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Abstract: Forest stock volume (FSV) is a basic data source for estimating forest carbon sink. It is also
a crucial parameter that reflects the quality of forest resources and forest management level. The use
of remote sensing data combined with a support vector regression (SVR) algorithm has been widely
used in FSV estimation. However, due to the complexity and spatial heterogeneity of the forest
biological community, in the FSV high-value area with dense vegetation, the optical re-mote sensing
variables tend to be saturated, and the sensitivity of synthetic aperture radar (SAR) backscattering
features to the FSV is significantly reduced. These factors seriously affect the ac-curacy of the FSV
estimation. In this study, Landsat 8 (L8) Operational Land Imager multispectral images and C-band
Sentinel-1 (S1) hyper-temporal SAR images were used to extract three re-mote sensing feature datasets:
spectral variables (L8), backscattering coefficients (S1), and inter-ferometric SAR factors (S1-InSAR).
We proposed a feature selection method based on SVR (FS-SVR) and compared the FSV estimation
performance of FS-SVR and stepwise regression analysis (SRA) on the aforementioned three remote
sensing feature datasets. Finally, an estima-tion model of coniferous FSV was constructed using the
SVR algorithm in Wangyedian Forest Farm, Inner Mongolia, China, and the spatial distribution map
of coniferous FSV was predicted. The experimental results show the following: (1) The coherence
amplitude and DSM data ob-tained based on S1 images contain information relat-ed to forest canopy
height, and the hy-per-temporal S1 image data significantly enrich the diversity of S1-InSAR feature
factors. There-fore, the S1-InSAR dataset has a better FSV response than remote sensing factors
such as the S1 backscattering coefficient and L8 vegetation index, and the corresponding root mean
square er-ror (RMSE) and relative RMSE (rRMSE) values reached 47.6 m3/ha and 20.9%, respectively.
(2) The integrated dataset can provide full play to the synergy of the L8, S1, and S1-InSAR remote
sensing data. Its RMSE and rRMSE values are 44.3 m3/ha and 19.4% respectively. (3) The proposed
FS-SVR method can better select remote sensing variables suitable for FSV estimation than SRA. The
average value of the rRMSE (23.17%) based on the three datasets was 13.8% lower than that of the
SRA method (26.87%). This study provides new insights into forest FSV retrieval based on active and
passive multisource remote sensing joint data.

Keywords: forestry remote sensing; forest stock volume; feature variable selection; synthetic aperture
radar; InSAR coherence
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1. Introduction

The carbon stored through forest ecosystems accounts for about 2/3 of the total carbon
pool of the whole terrestrial ecosystems [1,2]. Forest stock volume (FSV) is a basic data
source for estimating forest biomass and the carbon sink. It is also a crucial parameter that
reflects the quality of forest resources and forest management level [3–5]. The dynamic
estimation of the spatial distribution of FSV is not only the basis of scientific and accurate
forest management, but also the prerequisite for maximizing the function and carbon
se-questration potential of forest ecosystems [6–8].

Although many large-scale global products can easily obtain FSV information, the
use of specific areas is easily limited by time-frequency, spatial resolution, or other un-
known local errors [9–15]. Due to the strong spatial heterogeneity of forest ecosystems, the
response relationship between remote sensing factors and FSV is usually complex [16,17].
Many problems remain in the research and application of FSV estimation based on remote
sensing technology. Optical remote sensing is a passive remote sensing technology. In the
densely vegetated high-value area of the FSV, optical remote sensing technology cannot
obtain the spectral signal of the inner section of the forest and the vertical direction of the
canopy; therefore, problems such as poor spectral sensitivity and low light saturation point
are observed [18–23]. LiDAR is an emerging active remote sensing technology [24–30].
However, few spaceborne data are available, the cost of airborne data acquisition is high,
which limits its widespread application in the field of FSV remote sensing estimation [20].
Microwave radar is an advanced active remote sensing technology not easily affected
by climatic factors, such as clouds, fog, and solar radiation, and can realize all-weather
earth observations [31–33]. Depending on the wavelength and frequency, microwave radar
signals can penetrate the forest canopy to different degrees and obtain comprehensive
in-formation on the forest structure at different levels and orientations [34–39]. The micro-
wave radar remote sensing technologies commonly used in FSV estimation include syn-
thetic aperture radar (SAR), interferometric radar (InSAR), and polarization interferomet-ric
radar (PolInSAR) [40,41].

The microwave radar backscattering coefficient and its textural features have been widely
used in research on FSV and forest aboveground biomass (AGB) [39,42]. Erkki et al. [43] used
Sentinel-1 C-band SAR to conduct a forest snow damage mapping study in northern
and southern Finland, with an overall accuracy of 90%. They also estimated the FSV in
damaged forest areas, and the results suggested that multitemporal Sentinel-1 data have
good potential for estimating the overall FSV. In research on FSV estimation based on C-
band-and L-band SAR images, the findings of Tanase et al. [44] demonstrated that the FSV
estimation performance of C-band and L-band SAR data is almost the same, and the synergy
between the two data is limited. Purohit et al. [40] used Landsat 8 OLI and Senti-nel-1A
images to accurately predict the spatial distribution of AGB of different forest types in the
foothills of the Indian Himalayas, indicating that the coordination of optical remote sensing
variables and radar backscatter data can effectively improve the accuracy of forest AGB
estimation. Using InSAR technology to perform radar signal interferometric processing on
two SAR complex images can generate an interferometric phase, interferometric coherence
coefficient, digital surface model (DSM), and other feature factors that contain information
on the horizontal and vertical structures of the forest, which are usually very beneficial for
FSV estimation [42]. Borlafmena et al. [45] assessed the utility of Sentinel-1 coherence time
series for temperate and tropical forest mapping. They found that for forest classification on
rough terrain, the Sentinel-1 coherence amplitude can significantly reduce the error of forest
missions. In addition, Sentinel-1 time series data based on InSAR technology have shown
excellent performance in the research of land subsidence, surface deformation monitoring,
and post-disaster assessment [41,46–49]. Sentinel-1 imagery has the advantages of global
coverage, free access, and high spatial and temporal resolution [42,45]; however, the full
potential of Sentinel-1 C-band interferometry SAR (S1-InSAR) coherent data for estimating
boreal FSV has rarely been studied. In addition, the Sentinel-1 backscattering coefficient,
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InSAR coherence coefficient, and Landsat 8 OLI spectral feature variables were not used
together to predict FSV.

The selection of remote sensing feature variables is a key factor in determining the
accuracy of the FSV estimation model [20,50–53]. The random forest (RF) method can
evaluate and rank the importance of remote sensing features by using the out-of-bag
esti-mation error before and after adding noise to the feature variables; however, it does
not consider the combination effect relationship between the feature variables [10,12,50].
Stepwise regression analysis (SRA) can dynamically eliminate redundant features through
a variance homogeneity test; however, it can only select variables based on the linear
relationship between remote sensing variables and FSV [10]. The support vector regression
(SVR) algorithm is a classical small-sample learning method with a profound theoretical
foundation. It has a satisfactory generalization performance, is resilient to overfit, and
can achieve good estimation performance in the case of very few sample data. Therefore,
this method has been widely used for remote sensing monitoring and modeling of forest
resources [20,52,54]. However, few studies have used the SVR algorithm combined with the
combination effect of remote sensing feature variables to select remote sensing variables.

Therefore, this study will build a coniferous plantation FSV remote sensing inversion
experimental area in northern China. Based on sentinel-1 SAR backscattering coefficient,
hyper temporal InSAR coherence factors and Landsat 8 spectral variables, SVR algorithm
combined with the combination effect of remote sensing characteristic variables will be
used to select remote sensing variables and build FSV estimation model, so as to effective-ly
improve the estimation accuracy of coniferous forest volume through the combination of
active and passive remote sensing data.

