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ABSTRACT—Speckle interferometric fringe patterns record
stress-relief displacements induced by the drilling of blind-
holes into prestressed objects. The quantitative determina-
tion of residual stress states from such stress patterns is dif-
ficult because of the ambiguity in the order of the observed
fringes. The plane stress magnitudes are provided directly
from selected fringe positions using a stochastic, iterative
least squares minimization approach. The inversion requires
prior knowledge of the experimental geometry and an ap-
propriate uniaxial stress-relief displacement basis function
derived from three-dimensional finite element calculations.
Superpositioning of the rotated and scaled displacement ba-
sis functions allows the stress-relief relaxation for any biaxial
state of stress to be determined. In this paper, fringe patterns
were forward modeled from a large ensemble of calculated
biaxial stress-relief displacement fields. Inversion of these
noise-free fringe patterns reproduced the biaxial stresses with
negligible error. Analysis of more realistic fringe patterns that
include speckle noise gave stress magnitude errors that di-
minished rapidly with the number of selected points to bet-
ter than 3 percent for 100 points. Sensitivity of the optical
method is influenced by a number of factors, but the ensem-
ble of model fringe patterns studied indicates that the stress
magnitudes (normalized with respect to the material’s Young’s
modulus) from 3 × 10−4 to 10−2 can accurately be deter-
mined with visible laser radiation. The method is amenable
to automation and can easily be extended to study near sur-
face gradients in the residual stresses or applied to other op-
tical recording techniques such as moiré and phase-shifting
interferometry.
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Introduction

The hole-drilling strain gage method1 for determining
residual stresses is well accepted.2 In the method, stress-
relief strains induced by the drilling of a small hole into the
surface of a stressed object are recorded with a specially de-
signed strain gage rosette.3 Stress magnitudes and directions
are determined from the observed strains using knowledge
of the material’s elastic properties and an appropriate stress-
strain model. Tests of the method indicate strain coefficients
derived from finite element modeling reproduce stress mag-
nitudes to better than 5 percent.4
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Despite this success, complementary efforts have focused
on developing optical interferometry5−7 in recording the sub-
micron stress-relief displacements.8−12 Optical methods are
desirable because information is obtained over the entire field
of view, the object need only be appropriately illuminated,
and little, if any, surface preparation is required. This is
advantageous in situations where strain gages cannot be at-
tached. A fringe pattern image is the raw result of such meth-
ods (see Fig. 1). The shape and density of the fringes relate
directly to the stress-relief deformations and, in principle,
may be interpreted to yield stress magnitudes.

There are a number of complementary optical techniques
that may be employed to record the information. Essentially,
the fringe patterns are maps of the wrapped change in the
phase of the monochromatic wave field of the light scattered
from the deforming surface of the object under study. Some
of the most popular methods of recording the wave fields in-
clude double exposure holography,6 moiré interferometry,7

electronic speckle interferometry5 and phase-shifted speckle
interferometry.12−15 Each of the different, but complemen-
tary, methods has its advantages and disadvantages for dif-
ferent applications.

Double exposure holography (DEH) is perhaps the oldest
of the techniques,6 and continues to be used today.16−18 In
its simplest form, two holograms of an object before and af-
ter motion of its surface are recorded on the same piece of
film. Reconstruction of the interference of these two wave
fields produces a series of fringe patterns superimposed on
the three-dimensional image of the object. Analysis of the
fringe patterns can allow for determination of displacements
on the order of one-quarter or better of the wavelength of the
light employed. As with the example in Fig. 1, the shape and
density of the fringes is directly related to the displacement
field on the surface of the object; but the advantage of DEH
is that fringes are often well resolved relative to the noisier
pattern of Fig. 1. Some disadvantages of DEH are, however,
that added steps of image digitization may be required and
that constructing the necessary geometry of reference and ob-
ject beams can be difficult in constrained locations. DEH has
been employed by a number of groups attempting to quanti-
tatively determine stress magnitudes using the hold-drilling
method.8,16−18

