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INVERSION OF COMPLEX BODY WAVES--III  

BY MASAYUKI KIKUCHI AND HIROO KANAMORI 

ABSTRACT 

We have developed a method that inverts seismic body waves to determine the 
mechanism and rupture pattern of earthquakes. The rupture pattern is repre- 
sented as a sequence of subevents distributed on the fault plane. This method is 
an extension of our earlier method in which the subevent mechanisms were 
fixed, in the new method, the subevent mechanisms are determined from the 
data and are allowed to vary during the sequence. When subevent mechanisms 
are allowed to vary, however, the inversion often becomes unstable because of 
the complex trade-offs between the mechanism, the timing, and the location of 
the subevents. Many different subevent sequences can explain the same data 
equally well, and it is important to determine the range of allowable solutions. 
Some constraints must be imposed on the solution to stabilize the inversion. We 
have developed a procedure to explore the range of allowable solutions and 
appropriate constraints. In this procedure, a network of grid points is con- 
structed on the r - I plane, where r and I are, respectively, the onset time and 
the distance from the epicenter of a subevent; the best-fit subevent is deter* 
mined at all grid points. Then the correlation is computed between the synthetic 
waveform for each subevent and the observed waveform. The correlation as a 
function of r and I and the best-fit mechanisms computed at each r -  I grid 
point depict the character of allowable solutions and facilitate a decision on the 
appropriate constraints to be imposed on the solution. The method is il lustrated 
using the data for the 1976 Guatemala earthquake. 

INTRODUCTION 

Seismic body waves are extensively used to determine the rupture pattern of 
earthquakes. The rupture patterns are generally very complex, and the results 
are interpreted in terms of a distribution of "asperities" and "barr iers"  on the 
fault plane. The rupture pattern is important for an understanding of the 
mechanism of rupture initiation and termination and excitation of strong 
ground motions. Many methods have been used to determine the pattern of 
asperity distributions from seismic waveform data (e.g., Hartzell and Heaton, 
1983; Ruff and Kanamori,  1983; Mori and Shimazaki, 1984; Kikuchi and Fukao, 
1985). 

In the method we have previously presented (Kikuchi and Kanamori,  1982, 
1986), the rupture sequence is represented by a sequence of subevents dis- 
tributed on the fault plane. We assumed that  all the subevents have the same 
mechanism, usually determined from the first-motion data. In some cases, a few 
subevents were allowed to have a different mechanism. This assumption was 
made to reduce the number of free parameters and stabilize the inversion. In 
this paper, we remove this l imitation and extend the method to a more general 
case where subevents are allowed to have different mechanisms. Several inves- 
tigators have developed similar method. For example, in the inversion method 
of N~b~lek (1984), the mechanism of subevents is determined by an iterative 
least-squares method. Barker and Langston (1981, 1982) developed a general- 
ized inverse technique utilizing the moment tensor formalism. Koyama (1987) 
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inverted teleseismic long-period body waves to a time sequence of moment 
tensors. Hirata and Kawasaki  (1988) analyzed body waves from a deep earth- 
quake and investigated the change in the fault mechanism during the source 
process. 

Once subevents mechanisms are allowed to vary, the inversion often becomes 
unstable because of the complex trade-offs between the mechanism, the timing, 
and the location of the subevents. The solution is inevitably nonunique. Many 
different sequences can explain the same data equally well, and it is often 
difficult to determine the range of allowable solutions. In some cases, some 
constraints have to be imposed on the solution to stabilize the inversion; it is 
then important to know what constraints are reasonable. 

We developed a new method to invert body waves to obtain the mechanism 
and rupture patterns of complex events. In the earlier method, only P waves 
were used; in the new method, P, SH, SV, and PP phases can be used 
simultaneously, and a multi-layer structure is used to compute the response of 
the source, station, and PP bounce point structures. For this computation, we 
used the Haskell propagator matrix in the way described in Bouchon (1976) and 
Haskell (1960, 1962). 

In this paper, however, we will focus on the procedure to explore the range of 
allowable solutions and constraints. We will i l lustrate the method using the 
data set from the 1976 Guatemala earthquake. 

METHOD 

We describe a seismic source as a sequence of point sources with various focal 
mechanisms. As in our earlier papers, we determine the point sources itera- 
tively by matching the observed records with the synthetic ones. We use a 
moment tensor to describe each point source. 

