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Inversion of seismic reflection data 
in the acoustic approximation 

Albert Tarantola* 

ABSTRACT 

The nonlinear inverse problem for seismic reflection 
data is solved in the acoustic approximation. The 
method is based on the generalized least-squares cri- 
terion, and it can handle errors in the data set and a 
priori information on the model. Multiply reflected 
energy is naturally taken into account, as well as refrac- 
ted energy or surface waves. The inverse problem can be 
solved using an iterative algorithm which gives, at each 
iteration, updated values of bulk modulus, density, and 
time source function. Each step of the iterative algo- 
rithm essentially consists of a forward propagation of 
the actual sources in the current model and a forward 
propagation (backward in time) of the data residuals. 
The correlation at each point of the space of the two 
fields thus obtained yields the corrections of the bulk 
modulus and density models. This shows, in particular, 
that the general solution of the inverse problem can be 
attained by methods strongly related to the methods of 
migration of unstacked data, and commercially com- 
petitive with them. 

INTRODUCTION 

This is the second of a series of papers giving the solution of 
the inverse problem for seismic reflection data. In Tarantola 
(1984) herein referred as “paper I,” I discussed the philosophy 
of inverse theory, compared to the philosophy of “migration” 
or “direct inversion.” I demonstrated in that paper that the 
linearization of the forward problem leads to an inverse solu- 
tion strongly related to the Kirchhoff migration method 
(French, 1974; Schneider, 1978). In this paper I attack the 
nonlinear acoustic problem, as a new step toward the solution 
of the nonlinear viscoelastic problem. 

Although this paper is clearly a generalization of paper I, a 
special effort has been made to make it self-contained. 

The objective of the paper is ambitious in the sense that I 
look for a method which is able to provide accurate models of 
the Earth starting with very crude (i.e., homogeneous) models. 
In addition, I want the method to handle waves other than the 

usual primary reflections. This means that the approach is 
necessarily nonlinear. I confess that the task appeared insur- 
mountable at the beginning, but the computer time necessary 
for solving the problem has been decreasing by one order of 
magnitude per month, over many months. The current com- 
puting time is reasonable enough to justify this report. 

THE FORWARD PROBLEM 

I limit this paper to the acoustic approximation of the elastic 
wave equation, The generalization of the method to the elastic 
case will be developed later. 

In the acoustic approximation, a medium is characterized by 
the density p(r) and the bulk modulus K(r). Given a source field 
s(r, t) and given initial and boundary conditions, the pressure 
field p(r, t) is uniquely defined by the acoustic wave equation 

Lz-div(-&grad)]p(r,I)=s(r,Q. (1) 
K(r) at2 

For short, one can denote by K, p, s, and p the functions 
appearing in equation (1) considered as elements of a suitably 
chosen space. Formally, the solution of equation (1) can be 
written 

P = f(K P, s), (2) 

where f represents a given, nonlinear operator. Throughout the 
paper I assume that one is able to solve equation (1). The results 
given in this paper will be valid for any method used for solving 
the forward problem, e.g., finite-differencing or ray-tracing 
methods. 

Introducing the Green’s function 

_!.._‘- (p(r) )] K(r) at2 
div -!- grad g(r, t; r’, t’) = S(r - r’)8(t - t’), 

one can write 

p(r, t) = dr’ 
s I 

dt’ g(r, t; r’, t’)s(r’, t’). (3) 

Since K and p are assumed independent of time the Green’s 
function will be invariant with respect to time-translation i.e., 
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g(r, t; r’, t’) = g(r, t - t’; r’, 0) = g(r, 0; r’, t’ - t). 

Equation (3) can then be rewritten as 

(4) 

p(r, t) = dr’ g(r, t ; r’, 0) * s(r’, t), (5) 

where * denotes time convolution. 
Throughout this paper, equations (2) or (5) will represent the 

solution to the forward problem. Equation (2) has the advan- 
tage of allowing the solution of the forward problem to appear 
as the output of a black box, without reference to any numerical 
algorithm (finite-differencing or ray-tracing), while equation (5) 
allows an easy demonstration of the formulas used. 