2. Study Area and Data
2.1. Study Area

The study area, the Wangyedian Forest Farm, with a forest area of 23,118 ha, is located
in Harqin, Inner Mongolia Autonomous Region, Northeast China (118◦09′ to 118◦30′E,
41◦21′ to 41◦39′N) (Figure 1). This choice was influenced by the temperate monsoon climate
as well as the annual precipitation, temperature, and the frost-free period of the study
area, which are, approximately, 400 mm, 4.2 ◦C, and 117 d, respectively. There are many
rolling mountains, with an altitude distribution of 800–1890 m, on the forest farm. The
forest farm is rich in forest resources and beautiful scenery, with a total FSV of 1.5 million
m3, of which the FSV of the plantation is approximately 0.8 million m3. It has a forest area
of 350,000 mu, including 176,000 mu of planted forest, and the main tree species are larch
(Larix gmelinii Kuzen.) and Chinese pine (Pinus tabuliformis Carrière). The natural forest
area is 174,000 mu, and the main tree species are white birch (Betula platyphylla Suk.),
aspen (Populus davidiana Dode) and oak (Xylosma racemosum Miq.) [12].

2.2. Sample Plot Design and FSV Data Collection

The setting of the FSV sample plot was selected according to many factors, including
altitude, slope direction, slope, and stand age structure. Each sample plot had a size of
25 × 25 m, was required to contain only one main forest type, and was far from the stand
boundary. For fulfilling the needs of high-precision positioning and measurement, the
investigators used the RTK to collect the coordinate position and terrain information in the
sample plot and measured the height of trees in the sample plot with a laser altimeter; the
DBH of all living trees with a DBH greater than or equal to 5 cm in the sample plot was
measured with a special DBH ruler (1.3 m from the ground). The collected data included
information on tree species, DBH, tree height, crown width, and the height of trees under
branches, as well as the geographical environment data of the sample plot, such as the
coordinates of the central point of the sample plot, altitude, slope, and slope direction.
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Figure 1. (a) Study area location; (b) Landsat 8 image of the study area; (c) Sentinel-1 C-band SAR
image of the study area.

The fieldwork inventory was conducted in the autumn of 2017 and 2019, and there
were 54 larch and 76 Chinese pine sample plots (Figure 2). Using the FSV calculation for-
mula for larches and Chinese pines provided by the forest farm (Table 1), the stock volume
of each tree in the sample plot was calculated. According to the growth curves of tree
height and the DBH of larches and Chinese pines at different age levels, the corresponding
annual relative growth was calculated to convert the FSV in 2017 into the FSV in 2019. The
final FSV data from the 130 sample plots were summarized and converted into hectares
(m3/ha) (Table 2).

Table 1. Coniferous forest stock volume calculation formulas in the study area.

Tree Species FSV Calculation Formula Remarks

Larch FSV= −0.001498 + 0.00007 × D2 + 0.000901 × H + 0.000032 × H × D2

D: DBH H: Tree height
Chinese pine FSV= 0.013464 − 0.001967 × D + 0.000089 × D2 + 0.000628 × D × H

+ 0.000032 × H × D2 − 0.003173 × H

Table 2. Statistical summary of forest stock volume (m3/ha) at field plots.

Tree Species Numbers of
Plots Minimum Maximum Mean Standard

Deviation
Coefficient of
Variation (%)

Chinese pine 76 105 519 230.8 83.2 36.1
Larch 54 76 360 223.4 63.5 28.4

All 130 76 519 227.7 75.5 33.2
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Figure 2. (a) Plot distribution map and digital elevation model (DEM) of the study area; (b) distribu-
tion of coniferous forest, other forest types, and non-forest land in the study area; (c–e) images of
larches and Chinese pines at the field survey sites, respectively.

2.3. Optical and SAR Remote Sensing Data Preprocessing

One Landsat 8 (L8) and thirty-nine Sentinel-1 (S1) hyper-temporal images (Table A1) were
obtained from the United States Geological Survey (https://earthexplorer.usgs.gov/) (accessed on
9 May 2021) and the European Space Agency Copernicus data center (https://scihub.copernicus.
eu/) (accessed on 11 July 2021), respectively. Digital elevation model (DEM) data covering the
study area were downloaded from the geospatial data cloud (http://www.gscloud.cn/) (accessed
on 8 May 2019). They were generated using ASTER GDEM data processing, with a spatial
resolution of 30 m, a projection type of UTM/WGS84, and a data type of IMG. We also
obtained the forest resource distribution map, administrative boundary vector map, and
other relevant auxiliary information pro-vided by the forest farm.

The acquired Landsat 8 Operational Land Imager (OLI) images (level-1T) underwent
systematic radiometric and geometric corrections. The spectral information of the forest
vegetation can be obtained from OLI images. However, to quantitatively retrieve forest
FSV data using image spectral variables, Landsat 8 level-1T products usually need pre-
processing, such as radiation calibration and atmospheric correction [10]. Sentinel-1 was
the first C-band dual-polarization SAR satellite developed by the Copernicus program of
the European Space Agency. Sentinel-1 A and Sentinel-1 B were successfully launched
in April 2014 and 2016, respectively. Sentinel-1 images have the advantages of ultrahigh
radiation resolution (1 dB/3σ), global coverage, free download, and high spatial resolu-
tion. Therefore, Sentinel-1 is widely used in all-weather and all-time radar imaging Earth
observation missions [42,47]. The flight orbit space of the Sentinel-1 interferometric wide

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
http://www.gscloud.cn/
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amplitude mode (IW) is a pipe with a radius of approximately 50 m, and it generates three
sub-band (IW1, IW2, IW3) data through progressive terrain scanning to ensure that the
interferometric image data have good coherence; thus, it can be used to conduct effective
radar interferometric analysis [42,55]. This study obtained 39 Sentinel-1 level-1 IW PolSAR
images covering the Wangyedian Forest Farm from March to December 2019 (Table A1),
which were single-view complex (SLC) products based on the raw data of the radar system
after fast-focusing processing. Sentinel-1 SLC images require a series of processes, such
as orbit correction, radiometric calibration, multi-looking, polarization filtering, terrain
correction, and geocoding, to obtain a SAR backscattering coefficient. In addition, the
39 hyper-temporal SLC images can be used to form multiple image pairs, and canopy
elevation data and coherent information can be obtained through InSAR technology.

3. Methods
3.1. Optical Remote Sensing Feature Variable Extraction

In research on forest FSV estimation based on optical images, the usually extracted
optical remote sensing factors mainly include spectral band reflectance, a vegetation in-
dex, and texture feature factors extracted by image spatial texture analysis [10,21]. The
vegetation index can realize the simple and effective measurement of surface vegetation
growth trends, health status, and other information [12,20]. Through texture analysis, the
periodic changes of the arrangement and combination attributes of texture primitives at the
gray level of the image can be reflected macroscopically [56–59]. A gray level concurrency
matrix (GLCM) is a typical statistical method for texture information analysis [52].

In total, 276 optical remote sensing feature variables were extracted from the L8 OLI
images for forest FSV estimation (Table 3); among them, there were 7 multispectral bands,
45 vegetation index feature variables, and 224 texture feature factors. GLCM was used to
obtain image texture information, such as the mean, variance, and homogeneity [13]. As
shown in Table 3, based on the GLCM method, texture feature data were extracted from
seven multispectral bands of the L8 OLI image, with a sliding window of 3 × 3, 5 × 5,
7 × 7, 9 × 9, and step size of [1,1].

Table 3. Optical remote sensing feature variables extracted from L8 OLI image.

