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SUMMARY 
A new method for determining the reduced stress tensor with four degrees of 
freedom (the orientations of the three principal stress axes as well as the ratio of 
principal stress differences) using fault slip data (or focal mechanisms of 
earthquakes) is presented. From a computational point of view, the inversion of 
fault slip data is made in a direct way by purely analytical means; as a result, the 
determination process is extremely fast and adaptable on small microcomputers. 
From a physical point of view, the method aims at simultaneously (i) minimizing the 
angles between theoretical shear stress and actual slip vector and (ii) having relative 
magnitudes of shear stress large enough to induce slip despite rock cohesion and 
friction. Examples of application to actual fault slip data sets with good or poor 
variety of fault slip orientations are shown. The double significance of the basic 
criterion adopted results in a more realistic solution of the inverse problem than the 
single minimization of the shear-stria angle. 

Key words: fault, inversion, stress, tectonics. 

1 BASIC ASSUMPTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In methodological aspects of fault tectonic analyses, a 
striking feature of the last 12 years is the development of 
numerical palaeostress reconstructions using fault slip data. 
These methods are based on the stress-shear relationship 
described by Wallace (1951) and by Bott (1959). The inverse 
problem, which consists of determining the stress tensor 
knowing the direction and the sense of slip on numerous 
faults of various orientations, has first been solved by Carey 
& Brunier (1974). Various methodological developments 
and improvements have then been proposed (e.g., Angelier 
1975; Carey 1976; Armijo & Cisternas 1978; Etchecopar, 
Vasseur & DaigniBres 1981; Angelier 1984; Michael 1984; 
Reches 1987). Under certain conditions, these computa- 
tional methods apply to populations of focal mechanisms of 
earthquakes (Angelier 1984; Gephart & Forsyth 1984). 
Other methods, based on geometrical instead of mathemati- 
cal reasoning, bring valuable results but are not considered 
herein. 

No general presentation or discussion of geological and 
physical conditions of application and limitations of these 
methods is given hereafter. Such discussions have been 
made extensively in previous papers (e.g., Angelier 1984, 
1989). In contrast, the aim of the present paper is to 
propose and discuss a method of direct analytical inversion 

of data, based on a simple criterion. The use of that 
criterion enables one to compute the stress tensor within a 
single sequence of formulae. No 3-D search or iterative 
process is involved, so that the computation process is very 
fast. 

However, before describing the mathematical analysis of 
the problem, it is worthwhile to mention again the 
assumption that underlies all these methods: fault 
orientations may be arbitrary (as for inherited faults), but 
each slip (indicated by striae) has the direction and the sense 
of the shear stress that corresponds to a single common 
stress tensor. This principle has been proposed by Wallace 
(1951) and by Bott (1959). The validity and the limits of this 
basic assumption have been discussed elsewhere (e.g., 
Angelier 1984). 

The actual stress tensor has six degrees of freedom. The 
data are directions and senses of slip on fault plane whose 
orientation is known. Neither adding an isotropic stress nor 
multiplying the tensor by a positive constant can modify the 
direction and the sense of slip on any fault. As a 
consequence, the actual tensor being T * ,  any tensor T 
equally solves the problem: 

T = t , T * + t , l  

where t ,  and t ,  designate any constants ( t ,  positive) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
the unit matrix. The values of tl and t ,  can be determined 
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provided that one adds rock mechanic parameters to data 
sets and adopts rupture-friction laws. The problem of 
computing t ,  and t, in order to determine the actual stress 
tensor T* is addressed elsewhere (Angelier 1989). The 
tensor T has four degrees of freedom so that one may adopt 
a particular form, which is called the ‘reduced stress tensor’ 
(Angelier et al. 1982:. All tensors T obtained using equation 
(1) have the same directions of principal stress and the same 
‘shape ratio’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ff, - ff3 @=- 

ff1 - ff3 

where ol, a,, u3 respectively designate the moduli of 
maximum compressional stress ul, intermediate stress a, 
and minimum stress u3. 

The next sections will describe physical and mathematical 
aspects of a new analytical method to rapidly determine the 
reduced stress tensor T,  i.e. the orientations of axes a,, a, 
and a, as well as the value of ratio @. Appendices I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, I11 
and IV contain additional mathematical information. 

2 SHEAR STRESS-STRIA ANGLE AND 
DERIVED CRITERIA 

For a fault plane number k, called Fk in Fig. 1, let nk and sk 
be the unit normal to the fault and the unit stria on the 
fault, respectively (Fig. la). T designs the unknown stress 
tensor, so that the stress vector @k for Fk (Fig. lb) is given 
by 

a, = Tn,. (3) 

As Fig. l(b) shows, the normal stress a,, is the 
on nk. The shear stress t k  is consequently component of 

e d y  obtained: 

(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  

Finally, one may simply consider the angle (uk, t k )  

between two vectors in the fault plane Fk (Fig. k): the unit 
stria sk indicating direction and sense of actual fault slip 
(observed), and the computed shear stress zk (related to 
unknown stress tensor T). Obviously, this angle should be 
as small as possible for a tensor T consistent with fault slip 
datum number k; the ideal case being 

One must observe that equation (6) lacks significance for 
a stress vector a, very close to the direction of nk; in this 
particular case, small variations of the direction of may 
result in large variations of the direction of zk. One must 
also note that by definition equation (6) does not take into 
account the shear stress amplitude necessary to induce 
motion on fault plane. We shall come back later to these 
problems. 

Adopting equation (6) as a criterion model, with the basic 
assumptions of Section 1 and the additional implicit 
assumptions of the least-squares method, one obtains the 
best fitting stress tensor for a given fault slip data set by 
minimizing function S,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the number of faults: 

k=R 

(7) 
k = l  

Because the sine of the half angle continuously increases 
from 0 to 1 as the angle increases from 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, similar results 
are obtained by minimizing function S,: 

( s k ,  zk) 
k=R 

s,= C sin2-. 
k = l  2 

Equation (8) may be written in a different form: 
k = X  

s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 2 
2 - 4  

k = l  
(9) 

where u;’ designates the modulus of a vector v;r‘ shown in 
Fig. 2(a) and defined by the following equation including 

Figure 1. Fault slip datum and computed s,ress. Index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK designates datum number as in text. (a) Observed fault slip: F, fault plane; n, normal 
fault (unit vector); s, unit slip vector (parallel to striae). (b) Components of computed stress: u, applied stress; u,, normal stress; r, shear 
stress. (c) Shear-stria angle: s, observed slip; r, computed shear. 

a b C 

Figure 2. Definition of function upsilon. Index k designates datum number as in text. F, fault plane; s, unit slip vector; and r, shear stress (as 
in Fig. 1). (a) Definition of u” (equations 9 and 10 in text); xu, unit vector along shear stress. (b) Definition of u’ (equation 11 in text). (c) 
Criterion adopted: definition of u (equations 12 and 13 in text), 
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3 A NEW CRITERION A N D  ITS 
MECHANICAL SIGNIFICANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Using minimization criterion given by equation (8) 
equivalent with (9-lo), one finally obtains the best fitting 
average stress tensor T that corresponds to a given fault slip 
data set (see details in Angelier 1984). One just has to write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4‘ as a function of the unknown components of the stress 
tensor, with the coordinates of nk and sk as parameters of 
the problem. Then, one searches by numerical means the 
stress tensor T that corresponds to the minimum value of S,. 

However, it is easy to observe that such formulae cannot 
lead to equations made with simple linear arrangement of 
polynomials. For example, the use of equation (lo), which 
contains the unit vector parallel to shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, demands 
division by a polynomial (the shear stress modulus). As a 
result, the search of the smallest sum S, requires the use of 
iterative processes and imbricated program loops, so that in 
practice additional numerical problems must be solved and 
computation time cannot be very short. 

Let us examine tile effect of substituting the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; 
shown in Fig. 2(b) to the vector ui already defined (10) and 
shown in Fig. 2(a). The new vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv; is defined by an 
equation that contains the shear stress itself (instead of a 
unit vector along the shear stress): 

sk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= tk + V;. (11) 

From a computational point of view, the use of u; instead 
of t$ in equation (9) enables one to write expressions which 
are simple sums of polynomials. As a conseqnence, 
obtaining solutions of the problem by direct analytical 
means becomes possible, as will be shown in the next 
section. 

