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S U M M A R Y

The Geological Survey of Sweden has been collecting airborne tensor very low frequency data

(VLF) over several decades, covering large parts of the country. The data has been an invaluable

source of information for identifying conductive structures that can among other things be

related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because

the method only uses two differently polarized plane waves of very similar frequency, vertical

resolution is low and interpretation is in most cases limited to maps that are directly derived

from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this

paper, we present for the first time a 3-D inversion for tensor VLF data in order to further

increase the usefulness of the data set. The inversion is performed using a non-linear conjugate

gradient scheme (Polak-Ribière) with an inexact line-search. The gradient is obtained by

an algebraic adjoint method that requires one additional forward calculation involving the

adjoint system matrix. The forward modelling is based on integral equations with an analytic

formulation of the half-space Green’s tensor. It avoids typically required Hankel transforms

and is particularly amenable to singularity removal prior to the numerical integration over the

volume elements. The system is solved iteratively, thus avoiding construction and storage of

the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently

farther away interactions are represented with less detail and therefore with less computational

effort, enabling us to bridge the gap between the relatively short wavelengths of the fields

(tens of metres) and the large model dimensions (several square kilometres). We find that the

approximation of the fields can be off by several per cent, yet the transfer functions in the air are

practically unaffected. We verify our code using synthetic calculations from well-established

2-D methods, and trade modelling accuracy off against computational effort in order to keep

the inversion feasible in both respects. Our compromise is to limit the permissible resistivity

to not fall below 100 �m to maintain computational domains as large as 10 × 10 km2 and

computation times on the order of a few hours on standard PCs. We investigate the effect of

possible local violations of these limits. Even though the conductivity magnitude can then not

be recovered correctly, we do not observe any structural artefacts related to this in our tests.

We invert a data set from northern Sweden, where we find an excellent agreement of known

geological features, such as contacts or fault zones, with elongated conductive structures,

while high resistivity is encountered in probably less disturbed geology, often related to

topographic highs, which have survived predominantly glacial erosion processes. As expected

from synthetic studies, the resolution is laterally high, but vertically limited down to the top

of conductive structures.

Key words: Numerical solutions; Inverse theory; Numerical approximations and analysis;

Electrical properties; Electromagnetic theory.

1 I N T RO D U C T I O N

The Swedish Geological survey (SGU) has been collecting tensor

very low frequency (VLF) data over several decades. Nowadays,

the data set covers Sweden almost entirely. Most commonly, the

data is used in a qualitative way, in order to identify conductive and

resistive zones in the upper few hundred metres of the crust. The

typical situation in Sweden is a highly resistive crystalline basement.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
8
/2

/7
7
5
/5

9
8
2
9
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



776 J. Kamm and L. B. Pedersen

Conductors therein are often associated with water-filled fracture

zones, deformation zones, wet sediments that fill valleys and ore

mineralizations.

Due to the dense spatial sampling (about 20 m along flight lines,

100–200 m between flight lines), detailed maps can be derived from

the data set. Often, the so-called Peaker is displayed [horizontal

divergence of magnetic transfer functions, Pedersen et al. (1994)]

or, using a simple transformation introduced by Becken & Pedersen

(2003), apparent resistivity and phase maps.

Quantitative interpretation is only carried out punctually (Oskooi

& Pedersen 2005; Pedersen et al. 2009), using 2-D inversion rou-

tines developed for magnetotelluric data (Siripunvaraporn & Egbert

2000). Diffusive electromagnetic methods often exploit that the skin

effect is a function of field frequency. It thus provides a means to

differentiate current systems at different depth levels. Since usually

only single-frequency transfer functions are extracted from the VLF

band, vertical resolution is limited. While the top and the lateral po-

sition of conductors is relatively well defined, its actual conductivity

as well its depth extent is not well determined.

On modern computer systems, large-scale 3-D inversion is be-

coming more common (Mackie & Madden 1993; Alumbaugh &

Newman 1997; Newman & Alumbaugh 1997, 2000; Sasaki 2001;

Siripunvaraporn et al. 2005; Cox et al. 2010; Zhdanov et al.

2010). Several contributions are dedicated to magnetic field trans-

fer function inversion (Siripunvaraporn & Egbert 2009; Holtham &

Oldenburg 2010, 2012). A 3-D inversion of single-transmitter VLF

data using a block-model parametrized with 11 parameters was

presented by Kaikkonen et al. (2012).

In this paper, we attempt for the first time the 3-D inversion of

VLF airborne data on a large scale. First, we describe the general in-

version methodology. Then we review the integral equation method

in the context of airborne inversion and describe the approaches we

employ, most of which are well known. We also present a novel

nested variant of the common fast Fourier transform (FFT)-based

approach for forward and adjoint modelling and give some insights

for extracting the singularity from Green’s tensor for the specific

case of a homogeneous half-space background.

Next, we discuss the impact of topography on VLF anomalies.

Eventually, we apply the inversion to synthetic pseudo 3-D data and

a field example from Lappland, northern Sweden.

Despite the limitation to a single frequency and the ill-posedness

of the inverse problem, we demonstrate that additional geometrical

information can be uncovered through inversion, especially related

to the top of conductive structures.

2 T E N S O R V L F DATA

The frequency band 14–30 kHz is commonly referred to as the VLF

band. The European continent is covered by a number of transmit-

ters using the VLF band for submarine communications. Those

transmitters act as remote sources that are exploited in the VLF

method. Single-transmitter VLF maps have been produced by SGU

since the 1960s. The tensor VLF concept (using different transmit-

ters to measure independent source polarizations) was introduced

in the 1980s. A detailed description of this technology was given

by Pedersen et al. (1994). As in magnetotellurics, the VLF signal

from distant transmitters can be treated as a plane wave and ver-

tical magnetic transfer functions T{x, y} can be defined through the

relation (Vozoff 1972)

Hz = Tx Hx + Ty Hy . (1)

Here, H{x, y, z} are magnetic field components as functions of fre-

quency. The transfer functions can be estimated from at least two

different transmitters at sufficiently similar frequency. They are of-

ten referred to as the components of the ‘Tipper’ vector t.

3 S O LU T I O N T O T H E I N V E R S E

P RO B L E M

We present the electromagnetic inverse problem in the usual way as

a minimization problem

min
m

�(m)

�(m) = �d (m) + β�m(m), (2)

where the objective functional � is a combination of the data misfit

�d and a measure �m of the structure in the model, weighted by the

regularization parameter β. The former term is defined to measure

the difference between the observations dobs and the predictions dpre

from a model m, namely

�d =
∥

∥

∥
C

−1/2
d

(

dobs − dpre
)

∥

∥

∥

2

2
. (3)

The data vectors d contain both Tipper components, that is d =
[

tT
x tT

y

]T
where the entries of t{x,y} are t{x,y},i = T{x,y}(ri ). The op-

erator ‖ · ‖2 denotes the L2-norm. The measurement inaccuracy

is encoded in the data covariance matrix Cd . Because there is no

evidence to the contrary, we assume that the measurements are

statistically independent, so that only the matrix diagonal holds ele-

ments different from zero, that is estimates of the data variance σ 2
d .

Furthermore, since VLF measurements are very homogeneous, we

only estimate a single value for either the whole data set or for each

of the two tipper components t{x,y}. The predictions are obtained

from a forward calculation denoted as dpre = g(m), which will be

explained in detail later on (Section 4 and appendices). In order

to construct the model vector m, the domain of the inverse prob-

lem is decomposed into blocks of constant anomalous conductivity

and of uniform lateral extent. Due to the diminishing resolution

with depth, the vertical block size is increased by a factor of two

from each layer to the next. To ensure that the conductivity val-

ues remain within the predefined boundaries lb < σ i < ub, while

simultaneously maintaining the unconstrainedness of problem (2),

the open interval is transformed to unbounded variables mi using

a well-known logarithmic parameter transform (e.g. Newman &

Alumbaugh 2000)

mi = log10 (ub − σi ) − log10 (σi − lb) . (4)

The latter term in eq. (2) is necessary to deal with the non-

uniqueness of the inverse problem by adding a minimum structure

requirement to the model (e.g. Constable et al. 1987). In particular,

we select a first difference linear operator L. Then

�m = ‖Lm‖2
2 . (5)

The regularization parameter β is selected by trial and error. A good

starting point is

β∗ =
�d (m0)

M
, (6)

where m0 is the starting model and M the number model pa-

rameters. This rule of thumb is obtained from balancing �d (m0)

with �m, the latter being crudely approximated as M. In our ex-

perience, a favourable value can usually be found in the interval
β∗

10
< β < 10β∗.
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The inverse problem (2) is non-linear and must thus be solved

iteratively. Iterations are stopped as soon as the desired data misfit

�∗
d ≈ N has been achieved. This criterion is often referred to as the

discrepancy principle (e.g. Aster et al. 2005). The regularization

parameter β can be slightly decreased during the inversion (we

choose a reduction factor of 0.7) if the convergence severely stalls

(�d stops decreasing) before the inversion target is reached.

We employ a non-linear conjugate gradient technique (NLCG;

Polak & Ribière 1969; Zhdanov 2002; Nocedal & Wright 2006)

with an inexact line-search. Non-linear conjugate gradients have

been applied to 2-D and 3-D magnetotelluric inversion (Newman

& Alumbaugh 2000; Rodi & Mackie 2001). We use an equivalent

line-search like Newman & Alumbaugh (2000) have described.

The choice of a gradient based method is due to the relatively

manageable computational requirements. One calculation of the

gradient of the objective functional with respect to the model pa-

rameters, and a small number of forward computations during the

line-search (typically only two) is required in one iteration. The gra-

dient calculation is about as expensive as one forward calculation.

We use an algebraic adjoint method for that, which is explained in

Section 4.3 and Appendix E.