In the seismic reflection problem, actual sources can be con- 
sidered as points in space, and if we assume that they are 
isotropic, they can simply be described using a source time
function S(r). Denoting by r = rs the source position, 

s(r, t) = h(r - r,)S(t). 

Denoting by p(r, t; rs) the pressure field due to a source located 
at r = rs, equation (5) can be simplified to 

p(r, r ; r,) = g(r, t ; r, , 0) * SW. 

Equation (2) will be rewritten 

P = f(K, P, S), (6) 

where I have replaced the source field s by the source time
function S. 

THE DATA SET, 
THE A PRIORI INFORMATION ON THE MODEL 

The solution of the forward problem allows the computation 
of the pressure field p(r, t; r,) for any value of r and t. Measure- 
ments of the actual pressure field are performed at discrete 
values of r. Let r = rg represent a generic receiver position (g 
stands for “geophone”). The observations take then the form 
p(rg, t; r,) where rs and rs belong to a discrete and Jinite set, 
while the variable t can either be considered continuous (analog 
recording) or discrete (digital recording). Actual measurements 
will give some definite values for p(rB, t; r,) which will be named 
the “observed” values of the pressure field and which will be 
denoted by pa (rs , t; r,) or, for short, p,, . 

Experimental data are never perfect. A useful and rather 
general way for describing estimated uncertainties in a data set 
(due to noise) is the use of a covariance operator, which de- 
scribes not only the estimated variance for each particular 
datum, but also the estimated correlation between errors. The 
most general covariance operator corresponding to this partic- 
ular data set takes the form C, (ra, t; r,; r$, t’; ri). One particu- 
lar example is 

C, (rs, t; r, I r$, t’; r,) = c$fi,,, 6,, 6,,, (7) 

where cris represents the estimated error in the seismogram 
corresponding to the gth receiver for the sth source, and where 
errors are assumed to be uncorrelated. For short, the covari- 
ante operator will be denoted by C, . 

We will now try to introduce the a priori information about 
bulk modulus and density. By a priori I mean information 
which has been obtained independently of the observed values 

of the data set. The use of a priori information is useful to avoid 
instability in the inversion of data, which could otherwise arise 
in the present problem if, for instance, a given small region in 
the space was very poorly resolved by the data set, or if the data 
set could not resolve separately density and bulk modulus in a 
given region. However, one can expect that in the regions which 
are well covered by the seismic survey, the final solution will be 
practically independent of the a priori estimate. Nevertheless, I 
will try to give some rules for setting reasonable a priori 
models. 

From an ideal point of view, one could collect a statistically 
significant collection of actual models for K and p from logging 
and seismic surveys in regions similar to the region presently 
under survey. In that case, and using the classical definitions of 
statistics, one could obtain the mean model K,(r) and p0 (r) and 
the covariance functions C,, (r, r’), C,, (r, r’), and C,, (r, r’). As I 
have not yet performed such a numerical experiment, I must, 
for the moment, be overconservative in the statement of the a 
priori information. That means that the a priori variances will 
be taken as very large, and that the covariances will be neglect- 
ed. 

An example of a priori information is the following: 

K,(r) = K, = const, 

p,(r) = p0 = const, 

S,(t) = any estimate of the source pulse, 

C,,(r, r’) = 0; exp 
1 

i [ 

(x - X’)’ + (y - y’)2 
- - 

2 L:, 

+ (z - z’)2 

II L: ’ 

C,,(r, r’) = 0,’ exp 
1 

( [ 

(x - x’)2 + (y - y’)2 
- 2 

L:, 

+ (z - z’)2 

I L; ’ (8) 

C,,(t,t.)=&exp(--fq}, 

C,,(r, r’) = 0, 

C,,(r, t’) E 0, 

and 

CSK(t, r’) = 0, 

where crK, crp , and os represent the estimated departures of the 
true values K(r), p(r), and S(t) from the a priori values K,(r), 
pa(r), and So (t), where L, and L, represent the horizontal and 
vertical distances along which one expects the models to be 
smooth, and where Ts is the expected correlation length of 
errors in our estimate of the source. 

For making the notation more compact, I introduce the 
model vector 

The a priori information on the model is then described by the 
a priori model 
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(10) 

(most of the off-diagonal terms are null in general). 

