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Abstract 

Seismograms predicted from acoustic or elastic earth models depend 

very nonlinearly on the long wavelength components of velocity. This 

sensitive dependence demands the use of special variational principles in 

waveform-based inversion algorithms. The differential semblance varia­

tional principle is well-suited to velocity inversion by gradient methods, 

since its objective function is smooth and convex over a large range of 

velocity models. An extension of the adjoint state technique yields an 

accurate estimate of the differential semblance gradient. Nonlinear conju­

gate gradient iteration is quite successful in locating the global differential 

semblance minimum, which is near the ordinary least squares global min­

imum when coherent data noise is small. Several examples based on the 

2D primaries-only acoustic model illustrate features of the method and 

its performance. 
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Introduction 

This paper presents an implementation of a differential semblance optimization 

algorithm for estimation of velocities and reflectivities from multioffset reflec­

tion seismograms. Differential semblance combines concepts from nonlinear 

least-squares inversion, migration velocity analysis, and travel time tomogra­

phy. It poses the estimation problem as a variational principle of least-squares 

type. This principle is defined in an expanded space of experiment-dependent or 

incoherent models, which contains the normal model space as a proper subset. 

A gradient-based local optimization algorithm solves this problem efficiently, 

whereas other least-error formulations of multioffset waveform inversion appear 

to require global optimization algorithms such as Monte Carlo search or simu­

lated annealing (Mosegard and Tarantola 1991 (21], Stoffa and Sen 1991 (27], 

Scales et al., 1991 [26]). Nonetheless, the solution of the differential semblance 

optimization problem closely approximates the solution of the straightforward 

mean-square best-fit formulation of velocity estimation when the amount of co­

herent noise in the data is small. Thus differential semblance optimization may 

be regarded as an infeasible point method for ordinary least-squares inversion. 

The next section introduces the differential semblance approach as a vari­

ant of nonlinear least-squares inversion, in general terms. The following two 

section present the detailed formulation of differential semblance optimization 

for primaries-only 2D acoustics, and describe the gradient calculation and opti­

mization, respectively. In fourth section several simple layered and nonlayered 

synthetic examples illustrate the behaviour of the method. The algorithm de­

scribed here applies a priori to multidimensional models. The translational 

symmetry of data from layered models allows the extraction of all kinematic 

and dynamical information from a small part of the data, however. We take 

advantage of this redundancy to minimize the computational expense of inver­

sion of layered models, without changing the algorithm. The inversion examples 

presented below are all layered for this reason. We also exhibit differential sem­

blance gradients for nonlayered models, which confirm the sensitivity of the 

objective function to lateral velocity heterogeneities. 

The paper ends with a discussion of migration velocity analysis, travel time 

tomography, and least-squares inversion and shows how differential semblance 

optimization is closely related to each of these techniques. An appendix provides 

a detailed derivation of the gradient calculation. 
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The differential semblance concept 

Differential semblance optimization is a variant of nonlinear least squares in­

version, in which an earth model is sought to minimize the difference between 

predicted and measured data. Least squares inversion accomodates a variety 

of physical descriptions of seismic wave propagation and possesses an elegant 

information-theoretical justification (Tarantola 1987) [41]. As a result the tech­

nique has received considerable attention in the last years. 

One of the first results of numerical work on least squares was the discovery 

that the mean square misfit function is severely nonconvex in the long wave­

length or smooth components of velocities (Kolb et al. 1986 [17], Gauthier et 

al. 1986 [14], Symes and Santosa 1989 [24]). As a result most recent work 

has either used conventional velocity analysis or travel time tomography to ad­

just the smooth part of the velocity (Helgesen and Kolb 1989 [16], Noble 1992 

[22]) or employed global nonconvex optimization technology such as simulated 

annealing or genetic algorithms (Cao et al. 1990 [5], Mosegard and Tarantola 

1991 [21], Stoffa and Sen 1991 [28], [27] Scales et al. 1991 (26]). The latter 

techniques appear to require a very large number of simulations (105 
- 106 are 

typical numbers). They depend for their success on the presumption that a 

"significant" part of model space will have been sampled, but no criteria for 

adequate sampling appear to be available. 

The root cause of the nonconvexity of the least squares objective is the 

difficulty of fitting all gathers in a multi-gather (i.e. multi-experiment) data 

set simultaneously, unless the velocity (i.e. the kinematical aspect of the earth 

model) is very nearly correct. This observation holds for all types of data gathers 

(common source, common receiver, common offset, plane wave, ... ). On the other 

hand fitting a single gather is a relatively easy task. 

This reasoning suggests the introduction of an experiment-dependent model 

space. Since the actual earth is not experiment-dependent, a suitable objective 

function for inversion should be designed to minimize the variance of the model 

with experiment. Accordingly we propose an objective function containing: 

• a least squares (or other convenient) data fitting term; 

• a differential semblance term penalizing deviations between the models for 

neighboring experiments. 

Now such an objective function is just as nonconvex as is is the usual least 

squares objective, since the latter is contained in the former. However the 

analysis of this pathology also suggests a way out. Recall that the long wave­

lengths of the velocity (i.e. p-wave velocity, or p-wave and s-wave velocities if 

s-wave data is present, etc.) have a markedly different effect on the data than 

do all other model parameters, such as short-wavelength velocity fluctuations, 
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impedance contrasts, etc. This dichotomy of data influence accounts is the main 

source of nonconvexity of the least squares objective, mentioned above. Differ­

ential semblance optimization separates the two classes of parameters, viewing 

the long wavelengths of the velocity as "control" variables and the rest of the 

model as a "state" variable. The main result of the theoretical and numerical 

investigation of differential semblance is: 

If the differential semblance objective is minimized first over the 

"state" variables, the remaining function of the "control" variables is 

smooth and convex in a large domain, so can be minimized effectively 

by gradient-based optimization methods. 

We shall refer to the long wavelengths of the velocity, i.e. the "control" 

variables, as "the velocity", and the rest of the model, i.e. the "state" variables, 

as "the reflectivity". Thus the two-stage approach just suggested amounts to 

inverting for reflectivities given velocities, then stuffing the inverted reflectivities 

into the differential semblance objective and minimizing the resulting function of 

velocities. The separation into the two classes can be either implicit or explicit. 

In this paper we explicitly separate the model into velocity and reflectivity via 

linearization, with the velocity used as the background model. That is, we 

will adopt the primaries-only approximation. For an example of differential 

semblance with implicit separation and fully nonlinear modeling (inclusive of 

multiple reflections), see Symes 1991a [34]. 

Figure 1 illustrates the reasoning behind our main result. It caricatures 

inverted reflectivities for correct and incorrect velocities, and displays slices 

through the inverted reflectivity hypercube at two adjacent shot locations. In­

verted reflectivities from neighboring shots are similar in phase content even 

when the velocity model is wrong (provided that the experiment parameter, 

i.e. shot location, is sampled finely enough). Therefore their differences change 

slowly when the velocity model is changed. This accounts for the smooth be­

haviour of the differential semblance objective. 

Symes 1991a [34] and Symes and Carazzone 1991 [37] give an account of 

an earlier implementation of differential semblance optimization, specifically 

formulated for plane wave data and layered earth models. This earlier version 

also extracted reasonable satisfactory estimates of velocity and reflectivity from 

carefully selected and prepared field data sets. 

The implementation presented here was introduced and analysed in Symes 

1991 [33], [35) and Symes 1992 [36]. It applies in principle to virtually any class 

of earth models and presentation of the data. We will limit our attention to 

2D acoustic models and shot gather ( common source) data sets. As mentioned 

above we use first-order perturbation theory to view the rest of the model (the 

reflectivity) as a perturbation about the long wavelengths of velocity. We regard 

the data as a measurement of the perturbational (scattered) field. Physically, 
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this approximation amounts to neglect ofmult.iply reflected energy. It appears to 

be roughly correct for some data sets, admissible after preprocessing for others, 

and simply inadequate for yet others. We will also neglect density variations, 

and regard the source as known in both waveform and radiation pattern. These 

last two assumptions are inessential to the method - both can be dropped at 

the expense of more complex implementation. In particular, the source wavelet 

and directivity can be estimated from the data itself as part of the inversion 

(Lewis 1989 [20]). Since reflection amplitudes in all real data sets are affected 

by both density fluctuations and source details, we have applied the constant 

density implementation to synthetic data only. 
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Differential semblance for 2D primary reflection 

acoustics 

This section defines a mathematically precise version of differential semblance 

optimization for 2D primaries only constant density acoustics, summarizes some 

of its properties, and outlines basic computational choices made in our imple­

mentation. 

We will use a version of the 2D acoustic constant-density primaries-only 

model of seismic wave propagation. This model assumes that: 

• the earth is two-dimensional, and occupies the half-space {z > O}; 

• the acoustic pressure field vanishes on the surface of the earth (i.e. on 

{z = O}); 

• density variations can be neglected; 

• multiply reflected energy can be neglected; 

• sources are temporally and spatially localized, the source characteristics 

are known, and differ from shot to shot only by position. 

The model couples the fields 

• p(x, z, t; x,) = (scattered) pressure field 

• Po(x, z, t; x,) = reference pressure field 

• v(x, z) = (smooth) velocity field 

• r(x, z) = ( rough) reflectivity field, 1.e. relative velocity perturbation (-

28v( x, z)/v(x, z)) 

• f(x, z, t; x,) = source (divergence of a body force field) 

Here x, ranges over a set of source locations. The fields are connected through 

the set of coupled wave equations 

1 fJ2 2 
(-- -v' )po= f 

v2 f)f 2 

1 fJ2 2 • 2 
(-- -v' )p = 2rv' Po 

v2 fJt2 

(1) 

(2) 

Equation 1 is the ordinary constant-density acoustic wave equation for the ref­

erence (incident) pressure field p0 . First-order perturbation theory plus a little 
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algebra produces equation 2 for the perturbation or scattered field pin response 

to a perturbation 6v of v. 

So long as v is smooth, i.e. has a characteristic length scale of several 

wavelengths, the reference field Po contains only the direct wave and refracted 

waves, and is essentially devoid of reflections. This well-known result follows 

from geometric optics (Friedlander 1958 (13]; for this application see Claerbout 

1985 (7], for example). The relative perturbation r = 6v/v turns up naturally, 

as a secondary source multiplying the Laplacian of p0 on the right-hand side of 

the wave equation for p. Since r is responsible for all reflections in this model, 

it is natural to call it the reflectivity. 

