0)

lim inf f G () = — f e~ (—1Fidt = N())
Ted 00 v 27: ¢
and
C{ 0
lim int | Gn ()0t = — f =gt = 1 — N(A).
re300 V 21‘-‘

—o0 —o0

The equality me(t)dt =1 for all m completes the proof.

TaEOREM 7.3. - Suppose
(1) G(f) €class I, G(f) is non-finite,
(2) ¢(¢) € Lifa, b) for all @, b —co < a <b < oo,
)

(3) lim (max a; )S,;‘l-—_: 0,

T->00 k>mr

(4) b, — AS, = 0(Ss") r— oo () is real),

(6) flx) = | Glw — tip(t)dé converges,

(6) both ¢fx =0) exist or for n >0

s lbl(t—-«ac)l—|-o(t--»a(:)" bt
=0l !

o) =

2": —I—Cl(tma,')l_‘—o(t_w}n b
L2 l!
and for Il <n ¢, =",
Then
NX e —0 1 — N(A)plx + 0) for
(7.7) lim DB, (D)f ) = (Melw — 0) + ( e )

resce NNe. 4 (1 — NX)b. for >0

Annali di Matematica
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RumaRg - If instead of assumption (6) we assumed, as in the former
section, that ¢™)(f) exists, a.e. in some neighborhood of x, *—1(f} is absolutely
continuous there and in addition ¢®™{x =0} exists, we would obtain in (7.7)
¢™fx — 0) and ¢™(x + O) instead of ¢, and b, respectively as a special case
of our theorem.

We state the inversion formmula for G(f) of classes II and Il and then
prove them together with that for G(f) of class L

TaEOREM 7.4, - If G(f)€class II and assumptions (2), (3), (4), (6), and (6)
of Theorem 7.3 are satisfied, then (7.7) is valid.

THEOREM 7.5. - Suppose
(1) G(?) € class IIT and is non-finite,
2) o) € Lila, b) for all a, b T < a < b < oo,

3) floy = [w Gl — tjo(t)dt converges for « > T4 b + > ai,
—r k=1

(4) assumptions (3}, (4) and (6) (for x> T) of Theorem 7.3 are satisfied,
then (7.7) is valid for > T.

Proor or THEOREMS 7.3, 7.4 aAND 7.5. - By Lemmas 6.6, 6.7 and 6.8
the proof of Theorems 6.1-6.3 and Lemma 2.6

a-m)
D"P, (D)f(x) = f G — Ho(t)dt + o(l)  r—o0

Lt}

for all v > 0. Assume v 8o small that in the case where n >0

(7.8} itp(i)-—;ﬁo%bl(f—-m)l%ge}t—m;" r<t<<w+7y
and
(7.9) {cp(t)—éoll—!cl(t——w)l!gs]t—m'n X - <t< .

Estimates {7.8) and (7.9) and the fact that for { <n b, = ¢, imply

!
1 f G — tg(t)dt — N (e, — (1 — N(M)bni =

x—
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‘ f G(n) "_1 %bz 1 — @) ldé‘ ! f G(n) t—— ayrdt — N(X )Cn‘
l—o

o 1 .
+|j 6w — t) - bft — ) dtw-(l—N()x))bn{—i—

)
(169 — i1t~ or dtm oy 14 T 24 0, 8+ i, 4

ef)

We shall prove I{r, j) =o(l) r—oo for j =1, 2, 3 and |I{r, 4)]| < M.

The condition lim (max a;)§,,' = 0 implies, by Lemma 2.4, the existence
Fa3c0 §c>mr

of @, > 0 independent of r such that S!” =a,S, for all p; therefore, by Theo-
rem 4.0 we obtain for v > 0 and any integers n and !

(7.10) G =o(Sh),  G—m)=o0Sn) r—-co.
Using integration by parts and (7.10) we get
(7.11) Iir, ) =o0(S,) 7r-—o0
and for I(r, 2)
I(r, 2)= 1] Gl — tic.dt — N(l)c,.} + 0(Sy. ) ¥ — oo,
2=

Combination of Lemmas 6.6 and 6.7 with ¢(f) = 1, and Lemma 7.2 yield
(7.12) 'jG {ydt — N }}: o{l} r—oco

from which it is easily seen that I(r, 2) = o(l) r — oo, By the same method
I{r, 3) =o(l) r —occ. We have

w1 oo
I(r, 4}:af}Gﬁf}(m~—t)§{t~w§”dt£sf\GS,i?(t}Htl“dt.

