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SUMMARY 
We present an iterative algorithm for inverting 3-D pole-pole DC resistivity data. 
The algorithm utilizes an AIM (approximate inverse mapping) formalism and 
iterative inversions are carried out by performing updates in both model space 
(AIM-MS) and data space (AIM-DS) by using an approximate inverse mapping 
with an exact forward mapping. In the approximate inverse mapping, the potential 
anomaly is expressed as a depth integral of the logarithmic conductivity perturbation 
convolved horizontally with a known kernel. Fourier transforming the data equation 
decouples wavenumber components and the Fourier transform of the conductivity 
anomaly is recovered by performing 1-D linear inversions at each wavenumber. 
Inverse Fourier transforming the 1-D inversion results produces the sought 
conductivity. The AIM methodology avoids the generation and inversion of a full 
3-D sensitivity matrix and is consequently fast and efficient. Only one forward 
modelling is performed at each iteration. The algorithm is tested with synthetic data 
and a field data set from an epithermal region. 

Key words: approximate inverse, Born approximation, conductivity, 3-D, DC 
resistivity, inversion, mineral exploration. 

INTRODUCTION 

The goal of this paper is to develop an efficient method for 
inverting direct current (DC) potential data that have been 
acquired in an areal survey at the surface of the earth. A 
typical experiment might be by an E-SCAN survey which is 
usually camed out over a pre-designed regular grid. Each 
grid point is occupied in turn by a current source and the 
surface potentials are measured at the remaining grid points. 
Thus an E-SCAN data set consists of many groups of 
potential measurements from a common source and the 
total number of potentials observed is generally about 
10 000. 

The interpretation of a DC data set often requires that an 
acceptable conductivity model be constructed through an 
inversion algorithm. The inversion of DC data is a 
non-linear problem and the most common approach has 
been to first linearize the problem and then to construct the 
model iteratively using Newton’s method. This requires 
that, at each iteration, the sensitivity matrix (or the FrCchet 
derivatives) be computed so that the change in the data can 
be mapped to a change in the model. Since there are 
typically 10 000 data and likely more conductivity cells to be 
solved for, the sensitivity matrix is large. A model 
perturbation is then found by solving a system of equations. 

These operations of computing and inverting a large matrix 
pose difficulties in practical applications and motivate the 
search for a simpler solution. 

In a previous paper (Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Oldenburg 1992) we presented 
an efficient method which maps a set of potential data to a 
conductivity model without resorting to the generation and 
inversion of a 3-D sensitivity matrix. That approximate 
inversion was formulated by first gathering the potential 
data associated with a specific current and potential 
pole-pole separation and orientation. The data maps were 
Fourier transformed and a succession of 1-D inversions were 
carried out in the wavenumber domain to produce the 
Fourier transform of the model. The desired 3-D 
conductivity was obtained by inverse Fourier transforming. 
Application of this approximate inversion to numerous 
synthetic and field models has shown that the conductivity 
output often displays some of the major features of the true 
conductivity but details are incorrect and generally the 
model does not adequately reproduce the data. The output 
qualifies as a conductivity image but is not generally an 
acceptable inversion result. 

The goal of this paper is to keep the approximate 
inversion and its efficient computational attributes but to use 
it in an iterative algorithm so that an acceptable model is 
generated. The approximate inverse mapping (AIM) 
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inversion developed by Oldenburg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ellis (1991) provides 
the framework for such an approach. In the AIM inversion, 
an approximate inverse mapping is used in conjunction with 
an exact forward mapping to update the model successively 
so that the final model will adequately reproduce the 
observed data. The algorithm iterates towards such an 
acceptable model without necessarily computing and 
inverting a large sensitivity matrix. There are two ways in 
which the AIM inversion can utilize the approximate inverse 
mapping, namely, AIM-MS and AIM-DS. In AIM-MS, 
a perturbation in model space is sought so that the updated 
model more closely predicts the observed data. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AIM-DS, a perturbation in data space is sought such that 
the application of the approximate inverse mapping to the 
updated data generates the desired model. The two essential 
components of the AIM inversion are an exact forward 
mapping and an approximate inverse mapping. For the DC 
inversion problem we shall use the finite difference 
modelling algorithm of Dey & Morrison (1979) as the exact 
forward mapping, and the approximate 3-D inversion as the 
approximate inverse mapping. 