THE INVERSE PROBLEM 

The solution of the forward problem was written [equation 

WI : 

P = f(K P, S) 

or, using the notations of the preceding section, 

p = f(m). (11) 

The a priori model m, will, of course, not in general predict for 
the pressure field the observed value po, i.e., we will have, in 
general, 

p. Z f(mo). 

The generalized nonlinear inverse problem can be stated as 
the problem of finding the pair p and m which is, between all 
pairs satisfying equation (1 l), the closest to the a priori pair p. , 
m,, i.e., such that p = f(m), distance between (p, m) and (po, 
m,) minimum. We now introduce a precise definition of dis- 
tance. I take the distance associated with the norm 

II(p, m)ll’ = 11~11~ + Ilmll’ = P*C;‘P + m*C,‘m, 

which corresponds to the usual definition for least-squares 
problems (Tarantola and Valette, 1982). In this equation, if we 
define 

P = c,‘p, 

and 

tIr = C;‘m, 

then, by p*fi and m*tIr, I denote, respectively, 

p*i = p*C, lP = c 1 c dr,, r; r,) d(r,, r; rs), 
9 1 s 

and 

m*ti = m*C,‘m = dr p(r) P(r) 

Among all norms, the least-squares (I_?) norm is the one which 
allows the easiest computations. Other norms, such as the 
absolute-values (L’) norm, which has some advantages for the 
inversion of geophysical data (see Claerbout and Muir, 1973) 
are not envisaged in this paper. I arrive then at the statement of 
the generalized nonlinear least-squares inverse problem: to find 

the pair p and m such that p = f(m), (p. - p)*C, ‘(p. - p) 
+ (m. - m)*C, ‘(m. - m) minimum. This is equivalent to 

finding the model m which minimizes the functional 

2S(m) = Cpo - fWl*C; lCpo - f(m)1 
+ (m. - m)+C; ‘(m. - m), (12) 

where the factor 2 is introduced for subsequent simplifications. 
Before turning to the problem of the effective resolution of 

the minimization problem (12), let us emphasize that with such 
a formulation one would not have troubles with the problem of 
data sufhciency; even in the worst case when the number of 
data points tends to zero, the solution of the minimization of 
(12) tends to the a priori model m,, and the inverse problem 
remains well posed. With more and more data, and particularly 
with a data set as redundant as the one collected in present day 
seismic reflection experiments, the influence of m, on the final 
model will tend to vanish. 

In order to solve the minimization problem, let us introduce 
the linear operator F as the derivative off at the point m: 

f(m + 6m) = f(m) + F6m + o(ll6m II’). 

A formal differentiation of S(m) with respect to m gives the 
gradient of the functional S: 

-grad S = C, F*C; ‘[p. - f(m)] + (m, - m), (13) 

where F* denotes the transpose of F. At the minimum of S the 
gradient must vanish, so the solution m of our least-squares 
problem must verify 

m - m, = C,F*C; ‘[p. - f(m)]. (14) 

This equation shows that the difference m - m, belongs to the 
image of C,. Adding the term C, F*C; ‘F(m - m,) to both 
sides of equation (14) and after reordering, 

(I + C,F*C;‘F)(m -m,) 

= C, F*C; ‘{p. - f(m) + F(m - m,)}. 

Since covariance operators are positive definite (except for null 
variances or infinite correlations), the operator F*C, ‘F is nec- 
essarily definite nonnegative. It follows that the operator 
I + C, F*C; ‘F is regular and one can write 

m-m, = (I + C,F*C;‘F)-‘C,F*C;’ . 

{p. - f(m) + F(m - mo)). (13 

Although equation (15) is equivalent to equation (14), it can be 
directly solved using a fixed point algorithm: 

m ~+l=mo+(I+C,F~C~‘F,)-*C,F:C~l~ 

{p. - f(mJ + F,(m, - m,)>, (16) 

where F, denotes the value of F at the point mk. For a linear 
problem [f(m) = Fm] this algorithm converges in only one 
iteration, giving 

m = m, + (I + C,F*C;‘F)-‘C,F*C;‘{po - Fm,). 