=1 e

Theorem 3.8, the assumption of which is satisfied here, implies | I(r, 4)| <
< eM(n, ). This concludes the proof in case n > 0.
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In the case » = 0 we have

3 f f e — elfdt = i, 1)+ J(r, 2).

w7,

It is enough to show
(J(r, 1) — NA)p(e — 0)| <eM and |J(r, 2) — (1 — N(A)g(x + 0)] <eM

where M does not depend on 7.
Let’ us define a(u)= ’:[{:p(x—t}—-—ap{a:—-()))dt and chose v so small that
¢}

|ou) | < ew (possible since by definition «fu)=o(u) u— 0 ). By estimation
{(7.12) and Theorem 3.8 for n = 1 we have

I, 1) — N{Jole — 0)| < oft) + { f G (Blor — 1) — 9l — Ol { <

A+
o(1} + ofS, if Gm }dt§ = o(l) + ef} GL(h)t| dt
< eM + o(1) 7 — oo,

Similarly we get |J(r, 2) — (1 — N(A))e(x + 0)| < eM which concludes the
proof of these theorems. Q.E.D.

We shall show now by applying Theorem 7.3 in case n =0 to the
StieLriEs fransform that by ordering the zeros of E(s) in different ways and
by a suitable choice of the sequence {b.] we get real inversion formulae
with quite different properties.

The SriEL1sEs transform F(x) of ¢(f) defined by F(x) = f w—@‘({%dt where
0

¢(t} € L{e, R) for any 0 < e < B <co. By suitable change of variables (see 7,

p- 68]) the STIELIIES transform becomes a convolution transform with Es)=
sin s
1§

Suppose both ¢(x, == 0) exist for some x, > 0. Let A be a real number 7,

! integers and ¢, (n==1) a sequence satisfying ¢, = o(n—"?) (n— o). By applying

Theorem 7.3 with #'=0 to E(s)= Sf-l—:lr:-s and by a suitable ordering of the
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zeros of E(sj we obtain the operator

P’:(D)EP2m+r+é(D)=e {—21 i1 —=

o - k

(‘*I/%*Em)”mﬁl ( ) m+r( D)

where b = 0, b,,,:—l %——-em—l—O( ) (m — o).

Now as is easily seen (see also [7, p. 68]) we have

lim (= L+
ms oo (M0 4 7)1 (00 4 1) ]

= N(})plaro + 0) + (L — N(A))p(20 — 0).

The case A=r =0, !=—2 and ¢, =0 m =1 is given in (10, p. 350]
Suppose both o(wo ==0) exist for some x, > 0. Let p, » be real numbers.

By applying Theorem 7.3 as in the first example to E(s) = ?-}%g—s for another

suitable ordering of zeros of E(s) we get the operator

{ am-tlbr A Flmtrd1) ( ) }(M-H}

x=1g 0xp (—b,) =

P(D) 22 Pppaymitimtn/m( D) = I {t—=)

k=1 k=1

frt-p/ m] [t 24/ m)
A 5) 8 (=)
where [a] = max {n|n < «, » integer}. Now it is easily seen that

lim K,,, H

iy 00

Kmmmly T

mden S
( d )[ Fpvm { gelmAry mim by m-t ([""“1'\/;})(3) }

A P Ay
_N("— ) o + 0 < N<_-—:) xo— 0
Ve fwe O+ \/2)@(" J
(— 1)imtpymi+
[m 4 X V]! [m 4 p Vm]
Suppose both ¢{x==0) exist; we can apply the same theorem to the same
kernel by a different ordering of zoros and gef the operafor

where k,,;,, =

Pin) 22 it m](1+ 28 (-7

k=1 k=1
Now it is easily seen that

ma |

(— 1)+ (d )[“;J xm+ Zml
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It should be noted here that in the last example we get the values of
¢(x) at almost all the points > 0 by means of the values of FF(®(x,) (k= 0).
We can obtain similar results for the generalized Stimrrres transform and
iterates of the STIELTIES fransform.

The inversion for the convolution StrELrIEs transform, which generalize
Theorems 7.3, 74 and 7.6 and unse them as lemmas, are outlined in the next
section.

8. - Jump formulae for the case lim inf(max a;%)S;" = 0.

mesoe  k>m

In this section we shall find a jump formula for a rather general class
of convolution transforms that will contain as special cases the known jump
formulae for the LapLAcCE transform [10, p. 298] and [2], for the STIELIJES
transform [10, p. 351] and the iterated StrELTIES transform [1].