In moiré interferometry,7 a diffraction grating, typically
1200 lines/mm, is mounted or scribed on the surface of the
object to be studied. The object is illuminated under two op-
posing, collimated beams both incident on the object at the
same angle. Under this geometry, the angle of intersection
between the two beams is zero and a uniform intensity is
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Fig. 1—Speckle interferometer fringe pattern obtained from
drilling a 10 mm diameter hole into an acrylic block subject to
a uniaxial vertical compression of 3.16 MPa

observed. However, once the object is deformed, the angle
of intersection is no longer zero and the two diffracted wave
fields interfere to form a fringe pattern. Moiré fringe pat-
terns have good signal-to-noise ratios and are well resolved
such that an accuracy of±0.02µm is possible. In the hole-
drilling application, this is particularly useful near the stress-
relieving hole where the displacements change most rapidly
and contain the most information,10−12 making the method
particularly well suited for measuring the subtle changes due
to the gradient in stress from the surface of the object. One
constraint on this method is that the diffraction grating must
be placed on the object in the area to be studied; this may
require special machining of the object or the placement of
a prepared diffraction grating using epoxies that could influ-
ence the experiment.

Another method finding wide application is electronic
speckle interferometry (ESPI), in which slight changes in the
speckle pattern produced by motion of the object between
two video frames provide the basic information. The method
exploits the fact that each speckle on the surface of an ob-
ject illuminated with coherent radiation is an interferometer
whose intensity varies cyclically depending on the change
in the phase of the light scattered from the location of the
speckle. Consequently, the wrapped phase is determined by
local correlations of the observed speckle pattern. The ad-
vantages of this method are as follows: there is considerable
latitude for placement of source beams and the observing
camera, little or no surface preparation is required and the
method is inexpensive to implement.

Relative differences in the phase are easily determined
from fringe patterns, but the great disadvantage of the above
optical methods is that the actual value of the fringe orderN
cannot unambiguously be assigned without additional infor-
mation. This has hindered more quantitative use of many of
the optical methods, and sophisticated experimental proce-
dures have been developed to overcome this limitation.13−15

For example, the phase ambiguity is partially resolved in

phase-shifting speckle interferometry (PSI),13 which is a
modified version of ESPI. In one early version of PSI, a spher-
ically expanded coherent reference beam illuminates directly
the surface of the CCD detector upon which the object under
study is imaged. The object beam is directed to the CCD de-
tector via a mirror mounted on a piezoelectric material whose
motion can be carefully controlled; by moving the mirror, one
can effect shift in the phase of the object beam. At a given de-
formation state, four individual speckle patterns are obtained,
each acquired while the mirror is shifted through a number
of predetermined motions. The wrapped phase (modulo 2π)
is then given directly by a simple formula, and producing
this phase is the major advantage of such a technique. De-
spite this advantage, the relative (unwrapped) phase must be
obtained by adding or subtracting 2π from individual pix-
els until the phase difference between adjacent pixels in the
image is less thanπ. Without additional information, even
PSI cannot provide directly the value, in the absolute sense,
of the change in the phase that is required for quantitative
measurements. However, the technique described here can
be applied equally as well to the relative wrapped phase maps
produced by PSI.

In the context of hole-drilling stress measurements, a
variety of schemes that include fringe pattern forward
modeling8,17 and fringe counting16 have been employed to
address this problem. However, there remains room for im-
provement on these techniques, especially given recent ad-
vances in computational power and access to powerful image-
processing capabilities.

In this paper, a new method to directly invert information
derived from speckle interferometer fringe patterns obtained
in a hole-drilling residual stress test is developed. The method
requires that an appropriate basis model of stress-relief exist.
The relevant backgrounds for the displacement model and a
new method of calculating speckle interferometer fringe pat-
terns that provides information on the phase modulo 2π are
reviewed and lead to a presentation of the inversion methodol-
ogy in this context. The method is tested on a large ensemble
of calculated fringe patterns to provide estimates of error and
sensitivity. The results of this theoretical parametric study
suggest that the method shows promise for the analysis of
fringe patterns obtained from ESPI and moiré experiments
and from the phase map resulting from PSI measurements.

Stress-relief Displacement Model

Except for special cases, the optical methods employed
are all sensitive to some degree to the complete three-
dimensional field of the stress-relief displacements. This
complicates the analysis in that obtaining such a displace-
ment model is problematic and usually requires that numer-
ical methods be employed on a case-by-case basis.17−18 For
this study, a previously described19 and experimentally tested
finite element model of stress-relief displacements is used; as
such, the model need only be briefly presented here. Essen-
tially, the finite element model consisted of a block symmet-
ric with respect to one quadrant around the stress-relief hole.
The model mesh had 1782 nodes of 1352 eight-node isopara-
metric elements with orthotropic material properties and was
calculated using ANSYS software.