The paper begins with brief discussions about the AIM 
formalism, the approximate inverse mapping, and the 
forward modelling. We next outline the procedure of the 
AIM inversion for the 3-D DC resistivity data and then 
apply the inversion algorithm to a synthetic data set 
contaminated with noise and a field data set from an 
epithermal deposit area. 

AIM FORMALISM 

The basic philosophy and examples of the AIM approach 
are given in detail in Oldenburg & Ellis (1991). Here we 
summarize only the relevant equations needed for our work. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 denote the forward mapping which maps an element 
rn of model space to an element e in data space and let 8-' 
denote the approximate inverse mapping. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeobs be the 
observed data and let rn@) be the model and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe(") be the 
predicted data at the nth iteration, 

9[m(")] = e(n) (1) 

Application of the approximate inverse mapping @' to eoh' 
and dn) yields 50bs and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5(n), respectively. That is, 

(2) 

(3)  

$-l(eobs] = 

@ - l [ e ( n ) ]  = % ( n )  

The updated model rn("+') derived through AIM-MS is 
given by 

(4) 
m ( n + l )  = ,(n) + (Gobs - ~ ( n ) ) ,  

The iteration starts with an initial model rn(''), which can be 
supplied by G O h .  

In AIM-DS, if the modified data are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(.) at the nth 
iteration, the updated data are given by 

(5 )  E( "+ l )  - oh5 + $ n )  - e ( n )  - e  

The new model is obtained by applying 8-l to the updated 
data, that is, 

I. (6) m ( " + l )  = $-1[z(n+1) 

The iteration starts with any reasonable initial data F('), 
however, the choice P(") = eohs IS ' appropriate. 

Equations (4) and (5) define respectively the iterative 
process of the AIM-MS and AIM-DS inversions and are 
readily carried out once the forward mapping .F and the 
approximate inverse mapping @-* are defined. 

FORWARD MAPPING 

Our forward mapping is the finite difference forward 
modelling algorithm presented by Dey & Morrison (1979). 
The conductivity model represented by a finite rectangular 
region is discretized into prismatic cells by a 3-D orthogonal 
mesh. Each cell is assigned a constant conductivity value. 
The algorithm can work with general 3-D conductivity 
models but the current source must be placed on a nodal 
point. The resulting potential is calculated at all other nodal 
points. The current sink is assumed to be at infinity. 

The mesh for forward modelling is primarily defined by 
the geometry of the E-SCAN survey. The measurement grid 
on the surface is used to define the horizontal grid of the 
mesh and a vertical partitioning is chosen to define layers of 
cells to a depth zmaX. The value of z,,, is chosen so that the 
kernel functions for the inverse mapping all have negligible 
amplitude at that depth. We enlarge this core mesh into an 
extended mesh so that the boundary condition in the 
forward modelling algorithm can be handled. Usually three 
padding cells of increasing size towards the boundary are 
used. 

INVERSE MAPPING 

Our approximate inverse mapping is the approximate 3-D 
inversion developed by Li & Oldenburg (1992). We briefly 
outline the method here and also develop a slightly different 
form suitable for use in conjunction with a finite difference 
forward modelling algorithm. Readers are referred to the 
original paper and Li (1992) for more details on the 
algorithm. 

Let the electrical conductivity in a lower half-space be 
u(r) = uop(r), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, is the conductivity of a uniform 
background and p ( r )  is a dimensionless function of spatial 
position r. Then under the Born approximation, the relative 
potential anomaly defined by the ratio of secondary to 
primary potential, 64 = GS/Gp, measured by a pole-pole 
array over a flat surface is given by 

(7) 

where C3 @ denotes the 2-D convolution operation and 
g(r, 1) is the kernel function 

1 
0- 

1 1  
g(r,1)= --V---. 

n J r + l J  J r - I )  

x [ (x  - lJ2 + ( y  - lY)' + z2]--3'2 

The datum is recorded at the midpoint of an array specified 
by the current and potential electrodes at rb and rob 
respectively. 1 defines the relative position of the two 
electrodes such that rs - roha = 21. 
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Taking the 2-D Fourier transform of eq. (7) and applying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lhe convolution theorem yields 

E ~ P .  4 )  = r f i ( p ,  q, z)g,(p, q,  z )  dz, j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . . , n, (9) 

re ( p ,  q )  are the wavenumbers in. the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y directions 

rfiere 9xy[*] denotes the 2-D Fourier transform. The index 
: identifies the jth pole-pole array. We denote the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o€ distinct pole-pole arrays by n,. If n, pole-pole data maps 
are available, there are n, (complex) data at each 
wavenumber ( p ,  q )  and a linear inversion can be used to 
recover f i ( p ,  q, z ) .  The 3-D conductivity model in the 
spatial domain is then obtained by applying an inverse 2-D 
Fourier transform to & at all depths. This process therefore 
solves a 3-D inverse problem in the spatial domain by a 
sequence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-D inversions in the wavenumber domain. 