To complete the specification of the fields initial and boundary conditions 

are necessary. We assume that the wave equations hold in a spatial region R 

and for a time interval t < tmax, and that the fields are quiescent for negative 

times: 

f(x, z, t; x.) } 
Po(x, z, t; Xs) = 0, t < 0 

p( X, Z, i; X s) 

Ideally R is the half-space { z > 0}. For computational purposes R must be 

a finite domain, which we take to be the rectangle { Xmin < x < Xmax, 0 < z < 
Zmax}. We assume zero pressure on the surface { z = 0}: 

Po(x, 0, t; Xs) } = O 
p(x, 0, t; Xs) 

It is commonplace to employ so-called absorbing boundary conditions on the 

other sides of the rectangle to simulate wave propagation in an infinite domain 

(see eg. Enquist and Majda 1977 (11]). However such conditions implicitly 

assume that no reflections occur outside R; if this assumption is incorrect, some 

part of the data may not be explicable by the model. For an example of this 

sort of effect in an inverse problem (see Noble 1992 (22)). Instead we prefer to 

bear the extra computational expense of putting the boundaries of R far enough 

away from the source that no reflection can arrive in the receiver array from the 

boundary in the recording interval {0 < t < tmax}. That is, we assume 

• that Po and p are required to vanish on all sides of R for all t; 

• that the source f(x, z, t; Xs) vanishes outside of a small region near the 

source location x 3 , z,, and that the source depth z, is the same for all 

sources; 

• that for each source location x s a set of receiver locations Xr, Zr ("cable") 

is given, and that the receiver depth z,. is the same for all source locations 

x, and receiver offsets Xr - x.; 
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• that R is sufficiently large that p0 takes the same values as it would if 

calculated in the half-space, at all points x,., Zr of the cable, for all x,, and 

for O < t < tmax. 

In practice it is easy to check that R is sufficiently large, using an average 

value of the slowness 1/v. 

We solve the wave equations 1, 2 numerically using a finite difference method 

of fourth order in space and second order in time (Dablain 1986 [8], Levander 

1988 [19]). Since the boundary conditions specify the vanishing of the fields p0 

and p on the boundary of R, the method of images gives numerical boundary 

conditions (i.e. one-sided difference stencils near the boundary) of the same 

accuracy as the interior scheme. 

The simulated primary reflection data set consists of the samples of the scat­

tered field p for various source locations x,, as x ranges over the corresponding 

receiver coordinates x,. and O < t < tmax. Since this data set depends function­

ally on the fields v and r, we write 

F[v,1·] = {p(x,.,zr,t;x,)} (3) 

We call F the forward map of this model. Since the receiver positions do not 

necessarily fall on the finite difference gridpoints, numerical implementation of 

this map requires an interpolation onto receiver positions. 

Note that 

• F is linear in r, since r appears linearly on the right hand side of 2; 

• F is extremely nonlinear in v. 

The first property is obvious, and the second is by now well established (Claer­

bout 1985 [7], Tarantola 198fi (40], Santosa and Symes 1989 [24], Symes 1992 

(36]). The consequences for waveform inversion are very important. First, given 

v, it is relatively easy to estimate r. Essentially, estimation of r given v requires 

a before stack migration with correct output amplitudes. Both direct methods 

of Kirchhoff type (Beylkin 1985 [1], Bleistein 1987 [3]) and iterative methods 

based on modeling (Bourgeois et al. 1989 [4], Noble 1992 (22]) work reasonably 

well. However estimation of v and 1· jointly is very difficult, because of the 

second property. For example the mean square misfit function 

hs[v,1·] = ~IIF[v,r]-Fdatall
2 = ~ L IP(Xr,Zr,t;x,)-Pdata(Xr,t;x,)12 (4) 

Xs,Xr,t 

is highly non-quadratic and does not admit global minimization via gradient 

(local) optimization methods. As mentioned in the introduction, several authors 

have suggested stochastic minimization of J LS. 
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For the sake of efficiency, and for other reasons to be discussed later, we 

prefer to modify the problem and the objective function. Our modification 

proceeds in two steps. 

The first step follows from the behaviour of J LS when only one source (lo­

cation) is used. Then the minimization of J LS is actually quite straightforward: 

minimization over r (the quadratic problem) yields a value essentially indepen­

dent of v. Thus minimization of J LS for a single shot is easy, and does not 

constrain v at all. The difficult nature of minimizing hs in general stems from 

the necessity of fitting data from many shot locations simultaneously, with a sin­

gle model [v, r]. This circumstance suggests relaxing the minimization problem 

by allowing the model to depend on the source location. Since vis unconstrained 

by independent fits to the various single-source data sets, only r actually need 

be allowed to vary with x,: 

v = v(x, z) 

r = r(x, z; x,) 

Now it will be easy to achieve essentially zero residual value of the functional 

defined in 4, but at the cost of losing control completely over v. Also the 

estimates of r will actually depend on x,, which is nonsense since r is supposed 

to be part of an earth model. The second step recovers control over v, in a 

calibrated way, by penalizing the dependence of r on x,. For reasons discussed 

in a general way in the introduction, and justified mathematically in Symes 

1991c [35) and 1992 [36), we choose to add differential penalty term: 

1 
Jns[v, r] = 2{11F[v, r] - !datall 2 + o-

2 1181·/ox,ll2
} (5) 

This is the differential semblance objective function. Making the first term small 

forces some level of fit-to-data, independently for each source location. Making 

the second term small forces the x.-dependent reflectivities to resemble each 

other. The two goals can be achieved simultaneously only when the velocity is 

kinematically correct. The weight parameter a- controls the amount of penalty 

applied for incoherence of 1·, and thus interpolates between totally independent 

data fitting ( 4 for r = 1·(x, z; x,), equivalent to 5 for a-= 0) and the ordinary 

least-squares principle ( 4 for r = r(x, z), equivalent to 5 for a---+ oo). 

Now J vs is no more smooth or convex than is J LS, since it essentially 

contains J LS as its first term. However, as argued in the introduction J vs can 

still be minimized effectively via local optimization algorithms, provided that 

the optimization is divided into two stages: 

1. first carry out the (quadratic) minimization over r, as a result of which r 

becomes a function of v: 1· = r[v] ("the inverted reflectivity"); 

2. then minimize the residual Jvs[v, 1·[v]] of step 1 over v. 
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Two elements of this scheme cooperate to make it effective. First, only 

inverted reflectivities from neighboring source locations are compared. These 

are similar even when the velocity field v is substantially wrong. Numerical 

implementation replaces the partial derivative by a divided difference, of course: 

01· 1'(-, ·, Xs + Llx 3 ) - r(-, ·, x 3 ) 

-- --+ 
OX 3 Llxs 

So long as the sample rate Llx 3 is small enough relative to the dominant spatial 

wavelength and the maximum traveltime error, this difference will not involve 

any cycle-skipping. 

Second, inverted reflectivities are compared. These really should all equal 

the target ( x.-independent) reflectivity if the velocity is chosen correctly. In 

particular the r[v](-, ·, x.) should largely be free of amplitude artifacts, apart 

from those unavoidable errors caused by limited data aperture. Therefore a 

simple divided difference, as above, should be sufficiently robust to act as a 

velocity indicator. 

Apart from these intuitive arguments, we have given some mathematical 

analysis in Symes 1991c [35] and 1992 [36] which shows that lvs[v, r[v]] is 

smooth and convex in a large region of velocity models v, for proper choice 

of the parameter a-. Also, the numerical evidence is strongly in favor of this 

conclusion, as will be reviewed below. 

Now suppose that the data Fdata is consistent: for some model [v*, r*], 

Fdata = F[v*, 1·*] 

Here r• is supposed to be X 3 -independent. Then 

hs[v*, r*] = 0 = lvs[v*, 1·*] 

(6) 

so that both objective functions share the same global minimum. In other words, 

global minimization of J LS is accomplished by global minimization of J vs in 

the consistent (noise-free) data. case. Thus one can view differential semblance 

optimization as an infeasible point method for least squares inversion. 

We also have some mathematical and considerable numerical evidence that 

the minimization of J vs is stable in a suitable sense. That is, suppose that 6 

fails but the two sides are close in the mean square sense (i.e. the RMS data 

noise is small). Then the minimizer v of lvs[v, 1'[v]] is kinematically close to v*, 

in the sense that these generate RMS-close travel time fields from all source and 

receiver positions. This conclusion appears to continue to hold even for quite 

large amounts of incohe1'ent data noise. 
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Algorithmic details 

Evidently the two-stage procedure for minimizing J vs outlined in the last sec­

tion really requires an algorithm for minimizing the function of velocity alone: 

J[v] = Jvs[v, 1·[v]] 

where 

r[v] = argmin,.Jvs[v, r]. 

The differential semblance objective function J vs is defined by 

Here we have added a regularizing term with weight A and operator W, to 

ensure that the inner minimization over r is well-behaved. Naively one could 

take W = I, and this works to some extent. A better choice is W = 'v x,z,x,, as 

discussed below. 

We shall use the nonlinear conjugate gradient algorithm as presented in 

Fletcher 1980 [12] to minimize J. This algorithm produces a sequence v;, i = 
0, 1, 2, ... according to the rules 

1. Initialization: 

V1 = Vinitial, So = 0, f3o = 0 

2. for k = 1 until convergence do: 

The step update parameter f3k is an algebraic combination of inner products of 

the gradients grad][vk_ i] and g1·adJ[vk] (Polak-Ribiere formula). The step ak is 

chosen by a line search, which is a safeguarded version of the secant minimization 

method for functions of a single variable. It involves algebraic combinations and 

tests using the function value J[vk +ask] and the slope < sk, grad][ Vk +ask] >v. 
Here < ·, · >v is the symbol we shall use for the inner product in the Hilbert 

space of velocity changes. The same inner product is used in the Polak-Ribiere 

formula. Convergence is tested by decrease of the gradient norm: 

Here II · llv is the norm associated with the inner product < ·, · >v. 

To carry out this program, we must settle on methods for computing 
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1. the inner product<·,· >v; 

2. the value J[v]; 

3. the gradient g1·ad][v]. 

The subsections to follow describe each of these calculations. 

The Hilbert space structure of velocity updates 

The theory underlying all of the velocity analysis methods mentioned in the in­

troduction, including differential semblance, depends on the separation of scales 

between velocity in the one hand and reflectivity on the other. In many cases 

the large-scale nature of velocity has been enforced through parameterization, 

by selecting velocities from a fixed low-dimensional space of smooth functions. 

Obviously such a constraint is rather arbitrary, and it is far from obvious that a 

choice of parameterization could be made which yields large-scale structure and 

also reproduces travel times with the necessary fidelity in every situation. If 

the initial velocity estimate Vinitial is smooth (for instance constant or constant 

gradient), then control of the length scales in the space of velocity updates is 

the important issue. VVe prefer to allow the velocity updates 8v the same formal 

degrees of freedom as the other grid functions, and enforce only smoothness 

through the choice of norm or inner product. In this approach the Hilbert space 

structure of velocity updates becomes extremely important. 

We use a discrete analogue of the Sobolev scale of Hilbert norms. These are 

based on the anisotropic discrete Laplace operator 

8 2 8v;+1,j + 8v;-1,j - 28v;,j + w2 Dvi,i+l + Dvi,j-1 - 28v;,j ( 
Vi,j f--+ wx flx2 z flz2 = L8v)i,j 

With suitable boundary conditions this operator is diagonalized by the Fourier 

transform, so it is possible to compute arbitrary powers of L very efficiently. 