Variable Type Variable Name Variable Description

Band reflectance Band i, (i = 1, . . . , 7) Band 1: Coastal, Band 2: Blue, Band 3: Green, Band 4:
Red, Band 5: NIR, Band 6: SWIR 1, Band 7: SWIR 2

Vegetation indices

NDVI (Nir − Red)/(Nir + Red)
RVI_ij Band i/Band j, i 6= j
DVI_ij Band i/Band j, i 6= j

EVI 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)
SAVI (Nir − Red)(1 + 0.5)/(Nir + Red + 0.5)

Texture (GLCM)

Mean (M) ∑ n−1
i,j=0 iPi,j

Variance (Var) ∑ n−1
i,j=0 Pi,j

(
i, j− µi,j

)
Contrast (Con) ∑ n−1

i,j=0 Pi,j(i− j)2

Homogeneity (Hom) ∑ n−1
i,j=0 Pi,j/

(
1 + (i− j)2

)
Entropy (Ent) ∑ n−1

i,j=0 Pi,j

(
− ln Pi,j

)
Dissimilarity (Dis) ∑ n−1

i,j=0 Pi,j|i− j|
Second Moment (SM) ∑ n−1

i,j=0

(
Pi,j

)2

Correlation (Cor) ∑ n−1
i,j=0 Pi,j

(
(i− µi)

(
j− µj

)
/
√

σ2
i σ2

j

)
Note: Pi,j = Vi,j/ ∑n−1

i,j=0 Vi,j, is the normalized value of element Vi,j in row i and column j of the GLCM, and N is
the number of rows (columns) in the matrix.
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3.2. SAR Feature Variable Extraction

In the microwave radar remote sensing system, ground object types usually include
discrete targets, distributed targets, and targets that combine discrete and distributed tar-
gets, whereas forests usually belong to the third type of targets. For non-discrete targets,
such as forests and farmland, the radar image unit pixel usually contains many scatterers;
therefore, the radar echo signal is formed by the coherent superposition of all scatterer
signals [39]. Such coherently superimposed scattered signals usually indicate the absence
of dominant scatterers; therefore, the concept of the backscattering coefficient needs to be
introduced to describe them [41]. The backscattering coefficient is the reflectivity of the
radar electromagnetic wave signal per unit of the backscattering cross-sectional area. It
describes the interaction between the incident radar electromagnetic waves and ground
objects by using statistical methods to measure the scattering ability of ground objects [46].
As shown in Equation (1), the backscattering coefficient Sigma0 (σ0) can be expressed as
the average scattering cross-section corresponding to the unit-effective scattering unit area,
which is a dimensionless quantity [39,42,44].

σ0 = σ/Areaσ (1)

where 〈σ〉 is the average scattering cross-section of the radar, and Areaσ is the effective
scattering area in the ground distance direction. In a specific application, the unit-effective
scattering unit area can also be expressed as the effective scattering unit area Areaγ. per-
pendicular to the incident direction or the effective scattering unit area Areaβ in the oblique
distance direction.

Areaβ = Resolutionr × Resolutiona = (c× τ/2)× (D/2) (2)

Areaσ = Resolutionr × Resolutiona/ sin θ = c× τ × D/4 sin θ (3)

Areaγ = Resolutionr × Resolutiona/ tan θ = c× τ × D/4 tan θ (4)

where Resolutionr and Resolutiona are the range and azimuth resolutions of the image,
respectively, c is the speed of light, τ is the pulse duration of the radar system, D is the
radar aperture size, and θ is the ground-incident angle corresponding to the image pixel.
Therefore, the backscattering coefficient can be expressed in the form of Gamma0 (γ0) and
Beta0 (β0). The radar feature variables extracted from Sentinel-1 SAR images in this paper
are shown in Table 4.

γ0 = σ/Areaγ (5)

β0 = σ/Areaβ (6)

Table 4. Radar feature variables extracted from Sentinel-1 SAR image.

Variable Type Variable Description

Backscattering coefficients
VV(Sigma0), VH(Sigma0),

VV(Gamma0), VH(Gamma0),
VV(Beta0), VH(Beta0)

Radar indices (VH − VV)/(VH + VV), VV/VH

Texture features extracted from
Backscattering coefficients

Mean (M), Variance (Var), Homogeneity (Hom),
Contrast (Con), Dissimilarity (Dis), Entropy

(Ent), Second moment (SM), Correlation (Cor)
Note: VV and VH are the backscattering coefficients corresponding to the polarization modes of VV and VH,
respectively; the sliding window scale for extracting texture features based on the backscattering coefficients is (3
× 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15).

3.3. InSAR Feature Variable Extraction

InSAR is a space–Earth observation technology developed from traditional microwave
radar remote sensing technology combined with radio astronomical interferometry [45,46].
Based on the microwave signals transmitted and received by the InSAR system from the



Remote Sens. 2022, 14, 2754 8 of 24

target area, SAR complex image pairs containing intensity and the phase information of
ground objects in the same area can be generated. If there are coherence conditions between
the complex image pairs, an interferogram can be generated using conjugate multiplication.
The distance difference between the microwaves can be calculated according to the phase
value of the interferogram. The distance information between the ground object target and
the sensor can be obtained using parameters such as the flight altitude information of the
satellite sensor, the frequency of the microwave radar, and the beam direction; consequently,
elevation information corresponding to each pixel target in the SAR image can be measured
accurately [48,49].

In this study, the VV and VH polarization data of Sentinel-1 SLC images were used
for interference processing. As shown in Figure 3, in the process of interference processing
using SNAP software, the downloaded DEM and the boundary shape file of the study area
must be used to register and cut the Sentinel-1 image pair. The ratio of the distance view
to the azimuth view was set to 5:1, and the mapping resolution was approximately 30 m.
The Goldstein algorithm was selected as the filtering method of the interferogram, which
not only improved the definition of the interference fringe but also effectively reduced the
incoherent noise caused by errors. The phase unwrapping method uses the minimum cost
flow method to mask pixels whose coherence is less than the threshold. A polynomial
optimization method was used for orbit refining and phase offset correction. Based on the
selected control points, re-flattening processing was conducted. Finally, geographic coding
was conducted while referring to the DEM image coordinate system to obtain the DSM and
the coherence coefficient map.
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Figure 3. Flow chart of interference processing based on Sentinel-1 IW SLC images.

As shown in Table A2, 39 pairs of Sentinel-1 IW SLC images were sorted according to
the imaging time interval, of which 29 pairs, 9 pairs, and 1 pair were separated by 12, 24,
and 36 d, respectively. Because the spatial baseline length of some image pairs is too short
(<15 m), the vertical distance is too small; the influence of the terrain is too large, which can
easily lead to large interferometric errors, and interference processing cannot be performed.
Some intermediate results obtained by the InSAR processing are shown in Figure 4.
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3.4. Feature Variable Selection Method Based on SVR

The SVR algorithm is a commonly used statistical learning method. For dataset
D = {(x1,y1),(x2,y2), . . . ,(xn,yn)}, with n training samples, xi is the independent variable with
a p-dimensional feature space, and yi is the dependent variable. A regression function
(Equation (7)) can be obtained using SVR learning such that f (x) is as close to y as possible,
where ω and b are the parameters to be solved. For all samples, the estimated loss was
calculated if and only if the absolute value of the deviation between f (x) and y was greater
than ε. At this point, it is equivalent to building an interval pipeline with a deviation range
of ε, using f (x) as the center [54,60]. Therefore, the optimization problem of SVR can be
expressed using the following formula:

f (x) = ωTx + b (7)

min
ω,b

1
2
‖ω‖2 + C ∑m

i=1 lε( f (xi)− yi) (8)

where C is the regularization constant and lε is the loss function.
Based on the estimation error of the SVR model, this study explored the combinatorial

optimization effect between feature variables and used the forward heuristic increment
method to gradually select the appropriate feature variables from the set of candidate
feature variables (FC).