To implement the inverse mapping, several steps are 
required. First, a background conductivity needs to be 
estimated so that the relative anomaly can be computed. 
The calculated anomaly maps are then interpolated to a 
common grid and Fourier transformed to yield the data in 
the wavenumber domain. Secondly, the kernel functions 
need to be evaluated. This is done numerically. For each 
pole-pole array specified by I,, we sample the spatial kernel 
g(r,I,) over a fine horizontal grid at a set of depths. The 
sampled function at each depth is then Fourier transformed 
to generate the wavenumber kernel function g,(p,  q, z). 
Thirdly, once the data and the kernels are generated, 1-D 
inversions are performed to recover &. 

To be consistent with the assumed Born approximation, 
we invert for a conductivity model which deviates as little as 
possible from the background. Such a model minimizes 

@(P)  = j \ jw(z)[ln P(r>l’ d-x dY dz, 
x.y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

subject to the data constraints, where W ( Z )  is a 
user-specified weighting function. By Parseval’s theorem, 
this is equivalent to minimizing the quantity 

subject to the data constraints (9) at each point ( p ,  q) ,  in 
the wavenumber domain. Therefore, at each wavenumber 
we choose to find the particular model k ( p ,  q, z )  which 
minimizes 

where 0 is a ridge regression parameter. The weighting 
function w ( z )  is generally of the form l / (z  + zO) so that 
model variation in the vertical direction is essentially 
measured on a logarithmic scale. The quantity zo is added to 
avoid the singularity at the surface. 

The forward mapping is a finite difference modelling 
algorithm using cells of constant conductivity. It is desirable 
therefore that the inversion output has the same form. 
Correspondingly we choose a depth partition for the inverse 
problem which coincides with the vertical mesh in the 
forward mapping, (zo, . . . , zn), where z, = 0 and z, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,,,. 
Boxcar functions 

are defined as the basis functions for the model space and 
the model is expanded as 

where the coefficients f i k  are now constants to be 
determined. The weighting function is also chosen to be 
consistent with the model expanded in ( b k ( z ) } :  

” 
w(z> = c wkbk(Z), 

k = l  

where wk are a set of positive real numbers. 
Substituting into (11) yields the new objective function 

@(&) = mHWm + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8-’(Gm - e)H(Gm - e), (14) 

where m = (el ,  . . . , fin), and the jkth element of the real 
matrix G is given by the integral of the jth kernel over the 
kth depth interval, 

The weighting matrix W = diag [wl(zl - zO), . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,(z, - 
2, -1)] and ‘H’ denotes the complex conjugate transpose. 
Minimizing (14) with respect to model parameters m using a 
variational principle yields 

(GTG + 0W)m = GTe. 

Since W is positive definite and diagonal, W-’” exists and is 
diagonal. Therefore, the above equation may be written as 

(G;G, + 01)m, = G:e, (15) 

where G, = W-’”G and m, = W”’m. 
Equation (15) is solved efficiently using the singular value 

decomposition (SVD) of the matrix G,. Let G,=USVT, 
where S is a diagonal matrix of singular values, 
S=diag(s, ,  . . . , snJ and n, is the effective rank of the 
matrix G,. U and V are left and right singular vector 
matrices, respectively, The solution of (15) is then given by 

m, = Vs(S’ + @1)-’UTe, (16) 

and the final model is obtained by unweighting m,: 

m = W-1/2mw 

The model norm can be computed by 

where Z, are the elements of the rotated data vector i2 = UTe 
and the ridge regression parameter 0 is chosen so that it 
corresponds to the onset of the rapid model norm increase. 
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The conductivity in the spatial domain is obtained by 

inverse Fourier transforming the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(p,  q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz). It 
attains a discrete point representation in the horizontal 
directions by the nature of the fast Fourier transform. 
Beneath each surface nodal point, the model is piecewise 
constant in accordance with the vertical meshing. The 
logarithmic conductivity In (a) is assumed to be represented 
by piecewise bilinear interpolations in the horizontal 
directions. A conductivity value is then derived from the 
integrated average of In (a) within each cell of the forward 
mesh. This value is assigned to the corresponding cell as the 
conductivity value recovered by the approximate inverse 
mapping. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IMPLEMENTATION 