It is well known that such algorithms are easily outperformed by

(Gauss-)Newton methods (Mackie & Madden 1993; Sasaki 2001;

Grayver et al. 2013) in terms of iterations. However, Jacobian and (at

least approximate) Hessian matrices need to be available, and both

are very expensive to compute. At present, data fitting requirements

are moderate, since measurements have limited accuracy. A candi-

date for a compromise between expensive (Gauss-)Newton meth-

ods and gradient descent techniques are the quasi-Gauss-Newton

methods, which employ inexpensive low-rank approximations to

the second derivatives (e.g. Avdeev & Avdeeva 2009).

All gradient descent algorithms iteratively update the model es-

timate along directions that are in some way constructed from the

local gradient direction and proceed to at least a local minimum

point within this 1-D subspace of the model space. The subproblem

is referred to as line-search. If the update direction is simply the

negative gradient direction in each iteration, the algorithm falls in

the category of steepest descent algorithms. Because every subse-

quent model update can destroy the subspace optimality achieved in

previous steps, these algorithms often follow a slow, possibly even

oscillating convergence trajectory. However, a simple correction to

the descent direction can be made to preserve the subspace opti-

mality of the respective previous steps. The direction is modified

to be ‘conjugate’ to previous directions, hence the name ‘conju-

gate gradients’. All but the first descent directions are modified in

NLCG. If the underlying equations are linear, the objective func-

tion is quadratic. In this case, the conjugacy is perfect and holds

recursively for all steps taken in the past. For a non-linear prob-

lem, however, the correction may only work a few steps back. As

a theoretical consequence, NLCG should be restarted from time

to time with a steepest descent step. A further complication is the

problem of finding the minimum along the search direction, which

is only trivial for the quadratic of the linear problem. Commonly,

it is stated that the advantage of conjugate gradient methods over

simpler gradient descent techniques depends crucially on the accu-

racy of the line-search procedure (Nocedal & Wright 2006). If it is

not sufficiently accurate, no optimality is achieved along the update

direction in the first place, and the idea of preserving the subspace

optimality apparently becomes meaningless. Rodi & Mackie (2001)

argued that the algorithm requires a restart whenever the line-search

procedure fails. Newman & Alumbaugh (2000) suggested to use an

inexact line-search nevertheless, and follow the obtained directions

as long as they are descent directions. While we agree with the

theoretical argument, our practical experience suggests that for our

application, where the solution that we seek is away from the theo-

retically attainable minimum due to noise and data bias, conjugate

gradients with an inexact line-search work very well.

Note also that, like any other non-linearity, the variation of β

during the inversion destroys the conjugacy of previous update di-

rections. This can be addressed by restarting the conjugate gradient

sequence after changing β.

4 E L E C T RO M A G N E T I C F O RWA R D

M O D E L U S I N G I N T E G R A L E Q UAT I O N S

Here, we give a review of the integral equation technique as applied

to the inverse problem at hand, which, together with the appendices,

should allow others to reproduce our work. Most of the material

presented below has been published before by other authors. We also

introduce a nested FFT technique to rapidly approximate relevant

matrix-vector products.

4.1 Solution of the integral equation

4.1.1 Integral equation formulation

This following explanations have already been stated by Weidelt

(1975), Raiche (1974), Hohmann (1975), Wannamaker et al. (1984)

and Avdeev et al. (1997) in different ways. We give only a short

summary here in order to establish the notation and the context.

In this description, the Earth is assumed to be planar, free of

topography and non-magnetic (the magnetic permeability μ takes

the vacuum value μ0 everywhere). These are typical simplifications

in magnetotelluric modelling. The most problematic of them is the

topography assumption. Further below (Section 5), we provide an

investigation of topography effects. All fields have exp (iωt) time

dependency (ω = 2π f, with frequency f). Moreover, for frequencies

and conductivities in the range of the VLF application the quasi-

static approximation is not strictly valid, but displacement currents

can be neglected with only minor consequences that are well within

data uncertainties (Kalscheuer et al. 2008). The volume integral

formulations rely on an abstract decomposition of the conductivity

structure

σ (r) = σb(r) + σa(r) (7)

into a background component σ b and the deviation there-from,

the so-called anomalous conductivity σ a. Then, the electric and

magnetic field pair E and H occurring in σ also decomposes into

E = Ep + Es

H = Hp + Hs . (8)

The primary fields Ep and Hp are the fields occurring in back-

ground structure σ b due to an external source. By choosing an

appropriately simple σ b, calculation of the primary fields is made

comparatively easy. As it will be discussed later in detail, we select a

homogeneous half-space wherein primary fields are given in closed

form for many common source types. The secondary fields Es and

Hs originate from the interaction of the primary fields with the

anomalous conductivity. Following largely the notation proposed
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778 J. Kamm and L. B. Pedersen

by Weidelt (1975), we define the wave numbers

k2 = iωμσ

k2
{a,b} = iωμσ{a,b}. (9)

The integral equation which is satisfied by the electric field reads

then

E(r) · ûi = Ep(r) · ûi

−
∑

j=x,y,z

∫

V ′

(

G j (r
′|r) · ûi

)

k2
a(r′)

(

E(r′) · û j

)

dV ′ (10)

where i, j = x, y, z. The vectors ûi are unit vectors pointing along

the i-direction. The Green’s vectors

G j =
[

G j x G j y G j z

]T
(11)

are electric fields at r due to an j-directed electric unit dipole located

at r′ in σ b. More specifically, they are solutions to the particular

diffusion equation

∇ × ∇ × G j (r
′|r) + k2

b(r)G j (r
′|r) = δ(r − r′)û j (12)

where δ(r) is the 3-D Dirac delta. The Gij are also the elements of

Green’s tensor. The dot product is defined as

a · b =
∑

i

ai bi . (13)

It is symmetric, but not Hermitian (a · a is not always real-valued).

Since the integral on the right-hand side only has contributions

to E(r) where σa(r′) is non-zero, the electric field is completely

determined, once the solution of eq. (10) is known on the domain

of the anomaly. For the electric fields at all other places, eq. (10)

becomes explicit. Likewise, magnetic fields at any observer position

r are obtained using the magnetic Green’s tensor M corresponding

to G. It follows from Faraday’s law

∇ × G(r′|r) = −iωμM(r′|r) (14)

where the curl operator acts on the r-coordinate. Then

H(r) · ûi = Hp(r) · ûi

+
∑

j=x,y,z

∫

V ′

[

M j (r
′|r) · ûi

)

k2
a(r′)

(

E(r′) · û j

]

dV ′.

(15)

In this study, the integral eqs (10) and (15) are discretized using

rectangular blocks, within each of which the electric field as well as

the ground conductivity are assumed constant. This technique has

been used previously by for example Weidelt (1975) or Hohmann

(1975). It is explained in detail in Appendix A, where we also give

an exact description of the resulting column vectors and matrices.

In essence, eq. (10) can be approximated by a linear system of

equations

AE = Ep, (16)

where E and Ep are column vectors containing the discrete values of

the total and the primary electric fields, respectively. Additionally,

the system matrix A reads

A = I + K	. (17)

The matrix I is a unit matrix with dimensions corresponding to field

discretization. The matrix 	 is a diagonal matrix, which contains the

anomalous conductivity values k2
a,l of the blocks l on its diagonal.

The kernel matrix K holds the elements of Green’s tensor, which

are integrated over these blocks l with volumes Vl, for all block

midpoints rk , namely
∫

Vl

G i j (rk |r′)dV ′. (18)

Due to the singular nature of the Green’s tensor elements for rk = r′,

the numerical evaluation of the integrals is difficult, and deserves a

separate discussion (Section 4.2.2 and Appendix C).

In analogy, eq. (15) for the magnetic fields is discretized as

H = Hp + KM	E, (19)

where KM is the magnetic kernel matrix that contains volume inte-

grals of the form (see Appendix A for details)
∫

Vl

Mi j (rk̃ |r′)dV ′. (20)

The magnetic fields H, Hp and the columns of KM are discretized

only at the measurement positions rk̃ . The expressions for the mag-

netic Green’s tensor are given in Appendix D.

Since it will be required later for the calculation of the gradient

of the objective function (Section 4.3), we briefly state the discrete

adjoint problem to eq. (16). The system (16) is not, as it is usual in

electromagnetics, complex-symmetric, because the right-hand side

represents a field quantity instead of a current source. The adjoint

problem is thus

A†u = up (21)

for some adjoint source up and adjoint state u. Here

A† = I + 	†K† = I − 	K†

[

K†
]

mn
= Knm

	† = −	, (22)

where K is the conjugate complex of K.

4.1.2 Iterative solution and preconditioning

The matrix A is dense and of dimension 3M × 3M, where M is the

number of blocks in the earth model. A direct solution that involves

the inversion of A seems at present out of the question. Therefore,

we choose to employ an iterative method that only requires matrix-

vector products involving A or A† to find an approximate solution.

We have found that while occasionally, solutions are produced

very rapidly with the stabilized bi-conjugate gradient method

(BiCGstab), convergence does not always occur. In contrast, the

generalized minimum residual method (GMRES) proves a steady,

stable convergence behaviour, which is very predictable, but never

surprisingly fast. In the context of the inverse problem, the anomaly

can be arbitrary. Since GMRES performs largely independent of the

particular model (apart from the fact that larger anomaly magnitudes

require more iteration), we rely on it in our implementation.

To speed up the solution, we apply the contraction method

(Avdeev et al. 1997) in the form given by Hursan & Zhdanov

(2002). In this method, the linear system (16) is left- and right-

preconditioned by two rapidly computed diagonal matrices. The

cost for this is negligible, but the solution of the system is obtained

in sometimes less than half the number of iterations as required

without the preconditioning. The contraction method is especially

beneficial when large conductivity contrasts occur and thus accel-

erates the costliest calculations most. It is important to notice that
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Inversion of airborne tensor VLF data 779

when applying the method to the adjoint eqs (21), the adjoint of the

preconditioner must be applied, which reverses the roles of the left-

and right-preconditioning matrices.