In general a moment tensor [Mij] has 6 independent elements. With a 
constraint of vanishing trace of [Mij], we obtain a pure-deviatoric moment 
tensor. With an additional constraint that  the determinant  of [ Mij] is zero, the 
moment tensor is reduced to a double-couple source. In the following, we first 
consider general moment tensors, and then double-couple sources. 

General Moment-Tensor Sources 
We choose the following 6 elementary moment tensors as the basis tensors to 

represent a seismic source: 

-0 
MI: 1 

0 

0 
M 4 : 0  

1 

10] [io0] [!oi] 0 0 ;M2: - 1  0 ;M3: 0 ; 
0 0 0 0 1 

oil [ oo] [io!] 0 ;Ms: 0 0 0 ;M6 1 ; 
0 0 0 1 0 

where the coordinates (x, y, z) for Miy corresponds to (north, east, down). Any 
moment tensor can be represented by a linear combination of M n. Figure 1 
shows the mechanism diagrams for these elementary tensors. The equal-area 
projection of the lower focal hemisphere is shown. 
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FIG. 1. Elementary moment tensors for the base system used in the inversion (equal-area 
projection of the lower focal hemisphere). 

The advantage of this system is tha t  subgroups of this system represent the 
specific solutions given below: 

(1) M1,. •., M 6 = general moment tensor, 

(2) M1,. •., M 5 = pure-deviatoric moment tensor, 

(3) M1, . . . ,  M 5 with zero det [Mij] = general double couple, 

(4) M 1 , . . . , M  4 with zero det [M U] = double couple with a vertical nodal 
plane, 

(5) M1,. • -, M 2 = pure strike-slip. 

Let Wja(t; p) denote the synthetic seismogram (Green's function) at station j 
due to nth elementary tensor: Mn, where p is a parameter  tha t  collectively 
represents the onset time, the location, and any other attributes of the source. 
Denoting the observed seismogram by xj(t) the best estimate of the coefficient 
a n for Mn can be obtained from 

A = E / xj(t) - E aaWjn(t;P) dt 
j= l  n=l 

Nb Nb Yb 
= R x - 2 ~ - ~  anGn+ ~ ~ Rnmaaam 

n = l  m = l  n = l  

-- minimum, (1) 

where N b is the number of the elementary tensors used, N s is the number of 
stations, and 

Setting 

Rx ~ / [  2 = 

R a m ( P  ) = ~ / [Win(t; p )Wjm( t ;  p)]dt, 
J 

Gn(p) = ~ f [Wjn(t; p)xj( t)]dt .  
J 

OA 
= 0; for n = 1 , "  ", Nb, 

o~ a n 

(2) 

we obtain the normal equation 

Nb 
Rnma m = Gn, n = 1 , ' " ,  Nb. 

m=l 
(3) 
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Let  the  inverse  of the  ma t r i x  [Rn~]  be IRWin], i.e., 

RnlR11~  = 5nm, n,  m = 1 , . ' . ,  Nb ,  
l 

where  ~)nrn  is the  Kronecke r  delta.  Then  the  solut ion is 

o 
a n = a n - ~ RXnmGm . (4) 

m 

The res idual  e r ror  is t h e n  

A = R x -  E Gn a°. (5) 
n 

o and the re fore  A are  funct ions  of the  p a r a m e t e r  p. The At  this  stage,  a n 
op t imum p is de t e rmined  f rom the  cr i ter ion of " m i n i m u m  A," or 

E Gn a°  E E RlnmGmGn 

R x  R x  

= m a x i m u m .  

SM is the  cor re la t ion  be tween  the  observed and  synthe t ic  waveforms.  The 
normal iza t ion  factor  R x is in t roduced  so t h a t  ~M = 1, when  the  observed and 
synthe t ic  waveforms  are  identical .  Once the  opt imal  p is de te rmined ,  the  
va lues  of { a °} are  g iven by  re la t ion  (4). Note t h a t  the  ex ten t  of summat ions  for 
n and m are  set a t  N b = 2, 3, 5, 6 according to the  cons t ra in ts  on the  focal 
mechan i sm of subevents ;  hence,  a °, a ° for N b = 2 are  not  ident ical  to a °, a ° of 
{a °} for N b > 2 .  