The sth Sobolev norm is given by 

ll8vll, = 11As8vll 

where the norm without the subscripts is the ordinary L 2 norm 

1111112 = Llx.6.z L lui,jl2 
i,j 

and 

A= (I - L)½ 

The operator A multiplies the (k, I) discrete Fourier coefficient of 8v by (1 + 
w;k 2 .6.x2 + w;/2.6.z2 )½ for small wavenumbers k.6.x, /.6.z. Thus the power s 
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determines the rate at which high frequencies are emphasized, and the weights 

Wx, Wz determine the corner frequencies in each direction. 

For reasons to be explained below, we constrain the velocity updates to 

vanish in a surface layer containing the source: 

8v(x, z) = 0 for O < z < Zmin 

The boundary conditions imposed on L in the definition of A should include 

u = 0 at the grid level just below Zmin. The other three boundary conditions 

are less important. 

Besides defining the inner products in the conjugate gradient formulae, the 

operator A' plays a critical role in the definition of the adjoint operators, and 

thereby on the gradient. Indeed, suppose that A is some other operator taking 

velocity updates 8v to some other sort of grid functions. We use the Sobolev 

s norm on the space of velocity updates, and the ordinary ( £ 2
) norm on the 

other space of grid functions. We assume that the ordinary ( £ 2
) transpose or 

conjugate operator AT is available. That is, AT is the operator which would 

be computed by transposing the matrix of A, if one could access the matrix 

elements of A ( out of the question in almost all examples of interest to us!). It 
is defined by the condition 

< A8v, ¢ >=< 8v, AT¢> 

for all suitable grid functions 8v, ¢. On the other hand the adjoint for the 

Sobolev s norm on 8v is defined by the similar formula 

< A8v, ¢ >=< 8v, A*¢>,=< A'8v, A' A*¢>=< 8v, A 2'A*¢ > 

Inspecting these two formulas we see that 

Since A - 2
• is inverse to A 2•, this is equivalent to 

A*=A-2sAT (7) 

From the remark above about the Fourier coefficients we see that ifs > 0, then 

A- 2
• suppresses high frequencies, i.e. smooths its argument. Thus 

the ordinary transpose of an operator is converted to its adjoint in the 

sense of the Sobolev s-norm by application of a smoothing operator. 

This observation will play a crucial role in explaining the construction of the 

velocity gradient below. 
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Evaluation of J[v] 

Evaluation of J requires solution of the quadratic optimization problem 

minimizer JDS [v, r] 

to produce 1·[v] as well as the value J[v] = Jns[v,r[v]]. 

Recall that 

The variation or directional derivative of JDS in the direction Or is 

olns[v, 1·] < D,.F[v, r]o1·, F[v, r]- Fdata > 

+ u 2 < 001·/ox,, or/ox,> 

+ A2 < Wo1·, Wr > 

Here < ·, · > is the L2 norm over x, z, and x, (discretely the Euclidean dot 

product weighted by .6.x.6.z.6.x,). Because of the convention mentioned in the 

last section, that the boundaries of the computational domain R are either 

pressure free or are so far away as not to matter, we can assume that r and Or 

vanish near the boundary of R without loss of generality. Integration ( discretely, 

summation) and definition of the adjoints gives 

from which we read off immediately 

Setting the gradient to zero gives the normal equation. Because F is linear in 

r, 

DrF[v, r]or = F[v, 8r] 

whence the adjoint operator 

M[v] = DrF[v, 1']* 

is independent of r and the normal equation is linear in r. With proper choice 

of regularization, this positive definite symmetric linear system is necessary and 

sufficient for optimality of r. It can be re-written as 

N[v]r = M[v]Fdata (8) 

where 
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is the normal operator. 

Simply to evaluate the both sides of the normal equations requires algo­

rithms for the action of N[v] and M[v]. Our approach to solving the normal 

equations will also make repeated use of such algorithms. The normal opera­

tor N[v] is composed of M[v], F[v, 1·], 8/ax 8 , and the regularizing operator W, 
which is either a scalar operator or made up out of derivatives in our current 

implementation. The derivatives are approximated by finite difference opera­

tors in obvious ways, and we described the calculation of F[v, r] in the last 

section. Thus it only remains to specify an algorithm for the action of the ad­

joint operator M[v] on a field of "residuals" ¢(xr, t; x.). This algorithm is the 

so-called adjoint state method, and has been explained a number of times in 

the literature; see especially La.illy 1983 [18], Tarantola 1984 [39]. In brief, 

1. backpropagate the residuals, i.e. solve the final value problem for each Xs: 

1 82 w ~ 
(v

2 
at

2 
-v~w)(x,z,t;x.) = L¢(x,.,t;x.)b(x-xr,z- Zr) (9) 

Xr 

W = O,t > tmax 

2. crosscorrelate the backpropagated field w with the incident field p0 : 

The field w satisfies the same (homogeneous) boundary conditions as do p0 and 

p. Note that the final values of p0 can be saved, and the field reconstructed 

backwards in time, since the wave equation is time-reversible. Thus the output 

of the crosscorrelation can be accumulated as the calculation proceeds, with 

tremendous savings in storage. Note that the output M[v]¢ in this context 

is x 8-dependent. In fact, M[v] is exactly a prestack migration operator. The 

analogous operator for ordinary least-squares inversion is computed in exactly 

the same way, but includes a final summation (stack) over x 8 • 

Because of the size of the normal equation 8, it is most conveniently solved 

by a polynomial iteration. While the conjugate gradient family is favored in 

most similar work, and is optimal in a sense we will not make precise, we prefer 

to use Chebyshev iteration for reasons that will become clear later. 

Chebyshev iteration involves four distinct steps: 

1. choosing an inversion level; 

2. estimating the spectral bound and scaling the normal operator; 

3. computing the Chebyshev coefficients and estimating the necessary num­

ber of iterations; 

15 



4. application of the Chebyshev polynomial by recursive application of the 

normal operator. 

A good reference on classical Chebyshev iteration as applied to discretized el­

liptic boundary value problems is Varga 1962 (43]. Stork and Clayton 1991 and 

1992 (31], (32] reported the use of Chebyshev accelerated Richardson iteration 

applied to reflection tomography. They pointed out the the advantages of the 

control provided by Chebyshev iteration over the portion of the spectrum in­

verted. Their algorithm is somewhat different than ours. In particular they are 

able to normalize their operator so as to be able to apply Chebyshev acceler­

ation directly, whereas we must compute an approximate spectral bound. We 

were unable to locate a description of the modifications necessary to handle the 

present problem, so we will give a fairly detailed description of the algorithm. 

Choosing the inversion level 

Chebyshev iteration reduces the error and residual components of a symmetric 

linear system to a specified level relative to their original values over a specified 

part of the operator spectrum. For positive definite problems like the normal 

equations it is natural to specify a lowest eigenvalue at which the reduction will 

be achieved, and to give its value relative to the largest eigenvalue (spectral 

bound) Amax of N[v]. Therefore it is necessary to choose the error reduction 

factor c and the inversion level 1 . The iteration will be designed so that if 

1 Amax ~ A ~ Amax and A is an eigenvalue of N[v] then the corresponding 

component of the normal residual M[v]Faata - N[v]r will be reduced by the 

factor c (at least). Evidently a good choice of inversion level depends on the 

spectral structure of the data, as does the choice of error reduction factor. Stork 

and Clayton 1991, 1992 (31], (32] suggest that in tomographic inversion I should 

be chosen quite small, a typical figure being 0.04. 

Estimating the spectral bound and scaling the normal operator 

Of course the spectral bound is itself unknown a priori. It represents the natural 

scale of the problem, so is valuable information in its own right. Fortunately un­

derestimates are a by-product of the iteration, in the form of Rayleigh quotients 

of the reflectivity updates 8rk, at the cost of a couple of extra inner products: 

Any number strictly larger than the maximum of these estimates can be used 

in the place of the actual spectral bound Amax· The additional steps needed to 

make use of these adaptive spectral estimates are as follows: 
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1. choose a "fudge factor" a > 1.0; 

2. replace the error reduction factor € by 

€est = 

3. initialize the spectral bound Aest by 

Aest = aRQo 

or by 

Aest = max(>-est, aRQo) 

if a previous estimate is available. 

4. if at step A~, RQk > >-est, replace Aest by aRQk, recompute €est and all 

quantities dependent on it, and restart the iteration. 

It is simple to show that the adaptive iteration, thus safeguarded, produces final 

error reduction of at least €. 

In practice we have found that the spectral bound estimated in this way 

is quite stable. Initially, one or two ( or rarely three) restarts are necessary. 

Subsequent similar inner inversions with updated velocities, as occur in the 

outer inversion loop, can usually proceed with a previous Aest· 

Since Chebyshev iteration in its original form applies to operators with spec­

tra lying between -1 and 1, it is in principle necessary to scale and translate 

N[v], i.e. to replace it by I - sN[v] for a suitable scale factors, to satisfy this 

condition. We have re-written the algorithm so that this step is carried out 

implicitly; nontheless the scale factor s is needed. An optimal choice is 

2 
s= -----

( 1 + 'Y)>.max 

where in practice Amax is replaced by Aest· 

Computing the Chebyshev coefficients and estimating the necessary 

number of iterations 

The necessary coefficients are generated by the following recursions, m which 

the quantity 
1 - 'Y 

/3=.--
1 + 'Y 
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figures prominently (see eg. Varga 1962 [43]): 

Co 

WQ 

W1 

1 

1 

f3 
2 

132 Ck - Ck - 1' k = I, 2' ... 

0 

1 
Ck-1 

1+-,k=l,2, ... 
Ck+l 

The error reduction factor after k steps is 

2qk 
Ek= ---

1 + q2k 

where 
f3 

q = ---=== 
1- J1 - /J2. 

The simplest way to ensure the required decrease is to compute these numbers 

until 

Ek < €est 

which give the necessary number of iterations kmax. 

Application of the Chebyshev polynomial by recursive application of 

the normal operator 

The usual arrangement of Chebyshev iteration is as a three-term recursion -

see Varga 1962 [43] for instance. We prefer to arrange the algorithm so that it 

resembles the usual form of conjugate gradient iteration, as follows: 

l. initialize: 

ro 0 

81·0 0 

ea M[v]Fdata 

nro N[v]eo 

RQo 
< ea, n1·0 > 

< ea, ea> 
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2. for k = 0 : kmax - l 

brk+1 

rk+1 

nrk+l 

ek+1 

(wk+1 - l)brk + swk+lek 

rk + brk+1 

N[v]brk+1 

ek - nrk+l 

< brk+1, m·k+l > 
< brk+l, brk+1 > 

The final outputs of this process are 1·[v]e.,t = rkmax, the estimated reflectivity, 

and the estimated normal residual 

e[v]est = ekmax 

M[v]Fdata - N[v]r[v]est, 

We then compute the seismogram misfit 

m[v]e,t = F[v, r[v],st] - Fdata 

and finally the estimated value of J: 

f[v]est = Jvs[v, r[v]e,t] 

~{llm[v],.1!12 + ll8r[v]e,t/8x,ll2 + IIWr[v]e,111
2

} 

Computation of the velocity gradient grad][v] 

For a perturbation 8v of the velocity we obtain the directional derivative 

D][v]8v = (Dvlvs)[v, r[v]]8v + (D,.Jvs)[v, 1·[v]]Dvr[v]8v (10) 

We will first assume that we have actually solved the normal equation 8 derived 

in the preceding pages, and produce in this way a naive gradient approximation. 