The reader can easily verify that equation (16) can also be 
written 
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m k+l=mk+(I+CmF:CplFk)~‘. 

ic, CT C; iCpO - fh)l - h - md). (17) 

The algorithm thus obtained (or any of its equivalents) was 
named the algorithm of total inversion in Tarantola and Val- 
ette (1982). The operator W = (I + C,F: C; ‘F,) has a kernel 
of the form W(r, r’). The only practical means of handling the 
inverse of W is by discretizing the kernel W(r, r’) over a grid of 
points and inverting the system thus obtained. This matrix is so 
big that the inversion cannot be effected by present day com- 
puters This simply means that the beautiful equation (17) is 
useless for our problem. 

Let us come back to equation (12). For obtaining the mini- 
mum of S, one could try a gradient (steepest descent) method : 

m - mk - r(grad S),, k+l - (18) 

where tl is an arbitrary constant, sufficiently small for ensuring 
the convergence of the algorithm. 

Using equation (13) then 

m - m, + a{C, F: C, ‘[p,, - f(m,)] - (mr, - me)). k+l - 

(19) 

One can now see that this gradient equation is very similar to 
the total inversion equation (17): the operator (I + C,F: 
C; ‘F,)) ’ has simply been replaced by the diagonal operator 
al. 

Equations (17) and (19) are extreme cases of the general 
equation : 

mk + , = mk + wi c, Fk* c; ‘[PO - f(mk)l - crnk - %)}, 

(20) 

where W represents an arbitrary regular operator close enough 
to (I + C, F: C,J 1 Fk) to allow convergence 

W 2 (I + C,F:C, ‘FJ ‘. (21) 

It is clear that if the algorithm (20) converges, then equation 
(14) is satisfied, which means that it necessarily converges to the 
solution of the problem (disregarding possible secondary 
minima). 

The choice 

W = al 

gives the gradient equation (19), while the choice 

(22) 

W=(I+C,F;C;lFk)-’ (23) 

gives the total inversion equation (17). The number of iterations 
needed will greatly depend upon the choice of W. It may range 
from only one iteration for a quasi-linear problem and W given 
by equation (23), to a great number of iterations for W given by 
equation (22). Other choices of W can be imagined, for instance 

W = [DIAGONAL OF (I + C, F,* C, ‘F,)] 1 

or 

(24) 

W = [DIAGONAL BAND OF (I + C, F; C, ‘F,)] -‘. (25) 

While equation (24) is clearly related with Jacobi methods (see 
Clayton, 1982) of discrete linear algebra (used here in a more 
general context), it seems, at the present state of experience, that 
W given by equation (25) is the best compromise (with present 

day computers) between the simplicity of computations and the 
number of iterations. 

For a given a priori model me, the value of the operator 
F,* C; ‘F, in equation (25) only depends upon the geometry of 
the problem, i.e., number of sources, receivers, and their relative 
positions. I hope to be able to obtain a set of empirical rules 
giving the conditions for optimum convergence. 

In what follows I will focus attention on the choice W = al, 
the modifications needed for more elaborate choices of W being 
straightforward. Now turn to the problem of choosing the 
numerical value for a. The simplest strategy is to take for a a 
constant value, the same through all the iterations. For the first 
iteration, using (19) 

m, = m, + cdm,, 

where 

6m, = C, FX C; ‘[p. - f(m,)]. 

Once 6m, has been obtained (see next section), the numerical 
value of a can be chosen such that the deviations m, - m, are 
smaller than the a priori standard deviations (in C,). 

Using the methods of optimization theory (see for instance 
Walsh, 1975), an approximation to the optimum value of ak to 
be used at the kth iteration is given by 

ak = li(1 + akC;‘Ak/ykC;l~k), 

where 

hk = Fk-fk, 

and 

Yk = (grad s)k. 

I point out that, when using a gradient algorithm for solving 
nonlinear inverse problems, there is no warranty that the value 
chosen for the scalar a will give a point mk + 1 such that S(m, + 1) 
is smaller than S(m,). But, as -(grad S), is a direction of 
descent, there must exist a constant a’ (0 < a’ < a) for which 
mk + 1 is better than m, It is usual to take a’ = a/2 as a new test 
value, and so on, until the condition S(m,+,) < S(m,) is rea- 
lized. It is clear that, with such a procedure, a gradient algo- 
rithm will necessarily converge. 