First, the distance correlation measurement method was used to select a feature
variable with the greatest correlation to the FSV, add it to the selected feature variable
subset (FS), and delete it from the FC.

Subsequently, a single feature variable was gradually selected from the FC set to join
the FS subset. The SVR algorithm was used to establish the estimation model based on the
FS subset, and the root mean square error (RMSE) of the estimation result of the model was
calculated using leave-one-out cross-validation (LOOCV).

After traversing all candidate feature variables from the FC set, the feature variable
subset with the smallest RMSE in this round was determined as the “optimal” feature
variable subset, and the corresponding feature variables were added to the FS subset. The
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iteration was continued until the specified number of iterations was reached or the RMSE
of the FS subset was no longer reduced.

To compare with the proposed SVR-based feature variable selection method (FS-SVR),
we used the SRA and FS-SVR methods to select feature variables for FSV estimation
modeling. SRA is a feature selection method that constructs a multiple linear regression
relationship between independent and dependent variables, gradually introducing new
feature variables and eliminating feature variables that are not significant in the variance
homogeneity test. In this study, the selection of feature variables based on the SRA method
was completed using SPSS 23 software. The stepwise method was used to input the
independent variable of SRA, and the significance level values of independent variable
introduction and independent variable elimination were set to 0.05 and 0.1, respectively.

3.5. FSV Modeling and Accuracy Evaluation

The SVR algorithm was used to predict FSV values in the study area. In specific
ap-plications, there remained some parameters to be adjusted, such as the kernel function
and cost parameter (C). In the modeling process of the FSV estimation based on the SVR
algorithm, the dependent variable was the observed value vector of the sample plot FSV,
the independent variables were the selected remote sensing feature factor vectors, and
the kernel functions used were the radial basis function (RBF) and linear kernel function
(linear). Hyperparameter C indicates the tolerance of the estimation error. When using RBF,
there is also a hyperparameter “gamma” that must be set. The larger the gamma, the fewer
the support vectors. In the FSV estimation model based on SVR in this study, the value
range of C was (1500), and the value range of gamma was (0.1, 5). By using cross-validation,
the most suitable value for the training sample dataset was searched iteratively.

In this study, the LOOCV method was used to assess the accuracy of the predicted FSV
and optimize the model [10,53]. In each iteration, one sample was selected as a test sample,
and all remaining samples were used as a sample dataset for training the model parameters
or hyperparameters. The LOOCV method can make full use of each FSV sample datum
and can also greatly reduce the random error caused by the division of the training set and
the validation set of the sample data. By comparing the predicted and observed values of
the FSV, we obtained the coefficient of determination (R2), RMSE, and relative root mean
square error (rRMSE).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (9)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(10)

rRMSE =
RMSE

y
(11)

where n is the sample size, yi is the measured FSV value of sample plot i, y is the mean
value of the observed FSV of all sample plots, and ŷi is the estimated FSV value of sample
plot i. Generally, the higher the estimation accuracy of the model and the stronger the
prediction ability, the greater the R2 value and the smaller the RMSE and rRMSE values.
Finally, the best feature variables and model were used to map the FSV of the coniferous
plantations in the study area. In this study, The Sklearn machine learning model library
were used to perform feature selection based on the FS-SVR method and the training and
prediction of the FSV model.

4. Results
4.1. Feature Variables Extracted and Selected by Different Methods

In this study, optical remote sensing feature variables, such as the vegetation index
and texture factors, were extracted based on the L8 OLI image. The 39 S1 images were
preprocessed, and the backscatter coefficients were extracted. Three S1 images with similar
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field investigation times and high correlations between the backscatter coefficient and FSV
were selected: 20,190,711, 20,190,921, and 20,191,019. The corresponding texture feature
factors were then extracted based on the backscattering coefficients of the three images.
For the 32 pairs of S1 SLC im-ages that fulfilled the requirements of the spatial vertical
baseline, a series of radar signal interference processing was conducted. Finally, 32 DSM
and coherence coefficient images were generated. The InSAR coherence coefficient, and
DSM images extracted from the Sentinel-1 SAR data are shown in Figure A1. For comparing
and analyzing the estimation potential of the coniferous FSV of the L8, S1, and S1-InSAR
remote sensing feature datasets, the feature variables were selected by SRA and FS-SVR
based on the three datasets. As shown in Tables 5–8, for L8, S1, and S1-InSAR, the SRA
method selects eight, six, and nine feature variables, respectively, and the FS-SVR method
selects eight, eight, and ten feature factors, respectively.

Table 5. Statistical results using the SRA feature selection method based on the L8 OLI dataset.

Variables Coefficient t Sig.
95% Confidence Interval Collinearity Statistics Correlation

with FSVLower Upper Tolerance VIF

Constant 66.627 1.654 0.101 −13.129 146.383
b3-W5-T7 164.945 5.189 0.000 102.017 227.874 0.601 1.665 0.531
b6-W9-T1 −6.315 −3.632 0.000 −9.757 −2.873 0.546 1.832 −0.428

RVI24 −81.817 −5.116 0.000 −113.481 −50.154 0.296 3.382 −0.400
RVI47 266.994 5.144 0.000 164.239 369.750 0.281 3.564 −0.184

b4-W5-T4 4.610 3.874 0.000 2.255 6.966 0.297 3.369 −0.129
b2-W7-T5 −50.827 −2.646 0.009 −88.858 −12.796 0.223 4.493 −0.357
b4-W5-T8 50.507 3.033 0.003 17.539 83.475 0.755 1.325 −0.032
b5-W9-T5 12.153 2.310 0.023 1.736 22.570 0.640 1.561 −0.124

Note: b, band serial number of L8 image; W, size of texture analysis sliding window; T, serial number of texture
factor (for example, b3-W5-T7 represents the seventh texture feature factor “Second Moment” extracted by band3
of the L8 image, and the sliding window size is 5 × 5); Correlation with FSV, the Pearson correlation between FSV
observations and the feature variables.

Table 6. Statistical results using the SRA feature selection method based on the S1 SAR dataset.

Variables Coefficient t Sig.
95% Confidence

Interval Collinearity Statistics Correlation
with FSV

Lower Upper Tolerance VIF

Constant 108.650 4.181 0.000 57.212 160.087
0921VH-B-W13-T1 196.682 7.254 0.000 143.009 250.354 0.070 14.193 0.142
0921VH-G-W9-T1 −95.474 −4.152 0.000 −140.989 −49.959 0.062 16.029 0.014
0711VV-S-W9-T1 −49.330 −4.976 0.000 −68.956 −29.705 0.159 6.290 −0.095

0711VH-B-W15-T8 129.218 2.976 0.004 43.268 215.168 0.695 1.438 0.146
0828VH-S-W9-T8 −102.517 −3.402 0.001 −162.157 −42.876 0.697 1.435 −0.091
0921VV-B-W13-T5 518.921 2.270 0.025 66.369 971.473 0.516 1.937 −0.010

Note: S, Sigma0; G, Gamma0; B, Beta0; W, size of texture analysis sliding window; T, serial number of the
texture factor. For example, 0921VH-B-W13-T1 represents the first texture feature factor “mean” extracted by the
backscattering coefficient, Beta0, of the S1–20190921 VH polarization image, and the sliding window size was
13 × 13.
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Table 7. Statistical results using the SRA feature selection method based on the S1-InSAR dataset.