4.1.3 Matrix multiplications

Products involving the matrices A and A† can be split up in multi-

plications involving the component matrices I, 	 and K. The unit

matrix I does not require any work and multiplying the diagonal ma-

trix 	 also comes at a negligible cost. The most expensive operation

involves the electric kernel matrix K containing the Green’s tensor’s

volume integrals. While it has no zero elements, it does contain a

great deal of structure and redundancy, which especially surfaces

when cast into components of block-Toeplitz-like form. Then the

matrix can be multiplied with a vector using convolutions, which are

efficiently carried out in wavenumber domain. In the literature, often

horizontal wavenumber domain formulations are exploited, which

rely on a horizontally invariant background medium (e.g. Avdeev

et al. 1997; Tseng et al. 2003). Green’s tensor is then also invariant

against a horizontal translation of the source–receiver pair:

G i j (x, y, z|x ′, y′, z′) = G i j (0, 0, z|x ′ − x, y′ − y, z′). (23)

It has been demonstrated by Millard & Liu (2003) that in such a

layered background medium, the Fourier transform can be applied

to all three space dimensions. We apply their approach to our some-

what simpler situation of a homogeneous half-space background.

Because the only inhomogeneity in σ b in vertical direction is the

air–Earth interface, Green’s tensor can be decomposed into direct

waves and waves reflected from this interface:

G i j (x, y, z|x ′, y′, z′) = G−
i j (0, 0, 0|x ′ − x, y′ − y, z′ − z)

+ G+
i j (0, 0, 0|x ′ − x, y′ − y, z′ + z). (24)

The first term is invariant against any translation of the source–

observer pair. The second term is invariant against the common

translation of the observer and a virtual source located above the

surface, which is the actual source mirrored at z = 0. The respective

contributions are easily identified in the employed formulation of the

Green’s tensor (Section 4.2.1). In order to preserve the translation

invariance for the discrete kernel K, the discretization must be

chosen uniform along all three space dimensions, so that all blocks

have the edge lengths 
x, 
y and 
z . By splitting the integrands to

the Green’s tensor integrals according to the decomposition (24),

we obtain K in terms of a sum of two matrices

K = K− + K+, (25)

whose elements are then invariant against discrete translation. Then,

both K+ and K− have a Toeplitz-like structure and their elements

can be arranged as a convolution kernel on a 3-D grid. Thus, the

two parts K+f and K−f of the product Kf of K with some vector

f can be calculated separately via digital convolutions, which are

evaluated using the 3-D FFT. A detailed description of the required

operations, as well as the product involving the adjoint kernel K† is

given in Appendix B. There, we also detail the matrix representation

(expression B4) and the kernel representation for K± (expressions

B5 and B6).

4.1.4 Approximate matrix products using nested FFTs

Since the principal computational effort in the products involving

the system matrix A or its adjoint A† are the products Kf and

K†f, we describe here a method for specifically speeding up these

operations.

The representation of the fields and conductivity on a uniform

grid is a requirement for the use of FFTs. Green’s tensor has steep

slopes in the vicinity of the source. Therefore, for an accurate

modelling using pulse basis functions, a fine discretization is re-

quired. On the other hand, the kernel becomes smooth rapidly with

increased distance to the source.

This obstacle is for example tackled using pre-corrected FFTs as

described by Phillips & White (1996). A more recent application

in electromagnetic geophysics has been presented by Nie et al.

(2013). A fine, usually unstructured grid is used only for close-

range interactions, and far-range interactions are represented by

proxy point dipoles located on the nodes of a uniform grid. The

uniform part is then evaluated with FFTs similar as it has been

described above. The term ‘pre-corrected’ refers to the necessity of

correcting the input to the Fourier product by the interaction that

has already been accounted for on the fine grid. We follow a similar,

but simpler idea. Instead of a uniform grid together with a variable

grid, we use several nested uniform block grids, applying only a

certain range of the kernel on each grid. By using uniform grids, we

can use FFTs throughout, and our counterpart of the pre-correction

step becomes almost trivial.

We approximate Kf by the following procedure (see also the illus-

tration given in Fig. 1): we separate K± (also denoted as L±
0 ) into a

short range part K±
0 and its long range complement L±

0 − K±
0 . The

subscript j = 0 indicates that all three quantities are represented

on the finest grid. We keep the short range part and replace the

complement by an approximation L±
1 on the next coarser scale grid

(j = 1) by using localized spatial averages. Dropping the short-range

part from L±
1 decreases its high wavenumber content considerably

and thus permits down-sampling without significant loss of infor-

mation. This removal is the counterpart to the pre-correction in the

pre-corrected FFT method. The procedure is then repeated with L±
1 ,

splitting it into an intermediate range part K±
1 and an approximation

L±
2 to the remainder. We continue until K± is completely decom-

posed. Then we compute a down-sampled version f j for each scale,

and apply the corresponding partial kernels K±
j to it as described in

Figure 1. Left-hand panel: sketch of the generation process of the nested

kernel matrices K±
i from the original fine scale kernel K± in one dimension

and for three scales (see algorithm described in the text). The elements of

the kernels are arranged as convolution kernels, with the source point in the

centre. Dark colours indicate large values, white denotes zero. From top to

bottom, the scale of the kernel becomes successively coarser. Right-hand

panel: the sequence of down-sampled versions fi generated successively

from vector f in its original fine scale representation. After the generation

of Ki and fi , the partial products Ki fi can be performed and their results are

accumulated on the original fine scale.
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780 J. Kamm and L. B. Pedersen

Section 4.1.3 and Appendix B, and accumulate the partial sums to

obtain an approximation to Kf.

For a detailed discussion of this, we may study the formalization

of the algorithm:

L±
0 = K±

j = 0, (26)

then repeat

K±
j = N

{

L±
j

}

L±
j+1 = A1

{

L±
j − K±

j

}

j = j + 1 (27)

until jN∗ ≥ N{x, y, z}. After these preliminary steps, the product is

evaluated by

f0 = f

f j+1 = D1

{

f j

}

Kf ≈
∑

j

U j

{

K−
j f j + K+

j f j

}

. (28)

The adjoint product K†f can be obtained by replacing all occur-

rences of K± with (K±)†.

The operation of selecting a short-range subset is denoted as

N {·}. For L−
j all blocks closer to the source position than a certain

distance are considered. In the case of L+
j , the relevant distance is to

the mirror source. We represent the elements of L±
j as convolution

kernels, where they are gathered into a 3-D grid with the indices kx,

ky, kz (i.e. the forms B5 and B6 in Appendix B). Then, we extract

those elements for which k{x, y, z} ≤ N∗, where N∗ is defined as a

fixed small number. The respective short-range distance for each

nesting level is then proportional to the grid scale.

The operation D1 {·} represents a spatial down-sampling of the

argument by one scale by taking a local average. Each vector com-

ponent is considered independently. Application of D1 to a field

is straight-forward, as can be seen from a grid representation like

(B3). Each average is computed over p × p × p elements, reducing

a Nx × Ny × Nz grid to a Nx

p
× Ny

p
× Nz

p
grid.

The pseudo-inverse operator of j consecutive applications ofD1 is

denoted as U j {·}, up-sampling from any coarse grid to the original

grid. It attributes the value of a large block to all small blocks

inside it.

The operation A1 {·} gives the approximation of a matrix ar-

gument by a corresponding matrix on the next coarser grid. The

approximation can be carried out in different ways. It is natural to

consider the arithmetic mean of the averaged matrix block, that is

to apply D1 first to the columns and p · D1 to the rows of the ma-

trix. The factor p is required because the row dimension represents

volume integrals that must be summed instead of averaged. Alterna-

tively, because all matrices are of Toeplitz-type, A1 can be defined

simply as an averaging of the convolution kernel that comprises

the matrix rows. This can be achieved through the application of

p · D1 to the kernel elements arranged in the form of a convolution

kernel on a grid (expressions B5 or B6). The Toeplitz-type matrix

obtained from the averaged kernel is not column averaged. Instead,

each column contains only the entries that relate the averaged coarse

scale volume elements to the midpoints of other coarse scale vol-

ume elements. While the former of two methods requires all finest

grid matrix elements to be known and recursively builds coarser el-

ements from them scale by scale, the elements in the latter method

can be directly integrated, and are thus significantly less work. The

first approximation is theoretically more justified because it is an

approximation of the matrix instead of the kernel. However, our

experiments show that the difference between both approximations

is in fact much smaller than the error introduced by either of the

two approximations. The reason is that the difference between two

averages is on the order of the magnitude of the variation of the

fine scale representation over the approximating large scale cell. In

order to make the approximation feasible in the first place, the range

parameter N∗ must be chosen large enough so that this variation is

small. We choose to use the second method, which is much more

economical.

Note, that while in the non-nested version of the algorithm,

the size of the Fourier products Nfull = (3Nx − 2) × (3Ny − 2) ×
(3Nz − 2) (i.e. N{x, y, z} and 2N{x, y, z} − 1 elements along the re-

spective dimensions of f and K) is reduced to Nnested = (Nx +
2N ∗ − 2) × (Ny + 2N ∗ − 2) × (Nz + 2N ∗ − 2) on the finest scale,

which comprises by far the most work intensive part. Since the

range parameter N∗ is usually much smaller than N{x, y}, it fol-

lows that Nfull ≈ 9Nnested. The computational effort of the Fourier

transform is proportional to Nlog N (Cooley & Tukey 1965). There-

fore, we expect that the ratio of computation times between the

full and nested FFT keeps increasing by a logarithmic factor. Re-

sults of a performance test with variable horizontal model size

are shown in Fig. 2. Because of the large memory requirements

for the full FFT, we were only able to compare calculations up to

slightly more than 105 field variables. For small models, the im-

provement is as expected not significant. For larger models, the

acceleration factor increases to ≈6.4 throughout the experiment,

but the increase slows down, which is also in agreement with our

expectations.