1 have to point out that I have not discussed the problem of 
estimating error and resolution on the a posteriori model. It 
can be demonstrated (Tarantola and Valette, 1982) that a useful 
estimate of error and resolution is obtained, in the linear ap- 
proximation, through the a posteriori covariance operator CL 
given by 

C:, = (I + C,F*C;‘F)-‘C,. 

It is not clear at present which kind of information one should 
be able to obtain on Ck with realistic computer requirements. 

I now give explicit formulas for the problem, introducing the 
functions K, p, and S. By definition, 

f(K + SK, p + 6p, S + 6s) = f(K, p, S) 

+ U&K + V6p + T6S 

+ o@K, 6p, 6s)‘. (26) 

Using equation (9) it is clear that the operator F can be written, 
in partitioned form, 
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F=(U v T), (27) 

where U, V, and T represent, respectively, the derivatives of the 
pressure field with respect to K, p, and S. The recurrence 
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It has just been shown that Sfi, are the weighted data residuals. 
As defined in equations (26) and (27), U, , V,, and q are the 
derivatives of the pressure field with respect to K, p, and S (at 
the current point K,, p,, and S,), and U,*, V:, and T,* are the 
transposes of the derivative operators. The effect of the action 
of these operators on the residuals was first demonstrated by 
Lailly (1984). I give in the Appendix an equivalent demon- 
stration. It is shown that for obtaining the values of SK,, Sj$, 
and Ss,, as defined by equation (34) one has to perform the 
following two operations. 

relation (19) then takes the form 

(z/)=(;J 

+ u{($;; zJ(z)-[~~ iJ}> 

where 

(28) 

and 

(29) 

63, = C, ‘[PO - f(K, 9 P, 3 %)I. (30) 

In the particular case of independent a priori information 
(C,, = 0, C,, = 0, C,, = 0), equation (28) simplifies to 

K n+ 1 = K, + uCC,,& - W, - WI> 

p,+ 1 = P. + aCC,, Gi - (P. - P& (31) 

and 

S “+ 1 = S, + a[&, 63, - (S, - Sd, 

while equations (29)-(30) remain the same. 
In the next section I give a physical interpretation of these 

formulas. 

PHYSICAL INTERPRETATION AND 
PRACTICAL RESOLUTION 

At each iteration of the algorithm (29)-(31) we have the 
values K,, p, , and S, resulting from the previous iteration. 

The first step is the computation of equation (30) 

SF, = C, ’ CP, - f(K > P. 3 %)I. (32) 

One can see that S$, can be interpreted as the “weighted 
residuals.” Its computation involves solving the forward prob- 
lem, for each of the shotpoints, to evaluate the predicted data 
for the nth model : 

P. = W, > P. > S,,). (33) 

Using for C, the example given in equation (7), 

The second step of the iterative loop is the computation of 
equation (29) 

si(, = u,* S$, ) 

sp, = v; sp,, (34) 

and 

(1) Propagating the residuals backward in time I show in the 
Appendix that the first operation to be done is the computation 
of the field pk (r, t ; r,) defined by 

ph(r, t; r,) = 
s 

dr’ g(r, 0; r’, t) * 6s(r’, t; rs), (35) 

where 

W, t ; r,) = 1 60 - r,)6& (r, , t; r,). (36) 

For given rs , the field pk (r, t; r,) defined by equation (35) clearly 
corresponds to the propagation of the source &(r’, t; r,) back- 
ward in time (because of the Green’s function g(r, 0; r’, t) rather 
than g(r, t; r’, 0)). Equation (36) shows that the source 6s(r’, t; r,) 
is, for given rs, a composite source with one elementary source 
at each geophone position having as source time function the 
weighted residual (observed minus computed pressure field) at 
that point. The residuals represent that part of the signal (data 
set) which is not taken into account by the current model (of 
bulk mo’dulus, density, and source). That the field pk(r, t; r,) is 
obtained by propagation of the residuals backward in time
means that p; is the field that, propagated in the natural sense 
(forward in time), gives at the observation points a pressure 
field simply related with the residuals: p:(r, t; rs) is a sort of 
missing d$xcted field (not taken into account by the current 
model). From a computational point of view, the knowledge of 
p; (r, t; r,) requires the solution of one forward problem, with a 
composite source and with reversed time per source point. 