Variables Coefficient t Sig.
95% Confidence

Interval Collinearity Statistics Correlation
with FSV

Lower Upper Tolerance VIF

Constant 447.447 5.463 0.000 285.288 609.606
1206VV-CC −200.281 −3.052 0.003 −330.227 −70.335 0.570 1.755 −0.600
1124VV-CC −186.394 −3.564 0.001 −289.943 −82.846 0.559 1.789 −0.564

0711VV-DSM 0.309 4.680 0.000 0.178 0.439 0.405 2.470 0.451
0703VV-CC −72.551 −2.813 0.006 −123.617 −21.485 0.947 1.056 −0.061
0723VH-CC −117.975 −2.622 0.010 −207.063 −28.886 0.859 1.164 −0.295
0621VV-CC 94.824 2.640 0.009 23.710 165.939 0.835 1.197 −0.122
1019VV-CC −350.079 −4.001 0.000 −523.304 −176.855 0.539 1.857 −0.576
1108VV-CC −159.089 −2.811 0.006 −271.156 −47.021 0.498 2.008 −0.567

1019VV-DSM −0.147 −2.287 0.024 −0.275 −0.020 0.293 3.408 0.491

Note: 1206, corresponding S1 image pair (20,191,206 and 20,191,230) in Table A2. For example, 1206VV-CC
represents the coherence coefficient obtained by interference processing based on the S1 image pair “20,191,206
and 20,191,230” VV polarization.

Table 8. Statistical results using the FS-SVR feature selection method based on three datasets.

Datasets Variables DC PC MIC Importance

L8 OLI

b4-W9-T1 0.365 −0.363 0.266 0.248
b1-W9-T7 0.363 0.294 0.356 0.148
b5-W3-T7 0.292 0.300 0.291 0.029
NDVI37 0.254 −0.221 0.299 0.155

b6-W9-T7 0.365 0.338 0.298 0.148
b5-W9-T7 0.272 0.339 0.240 0.055
b4-W9-T7 0.388 0.392 0.295 0.095
b1-W7-T4 0.363 −0.251 0.335 0.150

S1

0711VV-B-W7-T1 0.184 −0.146 0.272 0.370
0921VH-B-W13-T1 0.183 0.142 0.239 0.488
0711VH-G-W3-T7 0.164 0.067 0.213 0.067
0711VH-B-W13-T4 0.163 −0.031 0.296 0.115
0921VH-S-W9-T3 0.160 0.109 0.230 0.071

0711VV-B 0.220 −0.203 0.257 0.190
0711VV-B-W13-T7 0.156 0.033 0.210 0.078
0828VH-S-W9-T3 0.162 0.056 0.291 0.089

S1-InSAR

1206VV-CC 0.590 −0.600 0.415 0.194
1124VV-CC 0.544 −0.564 0.401 0.126
0617VV-CC 0.280 −0.059 0.301 0.034
0703VV-CC 0.261 −0.061 0.358 0.075
0921VV-CC 0.273 −0.080 0.310 0.034
1108VV-CC 0.581 −0.567 0.439 0.130
1019VV-CC 0.581 −0.576 0.508 0.160
1214VV-CC 0.361 −0.340 0.314 0.034
0317VH-CC 0.269 −0.132 0.264 0.042

0422VH-DSM 0.315 −0.238 0.308 0.152
Note: DC, PC, and MIC are the distance correlation coefficient, Pearson correlation coefficient, and maximum
information coefficient between feature variables and FSV observations, respectively. Importance: The importance
of the feature variables measured by the random forest mean decreases in accuracy.

The collinearity statistics results (Tables 5–7) demonstrate that the feature variables of
L8 and S1-InSAR have a smaller variance inflation factor (VIF) value and a higher tolerance
value than the S1 backscatter and its texture factor as a whole. The texture features and
vegetation index of L8, the coherence coefficient, and the DSM data of S1-InSAR had a good
linear correlation with the FSV of the northern coniferous forest. Particularly notable was
that the FSV correlation of 1206VV-CC and 1019VV-DSM reached 0.6 and 0.491, respectively,
which were 311.0% and 236.3% higher than that of S1 (0711VH-b-W15-T8). In addition, for
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the PC values between the FSV observations and the feature variables, the feature variables
of L8 and S1-InSAR were significantly higher than those of S1.

4.2. FSV Prediction Result

Using the SVR linear kernel function and RBF kernel function algorithm, the coniferous
forest stock volume estimation model of the Wangyedian Forest Farm was constructed
based on the subset of feature variables selected by the SRA and FS-SVR methods (Figure 5).
The prediction accuracies corresponding to the three datasets, L8, S1, and S1-InSAR, are
listed in Table 9. In general, the S1-InSAR dataset had a better estimation performance
for coniferous forest stock volume than that of S1 and L8. The combination of feature
variables selected by the FS-SVR method is more suitable for coniferous FSV estimation
than those selected by the SRA method. The average value of rRMSE obtained by FSV
estimation based on the three datasets using the FS-SVR method was 23.17%, which was
13.8% lower than the average value of rRMSE corresponding to the SRA method (26.87%).
When the SRA method was used, the FSV estimation performance of S1-InSAR and L8 was
significantly higher than that of the S1 dataset, and the corresponding rRMSE values were
14.6% and 12.2% lower than that of S1, respectively, which also verified the correlation
analysis results in Tables 5–7. For the FS-SVR method, the S1-InSAR feature factor set
obtained by interferometry yielded good FSV estimation performance. The R2, RMSE, and
rRMSE values were 0.61, 47.2 m3/ha, and 20.7%, respectively. To explore the synergistic
potential of active and passive remote sensing combined data in northern coniferous forest
stock volume estimation, we integrated the L8, S1, and S1-InSAR datasets and conducted
FSV estimation experiments based on the FS-SVR method. The results show that the
integrated dataset can provide full play to the synergy of the three remote sensing datasets
(Figure 6). There was a strong correlation between the forest stock volume predicted values
and observed values; the PC coefficient (r) value reached 0.81, and the RMSE and rRMSE
values were 44.3 m3/ha and 19.4%, respectively.

Table 9. Hyperparameter sets and prediction accuracies of support vector regression constructed by
the SRA and FS-SVR methods.

Datasets Methods C Gamma R2 RMSE
(m3/ha) rRMSE (%) r

L8
SRA 100 0.38 59.0 25.9 0.63

FS-SVR 150 2.8 0.40 58.4 25.6 0.63

S1
SRA 200 0.20 67.3 29.5 0.45

FS-SVR 350 1.4 0.50 52.9 23.2 0.71

S1-InSAR
SRA 51 0.42 57.3 25.2 0.65

FS-SVR 150 4.8 0.61 47.2 20.7 0.78
The integrated dataset FS-SVR 270 2.4 0.65 44.3 19.4 0.81

Note: The integrated dataset, the combination of L8, S1, and S1-InSAR datasets; r, Pearson correlation between
FSV estimates and observations.

By using the FS-SVR method, the subset of feature variables selected based on the
integrated dataset of L8, S1, and S1-InSAR and its estimation performance change trends are
shown in Figure 7. The feature variables that contribute the most to the estimation accuracy
of forest stock volume were InSAR coherence factors, followed by S1 backscattering texture
factors and L8 OLI vegetation indices. With an increase in the number of feature variables,
the estimation accuracy of the forest stock volume exhibits an obvious upward trend.
Particularly notable is that, when the interference coherence factors 1202VV-CC and 0617VV-
CC were added to the set of feature variables, the estimation accuracies (1-rRMSE) were
8.8% and 5.7% higher than those before the addition, respectively. The contribution of
backscattering coefficient texture factor 0921VH-S-W9T3 to the improvement of forest stock
volume estimation accuracy was relatively smaller than that of the feature factor related
to VV polarization, which further verified the conclusion in Section 4.1; that is, the forest
stock volume correlation of S1 VV polarization is higher than that of VH polarization.
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Figure 5. Scatterplots of FSV prediction results using L8 (a–d), S1 (e–h), and S1-InSAR (i–l) datasets,
respectively. (a,b,e,f,i,j) SRA variable selection method. (c,d,g,h,k,l) FS-SVR variable selection
method. The red dotted line is the 50% error bar, used to judge whether the error of the FSV estimated
value exceeds 50% of the sample mean; the orange solid line is the 1:1 diagonal line; and the blue
dotted line is the linear fitting trendline. The formula is the linear equation fitted by the scatterplot.