‘We shall derive the formula first by heuristic considerations and fthen
prove it directly.

Let us recall Theorem 7.3 where for b, satisfying b, — ASHE — 0(8,3/2) (in
case lim (max a;’)S; = 0) and some other assumptions we have

M-y o0 k>m

8.1) lim P,(Dif(e) = N\l — 0) + (1 — N(\jetw + O).

M3 00

For {b%) eefined by b} = b, + (A — M)S.? which implies b} — 2,82 =
= 0(8+") m — oo, using Theorem 7.3 again, we have

(8.2) lim e~ DP,(D) = N(\)p( — 0) -+ (1 — Nl + 0).

M= oo

Combining (8 1) and (8.2) we obtain

1 ey SH2D
(83) lim ST 1) PuDif () = (e -+ 0) — p(x — 0)

e = wp) |

which is a jomp formula; (this is a simple corollary of Theorem 7.3).
Since (8.3} is valid for all 2, we have

. T . 1 —0a—2)s51/2D
p{x—f—{)}——go(xv-())_kﬁ r}i’gm{e — 1} Pu(D)f ()

(changing formally the order of limits)

— lim lim =% L
—m—)oo )\1.{3; .N{}\) _ N(;\ﬂ(k — ll

= V2=’ lim S 2DP.D)f (),

m—>oa

e )) Po(Dif ()
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Thus formally we obtain

(8.4) (e + 0) — gl — 0) = V2r & lim S,”DP.(D)f(x).

7wy 00

The following three theorems state generalizations of (8.4) for kernels of
classes I, IT and IIT and will be proved together.

TrrEoREM 8.1. - Suppose
1 (t}€class I and G{f) is non-finite,

(2) 9(f) € Li{a, b) for all a, b —oo < a < b < oo,
8) bm — 28 =0(S))  (r—o9) (A is real),
(4) lim (max ai)Sn =0,

repoo  k>m,

{B) flx) = [w Gl — t)p(t)dt converges,

(6) both ¢ ==0) exist, or for n > 0

Slot—af+olt—ap  t—w
=0 l !
=5 ,
E—~ et — ) -+ oft — a) b— 1 —
l=0l
Then
Teen ]
(8.5) lim V2r &S, (D»—HP (Dif(w) — = GE0)b, — m}) =
e300 Lam)

_{ #le+0)—9x—0) for n=0
b, — ¢ for n > 0.

THEOREM 8.2. - If G(f)€class IT and assumptions (2), (3), (4), () and (6)
of Theorem &1 are satisfied, then coneclusion (8.5) is valid.

TaeorEM 8.3. - Suppose
(1) G{t) € class III, G(f) is non-finite,
(2) o(t) € Ln(a, b) for all a, b satisfying T'<a < b <oo
(3) assumptions (3), (4} and (6), for © > T, of Theorem 8.1 are satisfied,

4) flxe) = [ Gl — typ(t)dt converges for a>T-4b+ Ea,;, )

k=1

then conclusion (8.5) is valid for & > T.
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REMARK. - We cannot use our estimates for the limit of &,(0) in (8.5)
as given in Lemma 7.1, since (7.2) implies only

T 1 a

0 (o) — LBy ;
| 8w, G (0) Van d tﬂ(e Jomo | < &(rg) for 7 > 1,
e _t4y L@
or | Gf,','r)(O) — K-8, Pl &{ro)Sn, > where K = -\TZL P (627,
n

Proor or THEOREMS 8.1, 8.2 AND 8.3. - By Lemmas 6.6, 6.7 and 6.8 and
the proof of Theorems 6.1, 6.2 and 6.3 we have

o0

(8.6) Vr &S0 P, (D)f () = V2n S f G — p(t)dt =

2—3 48§ «

= Von e“/“‘s;?{ f + f + f }Gfﬁ%— te(t)dt = I(m., 1) 4 Ipm,, 2) 4 I{m,, 3)

— 303 x—0 248
where I(m,, 1) = o(S,fLr) and I(m,, 3) = o(S,lnr) r— oo for any integer ! and

any &> 0.
It is sufficient to estimate

L=|Im,, 2)—Vere 1/22 Go OB, — ¢ ) — by +- €al.