Using the  coefficients { an} , the  r e su l t an t  m o m en t  tensor  is given by 

a - -  a 5 + a 6 al a4 
[ Mij]  = a 1 - a 2 + a 6 a3 ] " 

a 4 a 3 a5 + 66 

Doub le -Coup le  S o u r c e s  

A m o m e n t  tensor  wi th  zero t race  and zero d e t e r m i n a n t  represen ts  a double- 
couple mechanism.  Thus  we can find the  best-fit  double-couple source by impos- 
ing the  cons t ra in t  

D - de t [Mi j  ] = 0 (7) 

on a pure-devia tor ic  m o m e n t  tensor:  [Mij]  = a i m  1 + . . .  + a s M  5. Let  h be the  
L a g r a ng i a n  mul t ip l ier ,  and  we minimize  the  object funct ion 

A' = A + 2 X D  (8) 

wi th  respect  to { an} and  )~. Thus ,  f rom 

OA' OA' 
- -  - -  O ,  

aan c3~. 
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we find the following equations: 

OD 
0 X ~ R  I 

a n  = a n  -- m nm a a m 

and 
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(9a) 

D = 0, (9b) 

where { a °} is the moment-tensor solution given by (4). Equations (9a) and (9b) 
can be solved numerically. Note that,  although D in (9b) does not explicitly 
include X, it is cubic with respect to X through (9a) and equation (9b) has at 
least one real root for given { an}. 

The residual error A is given by 

where Aa ,  
waveforms is now given as follows: 

A = R x - 2 E anGn + E E Rnmanam 
n m n 

0 0 a m  ] (10 )  = R x - ~ ~ R n m [  a h e m -  A a n A  , 
n rn 

o The correlation between the observed and synthetic = a n -- a n. 

E E R n m [  a ° a °  - AanAam] 
"~D( P )  ---- n m 

Rx  
(11) 

Comparing ~I' D with XI'M, we easily find that  

~ R n m A a n A a m  

q l D _  q2.M= - n m 
R~ 

< 0 ,  

because of the additional constraint imposed on the double-couple solution. 
For a single definite focal mechanism, i.e., a definite set of basis tensors, the 

correlation function between the observed and synthetic waveform is given as 
follows: 

Goa o G~ 

x~ S -  R x  - R o o R x ,  (12) 

where Roo is the auto-correlation of the Green's function, G O the cross correla- 
tion between the observed and the Green's functions, and 

a o = Go /Roo .  (13) 

Inversion Procedure 

As in our earlier papers, we use an iterative technique to determine subevents 
from the observed waveforms. The subevents are successively determined 
by minimizing the squared difference between the observed and synthetic 
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waveforms with a grid-search over all the values of p. In general, the subevents 
are determined in the order of decreasing scalar moment (Kikuchi and 
Kanamori,  1982). The main difference is tha t  the mechanisms of the subevents 
are determined by the inversion in the present method, while they are fixed in 
the previous methods. 

Allowing the mechanisms of the subevents to vary during the iteration causes 
a trade-off between the mechanism of a subevent and its onset time. Qualita- 
tively, this trade-off arises from the fact that,  for band-limited instruments,  a 
synthetic waveform for a subevent is approximately a sinusoid with the domi- 
nant  period of the instrument,  which is usually 10 to 20 sec. This sinusoid can 
be matched either by a subevent at the onset of the sinusoid or by a subevent 
with a reversed polarity shifted in time by half  the period. If the record is 
broadband, this trade-off is less serious. In order to minimize this trade-off, 
some constraints must be imposed on the solution on the basis of other geologi- 
cal or seismological considerations. 

Another problem is that  the final solution depends on the order in which the 
subevents are determined. Young e t  a l .  (1989) pointed out this problem and 
called it the path dependence. Thus changing the order of iteration results in 
different sequences of subevents. It is difficult to decide which sequence is the 
correct one on the basis of waveform matching alone. In order to see the effect of 
iteration order on the solution, we introduce an additional procedure after 
ordinary forward iterations as follows. 

After a solution has been obtained with N e iterations (i.e., Ne subevents), (1) 
remove subevent 1: (an1, Pl) and restore its contribution to the seismograms: 

X'y(t) = Xy(t) + E anLWj~(t; Pl); 
n 

(2) redetermine subevent 1: (anm, i51) that  minimizes 

N~ 2 
A : E / [X ' j ( t )  -- ~ CtnlWjn(t" ~ /51)] dr. 

j=l  n 

Repeat (1) and (2) for subevents 2 to N e successively. In effect, this procedure 
redetermines the parameters of all the subevents by relaxing the constraints 
imposed by the particular path followed by the first forward iteration. 