4.3. Predicting and Mapping the Stock Volume of Coniferous Plantation

To compare and analyze the stock volume estimation performance of different remote
sensing datasets in the Wangyedian coniferous forest, we performed forest stock volume
prediction and spatial distribution mapping based on the L8, S1, and S1-InSAR datasets
(Figure 8a–c). The distribution range of the FSV estimates in Figure 8a was 112–336
m3/ha, the low value of FSV was concentrated around 130 m3/ha, and the high value
was mainly concentrated around 300 m3/ha, indicating that there were serious problems
due to low-value overestimation and high-value underestimation, which also verified that
the L8 image dataset suffers from a low saturation point in regions with high FSV values,
resulting in very limited estimation capabilities. Figure 8b,c have larger FSV distribution
ranges than Figure 8a, and their estimation results are also more accurate than those
in Figure 8a. Especially in Figure 8c, the prediction effect in the low- and high-value
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areas of the FSV was significantly improved, and it was more in line with the actual
FSV distribution than Figure 8a,b. The aforementioned results show that the S1-InSAR
dataset can effectively improve the estimation accuracy and saturation of the FSV in the
Wangyedian coniferous forest.
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ment trend of FSV prediction accuracy (1-rRMSE).

This study, using the integrated dataset of L8, S1, and S1-InSAR, combined with the
sample data of the coniferous FSV in the study area, constructed an FSV estimation model
using the FS-SVR method and an SVR algorithm. The coniferous FSV in the Wangye-
dian study area was predicted, and an FSV spatial distribution inversion map with 30 m
resolution was generated (Figure 8d). The coniferous FSVs of the Wangyedian research
area in 2019 ranged from 48 to 475 m3/ha, most of which were below 325 m3/ha, and
the average value and standard deviation were 201 m3/ha and 62 m3/ha, respectively,
which is consistent with the statistical results of our sampling survey. The low-value areas
of coniferous FSV were concentrated in the central and northern low-altitude areas with
many of human activities, and the high-value areas of the coniferous FSV were located in
the relatively high-altitude or sparsely populated remote forest areas in the east and west,
away from cities and towns.
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Figure 8. FSV distribution maps of coniferous plantations in the study area based on the FS-SVR method,
using four remote sensing datasets. (a) L8, (b) S1, (c) S1-InSAR, (d) the integrated of three datasets.

5. Discussion
5.1. Feature Variables Selection in FSV Estimation

Unlike the SRA method, which focuses on selecting characteristic variables with good
linear correlation, the FS-SVR method can measure the nonlinear relationship between
feature variables, and FSV and considers the combination optimization effect between
features. Therefore, the PC values of the feature variables in Table 8 were generally lower
than those in Tables 5–7. However, the statistics of the FSV estimation results in Table 9
and Figure 5 demonstrate that the FS-SVR method proposed in this study has better
FSV estimation accuracy than the SRA method does. Especially with respect to the FSV
estimation based on the S1 dataset, the R2 and fitting trendline slope corresponding to the
FS-SVR method were 150.0% and 142.8% higher than those of the SRA method, respectively.
These results also show that the combination effect between the feature variables is a crucial
factor that cannot be ignored in the process of feature variable selection [12,50]. In addition,
the correlation and importance statistics results in Tables 7 and 8 demonstrate that the VV
polarization of the S1 image is significantly better than that of the VH polarization. In a
study of forest AGB estimation based on optical and SAR remote sensing data in Dunhua
City, Jilin Province, China, Chen [61] found that Sentinel-1 was more sensitive to forest
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AGB under VV polarization data than HH polarization was. This finding is consistent with
the results of this study.

5.2. Analysis of FSV Estimation Performance

We compared the estimation results of the FSV model in Figures 5 and 6 and found that
the fitting effect of the model corresponding to the integrated dataset was the best, the slope
of the fitting trendline (0.63) was the highest, and the fitting trendline of the FSV estimation
residual value was the flattest. This finding shows that the synergy of the three remote
sensing datasets can effectively suppress the problems of high-value underestimation and
low-value overestimation in FSV estimation. The statistical results in Figure 7 demonstrate
that the feature variable with the greatest improvement in the estimation accuracy of FSV in
the three datasets is the S1-InSAR coherence coefficient, which may be because the coherent
amplitude data contain the vertical structure information related to the forest canopy height.
Therefore, the S1-InSAR dataset has a better FSV response and higher saturation point
than the S1 backscattering coefficient and optical remote sensing factors do. Borlafmena
et al. [45] tested the ability of the Sentinel-1 C-band image to distinguish forests from
other land-use types and found that InSAR coherence feature factors can improve overall
classification accuracy. Robert et al. [55] systematically evaluated the potential of Sentinel-1,
Sentinel-2, and Landsat 8 for use in permanent grassland moving event detection. The
results showed that comprehensive prediction accuracy based on the combined data of
NDVI, the backscattering coefficient, and InSAR coherence was the highest. The findings of
the aforementioned research are very similar to the conclusions of this study, which prove
the great potential of the Sentinel-1 C-band and its InSAR coherence feature factors with
respect to remote sensing classification and quantitative estimation.

Tomáš et al. [62] extracted radar polarization coherent amplitude data and optical
remote sensing variables based on Sentinel-1 and Sentinel-2 data, supplemented by a
sample survey and airborne laser scanning data, and established an AGB prediction model
that used multiple regression. The best model RMSE was 41.2 t/ha, and the rRMSE was
35.1%. Long et al. [39] estimated the FSV of the Chinese fir plantation in South China
by using Alos-2 PALSAR L-band full polarimetric SAR data. They found that the fused
polarimetric features based on a timeseries of SAR images can improve the estimation
accuracy of FSV, and the minimum rRMSE was 24.42%. In the aforementioned two studies,
the difficulty of performing remote sensing prediction on forest AGB in reference [62] is
essentially equivalent to that of the FSV estimation in this study. The Chinese fir forest
studied in reference [39] is a coniferous plantation that contains larches and Chinese pines,
similar to this study, but the FSV estimation accuracy (1-rRMSE) obtained in our study is
24.2% and 6.6% higher than those of the other two studies, respectively. The main reason
for the above results is that we extracted many InSAR coherent amplitude factors based
on hyper-temporal Sentinel-1 images, which improved the diversity of the remote sensing
feature variables. In addition, we used the FS-SVR method to optimize the selection process
of the feature variables.