(2) Correlating the “upgoing” and “downgoing” wave fields 
at each point of the space. The wave field p,(r, t; r,) represents 
the field which propagates in the current model (of bulk modu- 
lus and of density) for the current values of the source time
function. I have just shown that p:(r, t; r,) is related with the 
missing diffracted field for the current model. As shown in the 
Appendix, the weighted model corrections M?(r), &j(r), and 
&g(t), of equation (34) can be obtained using the following 
equations : 

1 ^ I 

M,(r) = - 
Kf (r) 

dt 1 s (r, t; r,) 2 (r, t; r,), 
s at 

1 
s&(r) = - 

s 
dt C grad P; (r, t; r,) grad p,k t; rs), 

d(r) s 
Wb) 

and 

6% 0) = C PA (r, , t ; r,). (37c) 

These equations can easily be understood. If at a point in 
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space there is a diffractor (a point perturbation of bulk modulus 
or of density), there will be a diffracted pressure field which at 
that point will be correlated with the incident wave field. The 
sums over time in equations (37) are the appropriate measures 
of correlation between the incident field and the missing diffrac- 
ted field. At points where these correlations do not vanish, the 
current values of bulk modulus and density have to be modified 
according to equations (37a)-(37b) and to equation (39) below. 
This resembles the “imaging principle” of Claerbout (1971). 
Here, rather than defining a “reflectivity field” by the ratio of 
upgoing and downgoing wave fields, I show that the corre- 
lations in (37) rigorously give weighted models of bulk modulus 
and density. 

The last step for the implementation of the iterative loop is 
the computation of equation (31): 

K “+ 1 = K, + aCC,, &if, - W, - &)I, 

P.+1 = P. + aCC,,&% - (P. - Pdl, 

and 

S “+I = S, + a[C,,6!3, - (S, - S,)]. 

Explicitly, we have 

K,+ 1(r) = K,(r) + a{hK,(r) - C&(r) - ~,@)I~~ 

pn+lW = p,(r) + a{@,(r) - b,(r) - po(dl13 

and 

S.+,(t) = s,(t) + a{Wr) - C&(r) - %(t)lI, 

where 

SK,(r) = 
s 

dr’ C,, (r, r’)sR, (r’), 

&P, (r) = 
s 

dr’ C,, (r, r’)&(r’) 

(38) 

(39) 

(40) 

problem, the same inverse method leads naturally to an algo- 
rithm for a solution which strongly resembles the migration 
method based on the imaging principle of Claerbout (1971). 

I have shown in the previous section that each iterative loop 
of the inversion requires the solution of two times as many 
forward problems as there are source locations. Although this is 
a big task, it is within the capabilities of present day vector 
computers. 

The advantage of an inversion of the type presented here 
with respect to classical migration is of two orders. First, it can 
probably handle strong lateral variations much better than 
conventional methods, because the velocity model is elaborated 
as the iterative sequence proceeds, and it is not given indepen- 
dently, as in migration. Second, it is important to emphasize 
that the inversion gives absolute values of density and bulk 
modulus. If errors due to the neglect of attenuation and elastic 
(versus acoustic) effects in the forward modelization are not too 
severe, these absolute values of density and bulk modulus can 
be of great help for direct hydrocarbon detection. 

I do not assume any particular numerical solution of the 
forward problem, although it is clear that the finite-differencing 
technique is well adapted to the problem. I must emphasize 
that if the forward scheme accounts for surface, refracted, or 
multiply reflected waves, the inverse solution presented here 
will use these waves. 