We choose 8 so that

(8.7) [o(t) — Ell'b(t—w)l]gs}t—~w{” for x<t<x-4?
I=0

and

(8.8) | (t;-——Z ;' oft — a)f| <elt—al" for x—3<ti<um
=0

By (8.7), (8.8) and the triangle inequality we obtain

L=V e”’zs,il”ilf f % b~ w65 — vat — Gﬁii'”‘”’b’}*”
=0x~8

2§

f Syt =265 @ — ydt + 657"(0)e }““

x

+ VErdESlE'S

1=}
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+ g Va2r &S, f 1% (t — apGC e — tydt — b,,i +

2—0&
2+
+ % \ 2n S, f ,%! (t — 2GS — t)dt + c. } -+

x4+3
+e Vames, f | G e — 8)] [ — ¢ db = L{1) -+ 1,2) + 143) + L4) +
2§
+L5).

Lb) < e V2n s, f | G5 | #0] dt.

By Theorem 3.7 we obtfain
(8.9) L)< ¢ V2rne*2M(n, a)

where the existence of « and the assumptions of Theorem 3.7 are implied
by Lemma 2.4. Integrating by parts and using Theorem 4.5 for {==x=80
we obtain for all 7> 0

(8.10) I()=o(S.), IL2)=o(Ss) r—cc.

L&
From Lemma 7.1 we derive now

%

(8.11) lim V 2x e¥128, f Gl — fdt = — lim V2r 787G (0) — G (3)) = — 1
Ty o Tond 003

and similarly we obtain

248
(8.12) lim V2 &8, f G, (0 — t)dt = 1.

T30

Integrating by parts using Theorem 4.0 and limits (8.11) and (8.12) we
obtain for any 7> 0

(8.13) I8)=o0(S,) and L#)=o0(S,) r-—oco.

Combining (8.9), (8.10) and (8.13) we complete the proof for »n > 0. The

case # =10 is similarly proved using the function a(u) = [[¢le — {) — plx — 0)}di
Y

and the method used in the proof of Theorems 7.3, 7.4 and 7.5. Q.ED.

Annali di Matematica 39
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Application fo the Stieltjes transform. - Using substitutions of [7, p. 66-68]
and section 7 for STIELTIES transform

[ ela
(8.14) F{x) ....f pyrrt
4]
namely taking E(s) = sin 8 and @y =k au—, = —k we obtain by some cal-

culation in the case where both ¢(r, = 0) exist

(8.15) lim V2 =7 ]/ 2 ( d){m2'ﬂ+lF(m+l)( 1™ = gl + 0) — olao—0)

resoo m!lm! -

which is a completely new formula. Similar formulae which give ¢(x 4 0) —
— ¢{z — 0y in terms of F®(xo) where x, is a fixed point can be achieved
following the method of section 7.

The inversion and jump formulae for the convolution transforms achieved
in the theorems of section 7 and this one can be generalized for the case
convolution STIELTIES fransform.

TrrEOREM 84. - Suppose
(1) G(t)€class I and is non-finite,
(2) a{t) € B.V.(», b) for all —co < a <b < oo,
3) fle) = [wG(w— t)e*da(f) converges,
(4) lim (max a;”)S;,, =0,

repo0  E>m

B) b — ASY = 0(SY) ¥ —v oo,
(©) On, A .

(6) «(t) satisfies for some x and #

(t——m)’+ot—w)" t—x 4

!

-

f e
0"‘
5

& =iz

(t—w)’+o(t—m) b~ —

I o
Ty

™

{for % = O this assumption is obviously satisfied).
Then for Bix) and cfx) defined by

i 1 2
Bix) = Z (;) cbi_jix), Cfx)= T ( ;) ceyw) and L. =X.=0
1==0

j=0 je=0\,
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we

II.

I1.

11.

have:
A) oy <c < a and (6) existing for the same % also for x: implies
lim V2= e”fzs,}f% f e~ D"+ P, (D)f () +
~E 65701Bir) — Ole)— Bifw) + Ofos)) | =
= B.{x) — C,fx) — (Bufors) — Cifa1)).
limg f e=*D" P, (D)f (. dx _s G D(0)[Bifar) — Cifer) —
resc0 =0
— Biw:) — Cifarr)] } = N Calw) — Cufowa)) 4 (1 — N(QA))(Bufer) — Bulaa)).
B) ¢ = a2 implies
lim V2r e”fzs;?{ — f e—*Dr+1 P, (D)f(ec)do —
— :g: GS0)[ Bifae) — Cz(w)]g == Bu() — Ci(x).
lim | — [ =D Diftwjds — 5, 64"\ Bir) — G
r—o00 =0
= N} Culr) + (1 — N(}))Bulow) — c"afo).
0} ¢ < o; implies
lim V2n et S, z f e=sDr+1 P, (D)f (w)da +
—F GEN0)Blx) — O] | = Bue) — Gl
lim% f e~ P, (D)f (x)dec -~ 553 GE N0 Byar) — Cw)]t =
r>oo =0