This procedure always yields a set of N e subevents tha t  fits the data better. It 
should be noted, however, tha t  the present inverse problem is nonlinear and 
non-Gaussian in the sense tha t  there are many local minima of error A with 
respect to source parameters such as the t iming and location. The path depend- 
ence of the solution is inevitable in any iterative method for non-Gaussian 
problems. There is no absolute criterion for choosing one solution against the 
others. The only way is to t ry iterations for many different paths and choose the 
solution tha t  is consistent with other data. 

Considering the trade-offs between the mechanism and the subevent t iming 
and the path dependence, it is useful to examine the data, before inversion, to 
get some idea about the overall character of the allowable solution. We use the 
following procedure to do this. We first compute the correlation function (6 or 
11) for the first event. This correlation function is plotted on the r - l plane, 
where ~ and l are, respectively, the time lag and the distance of the subevent 
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from the epicenter. Simple earthquakes may have only one peak, but complex 
ones yield many peaks. A subevent located at the peak explains the data best. 
However, because of the trade-off between the mechanism and t iming discussed 
above, subevents with different mechanisms may explain the data equally well 
if they are slightly displaced from the peak. To see this trade-off, we construct a 
grid network on the r -  l plane, place subevents on the grid points, and 
determine their  mechanisms. Comparing these mechanisms with the correla- 
tion function • on the r - 1 diagram, we can have an overall picture of the 
possible range of solutions and guess the type of solutions under different 
constraints. We will i l lustrate this procedure for the Guatemala earthquake. 

ANALYSIS OF THE 1976 GUATEMALA EARTHQUAKE 

The Guatemala earthquake of 4 February 1976 (M~ = 7.5) is one of the 
largest shallow earthquakes occurring on a transform fault. A fault offset with 
the average of i meter was observed along a 200-km-long curved section of the 
Motagua fault (Plafker, 1976). 

Kanamori  and Stewart (1978) analyzed teleseismic P waves and suggested 
tha t  the earthquake consisted of about 10 subevents during the first 2 min. 
Kikuchi and Kanamori  (1982) applied their  first version of the inversion 
method to this event and identified 5 discrete subevents with the same focal 
mechanisms. Recently Young et al. (1989) used a dataset tha t  includes PP 
waves, with much better azimuthal  coverage of stations, and characterized this 
earthquake with an asymmetric bilateral rupture along a composite fault  plane. 
They suggested tha t  dip-slip mechanisms are necessary to explain the data 
satisfactorily. 

We chose this event to il lustrate the method because it is one of the most 
complex events, and the difficulties and the problems with this type of inversion 
have been amply demonstrated by the previous investigators (Kikuchi and 
Kanamori,  1982; Young et al., 1989). 

Data 

We used P-wave records observed at 14 WWSSN stations with the epicentral 
distance between 35 ° and 90 ° and PP records at 5 stations at about 120 °. These 
records were digitized and interpolated at a sampling interval of 0.5 sec. To 
determine the arrival time, we used the ISC Bulletin for P waves and the 
Jeffreys-Bullen (1958) table for PP waves. Records with a duration of 130 sec 
after the P or PP arrival time were used in the analysis. The station parame- 
ters are listed in Table 1. For epicentral distances less than  about 50 °, the 
P-wave record within this time interval is contaminated by PP arrival. Thus, 
we truncated the waveforms at LPB, MSO, and COR. We also restricted the 
time window for which the subevents are to be determined to 90 sec from the 
beginning of the P wave. 