Since equation 8 states exactly that the ,·-derivative of Jvs vanishes at [v, r[v]], 
the second term in equation 10 vanishes. Since the differential semblance and 

regularization terms are independent of v, we obtain 

Df[v]bv = (Dvlvs)[v, r[vl]8v =< DvF[v, r[vl]bv, F[v, r[v]]- Fdata > 

Evidently we must construct a bilinear operator B so that for arbitrary data-like 

<p, reflectivity-like q, and velocity-like v and 8v, 

< Dv F[v, q]bv, <P >=< bv, B[q, <P] > (11) 
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Then 

D][v]bv < bv, B[1·[v], F[v, r[v]] - Fdata] > 

< bv, A - 2
• B[r[v], F[v, r[v]] - Fdata] >s 

recalling the discussion of Sobolev adjoints earlier in the section. Thus the 

gradient of j in the sense of the Sobolev s-norm is 

grad][v] = A - 2
• B[r[v], F[v, r[v]] - Fdata] (12) 

As noted before, A- 2
• is a smoothing operator for positive s. 

Of course in practice we must replace the reflectivity r[v] by its estimate 

r[v]est, obtained as explained in the last section, and the misfit F[v, r[v]]- Fdata 

by its estimate m[v]est. These replacements in 12 yield the naive gradient 

estimate: 

gradf[v]est = A- 2
·' B[1·[v]est, m[v]est] (13) 

To complete the description of the naive gradient estimate, it only remains to 

describe the calculation of B. This calculation is an extension of the adjoint state 

technique, and is derived in Appendix A. It is very similar to the computation 

of gradients for functions of migrated images proposed by Chavent and J acewitz 

1990 (6]. The steps are: 

1. compute the backpropagated residual field w, i.e. solve the problem 9 as 

in the calculation of M[v]; 

2. compute the secondary backpropagated field w0 satisfying 

1 82
wo 2 2 

(---:,-
0 2 

- 'V wo)(x, z, t; Xs) = 2'V (qw) 
v~ t 

Wo = 0, t > tmax 

with homogeneous boundary conditions; w0 can be stepped backwards in 

time along with w and the reconstructions of po, pin the finite difference 

scheme; 

3. compute the double crosscorrelation 

Thus the calculation of the naive gradient approximation is a reasonably 

straightforward extension of the usual gradient calculation from least-squares 

inversion. Unfortunately the naive gradient 13 is not very accurate as an ap­

proximation to the exact gradient 12. We will illustrate this in the next section. 

The inaccuracy can be large enough to render 13 useless for optimization of J ! 
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In fact, we have neglected the second term in the equation 10. This can be 

rather large, even when the normal equation is solved rather precisely, because 

it involves the derivative of the reflectivity estimate with respect to velocity. It is 

the anomalously large size of the derivative of the synthetic data with respect to 

velocity that led to nonconvexity of the mean square error function. For exactly 

the same reason - phase perturbation of rapidly oscillating signals - neglect of 

the second term in 10 leads to large errors. 

Our resolution of this problem involves computing the second term in 10 

- not all of it, which would be prohibitively expensive, but its principal part, 

which turns out to be available at reasonable cost. The calculation is tied to 

our method of producing r[v]est, namely Chebyshev iteration, and is derived in 

Appendix B: 

1. Carry out the Chebyshev iteration as above to obtain estimates of reflec­

tivity 1·[v]e,t, normal residual e[v]est, and seismogram misfit m[v]est; 

2. Rerun Chebyshev iteration with the normal residual as data, to produce 

the auxiliary field y: 

For k = 0 : kmax - 1 

DYk+1 

Yk+l 

nYk+1 

h+1 

The set y[v]est = Yk,,..x. 

Yo 0 

oyo 0 

fa e[v]est 

nyo N[v]fo 

(wk+l - l)oyk + swk+ifk 

Yk + 0Yk+l 

N[v]0Yk+1 

h - nyk+l 

3. Compute the synthetic of the auxiliary field: 

g[v]est = F[v, y[v]est] 

4. Replace the naive gradient formula 13 by 

gmd][v]est = A- 2'(B[r[v]est - y[v]est, m[v]est] - B[r[v]e,t, g[v]est]) (14) 

Because of the second Chebyshev iteration and the extra calculations of the 

forward map F and the bilinear operator B, the corrected gradient 14 is roughly 

twice as expensive as the naive gradient 13. Despite the added expense, we 

advocate its use because 
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• we are able to give a mathematical proof that the corrected gradient error, 

i.e. the difference between 12 and 14, tends to zero as kmax -+ oo; 

• in many numerical examples, some of which are reviewed below, the cor­

rected gradient has proven Jar more accurate than the naive gradient, for 

modest kmax· In fact usually the corrected gradient with kmax iterations is 

a great deal more accurate than the naive gradient with 2kmax iterations, 

so the correction also appears to be efficient. 

We are not so far able to prove gradient convergence for any correction 

scheme if Chebyshev iteration is replaced by conjugate gradients. Also a limited 

amount of numerical evidence suggests that conjugate gradient derived gradients 

are really not corrected by these tricks. Apparently the constant polynomial 

coefficients of Chebyshev iteration actually make the estimated J smoother. In 

any case this partly explains our preference for Chebyshev iteration, for this 

application. 

We have now explained how all pieces of the nonlinear conjugate gradient 

iteration are calculated. We proceed to examine some numerical results: 
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Numerical investigation 

We present several numerical examples of differential semblance optimization 

applied to synthetic data sets. The examples fall into two groups. The first 

group concerns estimation of a layered model. We make use of the observa­

tion that the translational symmetry of layered data gives full information on 

moveout from only two neighboring shot records. The use of a two shot "line" 

minimizes the expense of each trial, and allowed us to perform much more exper­

imentation than would have been possible with larger simulations. The second 

group of examples tests the ability of differential semblance to detect strong 

lateral heterogeneity by exhibiting gradients of the objective J. 

All examples presented here share the same source and receiver parameters. 

The "cable" consisted of 34 point receivers spaced 50 m apart, 12 m beneath the 

free surface. Near offset is 150 m, far offset 1800 m. The source is also punctual 

and isotropic, and is located at 8 m depth. Shot spacing was 96 m. The source 

waveform was a Ricker wavelet with 15 Hz peak frequency. The sample rate 

was 4 ms, and 2 s of data were used. A mute was applied to remove direct and 

postcritical energy. 

The finite difference grid interval was 16 m in both directions. For the 

velocity ranges used, this choice gave roughly 5 gridpoints per wavelength at 

minimum velocity and peak frequency. Some evidence of numerical dispersion 

from the (4,2) finite difference scheme is visible in the synthetics. However 

numerical dispersion did not appear to be so severe as to change the character 

of the results. 

Layered model 

The target layered model appears in Figure 2, and the two-shot data set in 

Figure 3. Note that the water bottom event is mostly removed from the data 

by the (very crude linear) mute, and so the zone from the surface to roughly 

650 m is essentially quiet. 

An effect entirely peculiar to 2 shot data sets and layered media is that the 

actual value of the differential semblance weight (J' becomes essentially irrelevant. 

Figure 4 shows the curves generated by sampling the objective function J along 

the line from the constant velocity profile ( v = 1.5 m/ms) and the target profile, 

for several values of (J'. All curves are essentially quadratic. In the experiments 

we used (J' = 10.0. We also used a very small amount of damping (0.1 % of 

the maximum eigenvalue estimate) to enhance convergence of the Chebyshev 

iteration for reflectivity. 

We emphasize that the eventual independence from (J' of the objective func­

tion is characteristic only of two-shot data sets and layered media. In effect, 
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for large u the two reflectivity gathers are forced to be the same, and the DSO 

objective is essentially identical to the output least squares objective after min­

imization over reflectivity. Since the two source positions are close, the inverted 

reflectivity from one data gather would yield a slowly varying error in predicting 

the other data gather, even when the velocity is dramatically wrong. Therefore 

the same is true of the reflectivity optimized for both data gathers simultane­

ously. Otherwise put, since the source positions are close, no "cycle skipping" 

occurs: for this configuration, output least squares is effective, provided that op­

timization proceeds in the two-stage fashion we have devised for DSO! As soon 

as more distance between shot points is involved, as is the case when the num­

ber of shots becomes significantly larger, the differential semblance objective 

depends quite strongly on a, exhibiting convexity for small <1 and approaching 

the (quite nonconvex) output least squares objective for large a. 

For the inner products in the conjugate gradient formulas, and to smooth the 

gradient estimate as noted before, we used the Sobolev 2-norm on the space of 

velocity updates. We set the anisotropic weight parameters in the Laplacian so 

that the velocity gradient calculation would suppress Fourier components with 

wavelengths of less than 400 m to 5% or less of their size in the unsmoothed 

gradient. 

For this set of experiments we defined the Chebyshev polynomial ( used in the 

inner optimization for reflectivity) to suppress error components in the normal 

residual above 2% of the (estimated) maximum eigenvalue to at most 2% of 

their initial values. This choice implied 19 inner iterations. Parameters for 

the (outer) nonlinear conjugate gradient iteration over velocity were as advised 

in Fletcher 1980 [12]. In all cases we used the corrected gradient construction 

explained in the last section. 

The result of four nonlinear conjugate gradient steps is displayed in Figure 

5. While the general trend of the velocity to about 1200 mis correct, the details 

are not reproduced at all. Nonetheless the estimated velocity is kinematically 

correct. This is evidenced by the comparison of the inverted reflectivity (for 

shot 1 - shot 2 is similar) shown in Figure 6a with the inverted reflectivity at 

the correct velocity (with the same iteration parameters) in Figure 66. The 

two are essentially equally "flat", whereas the inverted reflectivity at constant 

velocity (Figure 6c) exhibits considerable residual moveout. Because of the 

translational invariance of data from layered models, an individual reflectivity 

gather is equivalent to the (inversion analogue of) a coherency or common image 

panel, as used in migration velocity analysis (eg. Versteeg and Grau 1991 (45]). 

Thus its flatness is diagnostic of kinematical correctness of the velocity model. 

The RMS data misfit at the end of this exercise was roughly 22%. The 

predicted data is displayed in Figure 7, the misfit in Figure 8. Evidently all 

major features are reproduced. ·while some error energy remains in the major 

reflector at 1.8 s, much of the remainder appears to be finite difference noise. 
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To see the improvement possible through further iteration, we performed four 

more nonlinear conjugate gradient steps. The results are displayed in Figures 

9 and 10. Evidently the velocity structure is somewhat improved, though the 

kinematic effects of this improvement are miniscule. 

Table 1 shows the performance of the nonlinear conjugate gradient iteration. 