From a geometrical and mechanical point of view, this 
substitution has large consequences. Note first that whatever 
the shear stress modulus, the smallest value of u; 

corresponds to ( s k ,  t k )  = 0, whereas the largest one 
corresponds to ( s k ,  t k )  = x. In addition, for a constant shear 
stress modulus, u; continuously increases with (sk,  zk), as 
Fig. 2(b) suggests. However, the value of u; also depends 
on the amplitude of shear stress t k :  for constant moderate 
angles (sk, t k ) ,  the modulus u; decreases as the modulus tk 

increases until a certain limit where u; and zk are 
perpendicular (Fig. 2b). To that respect, substituting u; to 
v i  in equation (9) introduces a more complex criterion that 
the single minimization of the shear stress-stria angle 
discussed before. 

In detail, the particular case of a stress vector a, almost 
parallel to nk illustrates an advantage of the new criterion. 
The angle (sk, t k )  widely varies and has no real significance 
in this case (as pointed out before); in constrast, the 
modulus u; is stable and close to 1. Although no accurate 
rupture/friction law is introduced (see Section l ) ,  the fact 
that the value considered decreases as the shear stress 
modulus increases corresponds to a quite reasonable 
requirement: having shear stress levels large enough to 
induce fault slip despite rock cohesion and friction. 

Before examining these variations in more detail, let us 

define the final form of the function adopted. Let A be the 
largest possible value of shear stress with the particular form 
of T adopted: this case cc-responds to particular 
orientations of nk and sk relative to stress axes. Because the 
modulus t k  of t k  remains between 0 and A while the angle 
(sk, t k )  may vary from 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, the modulus uk of the vector 
uk (upsilon) defined as follows has bounds of 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2A (Fig. 
2c) : 

Ask = f k  + v k .  (12) 

Finally, the sum S, to minimize is 

k = X  

s, = c u:. 
k = l  

4 THE DIRECT INVERSION 

In this section, it is shown that the use of the criterion 
described in equations (12) and (13) leads to development of 
a fast analytical procedure. Because derived equations are 
linear, it is possible to find in a direct way the extremum 
values of function S, by annuling its four partial derivatives 
with respect to the unknowns of the reduced stress tensor 
(see Section 1). The reduced stress tensor T adopted has a 
particular deviatoric form discussed by Angelier et al. 
(1982). 

Coming back to equation (12) that defines the vector 
upsilon and to Fig. 2(c), it is easy to conclude that the 
modulus v k  of vk is given by 

The components of and tk along the direction of unit 
vector s k  are identical, so that 

t k  cos (Sk ,  r k )  = sk ’ u k .  (16) 

Combining equations (15) and (16), one obtains uf as a 
function of tf, A and scalar product sk - a,. This is shown as 
equation (Al) of Appendix I. Some transformations, which 
are long to write but not difficult to obtain, are then made in 
order to define S, as a function of n; f i ,  y, 11, [the four 
unknowns of T in equation (14)] and of the X sets of 
coordinates of vectors nk and Sk. The main steps in these 
transformations are given in Appendix I. 

One finally obtains the long but linear expression of u’, 

given in equations (A9), (A6) and (A8) of Appendix I, and 
the corresponding derivatives with respect to a; f i ,  y and v. 
Annuling these derivatives given in equation (A10) of 
Appendix I results in the following system of four equations, 
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366 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  Angelier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3, y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv as unknowns: 

A a  + Dy + E/3 = G cos v + J sin + U ,  

Da+ By+ F/3 = Hcos 3 + K sin v + V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E a +  F y  + C/3 = Icos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI$ + Lsin v + W ,  

M cos 2 v  + i N  sin 2t$ = (Ga + H y  + Ij3 + Q) sin 9 
- ( J a  + K y  + Lj3 + P) cos v,  

where A, B, . . . , V, W, respectively designate the sums of 
polynomials referred to as a, b, . . . , v, w, in equations (A6) 
and (AS) of Appendix I; these sums are defined from fault 
number 1 to fault number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX The system of equations (17) 
is solved by analytical means, as shown in Appendix 11, and 
provides two sets of values corresponding to extremum 
values of the sum S, of functions v’, (maximum and 
minimum, respectively). One thus obtains the values of a, 
/3, y and v that correspond to the smallest sum S, defined in 
equations (12-13), hence the reduced stress tensor T 
solution of the problem, under the form of equation (14). 

It is necessary to assign a value to the parameter A 
defined in equation (12) and used in the basic equation (15). 
The largest possible value for shear stress is the half 
difference betweel the maximum and minimum principal 
stresses, that is, v3/2 with the tensor described in (A16) of 
Appendix 111. With the tensor previously described in (14), 
this largest value depends on a, j3, y through a scale factor. 
Because the method aims at simultaneously minimizing 
shear-slip angle and having shear stress sufficient to induce 
slip, a reasonable value of A (Fig. 2c) should be chosen as 
close as possible to this largest possible value of shear stress, 
that is f i / 2  multiplied by the scale factor. This adjustment 
is made through few successive tensor determinations (A in 
each step equals the largest shear of the previous step). 
Appendix IV shows why the inverse problem, as 
formulated, has only four unknowns in agreement with the 
requirement of equation ( l ) ,  and why the adjustment of the 
parameter A remains indispensable due to the particular 
form of the stress tensor adopted (rotation of axes and 
magnitude of stress are not analytically independent; 
otherwise, A would be a simple constant and no adjustment 
would be required). 

Eigenvalues and eigenvectors of T are easily computed 
(e.g., Angelier et al. 1982, pp. 620-621), thus giving the 
orientations of the three principal stress axes ul, u2 and a3 
as well as the shape ratio @ of the stress ellipsoid; @ has 
been defined in equation (2). 

Because stress amplitudes vary through changes in the 
orientation of principal axes with the stress tensor described 
in equation (14), artificial permutations between principal 
stresses may occur for numerical reasons when fault slip 
data display a poor variety of orientations. A fast analytical 
procedure to determine again the value of I# and thus 
definitely identify the actual stress axes is added. This 
additional step is described in Appendix I11 (see also 
discussion in Appendix IV). 

5 EXAMPLES WITH ACTUAL DATA 

Four examples are shown in Figs 3 and 4, with increasing 
complexity of fault slip distributions. Although the method 
has been applied to large data sets (up to several hundreds 

r;r M 

Figure 3. Examples of data sets with approximately symmetrical 
distributions of fault slips. Upper row (a): site AVB, Agia Varvara, 
Crete, Greece. Lower row (b): site TYM, Tymbaki, Crete, Greece. 
Schmidt’s projection of lower hemisphere (N, geographic north; M, 
magnetic north). Fault planes shown as thin lines, with slickenside 
lineations shown as dots with arrows indicating the sense of motion 
(outward directed = normal; complexity in design of arrow heads 
increases with the degree of certainty on fault sense). Computed 
stress axes shown as stars with five branches (q), four branches 
(u2) and three branches (a3). See also Table 1 and Tables Al-A2 
of Appendix V. 

of fault slips), these examples correspond to small sets (few 
tens of fault slips), so that data distribution is easily 
observable in stereodiagrams. To make comparisons easier, 
all these examples refer to a single tectonic type, that is 
extensional tectonics with predominating normal dip-slip 
and oblique-slip faults; obviously, other types (compres- 
sional tectonics, strike-slip tectonics or even tilted fault 
patterns) might have been chosen for illustration as well. In 
addition, three of these data sets had already been adopted 
as examples in descriptions of previous methods. The reader 
may consequently compare, if necessary, the results 
independently obtained [Angelier (1979) for the data set of 
Fig. 3(b); Angelier et al. 1982, for the data sets of Figs 3(a) 
and Fig. 4(a)]. The results obtained with the method under 
investigation are summarized in Table 1; a more detailed 
account of numerical data and results is given in Tables A1 
and A2 of Appendix V. 