Station Weighting 

Both the observed records and synthetic Green's functions for all the stations 
were equalized to WWSSN seismograms with the same gain. Then, considering 
the azimuthal  coverage and the quality of the observed records, we applied 
station weighting factors as given in Table 1 to both the observed and synthetic 
waveforms. We did not include PP waves in the inversion, but showed their  
comparisons with the synthetic waveforms. 
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TABLE 1 

LIST OF STATION PARAMETERS 

Station A(°) 4(°) ~b(*) Phase Comp Weight 

KBS 787.1 11.1 - 7 6 . 1  P E W  0.5 

K E V  84.3 18.2 - 6 0 . 4  P UD 0.5 

KTG 68.1 19.5 - 106.5 P UD 0.5 

U M E  84.6 24.7 - 66.0 P EW 0.5 

N U R  87.9 26.8 - 62.0 P UD 0.5 

COP 83.8 33.7 - 71.8 P UD 0.5 

ESK 75.3 35.9 - 84.3 P UD 0.5 

STU 84.0 41~0 - 73.7 P UD 0.5 

LPB 38.0 145.8 - 3 4 . 4  P E W  1.0 

LPA 58.3 149,9 - 36.1 P UD 1.0 

RAR 78.2 - 116,1 68,3 P UD 1.0 

COR 41.0 - 37,4 124.7 P UD 1.0 

MSO 35.7 - 27,2 141.0 P NS 1.0 

COL 63.1 - 2 3 . 9  112.7 P ' UD 1.0 

PRE 120.9 111.2 - 87.0 PP UD 0.0 

GRM 119.6 119,9 - 90.6 PP UD 0.0 

RIV 123.0 - 120.7 93.2 PP UD 0.0 

RAB 118.8 - 86.3 74.8 PP UD 0.0 

TAU 124.8 - 132.0 101.9 PP UD 0.0 

Grid Scheme 

For the locations of subevents, we took 9 discrete points along the curved 
Motagua fault at an equal spacing of 30 km and three discrete depths; 7.5, 10.0, 
and 12.5 km (Figure 2). 

Green's Functions 

We computed Green's functions for the six e lementary moment  tensors tha t  
are placed at the three discrete depths beneath the epicenter. Green's functions 
for other grid points can be obtained from these simply by correcting for the 
differences in travel  time. Table 2 gives the structures near the source and the 
receiver points as well as the bounce point of PP waves. We used Q-filters with 
the a t tenuat ion t ime constant of t* = 1 sec and convolved a trapezoidal source 
time function, with 71 = 5 and 72 = 7 sec, which were found to be the best of 
several combinations of rl  and 72 (Ti is the rise time and 72 is the rise time 
plus the duration of the top flat portion). The source and receiver functions were 
computed using the Haskell  propagator matrix.  

Trade-off between Timing and Mechanism 

The nonlinear model parameter  p used in the previous section represents the 
t iming 7, the location l along the strike, and the depth h. Figure 3a shows the 
contour map of the correlation function ~D(7, l, h = 7.5 km) in the base system 
of double-couple (equation 11), plotted on the 7 - l plane. Here the set of five 
pure-deviatoric moment tensors is used as the base system ( N  b = 5). The solid 
step-ladder pa t tern  in Figure 3a represents the rupture  front with a rupture  
velocity of 3 km/sec.  We assume tha t  no subevents are located on the 7 - l 
plane behind the rupture  front. On the 7 - l plane, there  are many peaks that  
are not clearly isolated, suggesting tha t  many possible combinations of subevents 
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Fro. 2. Grid scheme for discrete source locations (the base figure is t aken  from figure 1 of Young 
et al., (1989). 

TABLE 2 

STRUCTURES 

(kin/s) /~ (km/sec) p (g/cm 3) H (km) 

Source and Receiver Structures  

Structure  at Bounce Point for P P  waves 

6.00 3.50 2.7 18 
6.75 3.80 2.8 18 
8.10 4.70 3.3 
1.50 0.0 1.0 4 
6.00 3.50 2.7 

can explain the data well. The contour pattern for ~M(r, l, h = 7.5 km) defined 
by (6) is nearly the same as tha t  shown in Figure 3a. 

Figure 3b shows the best-fit double couples placed at grid points 30 km apart 
in space and 10 sec in t ime on the r - l plane. The regions behind the rupture 
front are excluded. The trade-off between the t iming and the focal mechanism of 
subevents is clearly displayed. For the first 50 sec, the polarity of the strike-slip 
mechanism flips al ternat ingly at every 10 sec. Figures 3c and d show similar 
diagrams for a different source depth: h = 12.5 km. The basic patterns are 
nearly the same as those of Figures 3a and b, indicating a poor resolution for 
the source depth. From these diagrams, we can roughly visualize the overall 
feature of the possible subevent sequence to be obtainable by the inversion. 
Salient features are the following. (1) Strike-slip sources are predominant 
during the first 50 sec. (2) Dip-slip sources appear in the later stage of faulting 
near the western end of the fault. (3) The focal mechanism trades off with 
the onset time. A time shift of about 10 sec, nearly one half  of the predomi- 
nant  period of the observed waveforms, often results in reversal of the focal 
mechanism. 