For the sake of clarity, only the case in which a uni-
form state of biaxial plane stress parallel to the flat surface
of the object will be considered. Relative to an (x, y, z)
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Cartesian coordinate system (Fig. 2), this stress state is de-
scribed by one shear stressτxy and two normal stressesσx

andσy , with compression assumed to be positive. To aid
later formulations, these three stresses will be represented
as a vectorσ = (τxy, σx, σy). At any point on the object’s
surface outside the hole, the complete three-dimensional bi-
axial stress-relief displacements are described by the vector
U = (Ux, Uy, Uz), which depends on the point’s coordinates
(x, y) or equivalently (r, θ), the magnitude of the applied
stresses, the elastic properties and the hole dimensions. The
latter two factors are implicit in the calculation of a case-
specific finite element model and subsequently can be ig-
nored. The relationship between position from the hole and
stress magnitudes becomes crucial to this analysis, that is,
U = U(x, y, σ).

There exist an infinite number of potential combinations
in σ, so deriving each using numerical methods is obviously
impossible. Fortunately, whereas the relaxed displacements
remain linearly elastic, all the required displacements can be
derived by the appropriate rotations and superpositions of a
single basis. This basis describes the shape of the stress-
relief displacement field for the uniaxial stressσy applied at
the azimuthθ = π/2. The three displacement components
(ux, uy, uz) of this basis functionu(x, y, σy) or equivalently
u(r, θ, σy), show the hole to be slightly elliptical, being com-
pressed and expanded at azimuths ofθ = π/2 andθ = 0,
respectively [see Figs. 3(a) and 3(b)]. The surface normal
displacement field [Fig. 3(c)] is saddle shaped. The corre-
sponding displacements produced byσx are simply derived
by rotation of the basisu by π/2. Those resulting from the
shear stressτxy are similarly determined20 from one-half the
difference ofu rotated byπ/4 and−π/4. Determination of
the complete biaxial stress relief displacementU at any point
can then be written in terms of the single basisu explicitly
in simplified matrix formU(r, θ, σ) = S(r, θ)σ, where the
shape matrixS(r, θ) is given by

Fig. 2—Geometry of stress-relief hole in an object plate sub-
ject to a state of plane stress relative to Cartesian (x, y, z) and
cylindrical (r, θ, z) coordinate systems. Hole axis coincides
with the z-axis

Fig. 3—Mappings of the components of the stress-relief dis-
placement function near the drilled hole. Displacements are
produced for the case of a 5 mm diameter, 10 mm deep hole
drilled into a material with a Poisson’s ratio of 0.4 subject to a
uniaxial stress parallel to the y-axis with a magnitude of 0.002
as normalized by the material’s Young’s modulus

S(r, θ) = (1)




ux(r, θ + π/2) ux(r, θ)
ux(r,θ+π/4)−ux(r,θ−π/4)

2

uy(r, θ + π/2) uy(r, θ)
uy(r,θ+π/4)−uy(r,θ−π/4)

2

uz(r, θ + π/2) uz(r, θ)
uz(r,θ+π/4)−uz(r,θ−π/4)

2


 .

Equation (1) is useful for the inversion routine, as will be
discussed.
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It must be noted that the finite element method only yields
directly the displacements at the nodes of the mesh used.17

The images in Fig. 3 are interpolations (Matlab) of the irreg-
ularly spaced nodal displacements onto a rectangular grid.
The interpolation procedure employed provided values only
within a circular region 63.0 mm in radius centered on the
stress-relieving hole’s axis. In our experience, interpolation
introduced negligible errors relative to those for a closed-
form expression.18 These results are based on the automatic
analysis of many thousands of candidate formulas using
an automated curve-fitting algorithm (TableCurve3D), with
simple polynomials dependent only onr andθ.

Speckle Interferometer Fringes

We will briefly discuss the relationship between stress-
relief displacements and observed fringes. More details are
found in Ref. 5.