While the modelling accuracy is assessed in Section 4.4, the

error that is exclusively caused by the approximate matrix product

is illustrated in Figs 3 and 4. The secondary electric field for a

Figure 2. Comparison of computation time for both polarizations over de-

grees of freedom of the fields, using full FFT (‘×’) and the nested grid

approximation (‘+’) for the matrix products. All measurements were taken

from calculations without pre-conditioning. The anomalous domain consists

of N × N × 12 blocks, that is, the number of parameters is varied along

the horizontal dimensions. The bold numbers represent the speed-up ratio
tfull

tnested
.
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Inversion of airborne tensor VLF data 781

Figure 3. Absolute value of the secondary field due to an Ex—polarized plane wave computed on a fine grid (block size 50 m × 50 m × 25 m, left-hand

column) and using the nested grid approximation (central column, grid displayed at the bottom). The right-hand column shows the magnitude of the difference

between the full and the approximate modelling. The resistivity model used is displayed at the bottom left-hand side (background 5000 �m)

simple conductivity model (two conductive and a resistive block in

a 5000 �-m background, see Fig. 3, bottom left) due to a plane wave

Ep = ûx e−k2
b (z)z is modelled once on a fine grid and once using the

nested grid approximation (Fig. 3, left-hand and central column). A

horizontal slice through the nested grids is shown as well (Fig. 3,

bottom central panel). The same nested grid is used throughout this

study (p = 3 and N∗ = 7, i.e. the edges of the subgrids consist of

15 blocks).

The approximation is most accurate within the anomalous bod-

ies, but away from them the error in the fields due to the coars-

ening becomes evident. The overall error is 6 per cent for this

example. While this is a significant error amplitude, the trans-

fer functions at 60 m height over the model are practically un-

affected by the approximation because the errors in the Earth

are mostly high wavenumber features that are filtered out by the

upward continuation to the measurement coordinates (compare

Fig. 4).

4.2 Green’s tensor

4.2.1 Definition and analytic expressions

Green’s vectors are defined as the solutions to

∇ × ∇ × Gi (r
′|r) + k2

bGi (r
′|r) = δ(r − r′)ûi . (29)

Physically, they represent the electric field in a conductivity structure

σb(r) excited by a unit point dipole oriented along the i-direction,

and located at r′. Green’s tensor is composed of the three Green’s

vectors for i = x, y, z.

For layered (only vertically varying, piecewise constant) σ b, the

equation is solved in the usual way by transforming it to horizontal

wavenumber domain and finding the solution for every individual

wavenumber analytically. The Fourier synthesis involves Hankel

integrals of the obtained expressions. For the case of σ b representing

a homogeneous half-space, closed-form integrals have been found
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782 J. Kamm and L. B. Pedersen

Figure 4. Top: transfer functions T{x, y} derived from the fields displayed in Fig. 3 at a flight height of 60 m. Dots: fine grid modelling. Solid line: nested grid

approximation. Bottom: difference between the two. The transfer functions are ordered by their index in the data vector, which is of no particular importance

here.

for both field and source located in the subsurface (Raiche 1975;

Weidelt 1975). In our notation, with

R2
± = (x − x ′)2 + (y − y′)2 + (z ± z′)2 (30)

g± =
e−kE R±

4π R±
(31)

γ = ∂z

{

I0

[

1

2
kE

(

R+ − z − z′)
]

K0

[

1

2
kE

(

R+ + z + z′)
]}

/(2π )

(32)

the Green’s tensor elements for z > 0, z′ > 0 and for a conductivity

structure

σb(z) =

{

0 z < 0

σE z > 0

k2
E = iωμσE (33)

read

k2
b G{xx,yy} =

[

k2
b − ∂2

{x,y}
]

(g− − g+ − γ ) + ∂2
z (2g+ + γ ) (34)

k2
b G{xy,yx} = −∂x∂y (g− − g+ − γ ) (35)

k2
b G{xz,yz} = −∂{x,y}∂z (g− + g+) (36)

k2
b G{zx,zy} = −∂{x,y}∂z (g− − g+) (37)

k2
b Gzz =

[

k2
b − ∂2

z

]

(g− − g+) . (38)

In this formulation, direct waves are easily identifiable by their

z − z′-dependence, that is all terms involving g−. The remaining

terms contain g+ and γ . Because of their z + z′-dependence, they

must be reflections from the air–Earth interface. As we pointed out

above, the direct and reflected waves are treated separately in order

to allow the use of 3-D FFTs.

4.2.2 Volume integration of Green’s tensor

For the computation of the elements of the matrix K (even though

K− and K+ are treated separately, this is not explicitly stated here), it

is required to compute volume integrals of G over the discretization

blocks. Therefore, many differentiations do not need to be carried

out. For the direct component g− it holds
∂g−

∂{x,y,z} = − ∂g−
∂{x ′,y′,z′} , while

for the reflections from the air–Earth interface g+ and γ it holds
∂{g+,γ }
∂{x,y} = − ∂{g+,γ }

∂{x ′,y′} and ∂{g+,γ }
∂z

= ∂{g+,γ }
∂z

, respectively. Most of the

volume integral terms reduce to more convenient surface and line

integrals.

For R± → 0, Green’s tensor becomes singular. The volume in-

tegrals that include the point R± = 0 are therefore not amenable

to numerical integration. In the past, numerous techniques have

been proposed as how to deal with this problem. van Bladel (1961)

discovered that the integrations exist in a principal value sense,

and that the principal value depends on the geometry of the in-

finitesimal volume. Later on, the more practical expressions to deal

with a finite volume have been given by Fikioris (1965). Weidelt

(1975) simplified the problem by replacing the concerned block by

a sphere of equal volume that also permits analytic integration over

the singularity. Gao & Torres-Verdı́n (2005) demonstrated how the

singularity can be avoided by evaluating all integrals over surfaces

enclosing the singularity instead of over the volume.
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Inversion of airborne tensor VLF data 783

In this paper, we use a technique of singularity removal that has

been for example stated by McKirdy (1989). It is intuitively clear

that very close to the source, g± may be replaced by the near-field

limiting expressions for small k2

g0
± =

1

4π R±
. (39)

This can be shown more rigorously by expanding e−k R± around

kR± = 0. The first term gives then g0
±, and all higher order terms are

not singular. Furthermore, expression (39) and its derivatives can be

integrated analytically. The corresponding antiderivatives are given

in Appendix C. Thus, the singular terms can be subtracted, so that

the remaining functions can easily be integrated using numerical

quadrature. Afterwards, the analytically integrated singular terms

are added again.

An additional detail, which to our knowledge has not been men-

tioned in the literature, is that γ contains an additional singularity

of the same form as the one in g+. We uncover this by investigating

its behaviour for small k2

γ =
1

2π

∂

∂z

{∫ ∞

0

1

α
e−α(z+z′) J0(κr )dκ

}

= −
1

2π

∫ ∞

0

e−α(z+z′) J0(κr )dκ

γ 0 = lim
α→κ

γ = −
1

2π

∫ ∞

0

e−κ(z+z′) J0(κr )dκ = −
1

2π R+
= −2g0

+

(40)

where

α2 = κ2 + k2
E . (41)

Here, we used the Hankel integrals that underlie the solution (38),

namely

∫ ∞

0

κ

α
e−α(z+z′) J0(κr )dκ =

e−kE R+

R+

∫ ∞

0

e−α(z+z′)

α
J0(κr )dκ = I0

[

kE

2

(

R+ − z − z′)
]

× K0

[

kE

2

(

R+ + z + z′)
]

. (42)

The first is the Sommerfeld identity and the second can be found in

(Gradshteyn & Ryzhik 2000, eq. 6.637.1).

Because neither of the singularities of g+ or γ is located within the

domain of integration, both can in principle be ignored. However,

close to the Earth surface, the integration converges significantly

faster when removing the highly dynamic components g0
+ and γ 0.

The formulation and integration of magnetic Green’s tensor in-

tegrals are outlined in Appendix D.

4.3 Gradient calculation using the adjoint method

The adjoint method is useful to facilitate the calculation of deriva-

tives in inverse problems by cleverly rearranging the equations, so

that often costly, unnecessary computations of intermediate results

can be avoided. It is frequently used for the calculation of Fréchet

derivatives (e.g. McGillivray & Oldenburg 1990) and the gradients

of the objective functional of the inverse problem, but can also be

used to calculate columns of the exact Hessian matrix (Fichtner &

Trampert 2011).

A very useful review of the adjoint method for gradient com-

putation in general geophysical applications is provided by Plessix

(2006). A comprehensive account of the adjoint method in electro-

magnetics is given by Pankratov & Kuvshinov (2010) and Egbert &

Kelbert (2012). Both demonstrate that due to the electromagnetic

reciprocity relations, the adjoint problems can be solved using the

same system matrix as in the forward problem, even if the particular

formulation of the physics is not (complex-)symmetric, as it is the

case for the integral equation formulation. This makes it possible to

utilize existing forward codes for derivative or gradient calculation.

More importantly, if the system matrix has been factorized dur-

ing the forward solution, the factors can be recycled in the adjoint

problem. This can be a great computational advantage. The general

adjoint formulation covered by Plessix (2006) does not necessar-

ily yield this result, unless the forward formulation chosen yields

a symmetric system matrix. Otherwise, it requires the solution of

an adjoint problem different from the forward problem in that it

involves the adjoint of the forward system matrix. We choose to use

this general formulation, because our implementation relies on an

iterative solver, leaving no major advantage of one formulation over

the other. In Appendix E, we give a short summary of the adjoint

method as well as the resulting expressions for the adjoint problems

to be solved for each of the two plane-wave polarizations (eq. E15)

and the formula for the gradient (eq. E16). We verified the gradi-

ents computed from these expressions against gradients obtained

through perturbation of individual model parameters.