With the forward and inverse mapping being defined, the 
next step is to define the data and the model of the AIM 
inversion. Although 3-l takes the relative potential 
anomaly as data and produces a conductivity model to which 
the forward mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is applied, the data and the model 
for the AIM algorithm can be defined differently. For 
AIM-MS, we choose to work with the logarithm of the 
conductivity and the model is composed of the set of the 
logarithmic conductivity values In (ajjjk) (i = 1, . . . , M,, j = 

1,. . . , M y ,  k = l , .  . . , Mz) ,  where M,, M y ,  M, are 
respectively the number of cells in the x, y ,  and z direction. 
Working with logarithmic conductivities is advantageous in 
accommodating the variation of conductivity over a great 
range and also it ensures the positivity of the conductivity 
model. In addition, it is consistent with the logarithmic 
conductivity perturbation sought in approximate inverse 
mapping. Thus, the iterative eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) takes the form 

Update model: 
In(u(n+')) = In(,P") + In(u(n)) - In(@) - 

BEGIN: AIM-MS . 
Compute predicted data: 
qp = F[(.'")] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f 

Given the total potential Gj(x,y) associated with n, 
pole-pole array configurations, the data for the AIM-DS 
inversion are defined as the logarithm of the potential 
values, In [Gj(x, y ) ] ( j  = 1, . . . , n,). Eq. (5 )  becomes 

In I$(~+')] =In  [$'"'I + ~n (+ObS) -In [+("'I. 
Adopting the logarithmic potential as the data eases the task 
of data interpolation and ensures that the updated potential 
is always positive. 

The flow charts in Fig. 1 show the procedures for applying 
the AIM inversions to the 3-D E-SCAN DC resistivity data. 
The termination criteria are based upon data misfit, model 
norm or a maximum number of iterations. 

(19) 

SYNTHETIC EXAMPLE OF THE AIM 
INVERSION 

To illustrate the inversion of the E-SCAN DC resistivity 
data using the AIM formalism, we first apply both AIM 
algorithms to a synthetic data set with added noise. The 
synthetic data are generated over a five-prism model. A 
simulated E-SCAN data set is computed over a 21 X 21 grid 
with a grid spacing A = 50m. From this, eight pole-pole 
data maps are formed in both x and y directions with array 
separation equal to n A  ( n  = 1, . . . , 8). Five maps are also 
formed in x y  and y x  diagonal directions with separations 
equal to n f i A  (n  = 1, . . . , 5) .  The 26 data maps contain 
a total of 8804 potential data. Next, uncorrelated Gaussian 
noise is added to each of the 26 data maps. The noise has 
zero mean and standard deviation equal to 5 per cent of the 
corresponding total potential. Fig. 2 shows one cross-section 
and two depth slices of the synthetic model. (The gray scales 
in this and all the following figures are in log,,, (a)). The 
cross-section cuts through the four major prisms and the two 

BEGIN: AIM-DS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

t 
Compute predicted data: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4(") = F[  (.(4] r 
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Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThree slices of the true conductivity model consisting of 
five prisms in a uniform half-space. The three surface prisms are 
placed to simulate the near-surface variations in the conductivity 
and the buried prisms are the targets. The top panel shows a 
cross-section which intersects with four major prisms and the middle 
and bottom panels are depth slices at 20 m and 150 m, respectively. 

depth slices indicate the lateral locations of the prisms. Fig. 
3 shows three slices of the apparent conductivity data. The 
data are plotted with a pseudo-depth equal to 0.86 times the 
array separation. The pseudo-section coincides with the first 
slice in Fig. 2 and is formed using apparent conductivity for 
current and potential electrodes oriented in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy direction. 
The two plan maps are formed by averaging the logarithmic 
apparent conductivities from electrodes oriented in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy directions. 