Phase and Fringe Order

In a dual-beam speckle interferometer, a coherent laser
beam is split and the two arms subsequently expanded to
illuminate the surface of the object (Fig. 4). The result-
ing speckle pattern (i.e., grainy appearance under laser light)
changes cyclically with respect to the magnitude and direc-
tion ofU and the position of the point (x, y) with respect toS1
andS2 as represented by unit vectorsn1 andn2. This cycli-
cal change between the speckle patterns taken immediately
before and after the displacementU occurred is quantified as
a phase angleφ given by

φ(x, y) = K(x, y) · U(x, y), (2)

whereK(x, y) is the sensitivity vector

K(x, y) = (2π/λ)(n1(x, y) − n2(x, y)), (3)

whereλ is the wavelength of the light employed. A measure
more useful to the inversion later is the fringe orderN :

N(x, y) = φ(x, y)/2π, (4)

which at each fringe intensity peak corresponds to an integer
value. At other positions, the fringe order has fractional re-
mainders. It is worth noting that the phase in eq (2) is most
sensitive to the components ofU(x, y) parallel toK(x, y).
This direction is nearly parallel to the surface, but because
two divergent source points are employed, the direction of
K(x, y) must vary with position. This variation is actually
an advantage in the present statistical method because it aids
the quality of the inversion by providing more independent
measures than would be available had collimated dual beams
of constantn1 andn2 been employed.

In Fig. 5, the phase for the field of displacementsU of
Fig. 3 is shown. This phase mapping determines theU(x, y)-
dependent cyclical local variations in the speckle pattern. The
fringe intensityρ in terms ofφ is5

ρ(x, y) = (1 + cos(φ(x, y)))/2. (5)

Noise-free forward-modeled fringe patterns expected for
three simple different stress cases as derived from the ba-
sis displacements of Fig. 3 using eqs (2) and (5) are shown
in Fig. 6.

Fig. 4—Geometry of the dual-beam speckle interferometer.
Arms of split coherent beam (not shown) are expanded at
source points S1 and S2 to illuminate the surface. Unit vectors
n1 and n2 indicate the directions from the source points to
the surface point (x, y), which experiences total stress-relief
displacement U. Speckle patterns on the object’s surface are
observed using a CCD camera

Fig. 5—Mapping of the phase φ of the displacement field of
Fig. 3 for the red He-Ne laser 632.8 nm wavelength. Divergent
(spherical) source points at (75.5 mm, 2.0 mm, 64.0 mm) and
(−54.5 mm, 2.0 mm, and 73.0 mm)

The calculated fringe patterns in Fig. 6 and eq (5) high-
light the ambiguities apparent when the fringe patterns must
be interpreted. As phase increases with position [Fig. 7(a)],
the corresponding fringe intensity [Fig. 7(b)] oscillates be-
tween zero and one. The absolute value and slope of the
phase are lost in the fringe pattern. An observer interpret-
ing the fringe intensities can at best determine only a relative
phase to no better than an angle ofπ radians [Fig. 7(c)]; that
is, the observer knows only that the fringe peak atx = 0
corresponds to a phaseφ = 2iπ(i = 0, ±1, ±2, . . . ) and
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Fig. 6—Calculated noise-free fringe patterns for simple stress
conditions of (a) σx = 6 MPa, (b) σy = 6 MPa and (c) τxy =
12 MPa in a material with E = 3.0 GPa. The box containing
each synthetic fringe pattern has square dimensions of 126.0
mm. The fringe pattern appears only in circular region as a
result of the interpretation procedure

does not know whether the phase should be increasing or de-
creasing between peaks (i.e., the sign is ambiguous6). PSI
methods provide more directly the phaseφ but still cannot de-
termine this phase absolutely, since only wrapped values are
provided. However, if a particular displacement field is ex-
pected, the interpreter knows that variation of the phase with
position and, consequently, is able to assign relative values
of absolute phase to each fringe. This constraint can be used
to construct a family of possible phase curves, a subset of
which is illustrated by the light lines in Fig. 7(a).