—

= NN G,(i) + (1 — N(W)Brfa) — c"a(— o).
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D) For every real ¢

1. nmvﬁdﬁﬂ?rﬂmmwmm—gym%@wmp—wmq-

n-3
+0 2 657 0[Bla) — Of)] | = Bile) — i),
and in case n =1

e=<D"=P, (D)f(@) — & G5O Biw) — Cifay] +

Lm0

1L lim

Ty 00

+ (= 6~ 01B) — Ofel)

r=0

= N Cofar) — Crafer)) +
+ (1 — NA)(Bafx) — Baa(w))-

THEOREM 8.5. - Suppose assumptions (2}, (3), (4), (B) and {(6) of Theorem
8.4 are satisfied and G(f) € class II, then conclusions A, B and D of Theorem
8.4 are valid.

TerorREM 8.6. - Suppose
(1) G(t) € class III and is non-finite,
(2) «(f)€ Bla, b) for all T<a <b < oo,

3) fle) = /m Gl — t)e*da(t) converges for x > v,

(4) assumptions (4), () and (6) for & greater than T) of Theorem 8.4
are satisfied,

then conclusions, A, B and D of Theorem 84 are valid for £ > T.

Proor or THEOREMS 8.4, 85 aAND 8.6, - Using Lemma 5.4, 5.5, 5.6, the
fact that under assumption (6) of Theorem 8.4 we have

% Biw) U "Z_Iw)i Foft —ayr  t—ax+
l==0

et} = . (t — )
T Cyx) “l+m—mn fe—e i —
=0 »

and some computations similar to those of Theorem 6.9, we derive our theo-
rems from Theorems 7.3, 7.4, 7.5, 81, 8.2 and 83. Q.E.D.

A special case of Theorem 8.4 which is rather interesting (8.4. D.I. in
case n =0, A =0 and m, = m) is:
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CoroLLARY 8.4.a. - Suppose assumptions (1), (2) and (3} of Theorem 8.4

are satisfied, lim (max ai)Si' =0 and b, = 0(S,") m — oo, then
m—poo  E>m

(8.16) lim V2r 8. P (D)f(x) = a(x +) — afoc —).

Interpreting (8.16) for the STIELTJES transform gives its known jump
formula [10, p. 301] and for the second ifterate of STIELTIJES transform it
gives the known jump formula (see [1]). Of course, (8.16) yields a simple jump
formula for the convolution STIELTIES iransform, since similar corollaries
can be stated for G{f)€class Il or class IIl. For the LaPrLace transform
(8.16), when G{f) € class II, yields its known jump formula [10, p. 298].

9. - Inversion and jump theorems for the case lim (max!a;”)S;" = I.

r~yo0  k>m,

Whenever the assumption S, — maxa; = S’ >aS, for some o« inde-

E>m
pendent of m O <a <1, m=1, 2,.., fails, there exists a subsequence of
{m}, {m,} satisfying
lim {max a; )S, =1 or S, = o(maxai’) ¥ — o0,
r—po0  k>>m, k>m

. % y—1 — s v s P
Define (a;,) = maxam ' (this is unique choice for r =#,). We can choose
E>m
a subsequence m, such that sgn a, = constant.

The following two theorems are needed for the proof of the inversion
and jump formulae.

THEOREM 9.1. - If for an infinite subsequence {m.} of integers S,g)::
= o{max a;’) r — oo, where all a;,_are of equal sign (a, are those a, satisfying

E>m,
{az)" = max a;’), and for some veal L b, — XS,”* = 0(S,"} #— oo, then
E>m,
e~ A > —
o > 1 if O, > 0
1 A1
9.1) lim | Goff) =
T3 00 0 A>1 .
— if az, <0
1—e— A<t !