The AIM-MS algorithm is first applied to the data set. 
For the forward-modelling mesh we use a horizontal grid 
that is the same as the data grid, a vertical grid of 21 nodes 
corresponding to cells whose thicknesses progressively 

AIM inversion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-0 resistivity data 531 

Figure 3. Apparent conductivity data from the five-prism model. 
The pseudo-section in the top panel is generated using the data 
from pole-pole arrays aligned in the y direction. The plan maps are 
generated by averaging the log apparent conductivity data from x 

and y directions. The pseudo-depth is taken as 0.86 times the 
electrode separation. 5 per cent Gaussian independent noise has 
been added to the data. 

increase in depth, and three padding cells appended to all 
sides and the bottom. The total number of cells in the 
inversion is 15 548. Throughout the inversion, the half-space 
conductivity has been held at the correct value of 1 mS m-'. 
The weighting function used in the 1-D inversions is 
w ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l / (z + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,), where z,, = 10 m. The convergence curves 
for the inversion are shown in Fig. 4. A steady reduction of 
the misfit is observed in panel (a) and the expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 misfit 
(8804) is achieved after four iterations. Panels (b) and (c) 
show the norm of the model and the model perturbation for 
successive iterations. The resulting models from the first and 
the fourth iteration are shown in Figs 5 and 6 respectively, 
These are to be compared with the true conductivity model 
in Fig. 2 and the apparent conductivity data in Fig. 3. The 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 - 6  8 10 12 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C) I 

0 2 4 6 8 1 0 1 2  
ITERA TION NUMBER 

Figure 4. Convergence plots of the AIM-MS inversion applied to 
noisy data from the five-prism model. Panel (a) shows the xz data 
misfit, the dashed line indicates the expected misfit. Panels (b) and 
(c) show the model norm and the norm of the model perturbation 
respectively as functions of iteration. 

first iteration recovers an image of the conductivity model. 
The surface anomalies and the buried conductive anomaly 
are clearly defined but the buried resistive anomaly is barely 
visible. The amplitudes of the anomalies are substantially 
less than that of the true model. Further updates by the 
AIM algorithm greatly improve the result. The final model 
as shown in Fig. 6 recovers all the conductivity anomalies 
and has a dynamic range comparable with that in the true 
model. The added noise has introduced spurious structures 
in the model. Such distortion is especially strong near the 
surface. In terms of the model recovery, however, the 
inversion is quite successful. 

The AIM-DS inversion is next applied to the data set 
with the same mesh and half-space conductivity. Again the 
expected x2 is achieved in four iterations. The convergence 
curve and the final model (from the fourth iteration) are 
shown in Figs 7 and 8, respectively. A steady reduction of 
the misfit is observed in the first few iterations and all 
anomalous blocks are well defined in the final model. The 
model is very similar to that from the AIM-MS inversion 
but it has less structure near the surface. This is consistent 
with the fact that the AIM-DS model is obtained through a 
single application of the inverse mapping whereas the 
AIM--MS model is built up by a series of perturbations. 

Three primary observations can be made from these two 
inversions. In the AIM-MS inversion, the final model is 
built up by a sequence of model perturbations and, hence, 
no minimization of the model norm is performed. In the 
AIM-DS, the 1, norm of the model is minimized but the 
horizontal variation is only controlled by limiting the largest 
wavenumber components. Without explicit control over the 
structural complexity of the conductivity model, the 

0. 200. 400. 600. 8 0 0 .  1000 

y (4 

h 

E 
v 

- 
E 
v 

0. 

200 

460. 

600 

800. 

1006. 

0. 

200. 

400. 

b00. 

800. 

1000. 

-2 13 

-2 .26  

-2 39 

-2.52 

-2.65 

-2.78 
0 200 400 600 800 1080 

91 
x (m) 

-3 04 

-3 17 

Figure 5. The conductivity model recovered from the first iteration. 
This is equivalent to the result obtained by applying the 
approximate inverse mapping to the observed data. The top panel is 
a cross-section at x = 460 m, which intersects four prisms and the 
middle and bottom panels are horizontal slices at 20m and 150111 
depths respectively. 

spurious structures introduced by the noise are not totally 
suppressed through the regularization in the inversion. 
However, these structures appear to be uncorrelated and 
become progressively weaker as the depth increases. This is 
judged to be a direct result of the approximate inverse 
mapping and the inversion mesh employed in the inversion. 
The kernel functions in the wavenumber domain decay 
more rapidly with depth at  higher wavenumbers. Mean- 
while, the energy of the data is concentrated in the lower 
wavenumber band whereas the energy of the noise is spread 
throughout the entire band. Thus at the lower wavenumber, 
the signal-to-noise ratio is higher and the recovered model 
components have fewer spurious features. Structures at 
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ITERA TI0 N NUMBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvergence plots of the AIM-DS inversion applied to 
noisy data from the five-prism model. Panel (a) shows the misfit as a 
function of iteration. The dashed line indicates the expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz 
misfit. Panels (b) and (c) are the norm of the modified data and the 
norm of the data perturbation respectively. Panel (d) shows the 
model norm. 