4.4 Verification of the forward calculation

In order to assess correctness, accuracy and limitations of the for-

ward routine, we conduct a number of synthetic tests. We compare

pseudo 2-D responses obtained using a feasible model discretiza-

tion to those obtained from a well-established 2-D modelling code

EMILIA (Siripunvaraporn & Egbert 2000; Kalscheuer et al. 2008).

We simulate a small, near-surface conductor (50 m × 50 m cross-

section) of variable magnitude (10, 100 and 1000 �m) in a homo-

geneous, resistive background (5000 �m). Acquisition parameters

are similar to the real data case (flight altitude 60 m, field frequency

23.7 kHz, skin depth in the background ≈230 m). Near-surface

anomalies require finer discretization than deeply buried bodies, be-

cause the plane-wave primary field decays exponentially with depth,

and so does its discretization error. We discretize the anomaly with

blocks of size 50 m × 50 m × 25 m, which is the discretization

we want to use in the inverse problem. The results are shown in

Fig. 5, left-hand panel. For 1000 �m, the discrepancy is negligible,

for 100 �-m it is minor and for 10 �m, the discrepancy is severe,

especially for the real part. Thus, we decide to limit the lowest per-

missible resistivity in the inversion to 100 �-m in order to be able to

use this block size. The consequences of this limitation are studied

below. In the second experiment (see Fig. 5, right-hand panel), we

adapt the discretization to the 10 �m–anomaly. The required block

size is as small as 10 m × 10 m × 2.5 m, which is currently not

feasible on our computers.

5 T O P O G R A P H Y E F F E C T S

Since our forward modelling does not account for the influence

of topography on the data, it is worthwhile to assess it. On the one

hand, the topography may give rise to induction effects. On the other

hand, the air-plane carrying the measurement instruments follows

the topography variations, thus inclining the instruments and tilting
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784 J. Kamm and L. B. Pedersen

Figure 5. Comparison of magnetic transfer functions from the 3-D code and from 2-D modelling code EMILIA. Left-hand panel: variable anomaly magnitude

(ρ =10 �m, 100 �m, 1000 �m), fixed discretization (50 m × 50 m × 25 m). Right-hand panel: fixed anomaly magnitude (ρ =10 �m), variable discretization

(50 m × 50 m × 25 m and 10 m × 10 m × 2.5 m).

the coordinate system against the reference system. The latter effect

could theoretically be reversed if the orientation of the air-plane is

well known. This is usually not attempted because the tilt of the

coordinate system can in fact counteract the distortion due to the

topography.

We used 2-D forward modelling to get an image of the extremal

cases of topography perpendicular and parallel to the flight direction

of the air-plane. In both cases, the transfer functions are propagated

to the flight altitude. However, only for a flight direction perpen-

dicular to the valley, the air-plane tilts its nose up or downwards to

smoothly follow the topographic variation and maintain its relative

altitude. Commonly, this motion is referred to as air-plane pitch.

The pitch has to be taken into account when simulating the effect

of topography. It can be computed by mathematically rotating the

fields in the vertical plane of the flight line prior to transfer function

estimation. For a flight direction parallel to the valley, the air-plane

remains at a constant height and maintains a horizontal axis. Along

a single flight line, there is no variation of the response. Therefore,

we model one measurement per flight line parallel to the topogra-

phy and align them in a profile. Practically, the obtained transfer

functions follow from the same computation as the first simulation

by omission of the air-plane pitch.

We simulate a valley that deviates from the surrounding flat

topography by 60 m. The valley was simulated with and without a

conductive sediment fill [see Fig. 6, black lines in panels (a)–(d)]

and with a basement of high and intermediate resistivity (5000 �m,

1000 �m). Finally, we compare the results to a computation that,

like our modelling code, neither takes the behaviour of the air-

plane nor the topographic variation into account [Fig. 6, red lines

in panels (a)–(d)]. Obviously, in the case without conductor, there

is no anomaly when the Earth is considered flat.

In order to understand the nature of the topographic distortion,

it is useful to first consider flight parallel to topography, that is the

pure topographic effect without pitch cancellation [Fig. 6, second

row in panels (a)–(d)]. The topography affects mainly the real part

of the data. The imaginary part can be considered mostly unaf-

fected. Additionally, the distortion magnitude is larger for a more

conductive basement. For a resistive basement, the topography dis-

tortion [Fig. 6, panel (a), second row, black lines] and the conductor

effect [Fig. 6, panel (b), second row, red lines] are almost in linear

superposition [Fig. 6, panel (b), second row, black lines]. For the

more conductive basement, the independent effects combine in a

more complicated way. The real part is severely distorted.

Next, consider the pitch cancellation effect occurring for flight

perpendicular to the topography [Fig. 6, first row in panels (a)–(d)].

The cancellation works better over a more conductive basement,

as long as no conductor is involved, because then the topographic

influence is more localized than in a resistive basement due to

stronger damping. When the conductor is present, at least the peak

amplitudes of the anomaly are mostly correct. We can draw the

general conclusion that the tipper component along the flight line

is much less affected by the topography, meaning that the air-plane

inclination generally counteracts at least the low-wavenumber part

of the topography effect. For flight lines along the valley, the ef-

fect is significant and should be corrected. It should also be noted

that topography in general is a 3-D effect on both components of

the transfer function. The 2-D cases of topography parallel and

perpendicular to the flight direction are external cases that should

encompass most non-pathological 3-D situations. Even though it

would be best to include the topography into the forward model,

this is difficult with our routine, since this would require a very fine

vertical discretization.

6 S Y N T H E T I C E X A M P L E

To illustrate the resolution of the VLF method, its limitations and

to study the effect of the lower resistivity limit of 100 �m, we per-

form two synthetic tests with pseudo 3-D data computed from a 2-D
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Figure 6. Topography effects over a valley of 5000 �m(a) and 1000 �m(c) and the same with a conductive sediment fill (300 �m) added (b), (d). In each

panel, the anomaly for flight direction across topography is presented at the top, along the flight direction in the middle, and the resistivity model with a

black line marking the flight altitude are displayed at the bottom. The red lines are computations where the topography as well as the flight altitude are

considered flat.

model using EMILIA. The data set is simply replicated along strike

direction. The synthetic models are depicted in the central row of

Fig. 7. In the first experiment, the model contains a shallow conduc-

tor of 20 m thickness and a buried, voluminous, eastwards dipping

conductor of 10 �m in the western half of the model. The same

anomalous structures but with 100 �-m resistivity are repeated in

the eastern half (Fig. 7, left panel). The frequency, flight altitude and

background resistivity are identical to those in the previous section.

The second experiment is very similar, but the shallow conductor is

continued to great depth, while the dipping conductor from first ex-

periment is reduced to its 50 m thick top. The permissible parameter

range for the inversion is 100 �m < ρ < 10 000 �m. Since that data

has not been contaminated with synthetic noise, the sole theoretical

limit on the data fit is due to the regularization term. Therefore,

we arbitrarily stopped the inversion upon reaching a misfit level

corresponding to σ 2
d = (0.015)2. We observe that both experiments

give practically the same results, illustrating the fact that there is too

little energy penetrating through the conductive structures. The con-

ductor top, which is identical in both experiments, is imaged very

reliably. This may already be expected from studying the similarity

of the anomalies of the two experiments. A further indication gives

z∗, that is the real part of the C-function (Schmucker 1970), which

is estimated from the determinant of the impedance tensor (Ward

& Hohmann 1988). If interpreted as the C-function of a 1-D Earth,

it corresponds to the depth to the centre of mass of the in-phase

component of the induced currents, similar to the electromagnetic

skin-depth in a half-space. It may thus be regarded as a measure for

the depth of penetration. Because of the 1-D interpretation required

and because there is exactly as much (in-phase) current below z∗ as

there is above, we believe that this measure is only indicative and

possibly conservative. Therefore, we also display 1.5 × z∗ as an

alternative measure. This is in accordance with the depth of inves-

tigation after Spies (1989), even though this author’s reasoning is

based on a 1-D treatment, which is not possible in the case of mag-

netic transfer functions. Additionally, the C-function contains also

the TM-mode (transversal magnetic, i.e. poloidal currents), which
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786 J. Kamm and L. B. Pedersen

Figure 7. Pseudo 3-D data generated by EMILIA, inverted with the 3-D code. Top panel: Simulated (solid line) and predicted (dots) transfer functions. Central

row: synthetic models. Bottom panel: pseudo 3-D inversion results. The black line in the models corresponds to 1× and 1.5× the real part of Schmucker’s C.

does not relate to the purely TE-mode VLF response (transversal

electric, i.e. toroidal currents). Our conclusions generally agree well

with the detailed resolution analysis provided by Oskooi & Pedersen

(2005).

The conductivity of both conductors as well as resistors is gen-

erally underestimated. Moreover, due to the conductivity limit in

the inversion and the true conductivity anomaly exceeding the limit

in the West, the data fit is worse than in the East especially with

respect to the peak amplitudes, but we do not observe any structural

artefacts.

7 F I E L D DATA E X A M P L E

7.1 Geology

The area of study is located in Lappland (northern Sweden). An

overview of the geological situation is presented in Fig. 8. Most

rocks in the area are proterozoic and of magmatic origin. Granites

are denoted by reddish colours, while the more mafic rocks are

depicted in greenish colours. We selected a 10 km×10 km area for

inversion.

7.2 Data

The measurements collected are displayed in Fig. 9 (top row).