In speckle interferometry, the raw data consist of two
grainy speckle patterns commonly acquired before and after
the deformationU with a digital camera (Fig. 4). The fringe
pattern is calculated from these two images. Researchers21

noted that local portions of the fringe patterns having a phase
difference ofφ = 2iπ remain unchanged between the two
exposures. Alternatively, ifπ = (2i + 1)π, then the local
speckle pattern differs completely. Consequently, measures
of the local correlation between the two images serve as prox-
ies for the phase, and mappings of these correlations produce
the fringe pattern.5

Traditionally, a variety of simple means to estimate this
correlation between video frames were developed directly as
part of a sophisticated circuit, and the technique was hence
referred to as ESPI. A modified version22 in which local val-
ues of Pearson’s coefficient of correlation are mapped is used
here. The advantage of this method is that the mapped cor-
relation values are the same as those theoretically expected
in eq (5) and that the method does not require ideal uniform
illumination of the object. For example, the fringe pattern of
Fig. 1 is the direct result of one such application and has not
been digitally enhanced in any way. In the convention used, a
bright fringe peak (good correlation) and a dark fringe trough
(poor correlation) correspond to phasesφ = 2iπ (or a fringe
order ofN = i) andφ = (2i + 1)π (or a fringe order of
N = i + 1/2), respectively.

Fringe Pattern Inversion

The plane stresses are determined directly in the inversion
described here that is a specialized modification of a recently
developed displacement measurement technique.23 Briefly,
the technique consists of first selecting a series of positions
with the same phase (e.g., along a bright fringe peak). This
set of points (manually selected in this test of the concept) is
arbitrarily assigned an integer fringe order valueM. Points
are then selected from the peak of the next bright fringe to
which a fringe order ofM + 1 is attached. This continues
with the points from the subsequent fringe, which are given
a value ofM + 2. fringes on the opposite side of the initial
M-order fringe would be assigned decreasing values ofM−1,
M − 2, and so on. Other features of the fringe pattern such
as the dark fringe troughs or the points at which the fringe
change from dark to bright can also be used and correspond
to fringe orders that differ from integer values by±1/2 and
±1/4, respectively. Indeed, the more points selected, the
better the statistical validity of the solution and the lower the
error.

The observer must have some knowledge of the expected
character of the motions so that the fringe order values may be
applied in a proper systematic fashion. This is easily accom-
plished by studying a few forward-modeled fringe patterns
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Fig. 7—Line plot through a hypothetical fringe pattern illustrating the relationship between (a) actual (heavy lines) and a subset
of possible interpreted (light lines) phases (open circles represent selected bright fringe peaks), (b) observed fringe intensity
and (c) ambiguity in phase in the interpretation of (b)

such those shown in Fig. 6 for which the fringe order is known
a priori.

The position of the observed fringes can be determined
accurately, but the initial fringe-order assignations will most
likely be incorrect. These values are used, however, in a least
squares calculation to determine the displacements. The er-
ror of this measurement is determined, and a second iteration
of the calculation is repeated after the fringe orders have been
appropriately and automatically incremented. This is equiva-
lent to moving between the set of possible interpreted phases
of Fig. 7(a). The least squares and error calculations are re-
peated until the minimum error is found.17 This procedure
yielded errors of better than one part in 104.

The method of stress determination here follows a dif-
ferent approach, which is developed below. Following eqs
(1), (2) and (4) in the forward sense, the fringe order at any
position can be written as

N(x, y) = [K(x, y)S(x, y)] · σ/2π = g(x, y) · σ. (6)

The term[K(x, y)S(x, y)]/2π reduces to a vectorg(x, y)
with components(ga(x, y), gb(x, y), gc(x, y)), combining
the known information of the experimental geometry and the
shape of the basis displacements. Consequently, at each ob-
served position, the assigned fringe order in the image is
described as the vector product of a known quantityg and the
three unknown stresses inσ to be determined.

If m points within the fringe pattern are selected, the cor-
responding system of equations may be written concisely in
matrix form as




N(x1, y1)
N(x2, y2)

·
·
·
·
·
·

N(xm, ym)




= (7)




ga(x1, y1) gb(x1, y1) gc(x1, y1)
ga(x2, y2) gb(x2, y2) gc(x2, y2)

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

ga(xm, ym) gb(xm, ym) gc(xm, ym)




[
σx

σy

τxy

]
,

or, in abbreviated form,N = Gσ, which is readily solved
with the method of least squares:23

σ = (GTG)−1GTN. (8)
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The sum of squares fringe order error, which is to be mini-
mized in the iterative updates ofN, is

E = |N2 − (Sσ)2|. (9)

As with the simpler translation measurements,23 a set of
rules is required to appropriately assign relative fringe or-
der values. Briefly, the procedure relies on keying the fringe
pattern according to the number of lobes (see Fig. 6), deter-
mining which is the zeroth-order bright fringe on the basis
of the symmetry of the pattern and assigning within each set
of fringes in a given lobe the incremental values of fringe
order with approach to the stress-relieving hole boundary.
This simple checklist assumes that the fringe patterns are not
contained within the translational displacements and that the
possibility of the existence of such motions may need to be
considered. If necessary, the least squares approach is easily
modified to include such movements.