Figure 6 .  The conductivity model recovered from the fourth 
iteration of AIM-MS inversion. This is selected as the final model 
since the expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz misfit is achieved. Comparison with the results 
from iteration 1 in Fig. 5 shows the significant improvement 
achieved by the further updates with the AIM algorithm. 

depth are dominated by these low-wavenumber com- 
ponents. On the other hand, signal-to-noise ratio decreases 
as the wavenumber increases. Since the kernel functions for 
higher wavenumbers are sensitive to shallower regions, this 
can produce structural complexity near the surface if it is 
allowed in the model. Such is the case with the current 
example since the inversion mesh has very fine vertical 
partitioning near the surface and the corresponding cells 
therefore permit small-scale variations. This suggests that 
these undesirable features can be suppressed by using 
relatively thick cells near the surface. They can also be 
partially treated by applying a lowpass filtering to the model 
with the cut-off wavenumber decreasing with the depth. The 
type of filter and the cut-off wavenumber will depend upon 

the spectrum of data and the noise and, hence, will be 
problem dependent and is not rigorously investigated here. 

The results from the AIM-MS and AIM-DS inversion 
are very similar in the above two inversions. This may have 
resulted because in the implementation presented here the 
two algorithms share a common initial model produced by a 
single application of the approximate inverse mapping and, 
as seen in Figs 4 and 7, a major reduction of the data misfit 
is achieved in this first iteration. Further iterations tend to 
reduce the misfit slightly by introducing small-scale 
refinements and increasing the amplitude of the anomalous 
structures. 

The inversion in both AIM-MS and AIM-DS was 
continued even after the expected misfit was achieved. This 
allowed us to explore some aspects of the convergence of 
the AIM algorithm. Although the data misfit in AIM-MS 
inversion is still decreasing by the 12th iteration, the data 
misfit begins to increase slightly in AIM-DS inversion from 
the sixth iteration (see Fig. 7). This increase coincides with 
the increase in the norm of the data perturbation and 
indicates the alorithm has begun to diverge. This behaviour 
is to be anticipated. It has been shown (Bertero, De Mol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Pike 1988) that the degree of regularization is inversely 
proportional to the number of iterations for an iterative 
inversion without explicit regularization. Such is the case 
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mineral deposits. Such hydrothermal deposits most com- 
monly occur within the upper 600m in areas with 
well-developed fracture and fault systems. Existing faults or 
fractures act as feeders of hot fluid which alter the host rock 
and deposits minerals. Ore is formed in the alteration zones, 
which often expand in the upper portion to form cone-like 
or mushroom-shaped features with deep ‘roots’. Precious 
metal deposits are frequently associated with silicification 
brought about by hydrothermal alteration. 

Because of the highly resistive nature of the veins and 
silicified zones, the ore deposits exhibit localized conduc- 
tivity anomalies as typical signatures in the DC resistivity 
experiment. The area in which the survey was completed 
was covered with eluvium and there are few indications 
about the existence of the silicified zones. The E-SCAN 
survey was employed to map the silicification zones and 
possibly fault structures. The data were acquired over a 
32 x 35 grid with 91.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni spacing. The ‘infinite’ electrodes, 
current sink and potential reference, were about 7 km from 
the centre of the grid. This is too near for the resultant data 
to be regarded as pole-pole and therefore the data were 
first corrected for biases in the potential introduced by these 
electrodes. A correction was made by subtracting the 
contribution of the ‘infinite’ electrodes over a uniform 
half-space having an estimated conductivity of 40 mS m-’. 

The processed data are gathered into 26 maps 
corresponding to electrode pairs in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  and y-grid 
directions and in the 45” diagonal directions. The pole-pole 
separations ranged from 1 to 10 basic grid spacings, which 
are sufficiently large for the depth of interest. As the last 
processing step prior to inversion we smooth each data map 
using a 2-D spline interpolation. Since the data error is 
uncertain, the generalized cross-validation (GCV) technique 
(Craven zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Wahba 1979) is used to estimate the optimum 
degree of smoothing to be applied. These smoothed data 
maps, containing 6825 potentials are used in the inversion as 
the observed data. Fig. 9 shows one plan map and two 
pseudo-sections of apparent conductivities calculated from 
the processed data. The plan section is formed using data in 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx direction and corresponds to a pseudo-depth of 150 m. 
We point out that much of the dominating structure on the 
west in this plan section is caused by near-surface features 
and persists from the shortest offset data. The data, 
therefore, offers few indications to the actual structure at 
this depth. The positions of the pseudo-section are marked 
in the plan map and coincide with two drill sections which 
provide some geological information. 