Recordings were taken at 27 103 positions, located along 51 flight

lines oriented E–W. The spacing between measurements is circa

20 m, the line spacing is 200 m.

An estimate of the normal-distributed, unbiased part of the mea-

surement noise is available because high wavelengths are strongly

damped at flight altitude. Their presence in the recordings is then

unquestionably a noise effect. Because the magnetic field in the air

is a potential field, the damping can be quantified as e−2πh/|λ|, where

λ is the wavelength. For small anomalies this is also true for the

Tipper, because the anomalous horizontal field is small compared

to the normal field and so the Tipper elements can be considered as

scaled vertical magnetic fields. Therefore it is possible to choose a

threshold, so that all shorter wavelength are classified as noise (for

example, 65 dB correspond to λthres ≈ 50 m). For Gaussian noise,

the spectrum is white. Thus, we can assume equal noise content over

all the wavenumber spectrum and derive an estimate of the variance

Figure 8. Geological map of the study area. The black box indicates the

location of the data set used in this example.

there-from. For the data set shown, we estimate σ 2
Tx

= (0.029)2 and

σ 2
Ty

= (0.017)2 (σ 2
mean = (0.024)2). This agrees with the visual im-

pression that the Tx component is slightly more noisy.

The estimate is most likely an underestimate because of probable

systematic errors in this kind of data. They arise from unprotocolled

movements of the aircraft, but also from man-made noise sources.

Because this particular area is located in a national park, the influ-

ence of man-made infrastructure is assumed negligible. However,

the tendency for a very systematic data misfit between the data and

the inversion result—or conversely the extremely unrealistic struc-

tures required to remove it—indicate that there is still considerable

bias in the data. Investigation of other regions from the same data
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Figure 9. Observed VLF anomaly (top panels), compared to predicted anomaly from inversion result (bottom panels). The left-hand panels depict the real part

of the data, the imaginary part is displayed on the right. The data is fit to an rms of ≈ 0.034. A conservative estimate of the noise level gives ≈ 0.024.

set lead to the same conclusion. An additional source of apparently

biased data misfit is due to disregarding topographic effects.

7.3 Inversion

We parametrize the computational domain down to a depth of 600 m.

The resistivity of the background half-space is chosen as 5000 �m.

The forward model is uniformly discretized using a block size of

50 m × 50 m × 25 m, whereas the layer thickness of the model

for the inversion increases with depth. The first layer is 25 m thick

and each following layer is twice as thick as the previous one. The

model grid is laterally extended by 750 m (>3 times the skin depth

in the background) around the data covered region, in order to avoid

truncation effects. This margin is removed from the model after the

inversion. The forward problem consists of 227 × 230 × 24 × 3 field

quantities (≈3.8 × 106 unknowns). We invert for 227 × 230 × 5

model blocks (≈2.6 × 105 unknowns). The inversion stopped at

iteration number 10 and took in total two hours on 12 CPUs.

7.4 Inversion result

The inversion result explains all data to an rms of ≈0.034. The

estimated data is displayed in Fig. 9 (bottom row). While the overall

picture is in consistent with the observations, there is a systematic

underestimation of the imaginary parts throughout. For the reasons

given above, we believe that the data is biased.

The upper 150 m of the inversion result are shown in Fig. 10. The

lower layers mostly exceed the z∗ measure for penetration depth

considerably. Only the most resistive structures can be resolved at

even greater depth. An impression of this is given in slices through

the 3-D model in Fig. 11, where z∗ and 1.5× z∗ are included.

Fig. 10 also shows on the right-hand panel an apparent resistivity

map derived from the data (Becken & Pedersen 2003). The long

wavelength features are in excellent agreement with the inversion

model, but conductivity amplitudes are much less dynamic. This

can be expected because the transformation implies a half-space as-

sumption and consequently involves averaging to a certain degree.

For the same reasons, the inversion is able to reproduce features

of much larger wavenumber and therefore a more detailed image

in the lateral directions, as the one available from the map inter-

pretation. It has been demonstrated in the synthetic studies above

(Section 6), that we can only expect vertical resolution to a certain

extent, namely down to where the first conductor is encountered.

This manifests itself in predominantly vertical contrasts as shown

in Fig. 11. Resistive structures underneath the conductive top may

be shielded. A dipping conductive top can, however, be reliably re-

solved. As an example, both slices show at ≈1 690 000E a westward

dipping conductor, a feature that can not be suspected to exist from

the apparent resistivity map alone.

Fig. 12 shows a conductor–resistor map. Therein, the inclina-

tion of this conductor can be followed for several kilometres from

≈7 423 000N to ≈7 427 000N. The map demonstrates that espe-

cially faults or weakness zones at geological contacts are often as-

sociated with lower resistivity (Fig. 12, left-hand panel). We believe

that fractures give passage to water that permits current flow. Highly

resistive zones often coincide with topographic highs (Fig. 12, right-

hand panel). One possible explanation is that since the topography

in the area is mostly formed by the movement of glaciers during

the last glacial, hills and mountains may be related to structurally

stable regions that withstood the erosional forces. They may thus

lack fracture zones and other fluid passage ways. Another possible

reason for the correlation is that topographic lows are associated

with extended wetlands that yield an elevated conductivity at the

surface, masking possible buried resistors.

8 C O N C LU S I O N S

We have developed a large-scale inversion method for airborne ten-

sor VLF data in order to increase the utility of the Swedish VLF

data set beyond map-based interpretation. This is the first time it

that a 3-D inversion of this kind of data has been attempted. Because

of the discrepancy between the model scale of interest (kilometres)
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788 J. Kamm and L. B. Pedersen

Figure 10. The uppermost three layers of the inversion result (first three panels) in comparison to the apparent resistivity map derived from the data using the

transformation introduced by Becken & Pedersen (2003). Deeper layers are not shown because they are mostly unresolved. Two selected sections, denoted as

A–A′ and B–B′ in the leftmost panel, are shown in Fig. 11.

Figure 11. E–W slices (B–B′ and A–A′, compare Fig. 10) through the resistivity model at two different latitudes. Same colour scale as in Fig. 10. Beneath

each slice, the corresponding part of the surface geological map is shown for comparison (see legend on Fig. 8), on which the dashed line marks the outcrop

of the section. The shallow black line indicates z∗, a conservative measure of penetration depth (see text). The deeper black line is z∗ multiplied by 1.5. The

area below is shaded since it marks the less well-constrained structures and care must be taken in the interpretation.

and the wavelength of the relatively high-frequency fields (tens

of metres), the implementation of a computationally feasible for-

ward modelling was challenging. The fundamental aspects are the

exploitation of certain symmetry properties of Green’s tensor, so

that 3-D FFTs are applicable in the evaluation of matrix products

required by the iterative system solver, and a novel nested grid ap-

proximation that effectively limits the computational effort on each

grid scale to the respective important wavelength. It is noteworthy

that even though the latter approximation introduces a significant

error to the fields modelled within the Earth, the responses in the

air are practically unaffected. We conclude that the errors are well

behaved in the sense that they cancel during averaging. An addi-

tional concern is that the discretization requirements increase with

conductivity. Since the block size is prescribed, it is necessary to

limit the lowest resistivity in the inversion. Most of Sweden is lo-

cated on a highly resistive crystalline bedrock. Therefore, the bulk

of the data set can be treated with the method as described, but an

adaptation of the discretization is undoubtedly necessary for data

collected over the sea or over mineral bearing districts such as the

mining areas in the country. The choice of NLCG as an inversion

algorithm is motivated by the low memory requirements.

Since the modelling at present does not respect topography, we

evaluated its influence in synthetic studies and found that it can con-

siderably bias the responses, especially for topography variations

perpendicular to the flight direction. Variations along the flight di-

rection are counteracted to a certain extent by the air-plane, which

by smoothly following the landscape causes a contrarious effect. For

a modelling of these effects, it would also be necessary to record

the air-plane orientation precisely.

In the application of the inversion to synthetic and field examples

we can pinpoint the improvements of an inversion against a map-

based interpretation. While the vertical variations resolved are as

expected limited, the top of conductive structures is a well-defined

feature. For example, dip directions of dipping conductors can be

estimated. Additionally, the inversion results have a very high lat-

eral resolution due to the data density, so that contrasts, especially

at the surface, are very pronounced. This focussing is a property of

the inversion, because a part of it is the inversion of the smooth-

ing that the anomalous electromagnetic fields undergo during the

propagation from the causative structures to the measurement level

in the air. Furthermore, the inversion result represents a model of

reality that is physically consistent with the data. This can never be

a property of map representations.

In particular, a very good correlation is found between elongated

conductor systems and known geological features, such as geolog-

ical contacts and associated fracture zones, as well as faults. The

conductors suggest in many cases the presence of structures that

are not found in the geological map, or only partially. Resistors

correlate well with topographic highs, which is due to the lack

of wet sediments on the crystalline ridges and because those are
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Inversion of airborne tensor VLF data 789

Figure 12. Comparison of conductors (ρ < 1500 �m, blue) and resistors (ρ > 15000 �m, red) with the surface geology (left-hand panel) and the topography

(right-hand panel). Bright colours indicate shallow, dark colours deep structures.

possibly very intact, which is indicated by their remaining after

heavy glacial erosion. Buried resistors in the lower areas are not

easily resolved, since there are usually extended swamps and thus,

surface conductivity is elevated and masks the resistive rocks to a

certain extent.
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A P P E N D I X A : D I S C R E T I Z AT I O N O F

T H E I N T E G R A L E Q UAT I O N

The integral equation (10) can be rearranged in the following way

∑

j=x,y,z

∫

V ′

{[

δi jδ(r − r′) +
(

G j (r
′|r) · ûi

)

k2
a(r′)

]

û j

}

· E(r′)dV ′

= Ep(r) · ûi . (A1)

Here, we used the identity

E(r) · ûi =
∑

j=x,y,z

δi j

∫

V ′
δ(r − r′)E(r′) · û j dV ′ (A2)

with the Kronecker symbol

δi j =

{

1 i = j

0 i �= j
. (A3)

In order to discretize eq. (A1) we make the same approximations as

Weidelt (1975) or Hohmann (1975):

(i) The computational domain is bounded, that is no anomalies

are found outside of it or they are sufficiently far away to be ignored.