The simplest case is illustrated by a data set from 
Neogene reefal limestones near Agia Vavara, central Crete, 
Greece (Fig. 3a). The diagram of measured fault slips 
illustrates a typical conjugate distribution with a low level of 
dispersion in both subsets of normal faults and slickenside 
lineations. The attitudes of the three principal stress axes 
are consequently expected, taking into account obvious 
symmetries in this distribution of faults and slips (Huang & 
Angelier 1989). The stress axes determined after direct 
inversion process are consistent with this geometrical 
interpretation (Table 1 and Fig. 3a). Note, however, that 
the stress ratio @ [defined in equation (2)] is poorly 
controlled in the absence of oblique faults and slips. The 
determination of the value 0.47 given in Table 1 principally 
results from a limited data dispersion which may have little 
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Inversion of field data in fault tectonics-ZII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA367 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExamples of data sets with asymmetrical distributions of fault slips. Upper row (a): site MDl, Arroyo Montado, Baja California, 
Mexico. Lower row (b): site KAM, Kamogawa, Boso Peninsula, Central Japan. Symbols as in Fig. 3. In addition, the third diagram of each 
row (on right) shows the theoretical distribution of fault shears according to the computed average stress tensor. See also Table 1 and Tables 
Al-A2 of Appendix V. 

Table 1. Results of stress tensor determinations with the new direct inversion method. Angles in degrees (trends and plunges of 
stress axes ul, a, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuJ. Ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ defined in equation (2) of text. Estimator RUP defined in text, Section 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,, number of data 
with RUP > 75 per cent; n,, number of data with 75 per cent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 RUP > 50 per cent (see Fig. 7a). See also Tables Al-A2 of 
Appendix V. 

Site Axis u, 

AVB (Fig. 3a) 76 
TYM (Fig. 3b) 232 
MD1 (Fig. 4a) 17 
KAM (Fig. 4b) 218 

trend 

significance (note that it is 

Axis u, Axis u3 Ratio Number Average “1 112 

plunge trend plunge trend plunge 9 of data RUP 
72 240 17 331 5 0.47 33 30 per cent 1 4 
80 55 10 325 0 0.23 38 35 per cent 1 4 
78 191 12 281 1 0.52 20 44 per cent 2 5 
83 119 1 29 7 0.31 50 43 per cent 5 11 

effectively impossible to second data set has been collected in Neogene marly 
significantly determine the ratio Q, with a perfect conjugate 
fault system). At which degree the shape of data dispersion 
is controlled by the ratio Q, remains undetermined in the 
absence of fault slips making large angles with the two 
conjugate subsets. 

An important estimator of data dispersion is the average 
‘ratio upsilon’, or  RUP (see Table 1). This estimator RUP is 
the value of the function upsilon [defined in equation (12) 
and illustrated in Fig. 2 c)], divided by the largest possible 
value of shear stress [ 4 3/2 as in Fig. 2(c), with the reduced 
stress tensor described in equation (A16) of Appendix 1111; 
this value is given as a percentage for convenience. Possible 
values of estimator RUP range from 0 per cent (shear stress 
maximum parallel to slip with the same sense) to 200 per 
cent (shear stress maximum parallel to slip with opposite 
sense). Average RUP values below 50 per cent, as in Table 
1, generally correspond to good fits between actual fault slip 
data distribution and computed shear stress distribution, 
with the criterion of equation (13). 

The fault pattern described in Fig. 3(b) is also composed 
of two major sets of normal faults associated in a kind of 
conjugate system. However, the dispersion of fault planes as 
well as of slickenside lineations is much larger than in the 
first case; in addition, some oblique faults are present. This 

limestones near Tymbaki, southern Crete, Greece. Because 
many of these faults belong to a conjugate system, the 
orientation of axes may still be expected taking into account 
symmetries in fault slip distribution. The computed stress 
axes effectively correspond to rough symmetry axes. 
Because fault slip dispersion occurs and oblique faults are 
present, the value of Q, (0.23, see Table 1) is certainly more 
significant than in the previous case. It is important to 
observe that despite of the larger number of data and the 
larger apparent dispersion of fault slips, the value of the 
average estimator RUP remains small (35 per cent, see 
Table 1). 

Adopting individual RUP values of 50 and 75 per cent as 
reasonable arbitrary limits to identify fault slip data that fit 
the average solution very well (RUPS50 per cent) or in 
acceptable conditions taking into account multiple disper- 
sion factors (RUP 5 75 per cent), one obtains two numbers 
of data (see Table 1). The number n, corresponds to fault 
slips that are not in agreement with the average solution 
(RUP>75 per cent). The number n, corresponds to fault 
slips that may be considered or not consistent with the 
average solution, depending on the range of allowable 
dispersion (50 per cent < RUP I 75 per cent). The examples 
shown in Fig. 3 display low values of n, and n2, indicating a 
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good homogeneity (Table 1): in each case, only five faults 
slips have individual RUP values greater than 50 per cent, 
showing that 85-87 per cent of fault slip data fit very well 
with a single common stress tensor. 

The examples shown in Fig. 3 are simple and display 
rough symmetries, so that the results can be intuitively 
checked (with the exception of the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). On the 
contrary, Fig. 4 illustrates irregular fault distributions with 
high levels of apparent data dispersion and a lack of 
symmetry elements. 

The data set of Fig. 4(a) has been collected in Pliocene 
sediments of the Arroyo Montado, Santa Rosalia Basin, 
Baja California, Mexico. Although there is a dominating 
NNW-SSE trend of the fault system, the distribution of 
slickenside lineations is characterized by obliquity and 
asymmetry. Despite of this geometrical dispersion, the data 
set fits rather well with a common stress tensor, with an 
average estimator RUP of 44 per cent (see Table 1) and 
seven fault slips with individual estimators RUP larger than 
50 per cent. The computed direction of extension is 
WNW-ESE, oblique to normal fault trends (Fig. 4a). The 
ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP of 0.52 means that the magnitude of the 
intermediate stress is close to the arithmetic mean of 
extreme stress magnitudes (see equation 2). 

The last example, shown in Fig. 4(b), refers to normal 
dip-slip and oblique slip normal faults observed in the 
'Mineoka ophiolite' of Kamogawa, Boso Peninsula, Central 
Japan. Because there were numerous discontinuities in the 
rock mass prior to the extensional event under investigation, 
neoformed faults play a minor role and inherited faults are 
common. As a result, the distribution of fault planes and 
slickenside lineations is irregular. The average estimator 
RUP, however, remains small (43 per cent, see Table l ) ,  
despite of the increasing number of data. Individual values 
of RUP are greater than 50 per cent for 16 faults, but only 
five fault slips are definitely inconsistent with the average 
solution, with the assumption made (RUP > 75 per cent). 

6 C O M P A R I S O N  WITH O L D E R  M E T H O D S  

The diagrams of the right side of Fig. 4 show the theoretical 
orientations of slip vectors according to the stress tensors 
that have been determined with the new method (Table 1; 
axes shown in central diagrams of Fig. 4). In these diagrams, 
the symbols of slickenside lineations indicate the orienta- 
tions and senses of computed shear stresses on the fault 
planes. As a result, a simple comparison with the diagrams 
on the left side of Fig. 4 shows the individual angular 
deviations from actual slips. 

The reduced stress tensors have also been computed for 
the same data sets (Figs 3 and 4) with a 4-D exploration 

method described in previous papers (Angelier 1975, 1984). 
The basic criterion adopted in this older method requires 
the minimization of a simple function of the angle between 
the computed shear $tress and the actual slip vector. 
Determinations made lising two different functions referred 
to as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, and S, (Angelier 1984, p. 5841) yielded very similar 
results; Table 2 refers to results obtained with function S,. 
A rapid comparison between the reconstructed stress axes 
(Tables 1 and 2) shows that for each of the four sites, there 
is no significant difference between the results obtained with 
the new direct inversion method and with the 4-D 
exploration method (as a consequence, the stress axes 
obtained with the oldest method, listed in Table 2, were not 
plotted in Figs 3 and 4). In addition, the values of the ratio 
CP are similar, provided that the fault slip distribution allows 
reliable determination of @ as in Fig. 4. 

The estimator of data dispersion for the 4-D exploration 
method, called ANG and given in degrees (Table 2), is the 
shear-slip angle itself (Fig. lc). The averages values of ANG 
obtained with the four examples described range from 7" to 
lY ,  which is fairly acceptable taking into account all sources 
of data dispersion. Assuming reasonable limits of 22.5" and 
45" for individual ANG values enables one to rapidly 
identify fault slips that are not in agreement with the 
average solution (ANG>45") and fault slips that may be 
consistent or not with this average solution depending on 
the range of uncertainties (22.5" < ANG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 45"). The 
numbers n 1  and n2 displayed in Table 2 refer to these two 
subsets, respectively. Note that these numbers remain 
generally small (especially nl), suggesting that the data sets 
have a good level of homogeneity (as for the new direct 
inversion method: compare Tables 1 and 2). The 
determination of the uncertainties of the results is extremely 
important, but will not be discussed in this paper (see 
Angelier et al. 1982). The problem of quantifying the 
dispersions of results whatever tensor determination 
technique is used will be addressed in a forthcoming paper 
(work in progress). 