Proor. - Suppose first a;, > 0. We define G 1.(f) by

(9.2) G, (1) = JA 75 (u) G2 (¢t — w)du
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where

e as exp (ah (4 — ba)) w < (an)” + b,
gnu) =
0 u > (an)" + b,

We have (see [7, pp. 55-56))

%

f EGh a(f)dt = O

—c0

and

§
1
(9.3) f Grat)dt =1 — 55 83,
—3

Denote for n, r>=>18=23,, = (na;r)_l. Given ¢ > 0 and n, then for r >
_>_’J"Q(%, 5)

§
12fG?‘,,,+1(t)dt2 { -5158,5;’:2 {—e
28

For ¢ <tl= (a;r)-l + b”’r —b= <1 o ’;];) (“:‘r)_l + bmr

=]

(94 Gt = [ 91,062 (0 — i =
ZE o 48
= J G 1(E — u)gh (w)du zl(mlinsg:,,(u))f G ga(t — u)du =
t—ul <l
t—§ [ 2

= (an)" exp (ai(—bn + t— )1 —¢).

We shall estimate | G, (f)dt as #— oo. Suppose A >— 1, For n> (A 4 1)-!
0
and r > nin, A, e} >y fp >0 and therefore

oo %y
f Gu()db = e s (1 — ¢ f exp (i, (t — bn, — 8))dt =
¢ )

I

= e‘}{a;’,;r)(l — ¢} exp (— and) f exp (ah (t — ba))di =
o
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1

P

n
1 1

==e (1-}- )(1 _ 5) eidy = (1 — e)e_;(e—;‘- _— e—l—l—,—o[l)).
~i+o(1)

Since n and ¢ are arbitrary

o0

lim inf f Go{l)Jdt =1 — e~ 04D,

Tedoo

By the same method

0

lim inf | G, (f)dt = e~ O+D,

T=>00
—co

Since /mer(t)dt=1 we conclude the proof in the case X > — 1. Suppose
A<~ 1. We have the trivial estimation /m Gn(t)dt = 0. Also by the above
0

o
argument (using (9.4)) we obtain lim [/ G,(f)di =1 and this concludes the
proof in the case a; > 0. e T

The proof of (9.1} in the case g << O is similar. Q.E.D.
TaroreM 9.2. - If the assumptions of Theorem 9.1 are satistied for A=0, then

(9.5) lim 8y G (Cn) = 1

r=ea

where {, is the only maximum point of G,(f) and for a fixed real v

e if v<l and at >0
9.6 lim 8,7 G (v + o(S2F ’ '
(2.6) resoo G + 0l )) = [ e’ it v>—1 and a; <O.

PROOF. - From the fact that S, ~ (a%)™" r— oo and the proof of case
B of Lemma 7.1 of [7, pp. 138-139)], but taking 14 ¢ in place of 2, we get

1/2 Cm)é 1_*‘_5)1/2

and since e is arbitrary

(9.7) lim sup Sy G (Cn) < 1.

Tyt
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Since {, are the maxima points of G,(f), we get from (9.4)

2 2
Sl G (Cn) = 8o |a € (L —¢) =€ "(L —e)(l +-0(l))  r—oo.
Letting » tend to infinity and ¢ to zero, we obtain

(9.8) lim inf 8,”Gn (Cn) = 1.

e300

Combining (9.7) with (9.8) we obtain (9.5}.
For v <1 we have, using {9.4),

8@, (S 4 of1)) = Sase” exp(a;;‘;,((v ol Sk —

T

1
.
n

=e¢ (1 —e)(l +ofl)) #—oo.

Hence for v <1 and a} > 0 we obtain

9.9) lim inf Sy G (282 4 o(SaF) = ¢

P 00

By (9.2) we have for { < b, + (1 — ;23) (@)

T

od
Sal? G (t) = S,i{zg + % G () G 11(E — u)du.
[t} 2>8 [t <8

For t = \/S,,lfr2 + 0{8:42), ¥ —oco we obtain

S,,lme,({v +o(1)8.%) < eSJf max gi (u) + (1 — e)S,ff max g (u)<

jt—u]=<8

<eSlan + (1 —e)Safe™ az, exp (an, (vSa 4 8 — b, 4+ o(S2)) <
1
<[l 4 o(1) + (L —c)e’” (L 4o(l)) oo,
Hence

(9.10) lim sup 8o G (vSa 4+ 0(8:7) < &7

Te3 00

Combining (9.9) with (9.10) we derive (9.6) for v <1 and aj > 0. The
case v> — 1 and a; < 0 is similar. @Q E.D.

The inversion formula will be described in the following theorem.
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TaEoREM 9.3. - Suppose
(1) G{f)€oclass I, () is non-finite,

(2) ¢(f) is integrable on every finite interval,
(3) fle) = /& Gl — Yop(f)dt converges,

(4) the infinite subsequence of integers {m,} satisfies for some real A,
bn — 2SaE = 0(Sy)"), SV = o(max a;’) r —co and aj, is of constant sign (where
k>m,
—2 -2
7 =maxa );

fe—m,.