Numerical examples are now being implemented and will be 
the subject of another paper. The generalization of the present 
results to the viscoelastic case is presently being studied. 
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6% 0) = 
s 

dt’ C,, (t, t’) ~9” (t’), 

or slightly more complicated formulas if one uses the recur- 
rence relation (28) instead of relation (31). Since C,, , C,,, and 
C,, are covariance operators, they will be in general smoothing 
operators, so SK,, ,6p,, and 6S, are simply smoothed versions of 
SE,, Sp,, and 89,. 

Starting with K,(r), p,(r), and s,(t), I have gone through an 
entire loop of the iterative sequence leading to K,, l(r), pn+ 1(r), 

and s,+,(t). I have shown that the operations required for 
updating the current model are essentially the solution of two 
forward problems per shotpoint. 

CONCLUSION 

In paper I, I demonstrated that the inverse solution of the 
linearized problem for a homogeneous reference model can be 
solved using a slightly modified version of the Kirchhoff migra- 
tion. It is nice to see that when applied to the heterogeneous 
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In this Appendix I examine the Frechet derivatives of the 
pressure field and show which is the result of the action of their 
transposes on an arbitrary vector. 

First [equation (6)] 

P = UK, P, 9. 

The operators U, V, and T were defined by equation (26): 

6p = U&K + V6p + T&S + o@K, 6p, 6S)‘, (A-l) 

where 

6p = f(K + SK, p + 6p, S + 6s) - f(K, p, S). 

Introducing the kernels of U, V, and T, equation (A-l) becomes 

Q(r, , t ; r,) = 
s 

fir W, , t ; rs I WW 

+ 
J 

dr V(r, , t; rs I r)Sp(r) 

+ 
s 

dt’ T(r, , t ; r, 1 t’)6S(t’) 

+ o@K, Sp, SS)‘. (A-2) 

To give a physical meaning to these kernels. one can formally 
write 

U(r, , t; rs 1 r) = “p(;i;ri rs), 

W, , t ; 5 I r) = 
Mrg, t ; r,) 

clp(r) ’ 

and (A-3) 

T(r, , t ; rs 1 t’) = ip’&t~~ rs) 

By definition of p and 6p, I have 

and 

1 ??_ _ div 1 

K(r) + &K(r) at2 o(r) + Wr) 
grad 11 

Cp(r, t ; r,) + 6p(r, 1; r,)] = 6(r 

After some easy manipulations, and using 

1 
=- 

h(r) + M(r) hfr) - F$ + 0W2)’ 

6(r - r,)S(t) 

r,)C.Vt) + ~s(t)l. 

--!-j2-div[&grad]}Sp(r,t;r,)=As(r,t;rJ, 
K(r) St2 

where As are the “secondary sources” 

As(r, t; r,) = 6(r - r,)%(t) 

+ Wr) a2p 
- - (r, t; r,) 
K2(r) St2 

- div $$ grad p(r, t; rs) 
[‘ 1 

+ o@K, 6p, 6S)*. (A-4) 

Since the solution of equation (I) was given by equation (5), the 
solution for 6p will be given by 

6p(r, t; rs) = dr’ g(r, t; r’, 0) * As(r’, t; r.), 

or using the reciprocity theorem for the Green’s function (see 
Morse and Feshbach, 1953; Aki and Richards, 1980; Ben- 
Menahem and Singh, 1981) 

6p(r, t; r,) = 
s 

dr’ g(r’, t; r, 0) * As(r’, t; r,). 

Using equation (A-4) this gives 

[USK](r,. t; r,) = 
s 

dr g(r, t; r,, 0) 

(A-5a) 

[ VSp](r,. t; r,) = 
s 

dr g(r, t: r9, 0) 

* ?@!! grad p(r, t; r,) 
n2(r) II , (A-5b) 

and 

ITW@, , t ; r,) = y(r, , t : rs. 0) * G(t). (A-5c) 

Assuming that y and p vanish for t + x8, equation (A-5a) can be 
rewritten 

[USK](r,, t; r,) = 
s 

dr & 4(r, t; r4, 0) 

Using 

* lib, t ; r,) Wr). (A-5a’) 

a div (v) = -(grad a)v + div (av), 

equation (A-5b) can also be written 

[VSpl(r, , t ; r,) = s [’ 1 dr $f/ grad dr, t ; r4, 0) 

r grad p(r, t; r,) 

s [ drdiv Ey(r,t;r,,O) 