2344 

(a) 
L u g .  

M. K I K U C H I  AND 

Time,seo 

H. K A N A M O R I  

o .  

~ .  

"~I .  

, r .  

e~. 

N ~ .  

o lO ~ ~ ~ ~ ~ 70 ~ ~ 1~  11o 1~ 
Time,sec 

FIG. 3. (a) Contour map of the correlation function ~D computed for a source at the source depth 
of 7.5 kin. Dark zones indicate local max ima  of correlation. (b) Mechanism diagrams of the best-fit 
double couples at  grid points at intervals  of 30 km and 10 sec on the  T - l plane. (c) Same as (a) for 
a source depth of 12.5 km. (d) Same as (b) for a source depth of 12.5 kin. 

In order to see if dip-slip sources are really needed to model the observed 
waveforms, we computed the correlation function using the base system of pure 
strike-slip mechanisms (N b = 2). The contour lines of ~I'M(r, l, h = 7.5 km) and 
the corresponding mechanism disgrams are shown in Figure 4. Strike-slip 
mechanisms similar to the first-motion mechanism are seen at the western 
end. However, as we will show later, these subevents alone cannot explain 
the observed waveforms satisfactorily, suggesting tha t  dip-slip sources are 
necessary. 

Constraints on the Mechanism 

The correlation function ~(T, l, h) exhibits many maxima even for a single 
subevent. This suggests tha t  many combinations of subevents can fit the data 
equally well. We need to constrain some of the parameters to obtain a reason- 
able solution. The effect of such constraints can be demonstrated by the results 
of our earlier inversion with a fixed mechanism (Kikuchi and Kanamori,  1982). 
Figure 5 shows the contour lines of ~s(r,  l, h = 7.5 km) where the mechanism 
is fixed to be the same as the first motion solution (¢s, 6s, ~,~) = (66 °, 90 °, 5°), 
(equation 12) where ¢~, ~ ,  and }~ are the fault strike, dip, and rake, respec- 
tively. Comparing this with the correlation function in Figure 3, we see that  the 
peaks are clearly isolated; the subevents can be identified more uniquely. 

In order to avoid the instability caused by the trade-offs displayed in Figures 
3b and d, we impose some constraints on the solution. Since the mechanisms 
opposite to the first-motion mechanism are very unlikely, we constrain the 
tensile axis of the moment tensors to be within a certain range around that  of 
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FIG. 4. (a) Contour map of the correlation function ~M computed for a source at the source depth 
of 7.5 km using the base system of pure strike-slip elements. Peaks of the correlation function are 
darkened. (b) Mechanism diagrams of the best-fit strike-slip subevents at each grid point at 
invervals of 30 km and 10 sec. 

the  f i rs t -mot ion mechan i sm.  In the  following examples ,  we set the  al lowable 
r ange  to be f rom N75°E  to N135°E.  

Results 

Firs t  we inver ted  the  da ta  wi th  only pure  str ike-sl ip sources (sub group 5). 
The  n u m b e r  of i t e ra t ions  is somewha t  a rb i t r a ry .  We made  n ine  i terat ions;  the  
waveform ma tch  was not  s ignif icant ly  improved  af te r  the  seven th  i tera t ion.  The 
resu l t s  are  shown in F igure  6, and  the  source p a r a m e t e r s  are  l is ted in Table  3. 
The  to ta l  seismic m o m e n t  is 2.9 × 1027 dyn-cm, which is s l ight ly  l a rger  t h a n  
t h a t  obta ined  f rom the  surface-wave analysis ,  2.6 × 1027 dyn-cm (Kanamor i  and  
Stewar t ,  1978). The  wavefo rm ma tch  is good in the  ear ly  pa r t  bu t  de te r iora tes  
af ter  1 min  (Fig. 6c). In par t i cu la r ,  the  ampl i tude  of the  syn the t ic  waveform is 
too small  for RAR. The  f inal  res idua l  e r ro r  A is 0.64, which  is m u ch  la rger  t h a n  
t ha t  for o ther  solut ions descr ibed la ter .  Thus,  str ike-sl ip mechan i sms  alone 
cannot  model  the  r u p t u r e  process of th is  e a r t h q u ak e .  