To explore a little bit the effect of one of the parameter choices, we show in 

Figure 11 the velocity estimates produced by choosing length scales of300 m, 400 

m, and 500 m respectively in the velocity gradient calculation. These estimates 

resulted from four nonlinear conjugate gradient steps with other parameters set 

as before. The 300 m result shows considerable detail, all of which is wrong. 

The reflectivities (Figure 12) are essentially equally flat. The 500 m result shows 

slightly better depthing of reflectors. These experiments suggest strongly that 

only the kinematic aspects of velocity inversions are to be trusted, never the 

short-scale details. 

Nonlayered model 

The second group of experiments used two 35 shot data sets. The goal of 

this group is to illustrate the ability of differential semblance to detect velocity 

changes. Accordingly we merely generate gradients rather than attempt full 

mvers1ons. 

The first data set was generated from the layered model used in the first 

group, so all shots look exactly like those displayed in Figure 3. Figure 13 shows 

a grey scale plot of the gradient at constant velocity v = 1.5 m/ms. Except for 

edge effects at the ends of the line, this gradient is very nearly layered. Several 

vertical cross sections appear in Figure 14, illustrating the layered nature of the 

gradient. 

We selected this configuration to illustrate the importance of the gradient 

correction. \Ve computed the slope of J along the line connecting v = l.5m/ms 

and the target velocity profile in two ways: 

1. by the (Sobolev s-) inner product of gradient with the difference of the 

velocity profiles; 

2. by very careful extrapolated finite difference estimates. 

Table 2 compares the results for two different levels of normal residual reduc­

tion. Evidently the degree of approximation of the finite difference estimate by 

the naive gradient (formula 13) barely improves with the threefold reduction 

in the normal residual, whereas the correct gradient (formula 14) converges 

superlinearly. We have observed this behaviour in many examples. 

To test the ability of differential semblance to detect strong lateral velocity 
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changes, we added to the model used in the preceding examples a high-velocity 

near-surface anomaly, roughly circular in shape and with a diameter of about 

300 m. A grey-scale plot appears in Figure 15. We used the same (layered) 

reflectivity model as in the previous examples. The synthetic data (Figure 16) 

clearly reveals the presence of the anomaly through strongly nonhyperbolic and 

shot-dependent moveout. 

We first computed the gradient at constant v = 1.5 m/ms. A grey-scale plot 

appears as Figure 17. The result is similar to the gradient produced from the 

layered data (Figure 13). Though evidence of lateral heterogeneity is visible, 

the actual character of the anomaly is not. A conjugate gradient step would 

move the velocity estimate in roughly the direction of the layered model. 

We then computed the gradient at the layered model used in the preceding 

experiments. A grey-scale plot appears as Figure 18, and a horizontal cross­

section at 300 rn depth as Figure 19. The anomaly is now clearly defined. A 

single conjugate gradient step would add a negative multiple of the gradient to 

the layered model, producing a high-velocity anomaly in exactly the right place, 

of approximately correct extent. 

C01nment on paran1eters 

Evidently differential semblance optimization as formulated in this paper de­

pends on a large number of parameter choices: inversion level and error tol­

erance for the Chebyshev loop, length scales for the gradient smoothing step, 

regularization and differential semblance weights, nonlinear conjugate gradient 

parameters, ... Moreover inclusion of flexible constraints reflecting "geological" 

knowledge, as in Stork and Clayton 1991 [31] for example, while essential for 

the production of meaningful results, can introduce yet more tuning and penalty 

parameters. At least partial automation of parameter selection is obviously es­

sential to the eventual success of differential semblance optimization, or indeed 

any geophysical inversion tool. 
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Discussion: Migration velocity analysis, travel 

time tomography, least squares inversion, and 

differential semblance 

Differential semblance optimization is closely related in conception and be­

haviour to several other approaches to velocity estimation. 

Waveform-based velocity estimation methods in widespread use rely on sys­

tematic search through a small family of models. A fundamental example of 

this type is semblance analysis of normal moveout corrected common midpoint 

gathers, as in Taner and Koehler 1969 [38]. A number of recent variants of this 

idea go under the name migration velocity analysis, in which normal moveout 

correction is replaced by some variety of prestack migration (see for example 

Deregowski 1990 [9] or the volume Versteeg and Grau 1991 [45] for many exam­

ples and references). All use a measure of event coherence, either numerical (eg. 

stack power) or visual (flatness of events in velocity analysis or coherency pan­

els, verticality of focusing spots) or both. These approaches are quite successful 

when their assumptions are justified, yet all are limited primarily by the need 

to search systematically a range of velocity models. The need for systematic 

search follows from the behaviour of the event coherence measures. Because of 

the extreme sensitivity of waveform data to velocities, the numerical measures 

are very nonconvex, and so must be sampled finely. The visual measures provide 

no means to improve the velocity automatically, so once again fine sampling is 

necessary. This systematic, finely sampled search perforce must be confined to 

a very small set of velocity models. For example one might consider piecewise 

linear interpolates of velocity profiles aligning events at a few control points. 

The possibility of unintended bias is obvious, and sometimes damaging. The 

synthetic model study Versteeg and Grau 1991 [45] provides compelling evidence 

of the limitations of these methods. 

Another approach to velocity estimation is tomographic inversion or travel 

time analysis. The most successful instances allow the velocity model an a 

priori unlimited range of complexity, subject only to the constraint that the 

model explain the arrival times of events in time or (migrated) depth sections 

(Bishop et al. 1985 [2], Nolet 1987 [23], Scales 1987 [25], van Trier 1990 [42], 

Stork 1992 [30] and references cited there). The various measures of travel time 

error proposed in these works are quite well-behaved numerically - i.e. smooth 

and (weakly) convex over a wide range of velocity models - because they access 

travel time directly. Travel time is a quite tame function of velocities, in contrast 

to the waveform (amplitude) which is not, as mentioned earlier. The large 

degree of nonuniqueness inherent in the tomographic problem formulation may 

be controlled by imposition of geologically meaningful constraints (Stork and 

Clayton 1991 (31]). 
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A drawback of travel time inversion is that travel times are not the primary 

data of reflection seismology experiment, and must be picked from the waveform 

data. Travel time picking is most difficult in exactly those situations in which 

tomographic inversion is most needed: when the subsurface structure is complex 

(Ehinger 1992 [10], Harlan 1992 [15]). The possibility of bias also lurks in the 

multiplicity of events that are not picked in every tomographic exercise. 

A third approach to velocity estimation is the simplest conceptually: intro­

duce a complete physical model to predict the waveform data in detail. Fol­

lowing convention we will call this approach inversion. Most recent work has 

concentrated on the best fit formulation of inversion: choose a numerical measure 

of error between the data and the model-ba5ed synthetic, and adjust the model 

to minimize this measure. The most popular error measure is the mean square, 

because of its pleasant computational properties, though other measures have 

been used as well. One can find a comprehensive discussion of best fit inversion 

in Tarantola 1987 [41], including a specific formulation for inversion of reflection 

seismograms and an exposition of a philosophical justification of inversion based 

on Bayesian inference. 

Differential semblance optimization is related to all three approaches to ve­

locity estimation. It is a variant of least-squares inversion, as the objective 

function contains a mean square error term and so minimization yields an in­

version. The most striking difference with ordinary lea'lt-squares inversion is 

that the model space is expanded, the model-parameters being regarded as a 

priori experiment-dependent. Thus each experiment (i.e. each shot, in the or­

dinary organization of seismic reflection data) is explained by an independent 

model. It turns out that each of the individual data-fitting problems is essen­

tially quadratic (exactly quadratic, in the case of primaries-only modeling as in 

the sequel). Therefore production of an experiment dependent suite of models 

fitting independently the results of each experiment is a relatively straightfor­

ward task. 

Of course such a multiplicity of models is infeasible, or incoherent: the earth 

is unique and all experiments should be explained by a single model. This obser­

vation motivates the addition of a penalty for variance amongst the experiment­

dependent models to the objective function. This term plays the same role 

as semblance or stack power in migration velocity analysis, which measures 

the alignment of migrated images of the same depth point. However differen­

tial semblance optimization uses models, which should be identical, rather than 

migrated images, which must merely be aligned. Since models produced by 

inversion presumably do not contain the amplitude artifacts of migrated im­

ages, simple mean-square differences of neighboring models suffice as a reliable 

indicator of semblance. 

Note that this conclusion requires both the use of inverted models and the 

application of a differential semblance measure to them, in contrast ( and in par-
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allel) to the use of migrated images and integral or global semblance measures in 

migration velocity analysis. Roelof Versteeg verified in his 1991 (44] thesis that 

mean-square nearest-neighbor differences do not give a robust velocity indicator 

if migrated images are used. 

The separation into velocity and reflecLivity submodels is a feature shared 

with travel time tomography. As observed by Stork and Clayton 1991 (31], it 

is essential in tomography to update both parts of the model simultaneously. 

The same is true of differential semblance optimization, which complicates the 

calculation of the objective gradient. The resemblance goes deeper than this, 

however. Analysis of the differential semblance Hessian shows that to lowest 

order the control over the velocity is exactly the same as that of a properly 

constructed tomographic Hessian (Song and Symes 1992 (29]). Moreover, the 

computed differential semblance velocity gradient shown in Figure 18 has exactly 

the appearance of a tomographic velocity gradient, with vertical smearing and 

side-lobes. Compare for example with the upper left-hand image in Figure 6 of 

Stork and Clayton 1992 (32], which has similar aperture and geometry. 

The differential semblance criterion - that neighboring inverted reflectivities 

be the same - is the precise analog for full waveform models of the "flat im­

age" or "minimum reflector variance" criterion used in migrated data domain 

tomography (van Trier 1990 [42], Stork 1992 (30], Harlan 1992 (15]). 

In summary, differential semblance optimization appears to accomplish to 

some extent the goals of reflection travel time tomography without event-picking, 

and of migration velocity analysis without requiring either sparsely parame­

terized models or interactive systematic search. It yields an infeasible-point 

approach to least squares inversion, and can be implemented efficiently with 

accurate gradient calculation. 
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Appendix A: Computation of the bilinear oper­

ator B 

Computation of B[q, ¢] is a straightforward application of the adjoint state 

method, as introduced in this context by Tarantola 1984 [39], Lailly 1983 [18], 

and others. The calculation described here is essentially identical to that given 

in Chavent and Jacewitz 1990 [6] for calculation of the gradient of a function of 

a migrated field with respect to velocity. 

The field q here is a reflectivity, and will be used in place of 7' throughout the 

calculations. Recalling the wave equations 1 and 2, we see that the derivative 

Dv F[v, q]ov of the forward map with respect to velocity is given by 

DvF[v, q]ov = bp(x,., Zr, t; x,) 

where 

( 
1 8

2 
'') 6v ., -- - v- bpo = 2-V-po 

v 2 8t 2 V 

( 
1 8

2 

'') 6v [ ., 2 ] ., ~-;:;--;, - v- bp = 2- V·p + '2q'v Po + 2qV-6po 
W ut· V 

6p0 , op= 0, t < 0 

We will use the "usual" adjoint field, i.e. the solution w of 9 for a test data 

section ¢. Then: 

< DvF[v, q]bv, ¢ > 

= J dx, J dx J dz jdtbp(x,z,t;x,) (Jda·r¢(xr,t;x,)6(x-xr,Z-Zr)) 

= j dx, j dx j dz j dtbp (:2 %1

2

2 - v 2
) w (15) 

Because all fields obey Dirichlet boundary conditions at the surface and are 

of compact support in x for each t, integration by parts is a.t lea.st formally 

permissible. We assume that f is in fact bandlimited; then all fields are in 

fact smooth away from the source point, and integration by parts is justified. 