5.3. Limitations and Prospects

There are many uncertain factors in the process of FSV remote sensing estimation
that affect estimation accuracy, such as ground sample data, satellite sensor images, and
feature variables for modeling [10,52]. The ground sample plots selected by sampling
are representative. Too few sample plots cannot fully and accurately describe the actual
distribution and law of the FSV [20]. Therefore, to minimize the errors caused by sampling,
this study integrated field sample plot survey data from 2017 and 2019. There are some
differences in the FSV saturation and estimation performance of different satellite sensor
data. This study found that the estimated saturation point of L8 was approximately
300 m3/ha, and the estimated maximum FSV value in the study area was 336 m3/hal;
whereas the saturation point of the S1-InSAR dataset was approximately 390 m3/ha, the
estimated maximum FSV value in the study area was 454 m3/ha, and the best RMSE was
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47.6 m3/ha. The aforementioned results are mainly because the optical sensor signal cannot
penetrate the dense forest canopy, resulting in the spectral signal tending to be saturated [18,
20]. After interference processing of the S1 image results, the coherence coefficient and DSM
data containing canopy height information can be obtained [42]. These S1-InSAR feature
factors significantly improved the saturation and accuracy of FSV estimation. Because the
interferometric coherence effect of the S1 images in the same period as the field survey is
often not guaranteed, it is necessary to perform interferometric processing based on S1
hyper-temporal images to improve the diversity and effectiveness of coherent amplitude
data. Such processing requires considerable time, and relying solely on InSAR technology
cannot directly obtain tree height information in mountain forests [61]. ICESat-2 (Ice,
Cloud, and Land Elevation Satellite-2) is a spaceborne LiDAR satellite that was launched
in September 2018 [25]. Research [25,26] shows that ICESat-2 can obtain a large-scale forest
vegetation canopy height. Therefore, for exploring effective solutions to further improve
the accuracy of FSV remote sensing estimation, follow-up research can use ICESat2 data,
combined with S1-InSAR and other optical remote sensing data, to synergistically retrieve
the FSV. In addition, related research has used environmental factors, such as land surface
temperature and soil moisture retrieved from Landsat 8 thermal infrared sensor images, to
conduct remote sensing estimation and the modeling of parameters such as forest AGB
and leaf area index [20,53,63]. However, the validity of environmental factors such as land
surface temperature, soil moisture, and topographic moisture for estimating coniferous
FSV has not been verified.

The set of remote sensing feature variables used to construct the FSV estimation model
can significantly affect the final prediction results [10]. Pearson, SRA, and other linear
relationship measurement methods can simply and quickly select feature variables linearly
related to FSV. However, forests are characterized by spatial heterogeneity and dynamic
changes. This method, based on linear correlation, cannot comprehensively and accurately
describe the real relationship between the FSV and remote sensing variables in a complex
forest environment [12]. In addition, the RF feature selection method can only screen the
relatively crucial feature factors based on specific evaluation criteria, without considering
the combination effect relationship between feature factors, which may be able to be
coupled with other factors to some extent; thus, it has the potential to improve the accuracy
of FSV estimation [50]. Compared with the SRA method, the FS-SVR method proposed
in this paper has significant advantages in the FSV estimation of Wangyedian coniferous
forests but needs to be verified in FSV research on other forest types in other research
areas, and the operation efficiency of the algorithm needs to be improved. Nonparametric
models represented by machine learning algorithms usually have better FSV estimation
performance than parametric models do in a complex forest environment [10,50]. In
this study, the estimation accuracy of the SVR model based on the RBF kernel function
was higher than that based on the linear kernel function. However, due to the spatial
heterogeneity of forest ecosystems, there remains a certain estimation error in the FSV
estimated by the SVR model (rRMSE, 19.4%). The hybrid model, combining the parametric
or nonparametric model and the residual Kriging interpolation model, showed excellent
performance in forest AGB estimation [61], and the RMSE reached 29.72 Mg/ha. In further
research, a Kriging interpolation model based on geostatistics can be considered for FSV
prediction research.

6. Conclusions

In this study, L8 OLI multispectral images, C-band S1, and interferometric radar data
were used to extract various remote sensing feature factors, and an improved method
for the selection of remote sensing feature variables (FS-SVR) was explored. On the basis
of three datasets and the SVR model, a FSV remote sensing estimation experiment on
coniferous forest was conducted, and an FSV estimation scheme, combined with active
and passive multisource remote sensing data, was proposed. Finally, spatial distribution
inversion mapping of the coniferous FSV in the Wangyedian Forest Farm was conducted.
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The conclusions of this study are as follows: (1) The S1-InSAR dataset generated
based on S1 hyper-temporal image interferometry had good FSV estimation accuracy.
The R2 reached 0.6, the RMSE value was 47.6 m3/ha, and the rRMSE value was 20.9%.
Because the coherent amplitude and DSM data contain the vertical structure information
related to the forest canopy height, and the hyper-temporal S1 image data greatly enriches
the diversity of S1-InSAR feature factors, they have a better FSV response and a higher
saturation point than remote sensing factors do, such as the S1 backscattering coefficient
and the L8 vegetation index. (2) The integrated dataset of L8, S1, and S1-InSAR can fully
play the synergy of the three remote sensing datasets. The RMSE and rRMSE values are
44.3 m3/ha and 19.4%, respectively. There is a strong correlation between the FSV predicted
value and observed value, and r reaches 0.81, which is 28.6%, 14.1%, and 3.8% higher
than those of L8, S1, and S1-InSAR, respectively. The feature variables that contribute
the most to the accuracy of FSV estimation in the integrated dataset are InSAR coherence
factors, followed by S1 backscattering coefficient texture factors and L8 vegetation indices.
The backscattering coefficient and the InSAR feature factor of the VV polarization in the
S1 image provide better FSV estimation performance than the VH polarization. (3) The
proposed FS-SVR method is very suitable for the selection of remote sensing features in
FSV estimation. The average value of rRMSE (23.17%) obtained using the FS-SVR method
for FSV estimation based on the three datasets was 13.8% lower than that of the SRA
method (26.87%). This study helps realize the high-precision estimation and mapping of
regional forest volumes by collecting a small amount of measured forest plot data combined
with global coverage, free-download multispectral images (Landsat 8), and C-band SAR
data (Sentinel-1), which have practical theoretical guidance and practical demonstration
significance for the development of remote sensing estimation technology for regional
forest volumes, and will promote the further improvement of modern forestry resources
management.
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Appendix A

Table A1. Landsat 8 and Sentinel-1 image information covering the Wangyedian research area used
in this study.

Image Category Image Identification Acquisition Date

Landsat 8 LC08_L1TP_122031_20190927_20191017_01_T1 20190927

Sentinel-1B

S1B_IW_SLC__1SDV_20191230T221132_20191230T221159_019600_0250B0_2899 20191230
S1B_IW_SLC__1SDV_20191218T221133_20191218T221200_019425_024B1B_4D83 20191218
S1B_IW_SLC__1SDV_20191206T221133_20191206T221200_019250_024587_75B0 20191206

S1B_IW_SLC__1SDV_20191124T221134_20191124T221201_019075_023FFC_F9D2 20191124
S1B_IW_SLC__1SDV_20191112T221134_20191112T221201_018900_023A5C_5D48 20191112
S1B_IW_SLC__1SDV_20191019T221134_20191019T221201_018550_022F3E_5B86 20191019
S1B_IW_SLC__1SDV_20191007T221134_20191007T221201_018375_0229DE_E289 20191007
S1B_IW_SLC__1SDV_20190925T221134_20190925T221201_018200_022459_AE9B 20190925
S1B_IW_SLC__1SDV_20190901T221133_20190901T221200_017850_02197D_522E 20190901
S1B_IW_SLC__1SDV_20190820T221132_20190820T221159_017675_02140F_526D 20190820
S1B_IW_SLC__1SDV_20190810T095659_20190810T095725_017522_020F3E_BC60 20190810
S1B_IW_SLC__1SDV_20190808T221132_20190808T221159_017500_020E97_6E25 20190808
S1B_IW_SLC__1SDV_20190727T221131_20190727T221158_017325_02094E_08A7 20190727
S1B_IW_SLC__1SDV_20190715T221130_20190715T221157_017150_020438_6966 20190715
S1B_IW_SLC__1SDV_20190703T221129_20190703T221156_016975_01FF10_9955 20190703
S1B_IW_SLC__1SDV_20190621T221129_20190621T221156_016800_01F9E2_C83C 20190621
S1B_IW_SLC__1SDV_20190609T221128_20190609T221155_016625_01F4AC_6072 20190609
S1B_IW_SLC__1SDV_20190528T221127_20190528T221154_016450_01EF78_A431 20190528
S1B_IW_SLC__1SDV_20190516T221127_20190516T221154_016275_01EA17_1542 20190516
S1B_IW_SLC__1SDV_20190504T221126_20190504T221153_016100_01E499_637A 20190504