Numerical Tests and Discussion

An ensemble of 32 synthetic fringe patterns randomly se-
lected to have stresses falling within the ranges of−6 MPa
≤ σx , σy ≤ 6 MPa and−12 MPa≤ τxy ≤ 12 MPa were
calculated using the basis displacements of Fig. 3 and eqs (1)
and (5). As noted earlier, inversion of data from perfectly
noise-free fringe patterns such as those of Fig. 6 yielded neg-
ligible error, indicating that numerical computation is not
a significant source of uncertainty. These synthetic fringe
patterns were made more realistic by simulating the random
speckle noise as is seen in Fig. 1. This was accomplished by
modulating the noise-free fringe patterns with a random root-
mean-square value of 0.4. One such synthetic fringe pattern
is shown in Fig. 8. The speckle noise results in substantial
positioning errors during fringe selection as is seen by the
scatter of the open circles in Fig. 8, which should follow a
more continuous path. This problem is most severe far from
the stress-relieving hole where the fringes are broader. In
spite of this source of error, the fringe positions recreated by
the inversion match the known fringe centers well.

Up to 1000 individual fringe positions were manually se-
lected in each of the synthetic fringe patterns. This was car-
ried out manually because we felt it prudent to test the concept
prior to developing more extensive automatic fringe selection
algorithms. Indeed, because of the novel correlation method
used, the fringes can easily in principle be converted to phase
modulo 2π via eq (5), and there is nothing to preclude the use
of the entire set of pixels in the fringe pattern. In all cases, the
inversion procedure yielded progressively better measures of
the three applied stresses as more selected points were in-
cluded. These results are summarized in Fig. 9, which shows
the decay of the error between the known plane stress magni-
tudes and those reproduced versus number of points in each
fringe pattern used in the inversion. The inversion appears
quite robust, with an average stress magnitude error near 3
percent produced from the inclusion of only 100 points.

These synthetic results provide a baseline for errors that
are expected to result from the inversion itself and indicate
that it provides acceptable solutions. However, application
of the methodology to a real hole-drilling experiment will
be complicated by a number of additional factors. The most
important error is use of an incorrect or insufficiently so-
phisticated stress-relief displacement basis model. This is a

Fig. 8—One calculated fringe pattern including random
speckle noise from the ensemble analyzed. Points selected
for use in the inversion are shown as white open circles.
White and black lines on dark and bright fringes, respectively,
show the numbered fringe order contours reproduced in the
inversion

Fig. 9—Average error in stress magnitudes determined
versus number of selected points used in the inversion. Error
bars represent one standard deviation

problem that afflicts all hole-drilling measurements regard-
less of whether optical or strain gage recording is used. Prob-
lems include transient thermal displacements from the heat
of drilling,24 time-dependent creep near the stress-relieving
hole,17,25 anisotropic or nonlinear elastic response of the ma-
terial, near-surface stress gradients26 or use of the wrong
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elastic moduli and relative hole dimensions in the develop-
ment of the basis model. Some experimental problems that
can influence the quality of the inversion are errors in the
determination of the relative locations of the source points,
the object’s surface and the hole position; and the accuracy
with which the hole has been drilled. Translations and rota-
tions of the object during drilling are another source of error,
but these can be accommodated as part of the least squares
solution if necessary.