(a,

(5) for a real x and & > 0 ¢™(f) exists for some =0 a.e. in (x—3,
2 - 8) and in case # =1 we make the additional assumption that ¢C=3{) is
absolutely continuous in (@ — 8, x 4 8);

(6) {a:} satisfy B(n — 2, {m,]) for the same = of assumption (5) (the
void assumption in case n =0, 1 or 2);

(7) both 9} =0} exist.

Then
(9.11) (1 — e YgMg — 0) 4 e oM -+ 0) if A >—1
ai >0
o™ + 0) ifi<—1) 7
lim D"P, (D)f(x) = )
7300 (1 — el—'l}cp(ﬂ)(m —-}—- O) + e)v-“l(?(n)(w e O) it A < 1 ar < 0
| @@ — 0) it A=1) "

Proor. - By Lemma 5.1 we have

Lol Ko [

DR =| [+ [+ [[| 6% — tihar= T, 11+ T, 24107, 3

—ca  Bm§  AhS

By Lemmas 6.7 and 6.8 we have for every 8> 0 and 1 >0
Ifr, ) =o(S,) and I{r, 3)=0(S,) r—oo.

Integrating by parts » times and using Theorem 4.6 we obtain

x+9 % Lo
Ir, 2) = f G (6 — ) (t)dt + 0(Sn,) =X f + f % G (0 — ) t)dt +

P -3 x

+ o(Sn) = Ir, 2, ) + I(r, 2, 2)+0(S,) r—o0.
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Suppose a;, >0 and X > — 1. Using the estimation of I{r, 1) for ¢(fj=1
and Theorem 9.1 we obtain

! Iir, 2, 1)— (1 — e YoM — (7 2)[pMoc — &) — (e — 0)]dz ‘ .+. 1)
1

P o— 0,
Define

t

Wi = [ [ — o) — 5w — O]

]

3
Iir, 2, 1) — (1 — e =Ygz — 0)| = ; f @1, (& W(e)de } + ofl)
(since W(#) = o(f) ¢— 0 4 and using Theorem 3.8)
8
=of [16Leslds)+ oty =oft)  r— oo

Similarly we can derive

lim I(r, 2, 2) = e~ *~g(x 4 0).

Teed 00

Therefore

lim D*P, (D)f (@) = (1 — e~ )¢ — 0) + e—*—¢)e - O).

The proof of the other three cases is similar, Q.E.D.

Analogous results for classes II and III, with the obvious necessary
changes (like dropping assumption (6) in case of G(/)€class III) and (9.11)
being of interest only aj > O (since Gif) € class II or IIT imply a.> 0), can
be achieved (see also Theorems 6.1, 6.2 and 6.3), but we shall not write them
here.

The jump formula for the convolution transform satisfying Si,?zo(max a;}'2)
r — oo is stated in the following theorem. >

TreoREM 9.4. - Suppose

(1) assamptions (1), (2), (3), (4) and (5) of Theorem 9.3 are satisfied,

2) {ax} satisfy B(n — 1, {m,}) (the void assumption in the case n =0
or n=1),
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(3) both ¢(w ==) exist (z defined in (5) of Theorem 9 3),
then for A > —1 and o, >0 or A <1 and a}, <O
(9.12)  lim exp (1 4 A sgn a3 )S: "D P, (D)f () = o™ +) — o™ —).

Proor. - By the method used in proving Theorem 9.3 we have for
ah, >0 and A > —1

K s
FHSE DR, (D)) = o5 f + f + f 65w — it =
L
= I(r, 1) + I{r, 2) 4 I{r, 3).
As in Theorem 9.3 we can show

I(r, 1) =0(S.) and I(r, 3)=0(S,) 7—oo

x 24§
tr 2= [+ [ fene—temar+oist) =
—F x

=I{r, 2, 1) + I(r, 2, 2) + o(Sn)  r—oco.

In order to calculate I(r, 2, 1) we derive, using Theorem 9.2,

(9.18) ”“'fG’ 9)de = G, 3) — S Gn(0) = — e ol) r— oo

T

Given & <0 there is a 3 >0 such that |¢®(x — 2) — o™ —}| > ¢ for
0 <2z= 8% and by (9.13) we have

|1(r, 2, 1) + 90 —)| < 418 f‘ G, (2)] 1€ — 2) — ¢ —) [ de + of1)

< e HS2G, (Gn,) + Gn,(0) + G, (3)) + 01) <

<< edert(1 4 o(1) + o(1) F — 0O,

This completes the proof in the case A > —1 and ai > 0. The proof of
our theorem in the case where X <1 and aj <0 is similar. Q.E.D,
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Similar results for ({f) belonging to classes II and III can be achieved,
(see for partial results the first author’s thesis [3], Chapter 7) but we shall
not introduce them here.