The individual values of the estimator ANG may be 
directly read in the diagrams of Fig. 4, where the attitudes 
of actual slip (on left) and of theoretical shear (on right) are 
shown for each fault. Because the fault planes orientations 
are considered constant, the difference between the actual 
distribution and the theoretical one lies on the slip-shear 
angles solely (Fig. lc). A more sophisticated method, taking 
into account uncertainties on fault strikes and fault dips as 
well as on pitches of slip vectors (called d, p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 
respectively) has been described (Angelier et al. 1982). 
Computation, however, was much longer and required 
much larger memory so that this heavier method could not 
be applied on microcomputers. 

Table 2. Results of stress tensor determinations with the 4-D exploration method, to be compared with results of Table 1. 
Legends as in Table 1, except for estimator ANG (angle shear-stria, in degrees; see text, Section 6). n, ,  number of data with 
ANG > 45"; n2,  number of data with 45" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ANG > 22.5" (see Fig. 7b). 

Site Axis u, Axis u2 Axis u3 Ratio Number Average n1 n2 

AVB (Fig. 3a) 73 73 240 17 331 4 0.30 33 7" 0 0  
TYM (Fig. 3b) 275 82 57 6 147 5 0.07 38 11" 0 5  

trend plunge trend plunge trend plunge 4 of data ANG 

MD1 (Fig. 4a) 19 72 194 17 285 1 0.57 20 19" 2 6  
KAM (Fig. 4b) 246 84 118 4 28 5 0.32 50 19" 5 15 
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and Fig. 2c) does not depend on the single shear-slip angle 
but is also a function of the shear sgess amplitude, as 
equation (15) shows. With the value d3/2  assigned to the 
parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3c (as discussed in Section 4, taking into account 
the largest possible shear stress with the type of tensor 
considered), the variations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 2  and v as functions of 
shear-slip angle and shear stress magnitude have been 
plotted in Fig. 5. The contour lines illustrate the shape of 
the function upsilon, or v. First, v continuously increases 
with the shear-slip angle for any given shear stress 
magnitude (Fig. 5b); however, the variation becomes much 
tighter as shear stress decreases (besides, v is constant when 

A first attempt at solving the inverse problem by pure 
analytical means has already been described as the first 
direct inversion method (Angelier 1979). However, because 
the basis of this earlier method was the minimization of the 
component of computed shear stress perpendicular to actual 
slip, the sense of slip had no influence on the minimization 
process. As a result, this method gives good results provided 
that the data sets display fault slips in opposite directions 
and at significant angles from extreme stress axes, but 
computed axes may be inconsistent with several senses of 
fault motions in particular cases (especially with major fault 
orientations absent or inherited fault surfaces close to 
extreme stress axes). This first direct inversion method was 
consequently abandoned. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 DISCUSSION 

There are two major differences between the new direct 
inversion method described in this paper (Figs 3 and 4 and 
Table 1) and the 4-D exploration method (Angelier 1975, 
1984 and Table 2). The first difference lies in the 
mathematical aspects of the technique: whereas the older 
method consists of comparing numerous tensors in order to 
find the minimum value of a sum of functions, the 
mathematical basis of the new method is the analytical 
resolution of equations that set to zero the partial 
derivatives of the sum of functions considered (S4, see 
equation 13). These techniques result in a system of four 
imbricated computation loops in the first case and in a 
system of four equations in the second case, because there 
are four independent unknowns (the orientations of the 
three principal axes and the ratio a). The sum of functions 
to minimize has a complicated shape in four dimensions, so 
that in the case of the exploration method the search grids 
must be wide with large numbers of points in order to find 
the minimum in a reliable way; this requirement results in 
acceptable but long computation times. On the contrary, the 
system of four equations of the direct inversion method is 
solved instantaneously, because the function adopted allows 
analytical resolution (see Appendix 11). 

In both cases, the sense of each fault slip is taken into 
account within the determination process. Also, both 
methods may be used in heavier processes to determine 
multiple stress tensors and simultaneously identify cor- 
responding fault slip subsets within heterogeneous fault slip 
data sets (Angelier 1984, p. 5845). However, the long 
computation time of the exploration method is multiplied by 
a large factor, whereas the separation process remains very 
fast with the new direct inversion method. Note first that it 
is possible to transfer the criterion described in equations 
(12-13) of this paper in the exploration method (although 
this would have very little interest). On the contrary, it is 
impossible to carry out direct inversion by analytical means 
with a criterion depending on the shear-slip angle solely as 
in sums S,, S, (equation 7 and 8, this paper) or S, (Angelier 
1984, p. 5841), because the system of equations is 
complicated and non-linear. 

Although the importance of practical aspects such as 
computation time should not be underestimated, the most 
important difference between the two methods lies in the 
physical significance of the criterion adopted. The criterion 
used in the new direct inversion method (equations 12-13 

40- 

30- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20- 

0 

10- 

30 60 

10- 

0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, . , , , , , , , , , 
0 30 60 90 120 150 

Figure 5. Variation of u* (a) and u (b) as functions of the 
shear-stria angle and of the shear stress magnitude. Contour lines in 
percentage of maximum value (3 and fi respectively). Minimum as 
star, maximum as cross. Area with values smaller than 5 per cent of 
the maximum shaded. Abscissae: angle between actual slip and 
computed shear, in degrees. Ordinates: amplitude of shear stress T, 

in percentage of the largest possible shear stress (fi/2 with the 
reduced tensor adopted, see equation 14). 
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shear stress equals zero). Second, v continuously decreases 
with shear stress for small shear-slip angles and continuously 
increases with shear stress for large ones; as a result, the 
minimum value (zero) of the function corresponds to 
smallest angle and largest shear, whereas the maximum 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(l6) corresponds to largest angle and largest shear 
(Fig. 5b). 

Summarizing, the use of the criterion adopted in this 
paper aims at simultaneously satisfying two major 
requirements for the whole data set: obtaining angles 
between computed shear stress and actual slip vector as 
small as possible, and having relative shear stress 
magnitudes as large as possible in order to overcome 
cohesion and friction on fault planes. These requirements 
enable one to determine an average stress tensor which, in 
turn, provides an explanation for fault activation as well as 
for directions and senses of fault motion. Whether or not 
this explanation is acceptable depends on the values of 
estimators such as the average ratio RUP (Table 1). These 
estimators enable one not only to determine the 
homogeneity of the fault slip data set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n, and n, in Table l), 
but also to check the levels of average angular deviation and 
of average shear stress magnitude. 

The significance of the angular deviation (shear-slip angle, 
ANG; see Fig. lc) is simple and directly expressed by the 
contrast between actual and synthetic fault slip diagrams in 
Fig. 4. The shear stress magnitude has also essential 
significance, because it plays a major role in fault activation. 
However, the shear stress considered herein and referred to 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in equation (15) and Fig. 5 is not the real shear stress 
but the 'reduced shear stress' induced by the reduced stress 
tensor described in equation (14). Because the reduced 
stress tensor is a linear function of the actual tensor, the 
related shear stress on a given plane equals the actual one 
multiplied by the undetermined positive constant t ,  of 
equation (1). As a consequence, the use of the basic 
criterion of the method implies that the relative magnitude 
of shear stress (proportional to the absolute one) must be 
large to induce slip despite of friction on faults. 
Simultaneously, slip must occur parallel to and in the same 
sense as shear stress. This duality of the basic criterion is 
illustrated by Fig. 5. However, there is no assumption made 
about any precise value of actual minimum shear stress 
required for sliding to occur, or about any definite 
relationship between shear stress and normal stress (see 
Appendix IV). In other words, the method adopted is not 
based on the use of particular laws or constants taken from 
rock mechanics studies, but simply ensures that the average 
stress tensor solution of the problem cannot induce 
anomalously low levels of relative shear stress taking into 
account the distribution of fault orientations. How the 
values of unknowns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  and t2 of equation (1) can be 
determined using accurate rupture and friction laws after 
determination of the reduced stress tensor is discussed 
elsewhere (Angelier 1989). 