Although mentioned briefly, in the context of hole-
drilling, residual stress determinations and the problem of
large gradients in the concentrated stresses near the surface
are presently of the greatest practical importance. Incremen-
tal drilling is often used in attempts to measure shallow stress
distributions.11−12,26 The incremental drilling problem relies
on the continuous monitoring of the stress-relief deformation
with progressive deepening of a shallow hole; as a result, high
sensitivity to small deformations near the stress relief hole is
necessary. Recent developments toward this sensitivity have
included both strain gage3 and moiré interferometry.11,12 In
the latter method, a closed-form solution for the changes
in the displacements with drilled hole depth was developed
from finite element analysis.11 That is, for each hole depth,
a new set of calibration coefficients describing the stress-
relief displacements was derived. These resulting closed-
form equations are particularly well suited for application in
the present least squares method. Furthermore, the time lapse
capabilities24 of the digital speckle interferometer to record
nearly continuously the progressive changes in the shape of
the object with hole depth could be fully exploited if an ap-
propriate series of displacement models existed.

What range of stress magnitudes can be reasonably mea-
sured with the optical technique is an important question.
Determining these bounds is not easily accomplished, since
the displacements and, hence, the fringe density depend on
many factors such as the elastic moduli, the hole dimensions
and the wavelength of the light used. A lower bound is set by
the point at which distinct fringes are no longer detectable.
The upper bound is controlled by the loss of coherence and
blending of fringes at high densities relative to the pixel spac-
ing of the imaging system.22 The result of the study of this
ensemble of fringe patterns suggests, however, that stresses
(as normalized by the material’s Young’s modulus) falling
within the range of 3×10−4 to 10−2 are accurately detectable
with the red He-Ne laser light.

Conclusions

The fringe inversion method developed here provides sat-
isfactory and robust quantitative determinations of stress
magnitudes in a hole-drilling residual stress measurement.
One novel aspect is that ambiguities in determining the or-
der of the fringes are overcome by an iterative recalculation
that seeks the lowest error solution by progressively updating
the input fringe orders. Assuming the stress-relief displace-
ment model employed in this paper is correct, even speckle
patterns contaminated with speckle noise will provide small
errors of less than 3 percent for a modest number of selected
points within a fringe image.

The results are encouraging, but the present method that
includes manual selection of fringe positions and the assign-
ment of fringe orders is laborious. Many of these aspects

could be automated, however. For example, observed fringe
pattern images are easily filtered such that the final pixel
value is the theoretical value of the phase modulo 2π, provid-
ing the same initial results as produced by the phase-shifting
methods13 but without the added instrumental difficulties.
At this point, the relative phase determination methods de-
scribed earlier for PSI could be employed; alternatively, the
initial modulo 2π phase maps produced in a PSI test could
employ the iterative absolute phase assignation method de-
scribed in this paper. Furthermore, the final absolute phase
maps produced by the PSI method could easily be incorpo-
rated into the least squares inversion method to provide more
reliable measurement of displacement if the form that the
displacement field must take is already known. One possi-
ble way to further automate the determination of the absolute
fringe or phase order is to use modern advanced inversion
procedures such as simulated annealing, random walk pro-
cesses and genetic algorithms.

The results of application of this inversion routine to the
analysis of real hole-drilling fringe patterns acquired in lab-
oratory calibrations is forthcoming.27

Acknowledgments

This work was supported by NSERC research and equip-
ment grants. Dr. Y. Li provided his stress-relief displacement
models for this study. L. Tober, J. Haverstock, J. MacKinnon
and G. Reese were instrumental in the production of this pa-
per. Two anonymous reviewers are thanked for pointing out
some related contributions in the recent literature.

References

1. Rendler, N.J. and Vigness, I., “Hole-drilling Strain-gage Method of
Measuring Residual Stresses,EXPERIMENTAL MECHANICS,21, 577–
586 (1966).

2. ASTM, “Standard Test Method for Determining Residual Stresses by
the Hole-drilling Strain-gage Method, 1993 Annual Book of ASTM Stan-
dards, American Society of Testing and Materials (1993).

3. Schajer, G.S. and Tootoonian, M., “A New Rosette Design for More
Reliable Hole Drilling Residual Stress Measurements,EXPERIMENTAL
MECHANICS,37, 299–306 (1997).

4. Schajer, G.S., “Application of Finite Element Calculations to Residual
Stress Measurements, J. Eng. Mat. Tech., 103, 157–163 (1981).

5. Jones, R. and Wykes, C., Holographic and Speckle Interferometry,
Cambridge University Press, Cambridge (1983).

6. Kreis, T., Holographic Interferometry—Principles and Methods,
Akademie Verlag, Berlin (1996).

7. Post, D., Han, B., and Ifju, P., High Sensitivity Moiré (Experimental
Analysis for Mechanics and Materials), Springer-Verlag, New York (1994).