The AIM-DS algorithm is applied to the processed data 
maps to construct a 3-D conductivity model. The forward 
mesh has a uniform vertical partitioning with a spacing of 
30m down to 600m. With a three-cell extension zone, this 
results in a mesh of 38 X41 X24 nodal points. Thus the 
inversion has a total of 34040 unknowns. An AIM-DS 
inversion is carried out for six iterations. For the I-D 
inversions we used a weighting function W ( Z )  = 1/.(z + z,,), 
where z,, = 20 m. The best-fitting half-space conductivity of 
52.6mSm-I from the 26 data maps is used as the 
background-conductivity value. 

In order to stabilize the iterative process, we have also 
introduced a relaxation parameter to control the step-size of 
the data update. The quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[eohs - e(”)] in eq. (5) can be 
considered to provide both the direction and the step-size 

Figure 8. The conductivity model recovered from the fourth 
iteration of AIM-DS inversion applied to the data from the 
five-prism model. The cross-section is at x = 460 m and the two 
horizontal slices are at 20m and 150m depths respectively. In 
contrast to the results from AIM-MS inversion shown in Fig. 6, 
this model has less noisy structure near the surface. 

with the AIM inversion as applied here. Since this specific 
implementation of the AIM inversion does not explicitly 
minimize the model norm subject to a prescribed data 
misfit, the prolonged iterations increase the structural 
complexity of the model but do not necessarily improve the 
data misfit. This suggests that the inversion should be 
terminated once the expected misfit is achieved or, if the 
expected misfit cannot be reached, the onset of the increase 
in misfit should serve as the criterion for termination. 

FIELD-DATA EXAMPLE 

As a second example, we apply the AIM inversion to a set 
of field data acquired in an epithermal area associated with 
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Figure 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOne plan and two pseudo-sections of apparent conductivity data. The plan section is generated from data aligned in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx direction 
and corresponds to a pseudo-depth of 150 m. The two pseudo-sections are taken at the location marked in the plan section and are plotted in 
their respective orientations. 

for the perturbation. We can perturb the data in this 
direction but control the stepsize. That is, the data can be 
updated by, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$"+') = @) + w[eohs - e(")] ,  where w is the 
relaxation parameter. A choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw less than unity should 
prevent an over correction of the data and keep the iterative 
process stable. A relaxation with w = 0.6 is chosen. The 
inversion steadily reduced the data misfit form the initial 
half-space value of 36 to 12per cent. Fig. 10 shows the 
misfit, model norm, and data perturbation measured in their 
respective norms as the inversion progresses. It is noticed 
that the major reduction of the misfit is achieved in the first 
two iterations. After four iterations, there is little change in 
the misfit, but the model norm does increase considerably. 
This is similar to the synthetic example, where both the data 
misfit and the norm of the data perturbation exhibit a slight 
increase at  the later iterations. For these reasons, we take 
the model from the fourth iteration as the final model. 

Fig. 11 shows a plan section and two cross-sections from 
this model. The cross-sections coincide in position with 
those of the pseudo-sections in Fig. 9. The recovered 

conductivity model has many structural details at shallon 
depth but becomes increasingly smooth at  greater depth. 
The benefits of carrying out the inversion can be seen b> 
comparing Figs 9 and 11. The model obtained from the 
inversion displays many structures not visible or  clear in the 
apparent conductivity sections, and clear definition of 
various conductive and resistive units. Ideally, these 
definitions should be related to different lithologic units 
using the information obtained from drilling. Although fi\-e 
major lithologic units have been identified in this region. 
their geo-electric properties are still uncertain. This. 
together with the limited availability of drilling information. 
makes verification difficult at  this stage. Nevertheless there 
are some qualitative comparisons that can be made. 