To illustrate in a simple way this major difference 
between the criterion based on the single shear-slip angle 
and the criterion described above, one may consider the 
case of a simple synthetic fault slip distribution as in Fig. 6. 
The single minimization of the shear-slip angle leads one to 
determine a set of solutions with an unique intermediate 
stress axis and two extreme stress axes which remain 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl 

Fignre 6. Synthetic data set showing the difference between the 
method minimizing the shear-slip angle solely (a) and the new direzt 
inversion method (b). Black arrow or black star: computed (I, axis. 
Open arrow or open star: computed u3 axis. Schmidt's projection. 

undefined within a certain angle. On the contrary, the use of 
the new criterion allows determination of an unique 
solution, because there is only one way to obtain average 
shear stress as large as possible. This important difference 
between the two methods is also illustrated by the special 
case of a stress vector (r (Fig. 1b) almost perpendicular to 
fault plane: because a small variation in its orientation may 
result in large changes in shear stress orientation (hence in 
the value of ANG), the new model is more valid (the value 
of RUP is stable and close to zero). 

Finally, the relationship between the estimators ANG (for 
the method minimizing the shear stress angle solely, see 
Table 2) and RUP (for the new direct inversion method, see 
Table 1) is summarized in Fig. 7. Especially, the rough 
equivalences between the limits adopted for ANG and RUP 
in order to detect inhomogeneities in data sets with both 
methods (see n, and n2 in Tables 1 and 2) are thus 
explained. In practice, numerous fault slips generally display 
approximate proportionality between individual estimators 
ANG and RUP, so that even with the new method the 
angles between actual slips and theoretical shear stresses 
(Fig. 4) provide a consistent picture of data dispersion in 
first approximation (although they cannot accurately reflect 
the individual deviations in terms of the new criterion 
adopted in this paper). New methods for determining 

a 
ANGS 22 5-  ANG C 45- ANG 5 90° 

b 
RUPS 50% RUP 5 75% RUP 5 100% 

Figure 7. Approximate relationship between shear-slip angle in 
fault plane [(a): individual estimator ANG as in Table 21 and ratio 
upsilon [(b): individual estimator RUP as in Table 1). Actual slip 
vector: open arrow [length f i /2 as in Fig. 2(c)]. Computed shear 
stress: black arrow (b) or thick line (a). Note that shear stress 
magnitude has importance for (b), not for (a). Shaded area: 
possible locations of shear stress with the constraint shown below. 
Values larger than 90" (ANG) or 100 per cent (RUP) not 
illustrated. 
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palaeostress axes with neoformed conjugate fault slip 
subsets (Huang & Angelier 1989) or sets of mixed 
neoformed and inherited fault slips (this paper) provide fast 
and reliable reconstructions of the palaeostress tensor. The 
new direct inversion method is not only characterized by 
simplicity and easy computer use but also by the 
introduction of the reasonable requirement that relative 
shear stress should be large for slip to occur on fault 
surfaces. This method is also applicable to the reconstruc- 
tion of present stress tensors using sets of focal mechanisms 
of earthquakes, provided that the actual fault plane may be 
identified among the two nodal planes. 
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In this appendix as well as in Appendix 111, all indices k that refer in text to fault number are omitted, for clarity. For each 
fault mechanism, the function defined by equations (15-16) in text is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U* = a2 + t2 - 2a(s .  a). (All 

Equations (3) and (14) in text define the components a,, ay and a, of Q as 

a, = n, cos 11, + nya  + n,y, uy = n,a + ny cos 11, + - + nZ& a, = n,y + nyp + n,  cos 3 + - , (A2)  ( ”I”) ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) 
where n,, ny and n, designate the direction cosines of the unit vector n; s,, sy and s, designate the direction cosines of the unit 
vector s (perpendicular to n). The terms t2 and s - Q in the right side of (Al) are given by 

t2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 + 4 + 6 - (n,a, + nyay + n2u,)2, (A31 

(A41 s - d = s,a, + syay + s,a,. 

Combining equations (A2)  and (A3) for t2 and ( A 2 )  and (A4) for (s - (r) gives the terms in the right side of (Al) as functions 
of A, n,, ny ,  n,, (Y, f i ,  y and 11,. First, after transferring expressions (A2) of a,, ay, a, into equation (A3), one obtains 

I? = n cos2 11, - 2m sin 11, cos 11, - 2(gw + hy  + @) cos 11, - 2 ( j a  + k y  + Is) sin 11, + ua? + by2 + c/3’ + 2(dycu + eap + f p y ) ,  

+ +nf(nf + nf)  + 3nfn%, (A51 

where a, b ,  c, d, e,  f ,  g ,  h,  i ,  j ,  k ,  I ,  m and n are simple polynomials that contain n,, ny and n, as follows: 

u = nf + nf - 4n>f, 

f = (1 - 4nf)n,ny, 

k = - (-1 - 2nf + 2nl)n,n,, 

b = n: + nf - 4n32:, c = n,’+ nf - 4nf4, 

h = -$n,n,(l - 2n3 ,  

d = (1 - 4nf)n,n,, 

i = 3nfnyn,, 

e = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - 4nf)n,n,, 

v3 
g = --3n 2 , n y ( l  - 2n3 ,  j = - (1  - 2n: + 2n2)n,ny, (A6) 2 

v3 3v3 
1 = f i ( n :  - nf)n,n,, m = - nf(n: - nf), n = $nf(n; + n:) - 3 4 4 .  

2 4 
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A2= 

A;= 

Similarly, the term A(s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) of equation (Al) is obtained by transferring expressions (A2) of a,, ay, a, into equation (A4): 

A(s. 8) = q  cos I# + p  sin I# + ua + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv y  + w s  (A7) 

where p ,  q ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, v, and w are also simple polynomials that contain n,, ny, n,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, sy and s,, as well as factor A: 

A G E  

D H F ,  A3= 
E Z C  

A J E  

D K F ,  A;= 

E L C  

Summarizing, equation (Al) is written as follows, using equations (A5) to (A8): 

v 2  = n cosz I# - 2m sin I# cos I# - 2(ga + h y  + is + q) cos I# - 2( ja  + k y  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1s + p )  sin I/J 

+ a 2  + b y 2  + cB2 + 2 ( d y a  +em#? + f s y )  - 2(ua + v y  + wp) + A2 + + n:) + 3n;n;. 

The partial derivatives of v z  with respect to a, /3, y and I# are computed from (A9): 

A;= 

1 a(v2) 1 3(v2) 

2 a& 2 3Y 
- aa + d y  + eB -g cos I# - j sin I# - u, - d a +  b y + f / 3  - h cos I# - k sin I# - v, 

A U E  

D V F ,  A:= 

E W C  

1 3(2) 

2 3s - e a  + f y  + c/3 - i cos I# - 1 sin I# - w, 

1 a(vZ) n 
- -m cos21) --sin21# 2 + (ga+ h y  + is + q) sin I# - (ja+ k y  + l/3 + p )  cos I#. (A10) 

2 aI# 

Let us replace in (A10) the polynomials a ,  b, . . . , v, w defined in (A6) and (A8) by the corresponding sums from fault 
number 1 to fault number 2, respectively called A ,  B, . . . , V, W. Thus, we obtain the half partial derivatives of the sum of 
functions v 2 ;  this sum is referred to as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, in text (equation 13). Cancelling these four derivatives together requires the system of 
four equations (17 in text) to be solved (see Appendix 11). 

APPENDIX 11 

A,cos I# + Aisin I# + A[; 

A s= 
By combining equations (A12) and the last equation of system (17) in text, one obtains an equation with the single unknown 

I#: 

(MA + I;) cos 21# + 1/2(NA + w )  sin 2I# + 5‘ cos I# - ij sin I# = 0, (‘413) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM and N are the parameters already mentioned in text and in Appendix I while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ,  E ’  and E designate 

f‘= JAl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ K A 2  + LA3 = G A ;  + HA; + IA;, 

w = JA; + K A ;  + LA; - G A l  - HA2 - IA3,  

5’ =JAY + KA; + LA; + P A ,  

E =  GKi + H A ; +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIA;  + Q A .  