8. Bass, J.D., Schmitt, D.R., and Ahrens, T.J., “Holographic In Situ Stress
Measurements, Geophys. J. Roy. Astr. Soc., 85, 13–41 (1986).

9. Nelson, D.V. and McCrickerd, J.T., “Residual Stress Measurement
Through Combined Use of Holographic Interferometry and Blind Hole
Drilling, EXPERIMENTAL MECHANICS,26, 371–378 (1986).

10. Nicoletto, G., “Theoretical Fringe Analysis for a Coherent Optics
Method of Residual Stress Measurement, J. Strain Anal., 23, 169–178
(1991).

11. Wu, Z., Lu, J., and Han, B., “Study of Residual Stress Distribution by
a Combined Method of Moiré Interferometry and Incremental Hole Drilling,
Part I: Theory, ASME J. Appl. Mech., 65, 837–843 (1998).

12. Wu, Z., Lu, J., and Han, B., “Study of Residual Stress Distribution by
a Combined Method of Moiré Interferometry and Incremental Hole Drilling,
Part II: Implementation, ASME J. Appl. Mech., 65, 844–850 (1998).

13. Creath, K., “Phase-shifting Speckle Interferometry, Appl. Opt., 24,
3053–3058 (1985).

14. Johansson, S. and Predko, K.G., “Performance of a Phase-shifting
Speckle Interferometer for Measuring Deformation and Vibration, J. Phys.
E., 22, 289–291 (1989).

8 • Vol. 40, No. 2, June 2000



15. Kato, J., Yamaguchi, I., and Ping, Q., “Automatic Deformation Anal-
ysis by a TV Speckle Interferometer Using a Laser Diode, Appl. Opt., 32,
77–83 (1993).

16. Makino, A. and Nelson, D.V., “Residual-stress Determination by
Single-axis Holographic Interferometry and Hole-drilling—Part 1: Theory,
EXPERIMENTAL MECHANICS,34, 66–78 (1994).

17. Schmitt, D.R. and Li, Y., “Three-dimensional Stress Relief Displace-
ment Resulting From Drilling a Blind Hole in Acrylic,EXPERIMENTAL
MECHANICS,36, 412–420 (1996).

18. Makino, A., Nelson, D.V., Fuchs, E.A., and Williams, D.R., “De-
termination of Biaxial Residual Stresses by a Holographic—Hole Drilling
Technique, J. Eng. Mat. Tech., 118, 583–588 (1996).

19. Schmitt, D.R. and Li, Y., “Influence of a Stress Relief Hole’s Depth
on Induced Displacements: Application to Interferometric Stress Determi-
nations, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 985–988 (1993).

20. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, McGraw-
Hill, New York (1970).

21. Leendertz, J.A., “Interferometric Displacement Measurement on

Scattering Surfaces Utilizing Speckle Effect, J. Phys. E. Instrum., 3, 214–218
(1970).

22. Schmitt, D.R. and Hunt, R.W., “Optimization of Fringe Pattern Cal-
culation with Direct Correlations in Speckle Interferometry, Appl. Opt., 36,
8848–8857 (1997).

23. Schmitt, D.R. and Hunt, R.W., “Model-based Inversion of Speckle
Interferometer Fringe Patterns, Appl. Opt., 37, 2573–2578 (1998).

24. Schmitt, D.R. and Hunt, R.W., “Time-lapse Speckle Interferometry,
Geophys. Res. Lett. (1999).

25. Whitney, T.S. and Stener, G.J., “A Device for Implementing the Strain
Gage-hole Drilling Method of Residual Stress Measurement on Aircraft
Transparencies, Exp. Tech., 25–30 (Jul.-Aug. 1993).

26. Makino, A. and Nelson, D.V., “Determination of Subsurface Distri-
butions of Residual Stress by a Holographic-hole Drilling Technique, J. Eng.
Mat. Tech., 119, 95–103 (1997).

27. Schmitt, D.R. and Hunt, R.W., “Determination of Residual Stress by
Inversion of Speckle Interferometer Fringe Patterns: Experimental Tests,
Unpublished manuscript (1999).

Experimental Mechanics • 9