(ii) The domain is subdivided into block-shaped volumes (cells)

within each of which the anomalous conductivity σ a and the elec-

tric field E are approximated by constant functions (pulse basis

functions).

(iii) For the constant value of the fields, we use the value at the

midpoint of each block.

Because of the approximations (ii) and (iii), a common index k can

be assigned to the respective block volume Vk and the same block’s

midpoint position rk . The discretized electric field E consists then

of discrete values

Em = Eτ1(i,k) = Ei (rk) = E(rk) · ûi , (A4)

where

m = τ1(i, k) (A5)

is some bijective mapping from the spatial index set k and the indices

i denoting the components of the 3-D field vector E(rk) to a set of

collective indices m.

Approximation (ii) may be expressed as
∫

Vl

δi jδ(r − r′)E j (r
′)dV ′ ≈ Eτ1( j,l) ·

∫

Vl

δi jδ(r − r′)dV ′

∫

Vl

G j i (r
′|r)k2

a(r′)E j (r
′)dV ′ ≈ k2

a,l Eτ1( j,l) ·
∫

Vl

G j i (r
′|r)dV ′. (A6)
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Using this, we can now write a discretized version of eq. (A1),

namely

∑

j=x,y,z

∑

l

[ ∫

Vl

δi jδ(rk − r′)dV ′

+
∫

Vl

G j i (r
′|rk)dV ′ · k2

a,l

]

· Eτ1( j,l) = E p,τ1(i,k). (A7)

The remaining definite integrals depend only on the background

conductivity and the discretization, and can thus be evaluated and

tabulated in advance. The former set of integrals on the left-hand

side can be identified with the components of a unit matrix I with

dimensions corresponding to field discretization

Imn =
∫

Vl

δi jδ(rk − r′)dV ′ = δi jδkl = δτ1(i,k),τ1( j,l) = δmn (A8)

where n = τ 1(j, l). The latter integrals contain the elements of

Green’s tensor. They are organized in the electric kernel matrix K

in the following way:

Kmn = Kτ1(i,k),τ1( j,l) =
∫

Vl

G i j (rk |r′)dV ′. (A9)

Note that by electromagnetic reciprocity, cause and effect of an

electromagnetic field may be interchanged:
∫

Vl

G j i (r
′|rk)dV ′ =

∫

Vl

G i j (rk |r′)dV ′. (A10)

Next, the anomalous conductivity values of the blocks are sorted

into the diagonal matrix 	, which then has the entries

	mn = 	τ1(i,k),τ1( j,l) = δi jδklk
2
a,k . (A11)

With

A = I + K	 (A12)

eq. (A7) can be written as

AE = Ep (A13)

as a discrete approximation to eq. (10).

The elements of the magnetic kernel matrix in the discrete ap-

proximation (19) to eq. (15) are

KM,mn = KM,τ1(i,k̃),τ1( j,l) =
∫

Vl

Mi j (rk̃ |r′)dV ′, (A14)

where the measurement positions are denoted as rk̃ , which are spa-

tially ordered by an index set k̃ different from the set k.

A P P E N D I X B : M AT R I X

M U LT I P L I C AT I O N S U S I N G 3 - D F F T s

Here, we describe the evaluation of the matrix vector products in-

volving the kernel matrix K in detail.

It is convenient for the following explanation to express the spatial

index set k by its 1-D constituent indices kx, ky, kz , which label

the blocks and their midpoints along the Cartesian axes. Another

bijective mapping

k = τ2(kx , ky, kz) (B1)

similar to τ 1 (expression A5) relates them to k. For an anomalous

domain consisting of Nx × Ny × Nz blocks, we have

k{x,y,z} = 1, 2, . . . , N{x,y,z}. (B2)

The field and current vectors that K or K† have to be multiplied

with are then arranged as, for example,

Eτ1[i,τ2(kx ,ky ,kz )] = E(xkx , yky , zkz ) · ûi := Ei,(kx ,ky ,kz ). (B3)

Next, we introduce a corresponding notation for the elements of K,

namely

Kmn = Kτ1[i,τ2(kx ,ky ,kz )],τ1[ j,τ2(lx ,ly ,lz )]

=
∫

Vl

G i j (xkx , yky , zkz |x ′, y′, z′)dV ′ := Ki j,(kx ,ky ,kz |lx ,ly ,lz ).

(B4)

First, K is separated according to eq. (25). Then, each part of K−

corresponding to one tensor component has a nested block Toeplitz

structure, that is it is a block Toeplitz matrix where the blocks

are recursively either block Toeplitz or Toeplitz matrices (matrices

where blocks/elements are repeated along the diagonals). The struc-

ture of the corresponding parts of K+ can be called nested block

Toeplitz-Hankel (Hankel matrices are upside down Toeplitz matri-

ces), because the field indices lz of the column dimension appear

in reversed order (l̃z = Nz + 1 − lz). As a consequence, each of the

matrices is, up to the complications at the domain boundary, fully

defined by three matrix rows (one for i = x, y, z). The elements to

be tabulated are

K −
i j,(0,0,0|kx ,ky ,kz )

k{x,y,z} = −N{x,y,z} + 1, . . . , N{x,y,z} − 1 (B5)

and

K +
i j,(0,0,0|kx ,ky ,kz )

k{x,y} = −N{x,y} + 1, . . . , N{x,y} − 1

kz = 1, . . . , 2Nz − 1, (B6)

respectively, abbreviated as K±
i j in a more condensed notation. The

source is located in the midpoint of block kx = ky = kz = 0. The

index range is constrained to be large enough so that the source

block and field point can lie on opposite ends of the anomalous

domain. The product of K− and a vector f reads

∑

n

K −
mn fn =

∑

j

∑

lx ,ly ,lz

K −
i j,(kx ,ky ,kz |lx ,ly ,lz ) f j,(lx ,ly ,lz )

=
∑

j

∑

lx ,ly ,lz

K −
i j,(0,0,0|lx −kx ,ly−ky ,lz−kz ) f j,(lx ,ly ,lz ). (B7)

This can be expressed using the 3-D convolution operator ∗∗∗, that

is

K−f =
∑

j

(

�

�

x,y,z

K−
i j

)

∗ ∗ ∗ f j . (B8)

The symbol  marks the reversal of the indices along the subscripted

dimensions. Similarly, K+f can be written as

K+f =
�

⏐

�

z

⎡

⎣

∑

j

(

�

�

x,y,z

K+
i j

)

∗ ∗ ∗ f j

⎤

⎦ . (B9)
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The adjoint operations are given by

(K−)†f =
∑

i

K
−
i j ∗ ∗ ∗ fi (B10)

(K+)†f =
∑

i

K
+
i j ∗ ∗ ∗

(

�

�

z

fi

)

. (B11)

The reversal along the vertical direction in the products involving

K+ reflects the reversal of the matrix structure from Toeplitz to

Hankel. The result of eq. (B9) as well as the argument to (B11) is

subject to this reversal. In the adjoint product relations (B10) and

(B11), the matrix adjunction manifests itself in the role inversion of

the summation indices, the complex conjugation and that all three

space dimensions of the kernel are reversed when compared to the

eqs (B8) and (B9).

As indicated earlier, the convolutions can be calculated as the

inverse Fourier transform of the product of the wavenumber spectra

of K± and f, using FFT algorithms. Since neither Green’s tensor

nor any of the field quantities are periodic, the convolution is non-

circular. A non-circular discrete convolution of finite signals can

then be equivalently performed in discrete Fourier domain, if the

spectra of the input signals are sufficiently well sampled, so that their

product includes all wavenumber components required to represent

the complete spectrum of the convolution. For two signals of length

N1 and N2, their convolution has N1 + N2 − 1 non-zero elements.

This means, that K± and f both require adequate extension with

zeros prior to taking the Fourier transform. Likewise, components

of the resulting inverse Fourier transforms that lie outside of the

spatial domain of f are discarded.

Also note that the spectrum of the kernel only needs to be com-

puted once as a part of the kernel preparation. During the iterations,

the matrix vector product can be carried out using one additional

FFT and one inverse FFT for every one of the nine combinations of

i and j.