S1B_IW_SLC__1SDV_20190422T221126_20190422T221153_015925_01DEBD_37CA 20190422
S1B_IW_SLC__1SDV_20190329T221125_20190329T221152_015575_01D321_91C4 20190329
S1B_IW_SLC__1SDV_20190317T221124_20190317T221151_015400_01CD68_5402 20190317

Sentinel-1A

S1A_IW_SLC__1SDV_20191226T095744_20191226T095812_030518_037E99_1211 20191226
S1A_IW_SLC__1SDV_20191214T095744_20191214T095812_030343_037891_1BF4 20191214
S1A_IW_SLC__1SDV_20191202T095745_20191202T095813_030168_037286_5B2A 20191202
S1A_IW_SLC__1SDV_20191120T095745_20191120T095813_029993_036C78_D64C 20191120
S1A_IW_SLC__1SDV_20191108T095745_20191108T095813_029818_036669_AAD4 20191108
S1A_IW_SLC__1SDV_20191015T095745_20191015T095813_029468_035A34_B673 20191015
S1A_IW_SLC__1SDV_20190921T095745_20190921T095813_029118_034E23_9420 20190921
S1A_IW_SLC__1SDV_20190909T095745_20190909T095812_028943_034826_7BA8 20190909
S1A_IW_SLC__1SDV_20190828T095744_20190828T095812_028768_034210_B0B1 20190828
S1A_IW_SLC__1SDV_20190816T095743_20190816T095811_028593_033BF0_21BC 20190816
S1A_IW_SLC__1SDV_20190804T095743_20190804T095811_028418_033619_59BC 20190804
S1A_IW_SLC__1SDV_20190723T095742_20190723T095810_028243_0330C2_ECFE 20190723
S1A_IW_SLC__1SDV_20190711T095741_20190711T095809_028068_032B79_A792 20190711
S1A_IW_SLC__1SDV_20190629T095740_20190629T095808_027893_03262C_B424 20190629
S1A_IW_SLC__1SDV_20190617T095739_20190617T095807_027718_0320F1_5DB1 20190617
S1A_IW_SLC__1SDV_20190605T095739_20190605T095807_027543_031BAA_448C 20190605

Table A2. Pairing of 39 Sentinel-1 IW SLC images covering Wangyedian study area in 2019.

Number Paired Image Satellite and
Track

Vertical Baseline
Length (m)

Time Baseline
Interval (Days)

Interference
Processing

1 20190317 and 20190329 S1B-Descending 12.462 12 No
2 20190317 and 20190422 S1B-Descending 46.479 36 Yes
3 20190329 and 20190422 S1B-Descending 58.387 24 Yes
4 20190422 and 20190504 S1B-Descending 81.720 12 Yes
5 20190422 and 20190516 S1B-Descending 35.526 24 Yes
6 20190504 and 20190516 S1B-Descending 48.376 12 Yes
7 20190504 and 20190528 S1B-Descending 74.800 24 Yes
8 20190516 and 20190528 S1B-Descending 26.943 12 Yes
9 20190605 and 20190617 S1A-Ascending 46.979 12 Yes
10 20190609 and 20190621 S1B-Descending 55.835 12 Yes
11 20190617 and 20190629 S1A-Ascending 74.956 12 Yes
12 20190621 and 20190703 S1B-Descending 91.912 12 Yes
13 20190629 and 20190711 S1A-Ascending 11.979 12 No
14 20190703 and 20190715 S1B-Descending 31.498 12 Yes
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Table A2. Cont.

Number Paired Image Satellite and
Track

Vertical Baseline
Length (m)

Time Baseline
Interval (Days)

Interference
Processing

15 20190711 and 20190723 S1A-Ascending 58.018 12 Yes
16 20190715 and 20190727 S1B-Descending 69.089 12 Yes
17 20190723 and 20190804 S1A-Ascending 70.665 12 Yes
18 20190727 and 20190808 S1B-Descending 3.070 12 No
19 20190804 and 20190816 S1A-Ascending 12.535 12 No
20 20190808 and 20190820 S1B-Descending 34.460 12 Yes
21 20190816 and 20190828 S1A-Ascending 12.676 12 No
22 20190820 and 20190901 S1B-Descending 10.237 12 No
23 20190828 and 20190909 S1A-Ascending 65.810 12 Yes
24 20190901 and 20190925 S1B-Descending 42.950 24 Yes
25 20190909 and 20190921 S1A-Ascending 17.108 12 Yes
26 20190921 and 20191015 S1A-Ascending 149.681 24 Yes
27 20190925 and 20191007 S1B-Descending 85.305 12 Yes
28 20191007 and 20191019 S1B-Descending 46.193 12 Yes
29 20191015 and 20191108 S1A-Ascending 111.245 24 Yes
30 20191019 and 20191112 S1B-Descending 68.399 24 Yes
31 20191108 and 20191120 S1A-Ascending 30.156 12 Yes
32 20191112 and 20191124 S1B-Descending 8.064 12 No
33 20191112 and 20191206 S1B-Descending 82.270 24 Yes
34 20191120 and 20191202 S1A-Ascending 57.503 12 Yes
35 20191124 and 20191206 S1B-Descending 74.109 12 Yes
36 20191202 and 20191214 S1A-Ascending 49.938 12 Yes
37 20191206 and 20191230 S1B-Descending 60.980 24 Yes
38 20191214 and 20191226 S1A-Ascending 44.198 12 Yes
39 20191218 and 20191230 S1B-Descending 55.525 12 Yes

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 25 
 

 

26 20190921 and 20191015 S1A-Ascending 149.681 24 Yes 
27 20190925 and 20191007 S1B-Descending 85.305 12 Yes 
28 20191007 and 20191019 S1B-Descending 46.193 12 Yes 
29 20191015 and 20191108 S1A-Ascending 111.245 24 Yes 
30 20191019 and 20191112 S1B-Descending 68.399 24 Yes 
31 20191108 and 20191120 S1A-Ascending 30.156 12 Yes 
32 20191112 and 20191124 S1B-Descending 8.064 12 No 
33 20191112 and 20191206 S1B-Descending 82.270 24 Yes 
34 20191120 and 20191202 S1A-Ascending 57.503 12 Yes 
35 20191124 and 20191206 S1B-Descending 74.109 12 Yes 
36 20191202 and 20191214 S1A-Ascending 49.938 12 Yes 
37 20191206 and 20191230 S1B-Descending 60.980 24 Yes 
38 20191214 and 20191226 S1A-Ascending 44.198 12 Yes 
39 20191218 and 20191230 S1B-Descending 55.525 12 Yes 

 
Figure A1. DSM and CC images generated by InSAR processing based on Sentinel-1 image pair 
(20191206 and 20191230). (a,c) DSM generated based on VH and VV polarized images, respectively; 
(b,d) CC maps generated based on VH and VV polarized images, respectively. 

Commented [M3]: Author changed Figure A1, 
please replace. 

Figure A1. DSM and CC images generated by InSAR processing based on Sentinel-1 image pair
(20191206 and 20191230). (a,c) DSM generated based on VH and VV polarized images, respectively;
(b,d) CC maps generated based on VH and VV polarized images, respectively.
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