Nex t  we per fo rmed  an  invers ion  wi th  double-couple sources, which allows 
both  str ike-sl ip and  dip-slip mechan isms .  The ma in  fea tures  of the  observed 
waveforms  could be sa t is factor i ly  reproduced  wi th  n ine  subevents .  The  res idual  
e r ror  A is 0.42. Af ter  the  fo rward  i te ra t ion ,  we repea ted  twice the  r ede t e rmina -  
t ion  procedure  descr ibed in the  previous  section. This  procedure  reduced  A to 
0.39. The f inal  solut ion is shown in F igure  7. Table  4 gives the  source pa rame-  
te rs  for the  f inal  solution.  In F igu re  8, the  syn the t ic  waveforms  are  compared  
wi th  the  observed ones. Note  t ha t  the  waveform ma tch  is good even  for PP 
records,  which  are  not  used in the  invers ion.  
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FIG. 5. Contour map of the correlation function ~s computed for a source at the source depth of 
7.5 kin. The mechanism of the subevent is fixed to be the first-motion solution. 

The results may be summarized as follows. 
(1) Rupture propagation is mostly unilateral  to the west. 
(2) A strike-slip mechanism is predominant in the moment release. 
(3) The gradual change in the fault strike with the distance from the initial 

break is not obvious in the result. 
(4) Dip-slip subevents occur near both ends of the fault: a normal dip slip near 

the epicenter with a moment of 1.5 × 102~ dyn-cm, and a reverse dip slip at the 
western end with a moment of 1.1 × 1026 dyn-cm. Their contribution to the 
observed P and P P  waves is comparable to that  from the strike-slip subevents, 
although the moments of the dip-slip events are much smaller, only 10% in 
total. 

(5) The tensorial sum of all the subevent mechanisms is essentially strike-slip 
with a small nondouble couple component (< 3%) and a scalar moment of 
2.1 × 1027 dyn-cm, which is slightly smaller than that  obtained from surface 
waves. 

A large strike-slip event was obtained at 60 km west of the epicenter about 20 
sec after the origin time. Considering the spatial resolution of about 30 km as 
inferred from the contour lines of ~D(T, l) in Figure 3a, the location of this 
subevent can be close to the bend of the Motagua fault. This subevent coincides 
with the largest subevent identified by Young et al. (1989). 

DISCUSSION 

If the mechanisms of the subevents are allowed to vary and if no constraints 
are imposed on them, the inversion becomes unstable. Many different combina- 
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FIG. 6. Resu l t s  of the  i nve r s ion  w i t h  pu re  s t r ike - s l ip  sources.  The a z i m u t h  of the  T ax i s  is  
cons t r a ined  to be b e t w e e n  N 7 5 ° E  and  N135°E .  (a) T ime  sequence  of subevents ;  (b) loca t ion  of 
subeven t s ;  (c) e x a m p l e s  of observed  (upper) and  s y n t h e t i c  (lower) waveform.  The n u m b e r s  on the  
upper and  lower left i nd i ca t e  the  peak- to-peak  a m p l i t u d e  in  m i c r o m e t e r s  of the  observed record and  
t he  az imu th ,  respec t ive ly .  The  s y n t h e t i c  records  a re  p lo t ted  w i t h  the  s a m e  scale  as the  observed.  

T A B L E  3 

RESULTS OF THE INVERSION WITH PURE STRIKE SLIPS 

Onset Distance Depth Moment Strike Dip Slip 
(sec) (km) (+ 10.0 km) (× 10 25 dyn.cm) (°) (°) (°) 

1.5 - 0 . 0  O.0 31.7 57.0 90.0 0.0 

20.0 - 60.0 - 2.5 60.9 71.5 90.0 0.0 

45.0 - 0.0 5.0 26.6 31.3 90.0 0.0 

51.5 - 120.0 - 5.0 35.5 52.0 90.0 0.0 

65.0 - 180.0 - 5.0 44.1 42.6 90.0 0.0 

71.5 - 3 0 . 0  0.0 45.3 61.7 90.0 0.0 

76.0 30.0 - 5 . 0  9.9 86.9 90.0 0.0 
85.5 - 180.0 - 5.0 23.8 39.2 90.0 0.0 

90.0 - 150.0 0.0 45.3 61.7 90.0 0.0 
286.9 56.6 90.0 0.0 

R e s i d u a l  e r ror  A = 0.636. 
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FIG. 7. Final results of the inversion. Time sequence and location of subevents are shown. The 
area of the mechanism diagrams is proportional to the seismic moment. 