Writing cos 2q,  sin 2q1, cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and sin 11, as functions of tg(9/2) (that will be called t) provides one way to solve equation 
(A13) b y  solving analytically the equation of degree 4: 

(MA + f - 5’)t4 - 2(NA + o + E)t3 - 6 ( M A  + C)t2 + 2(NA + w - E)f + ( M A  + [ + E‘) = 0. ( A W  

For each solution 11, of (AlS), the other unknowns a, /3, y of the stress tensor are determined using equations (A12). Among 
the few sets of values thus obtained for a, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and I#, the solution of the inverse problem is simply determined by calculating 
the corresponding sums of functions u2 and by retaining the smallest one. In most cases, two values of I) are obtained as 
solutions of equation (A15); the related sets of values a, /3, y (and 11,) respectively correspond to the maximum and minimum 
values of the sum S, defined in equations (12-13) of the text. 

APPENDIX 111 

This section describes a technique to determine the value of I# for a given orientation of unclassified principal axes, hence to 
identify the three principal stresses ul, u2 and u3 (with decreasing magnitudes). A new particular deviatoric form of the 
reduced stress tensor is adopted, so that principal stress magnitudes are not affected by any rotation of the stress tensor. This 
was not the case with the tensor defined in equation (14) of text. The new form is obtained as a function of 11, and of the 
direction cosines xi, y,, z, of unclassified principal axes (i = 1, 2, 3). 

0 0 

x1 x2 x3 0 cos(p+$) 0 

0 0 cos (11, + F) 
The minimization criterion adopted is the same as in text: the corresponding function v 2  has been defined in equation (Al) 

of Appendix I, with the terms r2 and (s - a) defined in (A3) and (A4). 
Now, the components of the stress vector of equation (3) in text are 

u , = u c o s ~ + u ’ s i n ~ ,  uy= v c o s ~ / + v ‘ s i n ~ # ,  u , = w c o s ~ + w ’ s i n ~ ,  (4417) 

where u, v, w and u’, v’, w’ are polynomial functions of the direction cosines n,, ny,  n, of n as well as of the direction cosines 
xi, yi, zi of principal axes mentioned in (A16). These functions are obtained by combining equation (3) of text and equation 
(A16). 

Substituting expressions (A17) into (A3), (A4) and (Al) of Appendix I gives the function v2 as follows: 

v 2  = a cos’ #I + b sin2 11, + 2c sin 11, cos 11, - 2d cos 11, - 2e sin 11, + A’ 
where a, b, c, d and e are simple polynomials (sx, sy ,  s, are the direction cosines of s): 

a = u2 + ? + w2 - (n,u + nYv+ nZw)’, b = u” + v” + w” - (nxu’ + nyv’ + n , ~ ’ ) ~ ,  

c=uu ’+  VV’+ ww’-(n,u +nyv+n,w)(n ,u’+nyv‘+n,w’) ,  d=A(s,u +s,,v+s,w), e =A(s,u‘+syv’+s,w’). 
(A19) 

The partial derivative of v z  with respect to 11, is computed from (AM), as a function of tg(q/2) (called t ) :  

- (c  + e)t4 + 2(a - b + d)t3 - 6cf2 + 2(d + b - a)t + c - e. 
6(v2) (1 + t2)2 

611, 2 

As in Appendix I, the extremum values of the sum of functions v2 for all faults are obtained by cancelling its partial 
derivative, thus solving the equation 

(C + E)t4 + 2(A - B + 0)t’- 6Ct2 + 2 ( 0  + B -A)t + C - E = 0 ,  (‘421) 
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where A, B, C, D and E are the sums of polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, d and e respectively. A comparison between the values of u2 
obtained of (A21) allows identification of the actual solution (as in Appendix 11). The last step consists of classifying the 
principal stress axes according to the respective magnitudes of cos v,  cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2 ~ ~ 1 3 )  and cos (+ + 4 ~ 1 3 ) .  

APPENDIX IV 

In this appendix, it is shown that the use of the particular stress tensor defined by equation (14) in text and of the minimization 
criterion summarized by equations (15-16) in text and (Al )  in Appendix I is in agreement with a major requirement 
mentioned in Section 1 with equation (1): an arbitrary choice of the positive scale factor t ,  and of the isotropic stress t,l must 
not affect the minimization scheme and therefore the results. 

First, adding a normal stress t,l to all diagonal terms of the stress tensor would modify expressions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,., a,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, in 
equation (A2) of Appendix I. However, this change does not affect the scalar product s - u of equation (A4), because s - u and 
s - ra re  equivalent as equation (16) in text shows, and variations of isotropic stress cannot affect the shear stress t (see Fig. 2 in 
Angelier 1989). As a consequence, the expression (Al) of u2 shown in Appendix I is a function of the shear stress magnitude z 
solely, although u has been introduced for mathematical convenience. 

This implies that a deviatoric form of the stress tensor, such as in equations (14) of text or (A16) of Appendix 111, can be 
adopted with the criterion described in this paper, because it is always possible to choose t ,  so that 

TI, + TZ2 + q3 = 0. 

Second, multiplying the stress tensor by a positive scale factor, referred to as t ,  in equation (1) of text, implies that all stress 
components, including normal and shear stress, are multiplied by t ,  in equation (Al )  of Appendix I and in subsequent algebra. 
For reasons discussed elsewhere (Section 4 of text; see also below in this appendix), the parameter A defined by equation (12) 
in text receives the value of the largest possible shear stress, which would be multiplied by t ,  as well as other stress 
components. As a consequence, the expression of u2, (Al) and (A22) in Appendices I and IV respectively, would remain 
simply proportional to t: through the multiplication under consideration. In other words, multiplying the stress tensor by a 
scale factor implies that all individual functions u are simply multiplied by the same scale factor. This cannot affect the search 
of the minimum and the result of the direct inversion. Therefore, the particular forms of stress tensor shown in equations (14) 
of text or (A16) in Appendix 111 could be adopted, because it is always possible to choose I ,  so that 

T:, + Tf, + T:, = 3/2. 

Summarizing, the basic criterion and the minimization procedure proposed in this paper are not dependent on the scale 
factor t ,  and isotropic stress component t21 of equation (1) in text. Because of this independence, particular forms of tensors 
that fulfil requirements (A23) and (A24) were adopted through choices of t ,  and t ,  (‘reduced stress tensors’, see Section 1). 
The inverse problem, as formulated, was thus a problem of only four unknowns. Complete determination of stress, including 
not only the orientations of the three principal axes and the ratio CP defined by equation (2) in text, but also the magnitudes of 
principal stresses, obviously implies determination of t l  and t,. Such determination cannot be made with fault slip data solely: 
it requires additional geological information which can be obtained through studies of the depth of overburden and 
determinations of rupture and friction laws in the rock mass under investigation. This further step in stress reconstruction is 
discussed elsewhere (Angelier 1989). 

The simplicity of the tensor form defined by equation (14) in text made subsequent algebra easier (see Section 4 of text and 
Appendix I). However, as pointed out in text, a rotation of stress axes affects the magnitude of stress with this particular form. 
This occurs because the diagonal terms contain the single variable I) whereas the other terms do not depend on v. To prevent 
this undesirable effect, a progressive adjustment of the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA defined by equation (12) in text was obtained through a 
short iterative procedure (see text, Section 4). As a consequence, the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu became proportional to shear stress 
amplitudes as far as A has the value of the largest possible shear stress, as discussed above (this appendix). 

Adopting the tensor form defined by equation (A16) of Appendix 111 would result in a simpler direct inversion, because in 
this case a rotation of stress axes would not affect the magnitude of stress. In the right side of (A16), the terms related to the 
orientations of axes and the terms related to the ratio between principal stress differences are clearly separated and 
independent, which was not the case in the right side of (14). As a consequence, the adjustment of the value of A (depending 
on stress orientation which controls stress magnitude) would become unnecessary with this new tensor form, thus leading to a 
still simpler procedure. In fact, A would simply become constant and equal $ / 2  as discussed in Section 4 of the text and 
suggested in Fig. 2(c). Unfortunately, adopting this new formulation resulted in much more complex algebra, so that author’s 
attempts at solving the inverse problem by analytical means with the same logic as in Section 4 of text and Appendices 1-11 
remained unsuccessful (although there is no reason to believe that it is impossible). For this reason, the iterative adjustment 
of parameter A had to be maintained, and the new tensor form could not be used except in a final step described in Appendix 
I11 and discussed in Section 4 of text. Note that this final step, added for safety, would also become unnecessary if the new 
tensor form could be adopted in the whole inversion process. 
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APPENDIX V 

Tables A1 and A2 of this appendix provide the complete list of data and results corresponding to the four examples discussed 
in text (Section 5) and illustrated in Figs 3 and 4. Tables 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in text summarized the main results obtained through 
computer determinations using the new direct inversion method and the 4-D exploration method, respectively. The same 
names of sites (AVB, TYM, MD1 and KAM) refer to the same data sets in all tables. Figs 3 and 4 show the palaeostress axes 
obtained after direct inversion (this paper) as well as the distribution of fault slip data orientations for each set. Tables A1 and 
A2 enable one to check the results. 