Results analogous to Theorems; 6 9, 85, 8.6, and 8.7 for inversion and
jump formulae of the convolution StiELTsES transform where a subsequence
{m.} which satisfies SS,}: o{max a;? r-— oo exists, can also be achieved.

E>m,

(For partial resulis see [3], Champter 7.) We shall intrnduce one of the
above mentioned results, others will be omitted being similar.

TrEOREM 9.5. - Suppose
(1) G{t)e class II,

(2) «f(f), is of bounded variation in any finite interval,
3) flx) = J- G(xe — t)e*da(t) converge for x > y.,

(4) assumptions (4) of Theorem 9.3 and (2) of Theorem 9.4 are satisfied,

d) for a real x and & > 0, a(f} exists for some » >0 a.e. in (x — 3,
@ -+ %) and in case m =1 we make the additional assumption that a«l—1({) is
absolutely continuous;

(6) both a®(x —) and a®(x +) exist.
Then for A > —1
{9.14) lim e+ 8 2e==Dr P (D)f(er) = M +) — allw —).

7> 00

REMARK. - In case n = 0 only assumptions (1), (2), (3) and (4) are needed.

Proor. - Similarly to the derivation of Theorem 6.9 from Theorem 6.1
we can obtain our theorem from the analogous Theorem for G{/je class I
to Theorem 9.4. Q.E.D.

10. - Some remarks on inversion and jump formula for the case.

0 < lim inf (max a;2)87' << lim sup (max a;?)S < 1
500 E>m e300 E>m

Inversion and jump formulae were found for the general case in section
6 and in the two extreme cases lim inf (max a;2)S7 = O (in sections 7 and 8)
m—>00 k>m

and lim sup (max ;%S =1 (in section 9). The results that were achieved
me-»0 kE>m
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suggest that we can assume less on ¢(f) and its derivatives in a neighborhood
of x if we hnow more about the sequence {ax}.

In the case lim sup (max ¢;?S;* <1 we have S, - max a;?=af,
My v k>m E>m

o > 0 independent of m (see section 2) and therefore S® =«'S, (see Lemma
2.4). This allows us to use all the thecorems of section 3, and therefore by
methods similar to those of sections 7 and 8 we obtain an inversion formula
for the case b, = o{S}n/f} y —» oo and

0

(10.1) lim | Gn(f)dt = 4;

and a jump formula for the case b, = o(S}?) r — oo and

(10.2) lim §G,(0) = B > 0.

A subsequence {m.}, for which the limits (10.1) and (10.2) exist, can
0

always be found since ngGm{t}dtgl, 0 < 8¥2G, < V2 (see [7, p. 138],

and we can choose b, so that —% < S§G,(0) < V2 (see [7, p. 126]) (for B > 0).
The inversion results will be those of §7 taking A4 instead of N(}) and
the jump formulae will be those of section 8 taking B~' instead of V2me,

ExampLE: Choose a;, = ¢** > 1 and b, = 0.

o 0 0
me(t)dl ::f G(q’"l)q’”dt:fG(t)dt:

1
SP00) = Y=o

¢ G0t = == @0 =B

We also want to mention that even in the case lim sup ( max a;?)S*' =1

m—3 0 k>m
we can have inversion and jump formulae if (10.1) and (10.2) are satisfied

for a sequence that does not satisfy S{) = o(max @;?) r—oco; in this case
Eo>m_

we shall need restrictions stronger than those used in section 7 on the de-
termining fanction ¢{f) in the neighborhood of a.



318 Z. DitziaN - A. JakKIMoOvVsSKI: Inversion and jump formulae, etc.

Assuming lim sup (max a;%)S~' <1 we have SV =>a8, 0 <« and the-
E>m

iy O

refore (Lemma 2.4} S = a’S,. In Theorem 6.1(6) we can take lim sup (max

Moweip 00 k>m

a;7?)S7! < 1 instead of assumption (5) and

instead of assumption (4); dropping the assumption on the existence of
4™ 2= 0) we obtain
lim D" P.(D)fle) = b,.

né~o0

Analogous results can be achieved for kernels of classes II and III.
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