In discretization, it must be correct that the discrete Laplace operator and 

boundary conditions and the quadrature rule used to replace the integrations 

allow exact calculation of adjoints. This is the case, for example, if one uses 

centered difference schemes, Dirichlet conditions on all boundaries implemented 

via the method of images, and the trapezoidal rule. Then the discrete operators 

are also self-adjoint, and summation by parts goes exactly as does the integration 

by parts which we present here. 
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Integration by parts and use of the equations satisfied by 6p yields the con­

tinuation of 15: 

= j dx, j dx j dz j dt ( 2 bvv [V
2
p + 2qV

2
po] + 2qV

2
6po) w 

= j dx J dz 
2
:v J dxs J dt (V

2
p + 2qV

2
po) w 

+2 f cfa:s J dx J dz jdt6p0V
2
(qw) 

where in the last term we have performed another integration by parts. 

(16) 

To "get 6v out" of the second term in the last field, we need to create a 

secondary backpropagated wavefield w0 satisfying 

( 
1 EJ2w0 ., ) ., 
--- - v-wo = 2V-(qw) 
v2 ot2 

Wo = 0, t > lmax 

with homogeneous boundary wnditions. Then substitution of the left-hand side 

of the wo equation in the second term of the second line in 16, integration by 

parts, and use of the equation satisfied by 6p0 gives the continuation of 16: 

f dxfdz 2
~v J dxsJ dt [(V

2
p+2qV

2
po)w+ (V

2
po)wo] 

< 6v, B[q, ¢] > 

From this last equation we can immediately read off the prescription for com­

puting B[q, ¢] given in the text. 
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Appendix B: Derivation of the gradient correc­

tion 

In this appendix we justify and derive the gradient correction presented in the 

text. The basis of this calculation is our use of Chebyshev iteration to produce 

the reflectivity estimate r[v]est · We begin by writing the iteration in its normal 

three term recurrence form: 

We write a prefix /j as usual for perturbation ( directional derivative) with respect 

to ov of all of the quantities in this recursion. Note that the spectral bound of 

N[v] is a stable function of v, since N[v] is Hermitian, so we may regard the 

quantities Wk and s as (locally) independent of v. We obtain 

Wk+1U - sN[v])ork + (1 - Wk+i)ork-1 

+swi,+1(6M[v]Fdata - oN[v]rk), k = 1, 2, ... 

The key to understanding the relative importance of the pieces of this formula 

is that M[v], as a migration operator, moves events around·, whereas N{v], aS a 

simulation operator followed by a migration operator, is kinematically neutral. 

Thus 6M[v] involves infinitesimal phase shifts and so enhances high-frequency 

content, whereas 6N[v] does not. Accordingly we write 

where 

Yk+t wk+1(1 - sN[v])yk + (1 - Wk+dYk-1 

+swk+i(bM[v]Fdata - 8N[v]rkm.J, k = 1, 2, ... 

Zk+t Wk+tU - sN[v])zk + (1 -wk+1)Zk-1 

+swk+1(6N[v](rk,,.ax - 1'k)),k = 1,2, ... 

The inhomogeneous term in the recursion for Yk is independent of k, so Yk ts 

the result of the application of the same polynomial as is rk: 

1'k = Pk(N[v])M[v]Fdata 

Yk Pk(N[v])(8M[v]Fdata 

8N[v]rkm.J 

Otherwise put, we can compute Yk by re-running the iteration which produced 

rk, with different data. Moreover the data for Yk contains 8M[v]Fdata, which 
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is the source of all instability in 81·k · The data for the Zk recursion, on the 

other hand, is k-dependent, which renders z,. essentially uncomputable from 

the point of view of the adjoint calculations to come. However the data for Zk 

involves only bN[v], which is tame, and 1'kmax - rk which tends to become small 

ask-+ kmax· 

Therefore we throw Zk a.way and replace brk by Yk in the second term of 

10, which also involves the normal residua.I ek. So after k iterations we actually 

have 

Now 

D]k[v]bv =< DvF[v, 1'k]bv, F[v, rk] - Fdata > - < Yk, ek > 

< Pk,(N[v])(bM[v]Fdata - bN[v]rkmaJ, ek > 

< bM[v]Fdata - bM[v]F[v, 1'km.J 

-M[v]DvF[v, 1'kmaJbv, P,,(N[v])ek > 

< Fdata - F[v, 1'km.J, DvF[v, Pk(N[v])ek]bv > 

- < DvF[v, rkmaJbv, F[v, A(N[v])ek] > 

= < bv, B[Pk(N[v])ek, Fdata - F[v, 1'krnaxll 

-Bhm•x' F[v, P.,(N[v])ek] > 

Here we have used the definition of N[v], the adjoint relation 

< F[v, q], q; >=< q, M[v]q; > 

and relations between derivatives that follow from these. 

Adding the naive term expressed in terms of B as before and setting k = 
kmax we get for gradient in the sense of the Sobolev s-norm 

grad][v] A-
2
s(Bhmax - Pk max (N[v])ekmax, F[v, 1'kmaJ - Fdata] 

-B[rkm«x, F[v, Pkmax(N[v])ek·m.J 

It is worth listing just what is involved in this formula: 

1. one round of Chebyshev iteration to compute the reflectivity 

the residual F[v, 1·km.J - Fdata and the normal residual ekmax; 

2. another round of Chebyshev iteration to compute field 

P (N[v])e · kmax kmax' 

3. two generalized adjoint state calculations to compute the values of B. 
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Table 1 

Performance of NLCG over 8 Iterations 

i Ji Ji/Jo llgradJill llgradJill/llgradJoll 
0 0.2394E+0l 0.lO00E+0l o.7779E+oo 0.l000E+0l 

1 0.1337E+0l o.5587E+oo 0.7746E-01 0.9958E-01 

2 0.1185E+0l 0.4952E+oo o.3577E+oo 0.4599E+oo 
3 0.8021E+00 o.3351E+oo 0.2324E+00 o.2987E+oo 
4 0.6488E+00 0.2710E+00 0.2674E+00 0.3437E+00 

5 o.6178E+oo o.2581E+oo 0.2176E-01 0.2797E-01 

6 o.5958E+oo o.2488E+oo 0.5201E-01 0.6686E-01 

7 0.5736E+00 0.2396E+00 0.1981E-01 0.2546E-01 

8 o.5734E+oo o.2394E+oo 0.9622E-02 0.1237E-01 

Table 2 

Assessment of Computed Gradient Accuracy 

Normal residual 0.09 0.03 

Finite difference -45.12 -48.59 

Computed derivative, -42.89 -46.47 

uncorrected gradient 

Difference in % 4.9 4.4 

Computed derivative, -46.19 -48.74 
corrected gradient 

Difference in % 2.4 0.3 



Figure Captions - GP paper 

1. A cartoon illustrating the smoothness of differential semblance as a function of ve­

locity. The cube represents the prestack inverted reflectivity, plotted as a function 

of depth, (global) horizontal coordinate, and shot location. We imagine that the 

(linearized) inversion has been performed with substantially incorrect velocity in 

Figure la and with the correct velocity in Figure lb. Accordingly the common 

depth point gathers (often called coherency or common image panels) display no­

ticeable moveout for the incorrect velocity (a), but consist of identical traces for the 

correct velocity (b ). In reality edge effects will prevent complete short-independence 

in the correct velocity case. The relative moveout between shot gathers (or equally 

well between traces on a common depth point gather) is small, amounting to much 

less than a wavelength, because the shot sampling is fine. Therefore a small change 

in velocity will result in a small change in the differences between neighboring traces 

on the common depth point gather, therefore a small change in the differential sem­

blance as defined in the text. The stack power, on the other hand, may change 

dramatically, because it involves the interaction of distant traces which may be en­

tirely out of phase. 

2. The velocity (a) and reflectivity (b) profiles Vexact and 1'exact used in the numerical 

experiments to generate the layered model. Horizontal scale is meters, and vertical 

scales are meters per millisecond and dimensionless, respectively. 



3. The two-shot data set generated from the layered model in Figure 2. The data 

has been muted linearly to remove the water-bottom event, which becomes con­

taminated with a perturbational head-wave onset at larger offsets. Vertical scale 

is milliseconds. Trace spacingis 50 m, with near offset of 150 m and far offset of 

1800 m. Shot spacing is 96 m. 

4. Samples of the differential semblance objective function along the line segment 

between the constant velocity Vbase = l.5m/ms and Vexact· The segment is param­

eterized by 

h >-> Vbase + h * [vexact - Vbase] 

so that h = 0 is constant velocity and h = 1 is the target Vexact· The curves cor­

respond to er= 1.0 (dots), 10.0 (dash-dots), 100.0 (dashes), and 1000.0 (solid line). 

Note that the minimizer is located in all cases at or near h = 1.0, and that the 

curves appear to be converging as er _. oo. This convergence effect is peculiar to 

2-shot data sets, as pointed our in the text. 

5. The result of four nonlinear conjugate gradient steps (solid) versus Vex act (dashes). 

Note that the overshoot from the surface to roughly 400 m is balanced by under­

shoot between 400 and 700 m. Relatively little reflected energy is present in the 

data (Figure 3) between the surface and 700 m. Scales same as Figure 2a. 



6a. The reflectivity gather from shot 1, corresponding to the velocity inversion in Figure 

5. Note that, apart from edge diffractions, the gather is quite flat. Vertical scale is 

meters, trace spacing is 16 m. 

b. The reflectivity gather obtained by linearized inversion of the data from Figure 3 

at the target velocity Vexact. Visually, flatness roughly equivalent to that displayed 

in Figure 6a. Inversion performed with the same parameters as in Figure 6a. 

c. The reflectivity gather obtained by linearized inversion of the data from Figure 3 at 

the constant velocity Vbase· Note the marked moveout. Since the data is translation 

invariant, this single shot gather is actually equivalent to a common depth gather 

(common. image panel). 

7. Data predicted from the inverted model (Figures 5, 6a). 

8. Error ( difference between Figures 3 and 7), plotted on same amplitude scale as 

Figure 7. Error level is approximately 15% RMS. 

9. Result of eight nonlinear conjugate gradient steps (solid line), compared with the 

result of four steps (dashes) and target (dash-dots). 



10. Reflectivity corresponding to the velocity inversion in Figure 9. 

1 l. Velocities obtained after four steps of nonlinear conjugate gradient iteration using 

smoothing lengths of 300 m (dash-dots), 400m (solid), 500 m (dashes), and target 

(dots). 