TABLE 4 

SOURCE PARAMETERS FOR THE FINAL SOLUTION 

Onset Distance Depth Moment Strike Dip Slip 
(sec) (kin) (+ 12.5 km) ( × 10 25 dyn.cm) (°) (°) (°) 

1.0 0.0 0.0 24.9 63.1 86.9 -0 .6  
16.5 0.0 -5 .0  14.9 353.3 75.0 -130.1 
20.0 -60.0 0.0 46.2 73.5 86.9 6.2 
40.5 - 30.0 0.0 28.5 144.8 86.5 162.7 
46.0 - 120.0 - 5.0 30.6 123.5 87.1 160.5 
60.5 - 180.0 0.0 54.4 48.9 82.7 1.9 
64.5 - 180.0 2.5 11.1 127.4 51.6 108.9 
86.0 - 180.0 - 2.5 15.0 35.0 69.2 25.4 
90.0 - 150.0 0.0 32.2 346.1 87.3 - 173.3 

212.8 328.8 88.4 - 173.4 

Residual error A = 0.388. 

t i ons  of  t h e  m o d e l  p a r a m e t e r s ,  s u c h  as  t h e  t i m i n g  a n d  t h e  l o c a t i o n  of  s u b e v e n t s ,  

y i e l d  m a n y  loca l  m i n i m a  of  t h e  a p p r o x i m a t i o n  e r ro r .  T h e  p r o b l e m  is n o n l i n e a r  

a n d  n o n u n i q u e ;  we  c a n n o t  d e t e r m i n e  " t h e  b e s t "  s o l u t i o n  f r o m  t h e  w a v e f o r m  

i n v e r s i o n  a lone .  

U n d e r  t h e s e  c i r c u m s t a n c e s ,  i t  is e s s e n t i a l  to  f i r s t  i n v e s t i g a t e  t h e  g ross  

f e a t u r e s  of  a l l  t h e  poss ib l e  s o l u t i o n s .  I t  is a l so  i m p o r t a n t  to i n s p e c t  poss ib l e  
t r ade -o f f s  b e t w e e n  t h e  m o d e l  p a r a m e t e r s .  T h r o u g h  t h i s  i n s p e c t i o n ,  we  c a n  

i n t r o d u c e  a p p r o p r i a t e  c o n s t r a i n t s  to  be  i m p o s e d  on t h e  s o l u t i o n  to s t a b i l i z e  t h e  

i n v e r s i o n .  T h e  c o r r e l a t i o n  f u n c t i o n  ~ ( p )  (6 or  11) c o m b i n e d  w i t h  t h e  m e c h a -  

n i s m  d i a g r a m s  on t h e  7 -  l p l a n e  is u s e f u l  for  t h i s  pu rpose .  In  t h e  p r e s e n t  
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FIG. 8. Synthetic waveforms (lower trace) for the final solution shown in Figure 7 compared with 
the observed ones (upper trace). The amplitude scale is the same as that in Figure 6. 

analysis, we constrained the tension axis of the moment tensors. Smoothness 
constraints may also be useful when the mechanism change is known to be 
small from other observations. 

In analysing body waves from the Guatemala earthquake, we constrained the 
T axis to be in a certain range. This is only one of the many possible 
constraints. We need to introduce constraints considering the results from other 
studies such as long-period surface-wave, geodetic, and geological studies. Our 
results are consistent with the results from surface-wave analysis and field 
observations. Dip-slip subevents are necessary to explain some features of the 
seismograms. Without a dip-slip mechanism, we had to include many strike-slip 
subevents with a total seismic moment exceeding that determined from surface 
waves. Subsidiary faults with a predominant dip-slip component are observed 
near the western end of the Motagua fault (Plafker, 1976). 

Most of the faults reported in the field observations are not reverse but 
normal faults, while our inversion yields both reverse and normal faults. 
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