In Table Al ,  for each data set, the first four columns completely describe the orientation of each fault slip datum. The next 
two columns display the individual estimators RUP and ANG (see text, Sections 5 and 6) obtained after the direct inversion of 
Table 1. The last two columns (rup and ang) display the same estimators obtained after the 4-D exploration of Table 2. 

For each of the four data sets, the values of the fifth column (RUP) are significantly smaller on average than the values of 
the same estimators in the seventh column (rup). This is not surprising, because this estimator corresponds to the minimization 
criterion adopted in the direct inversion. Likewise, the use of the 4-D exploration yields values of the corresponding estimator 
(ang) which are significantly smaller on average than for the direct inversion (ANG). These discrepancies bring confirmation 

Table Al .  List of data (angles in degrees) and individual estimators. Column 1: sense of fault slip, 
all faults being normal (N). Column 2: strike of fault plane (azimuth). Column 3: dip of fault. 
Column 4: pitch (rake) of slickenside lineations. Columns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 7: estimator RUP (in per cent). 
Columns 6 and 8: estimator ANG (in degrees). Other explanations in this appendix. (See also text, 
Sections 4-6, and Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-2.) 
A V B  
N 59 71N 74E 
N 45 65W 69N 
N 42 70W 68N 
N 47 63N 04E 
N 44 56E 83b 
N 72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA656 81E 
N 63 705 81E 
N 46 61N 83E 
N 70 73N 8SE 
N 72 72N 89W 
N 53 86N 72E 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 74N 71E 
N 47 77N 61E 
N 55 65N 6 O E  
N 75 526 62L 
N 39 0 5 1  71N 
N 42 71W 69N 
N 59 63N 71E 
N 49 50N 69E 
N 47 57N 70E 
N 84 566 67E 
N 49 40N 68E 
N 69 516 64E 
N 77 325 67E 
N 52 54N 5% 
N 59 6 7 5  73E 
N 47 65N 61E 
N 61 866 6 7 t  
N 47 74N 49E 
N 31 69W 45N 
N 59 655 85W 
N 56 566 79E 
N 70 EON 89W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T I M  
N 47 615 AOE 
N 3 R  59E 005 
N 92 EON 58W 
N 54 68N 70W 
N 47 63N 78W 
N 112 BEN 59W 
N 76 70N 65W 
N 48 606 BOW 
N 79 61N 86E 
N 69 5 6 s  80E 
N 51 706 69W 
N 38 50W 86N 
N 60 516 79W 
N 81 625 77W 
N 58 62N 84W 
N 36 61W 756 
N 36 60E 766 
N 39 6 3 E  856 
N 70 725 63E 
N 51 536 89E 
N 1 1  47W 79N 
N 59 45N 67W 
N 114 745 66W 
N 27 42W 09N 
N 36 56W 87N 
N 39 77E 506 
N 59 616 62W 
N 70 58N 74E 
N 63 675 81W 
N 30 50E 586 
N 32 69E 85N 
N 43 63E 045 
N Z S  60E 07N 
N 71 48N 85E 

N 17 68W 0ON 
N 96 70N 71W 
N 89 71N 89E 

N 70 6 9 ~  anw 

RUP 
20 
10 
18 
28 
26 
36 
50 
27 
40 
38 
64 
37 
32 
26 
10 
54 
20 
16 
3 

16 
15 
7 

15 
8 

29 
47 
14 

103 
34 
22 
42 
23 
58 

AUP 
39 
16 
49 
34 
28 
66 
50 
17 
38 
19 
42 
16 
11 
43 
21 
35 
15 
26 
50 
21 
22 
19 
90 
12 
19 
57 
40 
51 
38 
26 
47 
24 
45 
35 
37 
50 
29 
46 

ANG 
3 
3 
6 

16 
3 

15 
3 

16 
0 
4 

12 
0 
1 

14 
5 

25 
7 
6 
1 
9 
8 
0 
8 
3 

17 
12 
6 

178 
15 
12 
1 1  
7 
0 

ANG 
22  

5 
1 
4 
0 
9 
1 
1 

22 
4 

11 
7 
4 

19 
4 

16 
2 
)I 
21 
12 
0 

11 
62 

3 
4 

19 
22 
31 

7 
14 
25 

8 
24 
20 
14 
6 
5 

24 

rup 
33 
14 
20 
26 
31 
34 
49 
25 
45 
45 
6 0  
41 
39 
27 
12 
55 
22 
1.3 
7 

16 
1 1  
9 

14 
13 
27 
44 
20 
99 
41 
35 
44 
21 
65 

rup 
3 2  
1s 
7 0  
49 
40 
85 
70 
16 
35 
20 
38 
21 
12 

34 
42 
18 
19 
50 
18 
23 
27 
60 
13 
27 
60 
38 
45 
29 
42 
33 
19 
30 
27 
48 
57 
43 
SO 

2n 

a n 8  
1 
0 
1 

14 
9 

12 
6 

14 
0 
5 
J 

5 
6 

13 
6 

14 
2 
4 
1 
9 
3 
2 
7 
5 

16 
6 
8 
6 

19 
19 
16 
0 
1 

an8 
17 
2 

13 
7 
9 
1 

10 
3 

15 
9 

14 
7 
3 
8 
1 

14 
6 
3 

31 
9 
9 

15 
26 

2 
4 

31 
21 
25 

3 
25 
13 
2 

11 
15 

0 
3 
4 

15 

MO 1 
N 33 64E 506 
N 23  SOW 64N 
N 165 37W 57N 
N 173 50E 775 
N 150 66W 20N 
N 133 456 38W 
N 163 55W 50N 
N 110 546 64W 
N 118 546 40W 
N 123 526 25W 
N 150 71W 70N 
N 123 60N 356 
N 141 69W 82N 
N 165 75W 776 
N 141 66W 50N 
N 143 66E 356 
N 163 70E 425 
N 178 64W 65N 
N 168 58E 306 
N 14% 64W 63N 

K A Y  
N 56 666 64E 
N 59 676 64E 
N 31 55E 63N 
N 60 525 79E 
N 179 36E 85N 
N 142 70E 73N 
N 117 55N 72W 
N 60 67N 30E 
N 92 60N 87W 
N 124 64N 68W 
N 46 396 2OW 
N 50 406 75E 
N 155 55E 646 
N 121 73N 42E 
N 114 70N 74W 
N 64 206 42W 
N 138 35E 05N 
N 160 40E 75N 
N 150 43E 76N 
N 96 506 84E 
N 40 40E 466 
N 116 296 64E 
N 130 35N 03W 
N 160 406 76N 
N 136 02E 66N 
N 101 206 77W 
N 51 525 31W 
N 141 85E 0ON 
N 145 78E BEN 
N 122 77N 80E 
N 168 76E 58N 
N 127 77N 67W 
N 52 236 30W 
N 119 46N 0 9 1  
N 80 7 7 N  76E 
N 144 17E 43N 
N 144 17E 766 
N 116 49N 79E 
N 103 68N 03E 
N 54 446 68W 
N 6 9  50N 64E 
N 116 60N 89W 
N 88 57N 69E 
N 49 46N 40E 
N 59 515 34W 
N 64 606 60W 
N 67 426 70W 
N 73 455 01W 
N 60 436 71W 
N 101 85N 56E 

RUP 
106 
48 
17 
12 
51 
40 
21 
42 
47 
60 
37 
60 
57 
80 
20 
41 
43 
17 
64 
23  

RUP 
06 
0 0  
67 
61 
36 
23 
30 
72 
23 
33 
73 
64  
60 
77 
35 
42 
22 
26 
10 
37 
44 
49 
21 
26 
49 
10 
57 
69 
46 
37 
4 3  
4 2  
49 

5 
45 
03  
70 
20 
19 
22 
37 

6 
23 
00 
51 
31 
26 
27 
21  
60 

AN[: 