A P P E N D I X C : A NA LY T I C A L

I N T E G R A L S F O R S I N G U L A R I T Y

E X T R A C T I O N

Expression (39) and its derivatives can be integrated analytically

over a cuboid volume using the formulas

∫ x2

x1

∫ y2

y1

∫ z2

z1

1

R±
dxdydz =

⎡

⎣

[

[

xy log(R± + z)

+ xz log(R± + y) + yz log(R± + x) −
1

2

(

x2 tan−1

(

yz

x R±

)

+ y2 tan−1

(

xz

y R±

)

+ z2 tan−1

(

xy

z R±

))

]x2

x1

⎤

⎦

y2

y1

⎤

⎦

z2

z1

∫ x2

x1

∫ y2

y1

∫ z2

z1

∂2

∂x2

1

R±
dxdydz = −

⎡

⎣

[

[

tan−1

(

yz

x R±

)]x2

x1

]y2

y1

⎤

⎦

z2

z1

∫ x2

x1

∫ y2

y1

∫ z2

z1

∂2

∂x∂y

1

R±
dxdydz =

⎡

⎣

[

[

log(R± + z)

]x2

x1

]y2

y1

⎤

⎦

z2

z1

,

(C1)

with the latter two integrals known from geomagnetic modelling

(Bhattacharyya 1964). The first and third antiderivative are smooth

over the volume. Thus, the definite integrals have limiting value

zero for V → 0. The integrand in the second line, however, must

be regarded as a generalized function, which can be seen from

inspection of the Poisson equation for a point source known from

potential theory (e.g. Blakely 1995)

∇2 f (r) = −4πδ(r − r′) (C2)

when the solution f = 1
R−

is substituted. The inverse tangent is a

continuous function throughout the volume as long as the singularity

at R− = 0 is not included. If, however, the singularity is within the

volume, a discontinuity occurs that accounts for the fact that even for

an infinitesimal volume the integral does not vanish. For a finite cube

with symmetric extension around the singular point −ǫ < {x, y, z}<

ǫ, we find the value
[

[[

tan−1

(

yz

x R−

)]ǫ

−ǫ

]ǫ

−ǫ

]ǫ

−ǫ

=
∑

i=1,2

∑

j=1,2

∑

k=1,2

(−1)i+ j+k tan−1

(

(−1)i+ j+k

√
3

)

=
4

3
π, (C3)

which is independent of ǫ and thus also valid for an infinitesimal

volume. Consequently, it must be the value coming from the singu-

larity itself. It is identical to the value given by van Bladel (1961)

and also to the value obtained from integrating one third of eq. (C2)

over this cube. This indicates that the antiderivative is correct.

For a singularity removal technique of this kind with basis func-

tions other than pulse basis functions, the integrals (C1) may not

be readily available. At least for polynomial basis functions, the

homogeneity of the integrands can in principle be exploited as

described by Vijayakumar & Cormack (1988) to find numerical

approximations.

A P P E N D I X D : M A G N E T I C G R E E N ’ s

T E N S O R OV E R A H O M O G E N E O U S

H A L F - S PA C E

The elements of the magnetic kernel matrix KM are obtained as

volume integrals over subsurface blocks of the magnetic Green’s

tensor M(r′|r) as defined in eq. (14). The integration is over the

coordinate of the electric source r′, the observer position for the

magnetic field r is in the air-plane above the surface of the Earth.

Therefore, the TM-mode components are identically zero. The TE-

mode components are also easily deduced by the formalism given

by Weidelt (1975). They are

Mxx =
i

ωμ0

1

2π

(x − x ′)(y − y′)

r 2

(

Q0 −
2

r
Q1

)

(D1)

Mxy = −
i

ωμ0

1

2π

[(

2

r

(y − y′)2

r 2
−

1

r

)

Q1 −
(y − y′)2

r 2
Q0

]

(D2)

Mxz =
i

ωμ0

1

2π

y − y′

r
Q2 (D3)

Myx =
i

ωμ0

1

2π

[(

2

r

(x − x ′)2

r 2
−

1

r

)

Q1 −
(x − x ′)2

r 2
Q0

]

(D4)

Myy = −Mxx (D5)
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Myz = −
i

ωμ0

1

2π

x − x ′

r
Q2 (D6)

for a flight height h = −z ≤ 0. Analytic expressions for the Hankel

integrals

Q0 =
∫ ∞

0

κ2

α + κ
e−αz′+κz J0(κr )dκ (D7)

Q1 =
∫ ∞

0

κ

α + κ
e−αz′+κz J1(κr )dκ (D8)

Q2 =
∫ ∞

0

κ2

α + κ
e−αz′+κz J1(κr )dκ (D9)

have only been found directly on the surface where exp κz = 1.

Therefore, a numerical filtering technique (Christensen 1990) is

used for calculating the Hankel transform at specified radial dis-

tances and depth coordinates. The integration is then performed

using a cubic spline interpolant through the discrete output values

of the Hankel transform, which is then evaluated as required by the

numerical quadrature in Cartesian space.

A P P E N D I X E : G R A D I E N T

C A L C U L AT I O N U S I N G T H E A D J O I N T

M E T H O D

Here, we give a summarized derivation of the gradient of the ob-

jective function computed using the adjoint method. For further de-

tails, the reader is encouraged to consult for example Plessix (2006);

Pankratov & Kuvshinov (2010) or Egbert & Kelbert (2012).

For simplicity, we derive the gradient with respect to the anoma-

lous conductivity values σ a, contained in the vector m̂. The gradient

with respect to m is then obtained by a linear transformation that

involves the Jacobian matrix ∂m̂
∂m

of the inversion of the logarithmic

transform (4).

For any earth model m̂, the electric field fulfils the discretized

integral eq. (16), acting as the physical constraint

f(m̂, E(m̂)) = A(m̂)E(m̂) − Ep = 0, (E1)

which is linear in E. The objective function � of the inverse problem

is augmented to

L(E(m̂), E(m̂), m̂, λ, λ) = �(E(m̂), E(m̂), m̂)

− λ†f(E(m̂), m̂) − λ†f(E(m̂), m̂). (E2)

Here, λ is a vector of complex-valued Lagrange multipliers, which

is arbitrary, because f = 0 for all feasible E. The last summand

ensures that L is always real-valued. The additional introduction of

dependencies on the complex conjugates E and λ is a purely formal

method of the so-called ‘Wirtinger calculus’ (Remmert 1991) in or-

der to deal with the complex differentiation of the non-holomorphic

functions L and �. As a holomorphic function, f has by definition

no formal dependency on E, while f has no dependency on E.

The perturbation δL of L caused by a small change δm̂ in m̂ is

identical to the perturbation δ� of �, which we require to construct

the gradient. It reads

δL =

[

∂�(E, E, m̂)

∂m̂
− λ† ∂f(E, m̂)

∂m̂
− λ

† ∂f(E, m̂)

∂m̂

+

(

∂�(E, E, m̂)

∂E
− λ† ∂f(E, m̂)

∂E

)

∂E(m̂)

∂m̂

+

(

∂�(E, E, m̂)

∂E
− λ

† ∂f(E, m̂)

∂E

)

∂E(m̂)

∂m̂

]

δm̂. (E3)

Here, the notation E [as opposed to E(m̂)] is used to express

formal independence of E from m̂ (during differentiation). With

∂Ef(E, m̂) = A and ∂Ef(E, m̂) = A and because of ∂E�(E, E, m̂) =
∂E�(E, E, m̂), it can easily be verified that a choice of λ, such that

A†λ =

(

∂�(E, E, m̂)

∂E

)†

(E4)

is satisfied, leads to a cancellation of the terms within both paren-

thesis in eq. (E3). Thus, with a solution λ to the adjoint system (E4),

the gradient follows from the remaining terms

∇m̂� = ∇m̂L =

(

∂�(E, E, m̂)

∂m̂
− 2R

[

λ† ∂f(E, E, m̂)

∂m̂

])T

, (E5)

where R(z) = 1
2
(z + z) denotes the real part of z.

In the following, the forms of the derivatives in the eqs (E4)

and (E5) are given explicitly. The magnetic transfer functions t are

uniquely determined from two plane wave polarizations (1 and 2):

g(E1, E2, m̂) = t (H1(E1, m̂), H2(E2, m̂)) =

[

tx

ty

]

=

⎡

⎣


(Hz ,Hy )


(Hx ,Hy )


(Hz ,Hx )


(Hy ,Hx )

⎤

⎦

[
(A, B)]k = A1,k B2,k − A2,k B1,k . (E6)

Consequently, the forward calculation g contains two differently

polarized electromagnetic fields that satisfy f{1,2} with two different

primary fields Ep,{1,2}. Each of them comes with an independent set

of Lagrange multipliers and an independent adjoint problem. Con-

sequently, we will have to solve two independent adjoint equations

to compute the gradient.

We obtain the derivatives with respect to m̂ and with respect to

the electric fields

∂�(E1, E1, E2, E2, m̂)

∂m̂
= 2R

[

(

g(m̂) − dobs
)†

(∂m̂g)
]

∂�(E1, E1, E2, E2, m̂)

∂E{1,2}
=
(

g(m̂) − dobs
)†

(∂E{1,2} g). (E7)

The Fréchet derivatives read

∂m̂g(E1, E2, m̂) = ∂H1
t∂m̂H1 + ∂H2

t∂m̂H2

∂E1
g(E1, E2, m̂) = ∂H1

t∂E1
H1

∂E2
g(E1, E2, m̂) = ∂H2

t∂E2
H2, (E8)

where ∂H1
t and ∂H2

t each are block-diagonal matrices of the form

∂H{1,2} t =

[

∂Hx,{1,2} tx ∂Hy,{1,2} tx ∂Hz,{1,2} tx

∂Hx,{1,2} ty ∂Hy,{1,2} ty ∂Hz,{1,2} ty

]

. (E9)
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Together, the latter comprise the matrix

T :=

[

∂H1
tx ∂H2

tx

∂H1
ty ∂H2

ty

]

=
[

T1 T2

]

. (E10)

Furthermore,

∂m̂H{1,2} = iωμKM DIII,{1,2} (E11)

with

DIII,{1,2} =

⎡

⎢

⎢

⎣

diag(E{1,2},x )

diag(E{1,2},y)

diag(E{1,2},z)

⎤

⎥

⎥

⎦

, (E12)

where diag(x) is a diagonal matrix with the vector x on its diagonal.

Additionally,

∂E{1,2} H{1,2} = KM	 (E13)

and

∂m̂f = ∂m̂A(m̂) · diag(E{1,2}) = iωμKDIII,{1,2}. (E14)

The adjoint systems are then

A†λ{1,2} = −	K
†
M T

†
{1,2}

(

g (m̂) − dobs
)

(E15)

and the gradient reads

∇m̂� = 2R

{

iωμ

[

(

g(m̂) − dobs
)†

T

[

KM

KM

]

−

[

λ1

λ2

]† [
K

K

]

⎤

⎦ ·

[

DIII,1

DIII,2

]

⎫

⎬

⎭

T

. (E16)
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