* grad p(r, t; r,) 1 , (A-5b’) 

where the gradient of the Green’s function is always taken with 
respect to the first spatial variable, and where the symbol 5 
stands for a time convolution of the scalar product. Using 

jilrdiv(v)=lv-dS, 
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the last sum in equation (A-5b’) can be written as an integral 
over the surface of the Earth, which vanishes because homoge- 
neous boundary conditions are assumed. This lets 

7 [grad Ar, t; rd. (A-5b”) 

Using equations (A-2), (A-3), (A-5a’), (A-5b”), and (A-5~). one 
can now directly obtain the kernels of U, V, and T: 

+(rg, t; r,) 

aK(r) 
= W,, t; rs I r) 

1 
= - 4(r, t; rg, 0) * P(r, t; rJ, 

K’(r) 

Mr, , t; r,) 

f+(r) 
= V(r, , I; ra I r) 

= -!L- grad g(r, t; rg , 0) t grad p(r, t; r,), 
p’(r) 

and 

a&,, t; r,) 
as(t’) 

= T(r,, t; rs 1 t’) 

= b,, t; rs, t’). 

64-6) 

We now turn to look for the action of the operators U*, V*, 
and T*. For an arbitrary Sp define 

SR = u*Q.i, 

sfi = Pi+, 

and 

Ss = T*6j. 

Let U*(r 1 rs, t; r,), V*(r 1 rs, t; r,), and T*(r 1 r,, t; r,) be, re- 
spectively, the kernels of U*, V*, and T*. From the definition 
of the transpose of a linear operator, 

U*(r I rg, t; r,) = W,, t; rs I r), 

V*(r I rg, t; r,) = W, , t; f, I rh 

T*(t’ 1 r9, t; r,) = T(r,, t; rS I t’). 

Then write 

61?(r) = F 5 dt 1 U*(r I rg, t ; r,Pb@, , t; r,) 

= 4 Jdf i W,, t; rs I MO,, c; r,), 

f+(r) = C 
J 

dt 1 V*(r I rg, t; r,)@(r,, t; r,) 

= f Jdf i V(rg, t; rs I W@,, t; rJ, 

and 

i%?(f) = 1 
s 

dt 1 T*(t’ I rs, t; r#P(r,, t; r,) 

= i sdt i T(r,, t; rS I t’)@(r,, t; r,). 

Using equation (A-6), 

H(r) = & T ldl T 4k t; rsp 0) 

* li(r, t ; r,kW, , t; rslr 

Sb(r) = --& C dt 1 grad g(r, t; rg I 0) 
B s s 

T grad p(r, t; QMr, , t; rs), 

and 

sS(t’) = 1 dt 1 g(r, , t; rS, t’)@(r, , t; r,). 
9 s s 

Using 

s 
dt [f(t) * dOl4~) = 

s 
dt s(W(-- t) * WI> 

and 

g(r, -t; r’, 0) = g(r, 0; r’, t), 

M(r) = _-_!- s dt C p(r, t; r,) 
K’(r) s 
. F 1 dr, 0; rgI 4 * 6&,, t; r,) , 9 1 

W(r) = --& s dt 1 grad p(r, t; 4 s 

and 

. [ 1 grad dr, 0; rgr t)*Wr,, t; r,) 1 , 9 
8%) = 1 1 g(r, , 0; 5, t) * 6Ar,, t ; r,). 

s 9 

One can write 

M?(r) = 
E&q dt d(r, t ; r,hW, t; r,), 

s 

GO9 = & r I” dt grad p(r, t; r,). grad p’(r, t; rS), 
s J 

(A-7) 

and 

h&) = 1 p’(r, , t; rJ, 
5 

where 

p’(r, t; rJ = 1 dr, 0; rg , t) * @(r,, t; r,). 
9 

Defining 

and 

64r, t ; r,) = C 6(r - r,)Mr, , t ; rJ, 
B 

(‘4-8) 

p’(r, t; r,) = 
s 

dr’ g(r, 0; r’, t) * 6s(r’, t; r,), (A-9) 

equatiqns (35) to (37) are then easily obtained. 