The resistive layer immediately below the surface as 
shown in the sections in Fig. 11 covers almost the entire 
model with varying degree of continuity. This layer, which is 
likely the eluvium, is uniform on the eastern part but 
becomes variable toward the west as it is interspaced with 
small-scale conductive features. Beneath this resistive layer 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
6
/3

/5
2
7
/7

2
3
4
2
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



536 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi and D. W. Oldenburg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ITERATION NUMBER . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. Convergence plots of the AIM-DS inversion of the 
field data. Panel (a) is the RMS data misfit. Panels (b) and (c) are 
respectively the norms of the modified data and the data 
perturbation. Panel (d) is the norm of the model. Note that both 
data misfit and data perturbation start to increase after four 
iterations. 

there are various localized conductive and resistive units. 
Borehole information in the section AA '  indicates that there 
is a fault between x = 1OOOm and x = 1200 m. The steep 
contour lines seen in the cross-section near that location, 
and the large horizontal change of conductivity, may reflect 
the existence of the fault. In the section BB', the sharp 
conductivity contrast near y = -400 m may indicate the 
position of a fault known from borehole information. It is 
possible that the three conductive features on a semi-circle 
in the north-west portion on the planview map in Fig. 11 are 
connected with the two faults and the general hydrothermal 
system. 

We conclude that the algorithm has performed satisfac- 
toriiy. The inversion starts from a best-fitting half-space 
model with a misfit of 36 per cent, and constructs a sequence 
of minimum norm models which steadily reduce the misfit to 
12 per cent. Such a fit is not overly poor for a field data set. 
Owing to the nature of the algorithm, there is little chance 
that large-scale spurious structures are introduced and 
therefore, features appearing in the model are most likely 
required by the observed data and may reflect true 
large-scale conductivity variations. 

DISCUSSION 

The formalism of the AIM inversion is successfully applied 
to the 3-D DC resistivity inverse problem and both 
AIM-MS and AIM-DS iterative inversion algorithms 
have been constructed to invert E-SCAN data for a 3-D 
conductivity model. O n  a synthetic test the algorithms have 
succeeded in producing conductivity models which ade- 
quately reproduce the data within the tolerance of the 
associated errors, and represent the true models with 
reasonable fidelity. In the inversion of a field data set, 6825 
potential data are used to construct a conductivity model 
having 34040 cells. The achieved model produces an RMS 
relative misfit of 12 per cent and exhibits various structures 
and geo-electrical units that are not visible in the apparent 
conductivity images. A few known structures are reflected in 
the model. 

In general, the AIM-DS is advantageous in comparison 
with AIM-MS inversion. AIM-MS generates the final 
model by a series of model perturbations and there is no 
explicit control over the norm of the model. As a result, the 
model from an AIM-MS inversion can acquire excessive 
structure. The AIM-DS inversion, however, generates the 
final model from a single application of the approximate 
inverse mapping and can, therefore, produce a smoother 
model if a norm of the model is explicitly minimized in the 
inverse mapping. 

Our inversion algorithms have combined the advantages 
of the approximate 3-D inversion and the A IM formalism. 
The kernel functions for the approximate 3-D inversion are 
computed at  the first iteration and stored for subsequent 
iterations. As a result, the inverse mapping at each iteration 
is rapid, since its solution in the wavenumber domain takes 
only a small fraction of the time needed for computing 
kernel functions. In addition, the AIM formalism requires 
only one forward mapping at each iteration and this greatly 
reduces the computational effort. For the field data set 
where 6825 potential data were used to recover 34040 
parameters, each iteration took less than 300 min CPU time 
on a 4/330 SUN workstation with 32 MB memory. 

The iterative application of the approximate inverse 
mapping has the following general properties. The reduction 
in misfit is rapid at the early iterations and even a single 
iteration of the AIM inversion produces a model that is 
greatly superior to that obtained from the application of an 
approximate inverse mapping applied to the data. Prolonged 
execution of the inversion, however, generally increases the 
structural complexity of the model and may result in an 
increasing misfit and hence divergence of the algorithm. It is 
not guaranteed that the minimum misfit will be acceptably 
small even though the results presented here are 
encouraging in this regard. Therefore, the method is best 
used as a means to generate a conductivity model which 
reduces the data misfit to a low level with minimum 
computational effort. The resulting model can be used to 
draw geologic conclusions or it may be used as an initial 
model for a more rigorous inversion. 
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Figure 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOne horizontal slice and two cross-sections of the conductivity model recovered from the field data. The horizontal slice is at a 
depth of 150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. The cross-sections are at the same locations as those in Fig. 9. 
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