12a. Reflectivity gather produced by inversion at the 300 m velocity model (Figure 11, 

dash-.dots). 

b. Reflectivity gather produced by inversion at the 400 m velocity model (Figure 11, 

solid). 

c. Reflectivity gather produced by inversion at the 500 m velocity model (Figure 11, 

dashes). 

13. Grey-scale plot of DSO gradient at constant velocity, computed for a 35-shot data 

set generated from the layered model (Figure 2). Black is negative, white is positive. 

Thus this gradient suggests a general increase in velocity, essentially layered within 

the inversion aperture. Edge anomalies occur in the vicinities of the first and last 

shots in the line. 



14. Several vertical cross sections of the gradient in Figure 13, illustrating the extent 

to which it is layered. 

15. Grey-scale plot of layered model with high velocity near surface anomaly. 

16. Some gathers from the 35-shot data set derived from the anomaly model of Figure 

13 and the layered reflectivity of Figure 2b. 

17. Gradient at constant background velocity. Evidence of non layering present, but no 

clear indication of its form. 



18. Gradient at layered background ( = Ve.cact shown in Figure 2, i.e. without the 

anomaly). Location and type of the anomaly clearly defined. The vertical smearing 

and side lobes are characteristic of all limited-aperture tomographic reconstruction 

methods. 

19. Horizontal cross section through layered background gradient (Figure 18) at 240 m 

depth. 



l(a) REFLECTIVITY INVERSION AT INCORRECT VELOCITY 

SHOT 

,L-.---------- POSITION 

DEPTH 

---·····-­.. -·· ----­ ...... ------- ....... ____ _ 

................ .. -...... 

INVERTED REFLECTIVITY DATA VOLUME 

SHOT 

DEPTH 

. 

. 

. 

------------··········· 

······································· 
----· 

COMMON DEPTH POINT GATHER 

OF INVERTED REFLECTIVITY 



l(b) REFLECTIVITY INVERSION AT CORRECT VELOCITY 

SHOT 

DEPTH 

-····· . 
··············-············· 

.. .. 
.............. 

............... 

INVERTED REFLECTIVITY DATA VOLUME 

SHOT 

DEPTH 

COMMON DEPTH POINT GATHER 

OF INVERTED REFLECTIVITY 



1.9 

1.8 

1.7 

1.6 

200 400 600 800 1000 1200 1400 1600 1800 2000 

1 C-



0.35---------------,~------..---~-------. 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 

-0.1 

-0.15 ~ _ __.__ _ __.. __ ....__ _ __,_ _ ____.i....... _ _.__ _ __._ __ ..__ _ _,__ _ __. 

0 



DATA2 
Plane 1 2 

Trace 10 20 30 10 20 30 
0 0 

100 100 

200 200 

300 300 

400 400 

500 500 

600 600 

700 700 

800 800 

900 900 

1000 1000 

1100 1100 

1200 1200 

1300 1300 

1400 1400 

1500 1500 

1600 1600 

1700 1700 

1800 1800 

1900 1900 

~) 



3.5---------....-------""T""----r-----------, 

3 

2.5 

2 

1.5 

1 

0.5 

·,.,.,. 

•. 
•. 

•. 
"·,., 

·,.,., 
·, 

·•···•· ... 
···•·· .•. 

•. 
• .. 

......... , .. 
-- ' -- ... _ "·,., ...... __ ·,. 

------------------------ •·•·•·•·•·•·•·•·•·•·•·····•·•·········•···•·•···•·•· 

--------------------------------------------
o...__ ___ ...._ ___ ....._ ___ ___. ______ -'--___ _._ ___ __,, ___ __, 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 



2.-----,--------r---"T"""--r------,--"""'T"---r---"T"""----, 

1.9 

1.8 

1.7 

1.6 

1.5 

I 
I , 

I , 
I , 

I , 
I 

I 
I , 

I 
I 

I , 
I , 

I 
I 

I ______ ,, 

,,,' 
, , , 

,,-.,, ,' 

I \ I , \ , , \ , 
I \ I 

I \ I 
I \ I 

I \ I 

,, ' I .... , ___ , 

------------------------------------

1.4------------------------------
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

2.----.----..----..----..----..----..----..----..----..-------, 

1.9 

1.8 

1.7 

1.6 

1.5 

, 
I 

I 
I 

I 
I 

I 
I 

I , 
I , , 

I 
I 

I 
I 

I 
I 

I , , ______ ,, 

,,' ------------------------------------, 
I , 

I 
,,-.,, ,' 

I \ I 
I \ I 

I \ I 
I \ I 

I \ I 
I \ I 

I \ I 
I \ I 

I \ I 

' ',, ,' ___ , 

1.4...._ _ __. __ ....._ ______ ......_ __ ..._ _ __. __ ....._ ______ ......_ _ __, 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 



Phne 1 

Trace 200 210 220 230 240 250 260 270 280 290 300 
o_.., __ ...,. __ ...,. __ ..._ __ ....,. __ .._,_~--..... --............................. .+- 0 

100 100 

200 200 

300 300 

400 400 

500 500 

600 600 

?00 ?00 

800 800 

900 900 

1000 1000 

1100 1100 

1200 1200 

1300 1300 

1400 1400 

1500 1500 



Plane 1 

Trace 200 210 220 230 240 250 260 270 280 290 300 

0 ....,_,"""""...,._,......,+..,""""""'"_....,,.........,.....,....,"""""_ ............. ~~- ........... - ....... __ ,._ 0 

100 100 

200 200 

300 300 

400 400 

500 500 

600 600 

700 700 

800 800 

900 900 

1000 1000 

1100 1100 

1200 1200 

1300 1300 

1400 1400 

1500 1500 



Plane 1 

Trace 200 210 220 230 240 250 260 270 280 290 300 

0 """""l"'l'T""'"'Tff"'""l"'l'T""'""l"'l'T""'"~""""'"l"'l'T"+,or,"l"'l'T"'l"l"PiP'TT"l''l"l"l"'ll'PPfo'l"l"l"'l"l"'l'T"'l"'ffl"l"'l'T"'l"l"l"'ll"ffl'l"'l"'I"''""""''""''""""'""'"'".+- 0 

100 100 

200 200 

300 300 

400 400 

500 500 

600 '600 

700 700 

800 800 

900 900 

1000 1000 

1100 1100 

1200 1200 

1300 1300 

1400 1400 

1500 1500 



Plane 1 

Trace 10 20 30 

0 ~ ............ - .......... .-. ............ - ............................ "l"""'l' ........... _l""""P_,...,...,..._ 0 

100-1--+--+-11-+-+-½-+-+-+-+-+-+-+-1--+--+-11-+-+-½-+-+-+-+-+-+-+-+-+-+-1--+--+-- 100 

200-1--+--+-11-+-+-½-+-+-+-+-+-+-+-1--+--+-11--+--+-1-+-+-½-+-+-+-+-+-+-+-1--+--+-- 200 



Pla:ne 1 

Trace 10 20 30 
o _______ ..._ ________ ...+ __ '""""_'""""_,..'"""" ...... 'l"""I"-,-.,....-

100-+-+-+-+-+-+-+-1--+--+-1-+-+-+-+-+-+-+-+-+-1--+--+-1-+-+-+-+-+-+-1--t--t-t--

200-+-+-+-+-+-+-+-1--+--+-+-+-+-+-+-+-+-+--+--+-11-+-+-+-+-+-+-+-+-+-1--t--+-t---

I<..._ 
300-l-+--+-1~-+-l-+-+-4-+o-l---+--l-l-4--+-11-+--+-l-+-+-4-+o-l---+--l-~~-----

)lf 

~" 400-+-+-+-+-1--+--+-11-+-+-+-+-+-+-+-+-+-1--+-+-1-+-+-+-+-+-+-+-+1~~1"-t--t-+-

• I. 
500-+-+-+-+-+-+-+-1--+--+-1-+-+-+-+-+-+-+-+-+-lf-+-+-l-+-+-+-+~ • .....,.-+-t-+-+--

• 

900-+-+-t-+-+--+--+-11-+-+-+-+-+-+-+-+-+-1--+-+-o~-+---~-+-+-f-+--+---l'-+-+'-+-

• 
• • • 

• 

0 

100 

200 

300 

400 

500 

600 

?00 

800 

900 



2-------------------------------, 

1.9 

1.8 

1.7 

1.6 

1.5 

1,4.__ __ .__ __ .__ __ ,__ __ ,__ __ ,__ __ ,__ __ ,__ __ ,__ __ ,__ _ __, 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 



Plane 1 

Trace 200 
0 I 

) j 
) 

210 220 230 240 250 260 270 280 290 300 

j) t, 
100-li~<:t+'~,.~ .... ~~~+++l+H-++++++ll+H-++++++IH+++++l+H-++++++ll+H-++++++IH++++++++ll+H++++++l+HH+l+H-

'

1 

tfl( 
200-H.+tttt't't'r't11~~,~t++l+H-++++++ll+H-++++++IH+++++1+H-++++++1+H-++++++IH+++++H+l~++++++l+v-+++H-H-

300-Ht+t+tttf+Hffffffl-ftHH+++++l+H-++++++ll+H-++++++IH+++++l+H-++++++ll+H-++++++IH++++++++IH+++++H-H+HH-

400-Hl+tt+++ll+tt+++IH+++++IH+++++IH+++++IH+++++IH+++++IH+++++IH+++++H+++++H+++++H+++++H-H+++H-H+++H-

500--t-1t+tt+H'H+it+tttffit+H+++f++H+l+++tffit++++++tffir++++++l+H++++++-IH++++++++-1H+++++l+HH+++++l+Hr+++++-

(i rm 
700 

800 

tff(((({,.; l{( \\' 

11 JL 'J !! 'ff11J I)))), 
,, 

0 

100 

200 

300 

400 

500 

soo 

700 

800 

900 

J 



2---...----.---...... --....... ----.--------.~---------

1.9 

1.8 

1.7 -­,,-
, , 

,' .. ······ , .. 
(•" , 

... -··;;" .,.,· 
. .-·· ,,' ,.,·' 1.6 

.... ,, .,· 
: I •' i,' ,., 

~' l 
:.! 
l .. 