70 
29 

0 
4 

31 
19 
12 
0 

16 
35 
20 

1 
35 
53 

1 
6 
9 
5 

40 
11 

ANG 
59 
61 
41 
37 

6 
4 

18 
46 
12 
19 
47 
40 
3s 
5 0  
18 
23 

1 
9 
7 

22 
22 
29 

4 
8 
6 
2 

34 
17 
10 
5 
8 

16 
23 
0 

11 
49 
12 
11 

1 
3 

20 
1 

13 
53  
30 

0 
12 
14 
6 

11 

107 
41 
13 
14 
43 
40 
10 
51 
54 
6 0  
43 
60 
63 
0 9  
21 
44 
41 
12 
56 
30 

r u p  
83 
85 
63 
58 
35 
25 
27 
67 
26 
29 
77 
61 
66 
00 
37 
46 
19 
20 
12 
36 
49 
52 
15 
20 
54 
14 
60 
67 
53 
45 
43 
46 
56 

S 
54 
7 3  
6 8  
23 
25 
23 
32 

9 
23 
73 
53 
27 
23 
25 
20 
68 

all& 

71 
24 

0 
1 

26 
12 
5 
1 

15 
31 
25 
16 
39 
59 

5 
5 
2 
2 

33 
1 '> 

anu 
56 
58 
37 
35 

2 
1 

16 
40 
13 
16 
50 
38 
40 
53 
17 
24 

4 
3 
2 

21 
26 
31 

1 
2 
1 
1 

37 
26 
24 
0 
2 

12 
26 
3 

17 
35 
26 
13 

1 
0 

16 
1 

11 
47 
32 

2 
1 1  
13 
4 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2. Numerical values in stress tensor determinations. Same data sets 
as in Table Al.  Explanation in this appendix. (See also text, Sections 4-5, 
and Table 1.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AVR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PSI[ 1)=-1.970 U P S I L O =  0.730 
P S I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  = 1.760 U P S I L O =  0.239 

:; 0.39199 -0.75651 -0.01567 * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i: -0,36215 -0.01567 0.94462 * 
LAMBDA= 0 . 8 7  TAUMAX= 0.86 
51- 0.90 S 2 = - 0 . 0 8  S3=-0.82 
S I G M A  1 O =  76. P= 7 2 .  
SIGMA 2 O =  240 .  P =  17. 
SIGMA 3 O =  331. P= 5. 
P H I =  0.433 

4s -0.ie8ii 0.39199 -0.36215 * 

T Y M  
P S I (  1)=-1.427 U P S I L O -  0.767 
P S I (  2) = 2.008 U P S I L O =  0.300 
* -0.42296 0.22327 0.16924 * 
* 0,22327 -0.57326 0,13770 4s 

+ 0,16924 0.13770 0.99623 * 
LAMBOA= 0.87 TAUMAX= 0.83 
S1= 0 . 9 7  S2=-0.28 S3=-0.69 

SIGMA 2 O =  5 5 .  P =  10. 
S I G M A  3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO =  325. P =  0 .  
P H I =  0.246 

SIGMA 1 O= 232. P= ao .  

MO 1 

PS [ [  2 )  = 2 . 6 4 0  U P S I L O -  0 . 4  1 1  

-+ 0.18270 0.02197 -0.15992 '& 

.'/ -0.06797 -0.15992 0.85483 ?: 

LAMBDA- 0 . 8 7  TAUMAX= 0 .87  
S1= 0.85 52= 0.02  S3=-0.88 
S I G M A  1 O= 17. P= 78. 
S I G M A  2 O =  191. P= 12. 
SIGMA 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo= 281. P= 1 .  
P H I =  0.519 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
psr( i j = - 0 . 3 6 0  UPSILO= 0.970 

c - o . ~ ' ) ~ H o  O . I R ; ? ~ O  -0.ofi7g7 :: 

KAM 
PS1( 1 ) = - 1  343 U P S I L O =  1 055  
P S I (  21 = 1 .  906 UPSILO= 0.374 

(} - 0 , 2 5 6 2 5  -0.65357 0.18923 * 

LAMBOA= 0.87 TAUMAX= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.85 
S1= 0 . 9 4  S2=-0.17 53=-0.77 
SIGMA 1 o=  218. P =  83. 
SIGMA 2 O =  119. P =  1 .  
SIGMA 3 O= 29.  P= 7 .  
l P l H I =  0.346 

: -0 3 2 8 ~ 8  -0.25625 0.13305 <! 

0.1330s o.iag23 0.98225 + 

P S I (  1)=-0.488 U P S I L O =  0.312 
P S I (  2) = 2.585 U P S I L O =  1.529 
* -0.13892 0.35892 -0.29387 * 
* 0.35892 -0.65187 -0.00459 + 

* -0.2'9387 -0.00459 0.79079 * 
LAMBDA= 0.87 TAUMAX= 0.87 

S I G M A  1 0-  76. P- 7 2 .  
S l G M A  2 0-  240. P =  17. 
S I G M A  3 0-  331. P =  5 .  
P H I -  0.469 

si= 0 .88  s2=-0.04 s3=-0 .85  

P S I (  1)=-0.219 U P S I L O -  0.336 
P S I (  2 )  - 2.596 U P S I L O -  1.523 
-I -0.40490 0.19519 0.16226 * 

0.19519 -0.53599 0.13161 
46 0.16226 0.13161 0.94089 * 
L A M B O A -  fl.87 TAUMAX- 0.83 
S1= 0 .98  S2=-0.30 S3=-0.68 
S I G M A  1 f l=  232. P =  8 0 .  
S I G M A  2 O= 55. P- 10. 
S I G M A  3 0- 325. P= 0. 
P H I =  0.228 

P S I (  1)=-0,547 U P S I L O =  0.433 
P S I (  21 = 2.562 U P S I L O =  I .482 
16 -0  84251 0 17581 -0.06517 * 
'> 0.17581 0.02247 -0.15310 * 
4s -0.06517 -0.15310 0.82004 js 

ILAMHOA= 0 . 8 7  rAUMAX= 0.87 
Sl= 0 . 8 5  52- 0.02 S3=-0.88 
S I G M A  1 O =  17. P= 78. 
SIGMA 2 U= 191. P =  12. 
S I G M A  3 0 ;  281. P =  1. 
P H I -  0 . 5 2 0  

PSI(  11=-fl.317 U P 5 1 1 0 =  0.414 
PSI( 21 ~ 2.836 UPSILO= i .474 
* -0.32645 -0.21318 0.12369 '* 
'i -0.21318 -0.59772 0.17402 4$ 

0.12369 0.17402 0.92418 +? 

LAMHOA= 0.87 TAUMAX= 0 . 8 5  
S1= 0 . 9 5  S2=-0.21 53=-0.74 
S I G M A  I O= 2 1 8 .  P- 83.  
S I G M A  2 O =  119. P;- 1. 
S I G M A  3 O =  29. P =  7 .  

P H I =  0.314 

that the values of estimators, if considered regardless of the minimization criterion adopted for data inversion, have little 
significance. 

In Table A2, two sets of numerical values resulting from the direct inversion process are displayed for each data set. The left 
half of the table corresponds to the main inversion described in most of Section 4 and Appendices 1-11, while the right half 
shows the result of the additional step described in the last paragraph of Section 4 and Appendix 111. For each trial, in the first 
two lines, two values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,  PSI (1) and PSI (2), are computed as solutions of equation (A15) of Appendix I1 (left half of table) 
or (AM) of Appendix I11 (right half), and I/J values corresponding to the smallest sum of functions v2  are adopted. UPSILO is 
the corresponding square root of the mean value of uz; it is close to, but not identical with, the mean value of u computed a 
posteriori (RUP, Tables 1 and Al). 

The numerical components of the stress tensor are given in the next three lines according to definition (14) of text (on left) 
or (A16) of Appendix I11 (on right). The following line displays the parameter LAMBDA A defined in equation (12) of text 
and discussed in Section 4 of text and Appendix IV, as well as the value of the greatest possible shear stress called TAUMAX. 
The last four lines show the results of the determination of eigenvalues (Sl, S2 and S3) and eigenvectors (SIGMA 1, 2 and 3, 
with trend D and plunge P in degrees); the value of the ratio defined by equation (2) of text is added (PHI, last line). Not 
surprisingly, stress axes orientations are identical in the left and right halves of Table A2. 
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