1.Si-,.....--

1.4...._ _ ___. __ __._ ______ ....._ __ ..___ ....... __ ....._ __ _._ __ ....._ _ __, 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 



Plane 1 

Trace 200 210 220 230 240 250 260 270 280 290 300 

0 ...... """""""'""""'"""'"""" ....... l"P'l"'l'"""'~'l'P'l"ll"P'l"'l' ....... l"P'l"'l''l't"P'ii-rff'l'P'l"IP"l'ff'l'P'l"ll"P'l"'l''Pffll"P'l"'l''l'P'l"l"""'T'TT"l"l"l"l''"""l"l"l"l''T'TT".+- 0 

100 100 

200 200 

300 300 

400 400 

500 500 

600 600 

700 700 

800 800 

900 900 

1000 1000 

1100 1100 

1200 1200 

1300 1300 

1400 1400 

1500 1500 



Pl.ane 1 

Trace 200 
I 

210 220 230 240 250 260 270 280 290 300 

0 

100 

200 

4 0 0 -+++++t+++,t-+w-H+++++fi+++t+++H+++++fi+++t++++++f+H,i+t+t++++++f+H,r+++t++++++'i+H,t+++H+++++fi+++t+++++- 4 0 0 

500 

600 

800 
f/}" IDE I\ 

700 

800 
, " ,w ·"~; ;~;·,~;-~~" ~~;~~'~ ~~~r)l~~tffiffilri™~l+H-++H+H1~1+H--H+lrHtl+H-++H+H1f+--

9 0 0 ~-W-l~~N®ll!~JJ,»,\':IJ...,_...,,,. ·~((~(~('Cl~: cc~:,-;~,;,,;_~, l~;~ ~; H@),.\.\.\m@~.U.Ul.l+l.1+1-1-W+t-W-l-l~W-I-I--I-I..J.l+J.1.,l+I-I-W+t+I- 9 0 0 

1000-+.~+k1-1~1
""

1~f./,·
1
~

1 w+)l]r.,l,i,,li',.,r...,,<,r,r,o""""~u...~~~ .... ,.l-l,l~f+W.M-li,l,,W,l+++,I.M,,l~~+.M,!,-1000 
\\\\\\\\\\\ \ 

1 S 0 0 --++++++++++io+++++,i,++t+t+t
1 ,_..L\ \+Hf+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-15 0 0 
Ill 



Plane 1 

Trace 200 210 220 230 240 250 260 270 280 290 300 

0 -+t'l'"l"l"l"l"'l""l''l"PPl~'l'l"P'l+r,,,1"1"'1""1''1""1"'1'1~'1'1"P'1"Pffl~'l'l"P'l..+i-1"1"'1""1''T"T"l"!~'l'l"P'l~""'"''T"T"l"!"'P'l"'P'l'l"P'l'l'"l"l"m'l"'T"T"l"!~.+-

l lJJ h~ ~ ~} 
100-,::Ml&f-HL'i.'a&::.,_~~ffil+H+++ll+++H-H+HJl+H+++l+H-l+H+++ll+++H-H+H-HHHHl+++HH+H-l+H+l+-lfH+++-

0 

100 

}~h 

200--+li+++-1+¥1:"r'r'r'l ..... 
11

.-.H-
1

~1+++++H-+++-l+++++Hf++t-++H+H,1+++++H-+++-++++++Hl+++++H-+++-l+-tl-++Hi+++++H+++,f+++-- 200 

300 

500--+++t-Hl+++'rf+i-++'r11+++++H+t+H-H+H-+++++++,1+++++H-+++-++++++H-+++-+++++++,1+++++H-+++-+++++++,1+++++H-+++-H- 500 

600 

?00 

800 

900 

1000 

1100 

1200 

~((<..<<...«< 
1300 ... 

«~({ 

-

~'-~<_{{ 
II 

\ ~{· 

,.... I 

1300 

1400 

1500 

/2c 



I 

' .. 
! 

! 

, .. 

I 
e 
8 ! 
::i: 
u 

I Q. 
0 

.. 
~ 
0 

.!! 
! I 

~ 
u 
0 : 
j .. 
c .. 

I .. .. 
C 
0 
u 

1;j 

' .. .. 
1;j 
"0 

"0 a .. ... .. 
.t ... . 
,£ ::I 

c .. 
:;; ! .. ... 
\:1 

! 

! 

Q O O O c:, Cl 
0 0 0 0 0 0 

~ ,r VI \Q 



(/) 

Q) 

:::::s 
rl 

cu 
> 

0 

-2e-05 

-4e-05 

-6e-05 

.w -8e-05 
~ 
Q) 

·rl 

'D 
cu -0.0001 
).....i 

Ol 

-0.00012 

-0.00014 

-0.00016 
0 200 

Several traces of a layered gradient 

I!-' 
/JI 

tj/ 
/j/ 

,_.,,.... /' 
' .. ~";.;.·.... _,,,.., _., 

' '""'-~ ....... -.:r . ,I ·,· . .,,._:!.- . .,,- _;--
·,,,.·-.,.,-·--" _., 

400 600 800 1000 
depth 

X=3200 ffi 

X=3520 ffi -----­

X=3840 ffi ------­

X=4160 ffi 

X=4480 ffi -·-·-·­

X=4800 ffi -·-·-· 

1200 1400 1600 



.- I 

. ~ 

I 

o o o o o o o o I o o o o o o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N M • ~ ~ ~ • ~ N M • ~ ~ ~ = ~ 

! 

! 

I 

~ 
! 

~ 

e 
C 
C 
~ 

~ 
~ 

~ 

~ 
C 

~ 
~ 
~ 

5 
~ 
~ 
~ 
C 
e 
~ 
u 
C 
~ 
> 



data computed from the "anomaly" velocity 

•1-e S 10 14 18 22 2, 30 

Trace 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

• I ii I I I I I, I, I ii I I I I I I I I I I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I, ii I I I I I I I, I I I I I I I I I I ii I I I I I I I I 11 I I I I I 1111 I I I I I I 11 I I I 1111 I 1111 I I I 11 I 11111 I I I I I I I I I 11 I I I I I I I I I I I I I 11 I I I 11 I I 111 I I I I I I I I I I I I I 111 I I ii I I 11 I I I 111111111 I I 1111 I I I 111 ii I 11111111 ii II ii 11111 I 1111 
0 

lOO II I I I I I I II I IIII I I I I I I I I I I I I I I I II I I I I I I I I I I I I II I II II I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II II I I I I I I I I I I II I I I I I I I I I I I I I I I I II I II I I I I Ill 111111111111111 100 

200 I I I I I I I I I I I I II I I I I I I I I I I I I I I II II I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I 1111111111111111 200 

300 IIIIIIIIIIIIIIIII II lllllllll ll~III IIII II 111111111111111111111~ IIIIII IIIIIII I 1111111111111111:001111111111111111111111 IIIII IIIN IIIIIIIIIII I II I I IIIII Ill I I llll~lll 111111111111111111111111111~ 111111111111111111111111111111~ 300 

400 111111111111111 I I I I I I I I I I I I I I ltlll I I I I I I I I I I I I I I II I I I I I I I I I I I I U)II I I I I I I I II I I II I 111111111111111 ~PII I I I I I I I I I I I I I I 111111111111111 ~111111111111111 I I I I I I I I I I I I I I I~ 111111111111111 I I I I I I I I I I I I I I I lNI 111111111111111 I II I I I II I I I I I I I ~I I 400 

500 111111111111111 I I I I I I I I I I I I l)JHI 1111111111111111111111111111,~m, 111111111111111 I I I I I I I I I I I I I IHHI 111111111111111 I I I I I I I I I I I I I l~{UI I I I I I I I I I I I I I I I I I I I I I I I I I I I l~H 111111111111111 I I I I I I I I I I I I I fimll I I I II I I I I I I I 111111111111111 fitUI I 500 

600 llllllllllllllllllllllllll~llllllllllllllllllllllllllll~Hlllllllllllllllllllllllllll~UIIIIIIIIIIIIIIIIIIIIIIIIIIIIHlllllllllllllllllllllllllll~llllllllllllllllllllllllllll~\111111111111111111111111111~\ll 600 

100 111111111111111 I I I I I I I II IHI Ill I I I I I I I I II I I 111111111111111 HIIIJI I I I I I I I II I II I I I I I I I I I I I I I I I lllllll I I I I I I I I I I I I I I I I I I I I I I I I I I I I IHHII I I I I I I I I I I I I I I I I I I I I I I I I I I I IHIIII I I I I I I II I I I I II II I I I I I I I I I I Ill ll!l 1111111111111 I I I I I I I I I I II I I lllllH 111 100 

800 111111111111111 I I I I I I I 1.1mm 1111111111111111111111111111mm 111111111111111 I I I I I I I I I I 11mm1111111111111111 I I I I I I I I I I I IUIHI IIII I I I I I I I I I I I I I I I I I I I I I I l!Blfll llll I I I I I II 111111111111111 umm 111111111111111 I I I I I I I I Ill umm 11111 800 

900 

1000 -t11tttttti~~l#I~ _,ffitt++tttt11t1~1tttttt~~ 'ill"4+++1+M~I-W~~;l!I ~~ffil~ttttfflfttt~~~~~~fH+Wl~~~M~~r;it~®l~lllJ!WUll~ ~ll'fi+H-1-+H+#i-+H~l+l,IC;;iill 900 

1100Jmmrnm~m,~~m~mffl~~~ij~t~~ffl,~filffim~1i!~~~*~*~!il~,w~~ 
1
~
1
W

1
W~~ Ir lrm~;~~~ml· ~·~ .. ~ .. ~· ~·~11m~~

1

~'

1

ij 
1

ij
11

] 

1

[ 

111

ijij'
1

] 

1

[

111

ijij
11

t 
11

rr~tfiu~[=
1000 

1200-ttrtttttttrtH~:1<Y~~ ~nttttt1tttttttiHttltW~~~ffi*HH+ltlff-l+~~~~mimwttt1mttt1~tij~tttttttttttttttttttii~~~~»t1ittHttm~t1&1~1~i~~~~~~~~,iU-1100 
1300 ]11trmm~~m~mmtmm~m!mi~~wttffi~~m~~~filffiilli~m~~~~;Ml~~~~~~ij~~m~~~®m~~ij~~mJm~m~m~1~~illlt

1200 

1300 

1400 1400 

1700-
~ ~ 1700 

1800-

1500 

11~~mimrmmmt1 .:~~·":~:~·:·-~:~~;:n»~:~::IJ. *~t~;~~,~~~~;~;·n~:~·;:m·;:lt ·~:1;;:=·;:~·;:~·;:mf~;;;;;;i;~~'=-H•._~~:.~:~~:=:·,~::~·: .. ::::~~ 

1500 

W.~Lf++ll-HfjllH~HH-HSiilll!!~mtffH-H+l~IHfJff™~~~~tttl~OOml-H-tt~fi'!Tttffffiftt1H#l\H-l+HitHl!;!bifi'l'rtfffff#H-l+H~H+l-l--1900 1900-
--

~HIii 1100 

'l 

II 



' ' 
: ! 



P1- 1 

Trace 151 

• 
100 

200 

300 

400 

S00 

,oo 

700 

800 

,oo 

~ 

1100 

1200 

1300 

1400 

1500 

1600 

1700 

1800 

uoo 

-

UI 1H - UI - 211 

~) 
----,. 

Gradient at layered velocity - Isotropic Hl 100 m 

221 238 2• 251 HI 2H 211 - - 111 121 - ... 151 



xl0-4 

1--------,------,,-----,,-----,,-----,,-----,,-----, 

0.8 

0.6 

0.4 

0.2 

0i--------

-0.2 

-0.4 

-0.6 

-0.8 

-1 ___________ ....._ _ __......_ _ ____, ____ ____, ____ ____, ____ ____, 

0 1000 2000 3000 4000 5000 6000 7000 8000 


